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Abstract. Intrinsic Diophantine approximation on fractals, such as the Cantor ternary set, was

undoubtedly motivated by questions asked by K. Mahler (1984). One of the main goals of this

paper is to develop and utilize the theory of infinite de Bruijn sequences in order to answer

closely related questions. In particular, we prove that the set of infinite de Bruijn sequences

in k ≥ 2 letters, thought of as a set of real numbers via a decimal expansion, has positive

Hausdorff dimension. For a given k, these sequences bear a strong connection to Diophantine

approximation on certain fractals. In particular, the optimality of an intrinsic Dirichlet function

on these fractals with respect to the height function defined by symbolic representations of

rationals follows from these results.

Keywords: de Bruijn sequences, Diophantine approximation, iterated function systems, Eule-

rian paths, badly approximable points, height functions, Hausdorff dimension

1. Introduction

In this paper, we give a novel application of combinatorics to the field of Diophantine

approximation. Since we do not assume that the reader is familiar with this field, let

us first recall some important concepts and ideas. We refer the reader to Section 5

where we rigorously define and discuss these notions.

Classically, the field of Diophantine approximation sought to quantify how well

real numbers can be approximated by rationals, weighing the distance to the rational

point against some function of its denominator. The inaugural result in the field is

Dirichlet’s theorem, Theorem 5.2, which states that every irrational real number has
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infinitely many rational points p/q that lie within distance 1/q2 of it. This result

raises the question of whether that function, 1/q2, can be improved. That it cannot

be, in a sense made precise in Section 5, is due to a result of Liouville, who showed

that quadratic irrational numbers, like
√

2, admit no better rate of approximation. In

modern terminology, we call such points badly approximable.

A more complete description of the set of badly approximable numbers, in this

and related contexts, was the subject of much activity in the early-to-mid twentieth

century. Via a characterization of badly approximable numbers in terms of contin-

ued fraction expansions one can show that the set of badly approximable numbers

is uncountable, but it is also relatively easy to show that this set is a Lebesgue null

set [5, Theorem 1.9 and Corollary 1.6], so we must turn to other notions of “size”.

One such notion, particularly well-suited to disntinguishing between sets of measure

zero, is that of Hausdorff dimension. Jarnı́k showed that despite being a Lebesgue

null set, the set of badly approximable real numbers has full Hausdorff dimension, so

it is still “large” in some sense.

As discussed further in Section 5, the core questions of Diophantine approxima-

tion can be formulated in many diverse contexts, essentially whenever we have a

complete metric space X , a countable dense subset Q, and some notion of “height”

defined on Q (this would be the size of the denominator in the classical case above).

Over the last decade, a plethora of results regarding Diophantine approximation on

fractals have emerged [3, 4, 7, 9–11, 13, 14, 18]. Many of these results were moti-

vated by the following question(s) posed by Mahler in 1984 [16, §2]: “How close can

irrational elements of Cantor’s set be approximated by rational numbers

(1) in Cantor’s set, and

(2) by rational numbers not in Cantor’s set?”

In this paper, we will restrict our attention to Mahler’s first question; see Section

6 for details. We remark that while in [11], the first- and third-named authors were

able to exhibit an optimal Dirichlet function (see Definition 5.3) corresponding to

Mahler’s second question, it seems that finding an analogous answer to his first ques-

tion is significantly harder, see, e.g., [4,6,11] for detailed discussions and conjectures

regarding this question.

In [11], a new height function was defined on the rational points of the Cantor

set (see Section 6), and a Dirichlet-type theorem was proven [11, Corollary 2.2 and

its proof]. The purpose of this paper is to demonstrate the optimality of that Dirich-

let theorem, and give an estimate on the Hausdorff dimension of the set of “badly

approximable” points. This set, as noted in [11], admits a precise combinatorial de-

scription, although at the time we had been unable to exhibit any members belonging

to it. In the present paper, we focus on a combinatorially defined subset of the set of

badly approximable points, the set of uniformly de Bruijn sequences. The existence

of uniformly de Bruijn sequences demonstrates the optimality of the Dirichlet func-

tion (Theorem 6.3), and by estimating from below the Hausdorff dimension of the set

of uniformly de Bruijn sequences (Theorem 2.1), we are able to get a positive lower

bound for the Hausdorff dimension of the set of badly approximable points (Corol-

lary 6.4), a first step towards a Jarnı́k-type result. See Section 6 for a more nuanced

discussion of these points.
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2. Finite and Infinite de Bruijn Sequences

Let A be a finite alphabet of cardinality k ≥ 2. We recall that a (non-cyclic) de Bruijn

sequence of order n in A is a sequence ω of length k n + n− 1 in the alphabet A

that has the property that every sequence of length n in A appears as a consecu-

tive substring of ω exactly once. For example, in the alphabet {0, 1}, the sequence

00110 is a de Bruijn sequence of order 2 while in the alphabet {0, 1, 2}, the sequence

00010020110120210221112122200 is a de Bruijn sequence of order 3. We say that

an infinite sequence ω ∈ AN is infinitely de Bruijn if the set

Bω

def
= {n ∈ N : the initial segment of ω of length kn + n−1

is a de Bruijn sequence of order n} (2.1)

is infinite. We say that ω is totally de Bruijn if Bω = N, and uniformly de Bruijn if Bω

has bounded gap sizes. The construction of infinitely de Bruijn sequences goes back

to Becher and Heiber [1],∗ who showed that when k ≥ 3, totally de Bruijn sequences

could be constructed recursively by extending each de Bruijn sequence of order n to

a de Bruijn sequence of order (n + 1). We shall discuss their method in more detail

below. When k = 2, it is known that no totally de Bruijn sequence exists, but Becher

and Heiber do construct a uniformly de Bruijn sequence such that Bω = 2N.

In order to state our main theorem for this section, let us briefly recall the def-

inition and basic properties of the Hausdorff dimension of a fractal† F ⊆ R
d , see,

e.g., [8, Chapters 2-3]. Let d denote the standard metric on R
d , and let diam(U)

denote the diameter of a set U ⊆ R
d . Fix δ > 0 and let F ⊆ R

d . We say that a count-

able collection {U j : j ∈ N} of subsets of R
d is a δ -cover of F if F ⊆

⋃
∞

j=1 U j and

diam(U j) ≤ δ for every j. For each s ≥ 0, let

Hs
δ
(F)

def
= inf

{

∞

∑
j=1

diam(U j)
s : {U j : j ∈ N} is a δ -cover of F

}

.

Then the s-dimensional Hausdorff measure of F is the number

Hs(F)
def
= lim

δ→0
Hs

δ
(F),

and the Hausdorff dimension of F is the number

dimH(F)
def
= inf{s ≥ 0: Hs(F) = 0} = sup{s ≥ 0: Hs(F) = ∞}.

It is well known that for every F ⊆ R
d we have 0 ≤ dimH(F) ≤ d, and that if

dimH(F) > 0, then F is uncountable, but not vice versa.‡

∗ Note that in [1], the phrase “infinite de Bruijn sequence” has a different meaning; we do not use

that meaning in this paper because it makes an ad hoc distinction between the k = 2 case and the

k≥ 3 case.
† The word “fractal” normally has a connotative but not a denotative meaning in mathematics; a set is

called a fractal if it is “sufficiently complicated at fine scales”. The Cantor ternary set, i.e., the set of all

numbers in [0, 1] that can be written in base 3 with only the digits 0 and 2, is a canonical example of a

fractal; further examples are given in Subsection 5.2.
‡ The set of Liouville numbers on the real line is a standard example of a comeager (and thus uncountable)

set of Hausdorff dimension 0.
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We also recall that if b ≥ 2 is an integer, then the base b expansion of a number

x ∈ [0, 1] is the series
∞

∑
i=1

ωi

bi
,

where ω1, ω2, . . . ∈ {0, 1, . . . , b−1} are chosen so that the value of the series is equal

to x. This choice is unique unless x is a rational number whose denominator is a power

of b, in which case there are exactly two ways in which the infinite word ω = ω1ω2 · · ·
can be chosen.

Theorem 2.1. Fix an integer b ≥ 2, and let C(b) = {0, 1, . . . , b− 1}. Fix A ⊆ C(b)

such that k
def
= #(A) ≥ 2. Denote by δ the Hausdorff dimension of the set F consisting

of all numbers that can be written in the form ∑
∞

i=1
ωi

bi with ωi ∈ A for every i ∈N, i.e.,

the set of all numbers in F that have at least one base b expansion composed entirely

of digits from A.§ Then the set S consisting of all elements of F that have at least one

base b expansion that is uniformly de Bruijn satisfies

0 < αkδ ≤ dimH(S) ≤
log(k!)

k log(k)
δ < δ ,

where

αk =















1/49, k = 2,

(8 · (9log4(3)−1))−1, k = 3,

log(k−2)!
k log(k)

, k ≥ 4.

In particular, S has positive Hausdorff dimension but not full Hausdorff dimension.

Note that for large values of k, Stirling’s formula gives αk ∼
log(k!)
k log(k) ∼ 1− 1

log(k) (where

x ∼ y means (1− x)/(1− y) → 1), and in particular αk → 1 as k → ∞. Thus S gets

closer and closer to having full dimension as the number of allowed digits increases.

3. Preliminaries

We begin by recalling some key definitions used in Becher and Heiber’s paper, as

well as the proof of the well-known BEST¶ theorem.

Definition 3.1. ([1]) Given an alphabet A and an integer n ∈ N, the de Bruijn graph

of order n on A is the directed graph G = Gn(A) with vertex set V (G)
def
= An and edge

set E(G)
def
= {(ω , τ) : ωi+1 = τi ∀i ≤ n−1}. Note that every vertex has in-degree and

out-degree both equal to k
def
= #(A), for a total of k n vertices and k n+1 edges.

§ It is well known that δ = log(k)/ log(b), see Subsection 5.2.
¶ An acronym after the people who discovered it: de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte.
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If ω is a sequence of length ℓ ≥ n in A, then the path induced by ω on G is the

path‖ γ = γ1 · · ·γℓ−n+1 in G defined by the formula

γi

def
= ωi · · ·ωi+n−1 ∈V (G).

Observation 3.2. Let ω be a sequence of length ℓω = k m +m−1, and let γ be the path

induced by ω on Gn(A). Note that the length of γ is ℓγ = ℓω −n = k m +m−n−1; in

particular, ℓγ = k n+1 if m = n + 1, and ℓγ < k n if m ≤ n. Moreover,

(I) If m = n + 1, then ω is de Bruijn if and only if γ is Eulerian.

(II) If m ≤ n and ω is de Bruijn, then γ is a simple path.

Remark 3.3. If m = n and ω is de Bruijn, then γ is a simple path that visits each

vertex exactly once. However, since γ starts and ends at different vertices, it is not a

Hamiltonian cycle, contrary to [1, p. 931, first para.]. In particular, the edge set of γ

does not form a regular graph on V (Ω), as is claimed in [1, Proof of Lemma 3, last

para.]. Consequently, the proof given there is technically incorrect; it can be trivially

fixed by adding a step where γ is extended to a Hamiltonian cycle; cf. the first two

paragraphs of the proof of Corollary 4.3 below. Similar remarks apply to [1, Proof of

Lemma 5, last para.].

Now let X = (V (X), E(X)) be a directed graph such that for each vertex x∈V (X),
the in-degree and out-degree of x are nonzero and equal to each other (though they

may depend on x). Fix a vertex x0 ∈ V (X), and let E be the set of Eulerian paths of

X that start and end at x0. Note that, unlike standard convention, we consider two

Eulerian paths to be different if they are formally different as sequences of vertices

even if they are cyclically equivalent. Let T be the set of directed spanning trees of

X rooted at x0 with edges pointing towards x0.

Since both the conclusion of the BEST theorem and its proof will be important

for our argument, we recall them now. We once again remind the reader that our

statement differs slightly from the usual one because of our convention about count-

ing Eulerian paths: we do not consider cyclically equivalent paths to be the same.

But the difference is easy to quantify: the number of Eulerian paths in each cyclic

equivalence class that start and end at x0 is equal to the degree of x0 (we recall that

by assumption the in-degree and out-degree are equal). So our count will be off from

the conventional one by a factor of deg(x0).

Theorem 3.4. (BEST theorem) We have

#(E) = #(T ) ·deg(x0) · ∏
x∈V (X)

[deg(x)−1]! . (3.1)

Proof. Let T ∈ T be a directed spanning tree rooted at x0. For each x ∈ V (X), let

Ex denote the set of edges in X with initial vertex x, and let Tx = E(T )∩Ex, where

‖ In this paper a “path” in a directed graph is a sequence of vertices such that each pair of consecutive

vertices is connected by an edge from the first vertex to the second vertex. The length of a path is the

number of such edges, or equivalently, the number of vertices minus one (counting multiplicity in both

cases). A path is simple if all its vertices are distinct except possible the first and last, and Eulerian if it

contains each edge exactly once.
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E(T ) denotes the edge set of T . If x �= x0, then Tx is a singleton, say, Tx = {vx}, while

Tx0
= �. Now let Ord(S) denote the set of total orderings of a set S, and note that the

cardinality of the set

O(T )
def
= ∏

x∈V (X)

Ord(Ex \Tx)

is exactly deg(x0) ·∏x∈V (X)[deg(x)−1]! . Now for each o = (ox)x∈V (X) ∈ O(T ) we let

f (T, o) be the Eulerian path that starts and ends at x0 defined recursively as follows:

suppose that the points x0 = γ0, γ1, . . . , γi have been defined, and let x = γi. Then the

next vertex γi+1 must be chosen so that γiγi+1 ∈ Ex, but γiγi+1 �= γ jγ j+1 for all j < i.

We make this choice so as to minimize γiγi+1 according to the ordering ox subject

to these restrictions. If the edges of Ex \Tx have been exhausted, then if x �= x0 we

choose the vertex vx, and if x = x0, then we terminate the path. There is some work

to do to show that f (T, o) is indeed an Eulerian path, and that every Eulerian path

that starts and ends at x0 can be represented uniquely as f (T, o) for some T ∈ T and

o ∈ O(T ), see, e.g., [17, pp. 445–446]. This implies that f is a bijection between∐
T∈T O(T ) = {(T, o) : T ∈ T , o ∈ O(T )} and E , which completes the proof.

We will also need the following sufficient condition for the right-hand side of

(3.1) to be nonzero:

Lemma 3.5. If X is connected, then there is at least one directed spanning tree rooted

at x0, i.e., T �= �.

Proof. Let T be a maximal directed tree rooted at x0. By the maximality of T , there is

no edge from any vertex not in T to any vertex in T . Since each vertex of X has equal

in-degree and out-degree, the number of edges from V (T ) to V (X)\V (T ) is equal to

the number of edges from V (X) \V(T ) to V (T ), which is equal to zero. Since X is

connected, this means that either V (T ) = � or V (X)\V(T ) = �. But x0 ∈V (T ) by

construction, so V (X)\V(T ) = � and thus T is a spanning tree, i.e., T ∈ T .

4. Proof of Theorem 2.1

4.1. The Upper Bound

We begin by establishing the upper bound of Theorem 2.1. To do this we will use the

Hausdorff-Cantelli lemma, a very useful tool for establishing upper bounds on the

Hausdorff dimensions of certain sets, see, e.g., [2, Lemma 3.10]. Let
{

U j : j ∈ N
}

be

a countable collection of sets in R
d , and let U be the set consisting of those elements

of R
d that belong to infinitely many of the sets U j ( j ∈ N). In other words,

S
def
= limsup

j→∞

U j =
∞⋂

N=1

∞⋃

j=N

U j.

Lemma 4.1. (Hausdorff-Cantelli Lemma) Let
{

U j : j ∈ N
}

⊆ R
d be a countable

collection of sets, and let S = limsup j U j . Fix s > 0. If

∞

∑
j=1

diam(U j)
s
< ∞, (4.1)
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then Hs(S) = 0 and thus dimH(U) ≤ s.

It turns out to be convenient to consider a collection
{

U j : j ∈ N
}

that naturally

splits up into subcollections, say,
{

U j : j ∈ N
}

=
⋃

m Cm for some sequence of col-

lections (Cm)∞

m=1. In this case, the summability condition (4.1) is equivalent to the

condition
∞

∑
m=1

costs(Cm) < ∞,

where

costs(Cm)
def
= ∑

U∈Cm

diam(U)s

is the s-dimensional cost of Cm. Note that costs(Cm) should be distinguished from the

expression
(

cost1(Cm)
)s

, which denotes instead the 1-dimensional cost of Cm raised

to the power of s. The set S can be written in terms of the collections (Cm)∞

m=1 as

follows:

S = limsup
m→∞

⋃

U∈Cm

U =
∞⋂

N=1

∞⋃

m=N

⋃

U∈Cm

U.

In what follows we will abuse terminology somewhat by calling costs(Cm) the “cost”

of the set Sm
def
=

⋃
U∈Cm

U , although strictly speaking, it depends not only on Sm but

also on how it is decomposed.

Proof of upper bound. For each m, let Sm be the set consisting of all elements of F

corresponding to base b expansions whose initial segments of length k m+m−1 are de

Bruijn sequences of order m in A. Then the lim sup of the sequence (Sm)∞

m=1 consists

of those elements of F with infinitely de Bruijn base b expansions. In particular, the

set S consisting of those elements of F with uniformly de Bruijn base b expansions

satisfies

S ⊆ limsup
m→∞

Sm =
∞⋂

N=1

∞⋃

m=N

Sm.

By the Hausdorff-Cantelli lemma, if we can find an s such that

∞

∑
m=1

costs(Sm) < ∞, (4.2)

then we can conclude that dimH(S) ≤ s. We will show that (4.2) holds for all s >

δ
log(k!)
k log(k) .

For each m, we view Sm as the union of the collection

Cm
def
=

{

Sω

m : ω is a de Bruijn sequence of order m in the alphabet A
}

,

where for each ω , Sω

m is the set of points x ∈ F corresponding to base b expansions

whose initial segments of length k m + m− 1 are equal to ω . Let G be the de Bruijn

graph of order (m− 1) on A (see Definition 3.1), so that #(V (G)) = k m−1. By Ob-

servation 3.2(I), the collection Cm is in bijection with the set of Eulerian paths on G.

Fix a vertex x0 ∈ V (G). We can estimate the number of Eulerian paths starting and
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ending at x0 via the BEST theorem. Specifically, we have ∏x∈V (G)(deg(x)− 1)! =

(k− 1)!#(V(G)), since every vertex x ∈ V (G) has degree equal to k. The number of

spanning trees rooted at x0 is at most k
#(V (G))−1, since an edge must be chosen ema-

nating from each vertex x �= x0, and each vertex has out-degree k. And for the same

reason, deg(x0) = k. Therefore, the number of Eulerian paths starting and ending at

x0 is at most

#(T ) ·deg(x0) · ∏
x∈V (G)

[deg(x)−1]! ≤ k
#(V (G))−1 · k · (k−1)!#(V(G))

= k!#(V (G))

= k!k
m−1

.

Since there are #(V (G)) = k
m−1 possible choices for x0, the number of de Bruijn

sequences of order m in A is at most k
m−1 ·k!k

m−1

.∗ Now, if ω is a de Bruijn sequence

of order m in A, then the length of ω is k
m + m−1, and thus the diameter of S

ω

m is at

most b
−k

m
−m+1. So the s-dimensional cost of Sm according to the decomposition Cm

is at most

k
m−1 · k!k

m−1

·
(

b
−k

m
−m+1

)s

.

Now fix ε > 0 and set

s
def
=

1

k
logb(k!)+ ε. (4.3)

Then

∞

∑
m=1

costs(Sm) ≤
∞

∑
m=1

k
m−1(k!)k

m−1
(

b
−k

m
−m+1

)s

.

By the ratio test, this series converges as long as limm→∞ |am+1/am| < 1, where am

denotes the mth term. A straightforward computation yields:

|am+1/am| = k ·b−ε(k
m+1

−k
m) ·b−s,

which tends to 0 as m → ∞.

Thus by Lemma 4.1, we have

dimH(S) ≤
1

k
logb(k!) =

log(k!)

k log(b)
=

log(k!)

k log(k)
δ ,

since δ = log(k)/ log(b) (see Subsection 5.2).

Since for all k ≥ 2 we have k! < k
k and thus

log(k!)
k log(k) < 1, we deduce that the

Hausdorff dimension of S is strictly less than δ .

∗ In fact, the exact count for such sequences is known, but we prefer this estimate because it is simpler and

yields the same upper bound on the Hausdorff dimension.
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4.2. The Lower Bound

The proof of the lower bound is significantly more involved, and will require a few

preliminary results. We begin with the following proposition:

Proposition 4.2. Let X be a k-regular connected directed graph, fix x0 ∈ V (X), and

let E be the set of Eulerian paths of X that start and end at x0. Then there exists

E ′ ⊆ E such that:

(i) #(E ′) = k · (k−1)!#(V(X));

(ii) If δ is a path of length ℓδ starting at x0, then the number of paths in E ′ that

extend δ is at most k · (k−1)!#(V(X))−ℓδ /k.

Proof. Since X is connected, by Lemma 3.5 there exists a directed spanning tree

T rooted at x0. Let E ′ be the set of Eulerian paths δ that start and end at x0 such

that for all xy ∈ E(X) and xz ∈ E(T ) with y �= z, the edge xy appears in δ before xz

does. Equivalently, E ′ = { f (T, o) : o ∈ O(T )} where the notation is as in the proof

of the BEST theorem. Then the proof of the BEST theorem implies that #(E ′) =
#(O(T )) = k · (k−1)!#(V(X)). Now let δ be a path starting at x0 that has at least one

extension in E ′. For each o ∈ O(T ), the path f (T, o) is an extension of δ if and only

if the algorithm described in the proof of the BEST theorem produces δ on input o.

Equivalently, f (T, o) is an extension of δ if for each edge xy of δ , the rank of xy

according to ox is the same as its rank according to its location in δ . The number of

elements o ∈ O(T ) satisfying this condition is given by the formula

Nδ = ∏
x∈V (X)

[#(Ex \ (E(δ )∪E(T ))]!

= #(Ex0
\E(δ )) · ∏

x∈V (X)

[#(Ex \E(δ ))−1]!

≤ k · ∏
x∈V (X)

[#(Ex \E(δ ))−1]!,

where Ex denotes the set of edges with initial vertex x, and E(δ ) denotes the edge

set of δ . Here we use the convention (−1)! = 1, since if Ex \E(δ ) = �, then there

is exactly one ordering ox satisfying the appropriate condition, namely, the ordering

determined by δ , and by hypothesis the element vx comes last in this ordering. Now

since

(i−1)! ≤ (k−1)!i/k, ∀ i = 0, . . . , k,

we have

Nδ ≤ k · (k−1)!M/k,

where

M
def
= ∑

x∈V (X)

#(Ex \E(δ )) = #(E(X)\E(δ )) = k#(V (X))− ℓδ .

The next result will furnish the lower bound for k ≥ 4. Although it is valid for

k = 3, it provides no useful information in this case since 0 is always a (trivial) lower

bound on the dimension.
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Corollary 4.3. Let the notation be as in Theorem 2.1, and let S be the set of numbers

in F with totally de Bruijn base b expansions. Assume that k ≥ 4. Then the Hausdorff

dimension of S is bounded below by αkδ > 0, where δ is the Hausdorff dimension of

F
(

and equals log(k)/ log(b)
)

, and

αk =
log(k−2)!

k log(k)
· (4.4)

Before we turn to the proof, we recall the so-called Mass Distribution Principle,

an extremely useful tool for bounding the Hausdorff dimension from below.

Lemma 4.4. ([8, Principle 4.2]) Let F be a metric space, and let µ be a measure on

F such that 0 < µ(F) < ∞. Fix s, ε > 0, and suppose that there exists C > 0 such that

µ(U) ≤C ·diam(U)s for every set U ⊆ F such that diam(U) ≤ ε . Then

dimH(F) ≥ s.

Proof of Corollary 4.3. Fix n ∈N, and let ω = ω1 · · ·ωk n+n−1 be a de Bruijn sequence

of order n in A. Since the path induced by ω on Gn−1(A) is an Eulerian path in a

directed graph in which each vertex has equal in-degree and out-degree, it must start

and end at the same vertex, which means that the first (n−1) letters of ω are the same

as the last (n−1) letters, i.e., ωk n+i = ωi for all i = 1, . . . , n−1.∗ Now let ωk n+n = ωn

and ω ′ = ω1 · · ·ωk n+n. Then the first n letters of ω ′ are the same as the last n letters,

but no other block of n letters is repeated in ω ′.

Let G = Gn(A) be the de Bruijn graph of order n on A, and let γ = γ1 · · ·γk n+1

be the path induced by ω ′ on G. Then γ is a Hamiltonian cycle (i.e., a simple path

traversing each vertex once). The collection of de Bruijn sequences of order (n + 1)
that extend ω ′ is isomorphic to the collection of Eulerian paths on G that extend γ .

Let x0

def
= γ1 = γk n+1 be the common initial and terminal vertex of γ . Then the

collection of Eulerian paths of G that extend γ is isomorphic to the set of Eulerian

paths of Xω

def
= G\E(γ) that start and end at x0, which we denote by E(ω). Since Xω

is a (k− 1)-regular connected directed graph whose vertex set has size k n (see the

proof of [1, Lemma 3] for connectedness), we may use Proposition 4.2 to extract a

subset E ′(ω) ⊆ E(ω). Pulling this subset back via the appropriate correspondences

gives us a set S ′(ω), contained in the set of all de Bruijn sequences of order (n + 1)
extending ω ′ (and thus also extending ω), with the following properties:

(i) #(S ′(ω)) = (k−1) · (k−2)!k
n

.

(ii) If τ is a sequence of length ℓτ extending ω , then the number of sequences in

S ′(ω) that extend τ is at most (k−1) · (k−2)!k
n
−(ℓτ−ℓω−1)/k, where ℓω = k n +

n−1 is the length of ω .

∗ This phenomenon is related to the fact that we consider non-cyclic de Bruijn sequences instead of cyclic

ones: each cyclic de Bruijn sequence ω = ω1 · · ·ωk n corresponds to a non-cyclic de Bruijn sequence

ω1 · · ·ωk n ω1 · · ·ωn−1 that is longer but has the same number of consecutive substrings. This correspon-

dence makes it obvious that the first (n−1) letters of a non-cyclic de Bruijn word are expected to be the

same as the last (n−1) letters. However, by itself this is not a proof, because our definition of non-cyclic

de Bruijn sequences did not assume that they were constructed from cyclic ones.
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Now we proceed to define a probability measure µ on F ≡ EN via a random algo-

rithm: start with a fixed de Bruijn sequence ω (1) of order 1, and if ω (n) is a de Bruijn

sequence of order n, then let ω (n+1) ∈ S ′(ω(n)) be chosen randomly with respect to

the uniform measure on S ′(ω(n)), independent of all previous selections. Let ω be the

unique infinite sequence that extends all of the finite sequences ω (n) (n ∈ N). Then

ω is a base b expansion of a unique point π(ω) ∈ F . (The point π(ω) may have a

base b expansion other than ω , but there is no other point with base b expansion ω .)

We let µ be the probability measure describing the distribution of the random vari-

able π(ω). (The existence of such a µ can be guaranteed, e.g., by the Kolmogorov

extension theorem.)

To demonstrate that µ satisfies the hypotheses of the mass distribution principle,

we first estimate the measure of cylinder sets of a certain length, then arbitrary cylin-

der sets, then balls. Here a cylinder set is a set of the form [τ] = {π(ω) : ωi = τi ∀ i =
1, . . . , ℓτ}, where τ = τ1 · · ·τℓτ

is a finite sequence in the alphabet A. Our first estimate

is easy: if ℓτ = k n+1 +n for some n, then [τ] is precisely the set of π(ω) in the above

construction such that ω (n+1) = τ , so µ([τ]) is just the probability that ω (n+1) = τ ,

i.e.,

µ([τ]) =
n

∏
i=1

1

#(S ′(τ(i)))
=

n

∏
i=1

1

(k−1) · (k−2)!k i
≤ (k−2)!−(k n+k n−1+n/k) (4.5)

if it is possible that ω (n+1) = τ , and µ([τ]) = 0 otherwise. Now consider the more

general case where the length of τ satisfies k n + n− 1 < ℓτ ≤ k n+1 + n for some n.

Then by (ii) above, [τ] contains at most (k−1) · (k−2)!k n
−(ℓτ−(k n+n))/k cylinders of

length k n+1 + n. Combining with (4.5) shows that

µ([τ]) ≤ (k−1) · exp(k−2)!

(

k n − (ℓτ − (k n + n))/k)−
(

k n + k n−1 + n/k
))

= (k−1) · (k−2)!−ℓτ/k.

Here and hereafter we use the notation expx(y)
def
= xy.

To apply the mass distribution principle (Lemma 4.4), we now need to relate this

measure to the diameter of the cylinder [τ]. Since elements of [τ] have the first ℓτ

digits of their base b expansions fixed, the diameter of [τ] is approximately b−ℓτ (to

be precise, it is c ·b−ℓτ for some constant 0 < c ≤ 1). Thus

diam([τ])αkδ = cαkδ expb

(

−ℓτ

log(k−2)!

k log(k)

log(k)

log(b)

)

= cαkδ · (k−2)!−ℓτ/k,

so

µ([τ]) ≤C ·diam([τ])s,

where C = (k−1) ·c−αkδ and s = αkδ . But any subset of F can be covered by at most

two cylinder sets with comparable diameter, so a similar formula holds for arbitrary

sets. Thus by Lemma 4.4, we have dimH(S) ≥ s = αkδ .

As is evident from Corollary 4.3, we now have to deal with the cases k = 2 and

k = 3 separately, since in those cases the formula (4.4) gives α2 = α3 = 0, which is

not a useful bound. Note that the Cantor ternary set falls into the case k = 2, since its

set of admissible numerators is A = {0, 2}.
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Proposition 4.5. If k = 2 and ω is a de Bruijn sequence of order (n− 2) in A, then

the number of de Bruijn sequences of order (n + 1) that extend ω is at least 22
n−2

.

In the case where k = 3 and ω is a de Bruijn sequence of order (n−1) in A, then

the number of de Bruijn sequences of order (n + 1) that extend ω is at least 43
n−1

.

Proof. For convenience, we let ∆ = 2 if k = 3, and ∆ = 3 if k = 2; then ω is a de

Bruijn sequence of order (n−∆+1). The first paragraph of Corollary 4.3 shows that

the first (n−∆) letters of ω are the same as the last (n−∆) letters. So if we extend ω

to a word ω ′ of length k n−∆+1 + n by letting ω
k n−∆+1+i

= ωi for i = n−∆ + 1, . . ., n,

then the first n letters of ω ′ are the same as the last n letters, but no other block of n

letters is repeated.

Let G be the de Bruijn graph of order n on A, and let γ be the path induced by ω ′

on G. The length of γ is ℓγ = k n−∆+1, and γ is a simple path that starts and ends at the

same vertex x0. As in the proof of Corollary 4.3, we let X = Xω = G \E(γ), where

E(γ) is the edge set of γ . The collection of de Bruijn sequences of order (n + 1) that

extend ω is isomorphic to the collection of Eulerian paths on G that extend γ , which

in turn is isomorphic to the collection of Eulerian paths on Xω that start and end at x0.

By the BEST theorem, the cardinality of this collection is

N
def
= #(T ) ·deg(x0; Xω) · ∏

x∈V (G)

[deg(x; Xω)−1]!.

If k = 3, we complete the proof with the following calculation:

N ≥ ∏
x∈V (G)

[deg(x; Xω)−1]!

= exp2(#{x ∈V (G) : deg(x; Xω) = 3})

= exp2

(

#(V (G))− ℓγ

)

= exp2

(

3n −3n−1
)

= 43
n−1

.

In the first inequality, we have used Lemma 3.5 and the proof of [1, Lemma 3] to

deduce that #(T ) ≥ 1.

For the remainder of the proof, we assume that k = 2. In this case, the strategy

of the above calculation cannot work, since we have [deg(x; Xω)− 1]! = 1 for all

x ∈ V (G) and thus N ≤ 2#(T ). Instead we must estimate the number of spanning

trees in Xω .

Let S be the set of sequences of length (n− 1) that do not occur in ω , and note

that #(S) = 2n−1 −2n−2 = 2n−2. For each τ ∈ S, let Eτ = {aτb : a, b ∈ A} ⊆ E(Xω),
where aτb is shorthand for (aτ)(τb), the edge from the vertex aτ to the vertex τb.

Note that the sets Eτ (τ ∈ S) are disjoint.

Lemma 4.6. If T is a directed spanning tree and τ ∈ S, then there exists a directed

spanning tree T ′ �= T such that T ′ \Eτ = T \Eτ .



Uniformly de Bruijn Sequences and Diophantine Approximation 13

Proof. By contradiction, suppose that the conclusion of the lemma is false, i.e., that

there exists no such spanning tree T ′.

Denote the partial order on V (G) induced by the tree T by <, i.e., write x < y if

there is a path in T from x to y, and write x ≤ y if either x < y or x = y. We write

x <∗ y if x is a direct descendant of y, i.e., if xy ∈ E(T ). For each a ∈ A, let f (a) ∈ A

be chosen to satisfy aτ f (a) ∈ E(T ), and let g(a) = σ( f (a)), where σ : A → A is

the permutation that swaps the two elements of A. Consider the graph T ′ = T ∪
{aτg(a)} \ {aτ f (a)}. Then T ′ �= T and T ′ \ Eτ = T \ Eτ , so by the contradiction

hypothesis, T ′ is not a directed spanning tree, which implies that τg(a) ≤ aτ . On the

other hand, we have aτ <∗ τ f (a) since aτ f (a) ∈ T . Now write A = {a, b}, c = f (a),
and d = σ(c) = g(a). Then either f (b) = c or f (b) = d, and thus we have one of the

following two diagrams:

τd ≤ aτ <∗ τc >∗ bτ ≥ τd or τd ≤ aτ < τc ≤ bτ < τd.

Both diagrams are impossible for directed trees: the left-hand diagram is impossible

because if aτ and bτ are siblings, then they have no common descendants, while the

right-hand diagram is disjoint because it is a nontrivial directed loop. This is the

desired contradiction.

It follows from Lemma 4.6 that there exists a function φ : T × S → T such that

for all T ∈ T and τ ∈ S, we have φ(T, τ) �= T and φ(T, τ)\Eτ = T \Eτ .

Now by Lemma 3.5 and the proof of [1, Lemma 5], X has a directed spanning tree

T0 rooted at x0. Let (τi)
N

i=1
be an indexing of S, where N = 2n−2. Given ω ∈ {0, 1}N ,

we define recursively

Tω,0 = T0, Tω, i =

{

Tω, i−1, ωi = 0,

φ(Tω, i−1, τi), ωi = 1.

Then the map {0, 1}N ∋ ω → Tω,N ∈ T is injective. Thus N ≥ #(T )≥ #
(

{0, 1}N
)

=

22
n−2

, which completes the proof.

Corollary 4.7. Let the notation be as in Theorem 2.1. Suppose that k ≤ 3, and let

αk =

{

1/49, if k = 2,

(8 · (9log4(3)−1))−1, if k = 3.
∆ =

{

3, if k = 2,

2, if k = 3.

Then the Hausdorff dimension of the set

{π(ω) ∈ F : Bω contains an arithmetic progression with gap size ∆}

is at least αkδ .

Proof. Let B = 2 if k = 2 and B = 4 if k = 3. Then

αk =
1

(k∆ −1) · (k∆ logB(k)−1)
,
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and Proposition 4.5 can be expressed uniformly as follows: if ω is a de Bruijn se-

quence of order n in A, then the number of de Bruijn sequences of order n + ∆ that

extend ω is at least exp
B
(k n). We denote the set of all such extensions by S

′(ω).
As in the proof of Corollary 4.3, we define a probability measure µ by a random

algorithm: let ω (1) be a fixed de Bruijn sequence of order ∆, and if ω (n) is a de

Bruijn sequence of order n∆, then let ω (n+1) be chosen randomly with respect to the

uniform measure on S
′
(

ω(n)
)

, independent of all previous selections. As before we

let ω ∈ A
N be the unique common extension, we let π(ω) ∈ F be the unique number

for which ω is a base b expansion, and we let µ be the probability measure describing

the distribution of π(ω).
As before, we first estimate the measure of special cylinders, then arbitrary cylin-

ders, then balls. For ease of notation we fix k = 3 in this proof; for the case k = 2 one

can apply the substitutions 9 �→ 8, 8 �→ 7, 4 �→ 2, 3 �→ 2, and 2 �→ 3. Fix n ∈N and let

τ be a sequence of length 9n + 2n−1 in A. Then

µ([τ]) ≤
n−1

∏
i=1

1

#(S ′(τ(i)))
≤

n−1

∏
i=1

1

exp4(3
2i)

= exp4

(

−
9n −9

9−1

)

.

Now let τ be an arbitrary sequence of length 9n +2n−1 < ℓτ ≤ 9n+1 +2(n+1)−1.

There are two ways that we could bound µ([τ]):

1. Since [τ] ⊆
[

τ(n)
]

, we have

µ([τ]) ≤ µ
([

τ(n)
])

≤ exp4

(

−
9n −9

8

)

.

2. Since [τ] can be written as the union of at most exp3

(

9n+1 + 2(n + 1)− 1− ℓτ

)

cylinder sets corresponding to de Bruijn sequences of order 2(n + 1), we have

µ([τ]) ≤ exp3

(

9n+1 + 2(n + 1)−1− ℓτ

)

· exp4

(

−
9n+1 −9

8

)

.

Which of these bounds is better depends on the value of ℓτ . Now, as in the proof

of Corollary 4.3, we have diam([τ]) = c ·b−ℓτ for some constant c. Fix 0 < s < α3δ .

To apply the mass distribution principle, we need to show that

µ([τ]) ≤C ·diam([τ])s,

for some constant C. It is enough to show that

min

(

4−9
n/8,exp

3

(

9n+1 + 2n− ℓτ

)

·4−9
−n+1/8

)

≤C ·b
−sℓτ = C ·3−tℓτ ,

possibly with a different value of C, where t = s/δ < α3 < 1. Equivalently, we need

to show that

min

(

4−9
n/8

·3tℓτ , 39
n+1

·9n
·4−9

n+1/8
·3(t−1)ℓτ

)

≤C.
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Now the first input to the binary operator min is an increasing function of ℓτ , while

the second input is a decreasing function of ℓτ . It follows that the largest value the

left-hand side can attain is the value attained when the two inputs to min are equal,

i.e., when

4−9
n/8 = 39

n+1

·9n ·4−9
n+1/8 ·3−ℓτ ,

at which point the left-hand side is

4−9
n/8 ·

(

39
n+1

·9n ·49
n/8−9

n+1/8

)t

.

We need this expression to be bounded as n → ∞. Applying the change of variables

x = 9n, we need to show that

limsup
x→∞

4−x/8 ·
(

39x · x ·4x/8−9x/8

)t

< ∞.

This is true if and only if

4−1/8 · (39 ·4−1)t < 1,

which in turn is true if and only if t < α3. This proves that the hypothesis of the mass

distribution principle holds for cylinder sets. As in the proof of Corollary 4.3, any

subset of F can be covered by at most two cylinder sets with comparable diameter,

so the hypothesis of the mass distribution principle holds for arbitrary sets as well.

Combining Corollaries 4.3 and 4.7 yields Theorem 2.1.

Remark 4.8. Either of the strategies used in this proof, the (simpler) strategy for the

k = 3 case or the (more complicated) strategy for the k = 2 case, could have been used

(after minor modification) in the case k ≥ 4 as well, but the resulting bound would

have been significantly worse, measured by the fact that the analogues of αk would

not have tended to 1. Similarly, the strategy for the k = 2 case could have been used

for the k = 3 case, again resulting in a worse bound. In general, the principle is that

whatever techniques work for one value of k will also work for higher values of k, but

may not give very good estimates for higher values of k.

5. Intrinsic Diophantine Approximation

5.1. Diophantine Approximation — a Brief Survey

We first recall some definitions and state some well-known classical theorems:

Definition 5.1. Let H : Q→R>0 be a function. We think of H as a “height function”,

and for all p∈Z and q∈N, we define the height of p/q to be the number H(p/q). We

say that a function ψ : R>0 → R>0 is a Dirichlet function (with respect to the height

function H) if for every x ∈ R\Q there exist infinitely many rationals p/q such that

∣

∣x− p/q
∣

∣ < ψ(H(p/q)).
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Historically speaking, the only height function considered on the unit interval

[0, 1] was the function Hstd(p/q) = q, where p and q are chosen in reduced form,

i.e., gcd(p, q) = 1. We will refer to this as the standard height. It is readily verified

that, for example, ψ0(q) = 1 and ψ1(q) = 1/q are Dirichlet functions with respect to

the standard height function and using the terminology of Definition 5.1, Dirichlet’s

approximation theorem may be stated as follows:

Theorem 5.2. (Dirichlet) ψ2(q) = 1

q2
is a Dirichlet function with respect to the stan-

dard height function.∗

For our purposes, although of interest in its own right, an improvement of a

Dirichlet function by a multiplicative constant is not significant. More precisely:

Definition 5.3. We say that a Dirichlet function ψ is optimal if there does not exist a

Dirichlet function φ for which limq→∞

φ(q)
ψ(q) → 0.

It is clear that Dirichlet’s theorem implies that the Dirichlet functions ψ0 and ψ1

defined above are not optimal. The optimality of the function ψ2(q) = 1/q2 was

demonstrated by Liouville, who proved that quadratic irrationals are badly approx-

imable. A real number x is called badly approximable if there exists c(x) > 0 such

that
∣

∣x− p/q
∣

∣ >
c(x)

q2
, for all p/q ∈ Q.

Liouville’s result was later significantly improved by Jarnı́k, who proved that the

Hausdorff dimension of the set of badly approximable numbers is 1.

5.2. Iterated Function Systems, Limit Sets, and Hausdorff Dimension

Let k ≥ 2 be an integer. In what follows, we shall consider a finite famiily (Si)
k
i=1

of contracting similarities on the unit interval I = [0, 1]. This means that for every

1 ≤ i ≤ k, the map Si : I → I satisfies

|Si(x)−Si(y)| = ci|x− y|, ∀x, y ∈ I,

for some 0 < ci < 1. We shall call such a family of similarities an Iterated Function

System or IFS. A nonempty compact set F ⊆ I is said to be the attractor or the limit

set of the IFS if

F =
k⋃

i=1

Si(F).

It is well known (see, e.g., [8, Chapter 9]) that the attractor F exists and is unique.

Furthermore, if there exists a bounded nonempty open set U such that

k⋃

i=1

Si(U) ⊆U,

∗ In fact, Dirichlet’s theorem furnishes a similar result for all dimensions d. It was recently pointed out to

us by Y. Bugeaud that the one-dimensional version of this result is actually much older, coming directly

from the theory of continued fractions (see, e.g., [15, displayed equation on p. 28]). Nevertheless, we call

the theorem “Dirichlet’s theorem” so as to conform to usual practice.
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with the union disjoint, then the IFS is said to satisfy the open set condition. In this

case, the Hausdorff dimension of the attractor is equal to the unique solution s > 0 of

the equation
k

∑
i=1

c s
i = 1. (5.1)

We say that the IFS (Si)
k
i=1 satisfies the strong separation condition if

Si(F)∩S j(F) = �,

for all i �= j, where F is the attractor.†

A particularly important example of an iterated function system is the system

Si(x) =
i+ x

b
, i ∈C(b)

def
= {0, . . . , b−1}, (5.2)

where b ≥ 2 is fixed. This system satisfies the open set condition
(

with U = (0, 1)
)

but not the strong separation condition, and its attractor is the entire interval I. In

some sense this IFS encodes the base b expansion(s) of any number in the interval

[0, 1], since the number

x = π(ω) = 0.ω1ω2 · · · (base b) =
∞

∑
i=1

ωi

bi

can be written as

x = lim
n→∞

Sω1
◦ · · · ◦Sωn

(0).

By looking at subsystems of the system (5.2), we can find IFSes whose limit sets can

be described in terms of base b expansions. Fix A ⊆C(b), and consider the subsystem

of (5.2) consisting of the similarities (Si)i∈A. We call such a subsystem a base b IFS.

Its limit set is precisely the set of all numbers in [0, 1] that have at least one base b

expansion whose digits all lie in A, i.e.,

F =

{

x ∈ [0, 1] : ∃ω ∈ AN with x =
∞

∑
i=1

ωi

bi

}

. (5.3)

For example, if b = 3 and A = {0, 2}, then F is the standard Cantor ternary set, i.e.,

the set of all numbers in [0, 1] that have at least one base 3 expansion containing only

the digits 0 and 2.

It follows directly from (5.1) that the Hausdorff dimension of the base b IFS

corresponding to an alphabet A ⊆C(b) is precisely log#(A)/ log(b).
We remark that it is easy to check whether a base b IFS satisfies the strong sepa-

ration condition:

Observation 5.4. The base b IFS defined by the alphabet A⊆C(b) satisfies the strong

separation condition if and only if at least one of the following is true:

(1) 0 /∈ A.

† Note that the strong separation condition implies (but is not implied by) the open set condition.
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(2) b−1 /∈ A.

(3) A does not contain any pair of consecutive integers.

If a base b IFS satisfies the strong separation condition, then every element of

its limit set F has exactly one base b expansion whose digits come from A. In this

case, there is no ambiguity about talking about “the base b expansion” of a number in

F , since we understand that if there is more than one base b expansion, then we are

talking about the one whose digits come from A.

5.3. Intrinsic Approximation on Limit Sets

Let F ⊆ R be a closed set, which we will think of as a fractal. The field of intrinsic

Diophantine approximation is concerned with finding rational approximations to an

irrational number x ∈ F by rational numbers that lie on the fractal F . Thus Mahler’s

first question is about intrinsic approximation on the Cantor set. More generally, one

may ask about intrinsic approximation on the attractor of any similarity IFS. This

leads to the following definition:

Definition 5.5. Let F ⊆ R be a closed set, and let H : F ∩Q → R>0 be a height

function. We say that a function ψ : R>0 → R>0 is an intrinsic Dirichlet function on

F (with respect to the height function H) if for every x ∈ F \Q there exist infinitely

many rationals p/q ∈ F ∩Q such that

∣

∣x− p/q
∣

∣ < ψ(H(p/q)).

Optimality of intrinsic Dirichlet functions can be defined in the same way as in Defi-

nition 5.3.

We have the following result:

Proposition 5.6. ([4, Corollary 2.2]) Let F be the limit set of a base b IFS, and let

δ be the Hausdorff dimension of F. Then for all x ∈ F, there exist infinitely many

rational numbers p/q ∈ F (p ∈ Z, q ∈ N) such that

∣

∣x− p/q
∣

∣ <
1

q(logb q)1/δ
·

In other words, the function ψ∗(q) =
(

q · (logb q)1/δ
)

−1
is an intrinsic Dirichlet func-

tion on F for the standard height function.

6. The Symbolic Height Function

Let F be the limit set of a base b IFS satisfying the strong separation condition, and

fix a rational number r ∈ F ∩Q. It is well known that the base b expansion of r is

preperiodic, i.e.,

r = 0.ω1 · · ·ωiωi+1 · · ·ωi+ j (base b), (6.1)
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for some i ≥ 0, j ≥ 1, and ω1, . . . , ωi+ j ∈ A. Here the bar indicates that the string

ωi+1 · · ·ωi+ j is infinitely repeated. Rewriting the right-hand side as a sum of fractions

yields

r =
ω1 · · ·ωi

bi
+

∞

∑
m=1

ωi+1 · · ·ωi+ j

bi+m j

=
ω1 · · ·ωi

bi
+

ωi+1 · · ·ωi+ j

bi
·

1/b j

1−1/b j

=
ω1 · · ·ωi

bi
+

ωi+1 · · ·ωi+ j

bi
·

1

b j −1
,

where ω1 · · ·ωi and ωi+1 · · ·ωi+ j are integers that have been written in base b. Adding

the two resulting fractions together, we end up with a (complicated) expression whose

denominator is bi
(

b j −1
)

. Further cancellations may or may not be possible, but we

can always write the rational number as a fraction of two integers, the denominator

of which is bi
(

b j −1
)

.

This fact leads to a natural height function on F ∩Q related to the base b structure

of the fractal F:

Hsym(r)
def
= bi

·
(

b j
−1

)

, (6.2)

where the indices i and j are the smallest integers such that r can be written in the

form (6.1). The function Hsym is called the symbolic height function. It was studied

in a more general context in [11]. Notice the symbolic height of a rational number

may not be the same as its standard height (i.e., its denominator in reduced form).

For example, the rational number 0.203 in the Cantor ternary set is equal to 3
4
, so its

standard height is 4. Nonetheless, the symbolic height of 0.203 is 30 ·
(

32 −1
)

= 8. It

should be thought of as the denominator resulting from the following calculation:

0.203 =
203

30

∞

∑
m=1

(

1

32

)m

=
6

1
·

1/32

1−1/32

=
6

1
·

1/9

8/9

=
6

8
·

Although more cancellation is possible at the end of this calculation, this will not

always be the case,‡ so in a principled way we have stopped reducing the fraction

here. The calculation illustrates the fact that the symbolic height of a rational number

r can be thought of as a “symbolic denominator”, i.e., the denominator of a certain

representation of r as the quotient of two integers. The numerator of this representa-

tion can be thought of as a “symbolic numerator” (in the above example the symbolic

‡ For example, the fraction at the end of the calculation 0.2709 =
29

9
+

709

9
·

1

92
−1

=
2·80+7·9

9·80
=

223
720

is

already in reduced form.



20 L. Fishman, K. Merrill, and D. Simmons

numerator would be 2), but as usual, for purposes of Diophantine approximation it is

simpler to just work with the denominator. Note that the standard height is by def-

inition smaller than the symbolic one, since we have pstd/qstd = psym/qsym, but the

left-hand side is in reduced form.

We remark that heuristically, if we are given two rational numbers r1 and r2, and

we are told that r1 lies in the limit set of a base b IFS, but we are not told anything

about r2, then we should expect the (multiplicative) discrepancy between the standard

height and the symbolic height to be smaller for r1 than for r2. This is because if

we choose the numerator and denominator of a rational randomly, then the numbers

i and j satisfying (6.1) may be comparable to the standard height of the rational

(meaning that the symbolic height is an exponential function of the standard height),

but the number would be exceedingly unlikely to lie in any base b limit set, since its

digits would essentially be random. By contrast, if we choose the digits of a rational

randomly out of a fixed alphabet A (with a fixed period and preperiod), then the

amount of cancellation we expect to see in the symbolic representation of the rational

will be much smaller, so the standard height and symbolic height will be relatively

close. More heuristics regarding the relation between the symbolic height function

and the standard one were discussed in [11].

One reason the symbolic height function is interesting is that it naturally shows

up in the proofs of results regarding the standard height function. For example, the

proof of Proposition 5.6 can easily be modified to bound |x− p/q| in terms of the

symbolic height of p/q rather than the standard height:

Proposition 6.1. ([4, Proof of Corollary 2.2]) Let F be the limit set of a base b IFS,

and let δ be the Hausdorff dimension of F. Then for all x ∈ F, there exist infinitely

many rational numbers r = psym/qsym ∈ F such that

∣

∣x− p/q
∣

∣ <
1

qsym

(

logb qsym

)1/δ
·

In other words, the function ψ∗(q) =
(

q · (logb q)1/δ
)

−1
is an intrinsic Dirichlet func-

tion on F for the symbolic height function.

In fact, the proof of [4, Corollary 2.2] essentially proceeds by first proving Propo-

sition 6.1 and then using the inequality Hstd ≤ Hsym to deduce Proposition 5.6. It

appears extremely difficult to prove any improvement (either for all points or only

for some) of Proposition 5.6 for the standard height without just proving the same

bound for the symbolic height. So in some way, the symbolic height is measuring the

“strength of our techniques”.

Although the symbolic height function is motivated in terms of the standard height

function, it can also be analyzed on its own terms. For example, we can ask whether

the intrinsic Dirichlet function ψ∗ appearing in Proposition 6.1 is optimal for the

symbolic height function. This is the same (cf. [12, §2.1]) as asking whether there

exist any points in F that are badly symbolically approximable with respect to ψ∗:

Definition 6.2. (Special case of [11, Definition 4.7]) Let F be a base b limit set,

and let δ denote the Hausdorff dimension of F. A number x ∈ F is called badly
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symbolically approximable (with respect to ψ∗) if there exists κ > 0 such that for

every r = psym/qsym ∈ F ∩Q, we have

|x− r| ≥
κ

qsym(logb qsym)1/δ
. (6.3)

Theorem 6.3. (Corollary of [11, Lemma 4.9]; or see below) Let F be the limit set of

a base b IFS satisfying the strong separation condition. Then any x ∈ F whose base

b expansion is uniformly de Bruijn is badly symbolically approximable.

Combining with Theorem 2.1 gives:

Corollary 6.4. With F as above, the set of badly symbolically approximable points

has dimension at least αkδ > 0, where

αk =















1/49, k = 2,

(8 · (9log4(3)−1))−1, k = 3,

log(k−2)!
k log(k)

, k ≥ 4.

In particular, the intrinsic Dirichlet function φ∗ appearing in Proposition 6.1 is opti-

mal.

We remark that the optimality assertion follows directly from combining Theorem

6.3 with [1, Corollary 7]; Theorem 2.1 is not needed.

In contrast to Proposition 6.1, Theorem 6.3 and Corollary 6.4 are weaker than

their (unproven) analogues for the standard height function. This is because while

Proposition 6.1 is about finding good approximations to points, in Theorem 6.3 and

Corollary 6.4 we show that for certain points, good approximations cannot exist.

But the inequality Hstd ≤ Hsym means that the quality of an approximation is better

according to the standard height than according to the symbolic height, which yields

the appropriate implications.

We remark that Theorem 6.3 is only a one-way implication: there may be (and

almost certainly are) badly symbolically approximable numbers whose base b expan-

sions are not uniformly de Bruijn. A combinatorial characterization of the base b

expansions of badly symbolically approximable numbers was given in [11, Lemma

4.9]. As a consequence of the one-sidedness of the implication, Theorem 6.3 yields a

lower bound on the dimension of the set of badly symbolically approximable points

but not an upper bound. In fact, we believe that there is no nontrivial upper bound:

we conjecture that the Hausdorff dimension of the set of badly symbolically approx-

imable points of any base b limit set F is equal to the Hausdorff dimension of F . This

conjecture is motivated by other situations in Diophantine approximation where the

dimension of the set of badly approximable points has always turned out to be full.

However, Theorem 2.1 shows that this conjecture cannot be proven using uniformly

de Bruijn sequences.

Although Theorem 6.3 is a consequence of the much more general result [11,

Lemma 4.9], we prove it here for completeness and ease of exposition.

Proof of Theorem 6.3. Let x ∈ F be a number whose base b expansion, which we

denote by ω , is uniformly de Bruijn. Let ℓ denote the size of the largest gap in the set
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Bω defined by (2.1). Fix r ∈ F ∩Q, and let the representation r = 0.τ1 · · ·τiτi+1 · · ·τ j

be chosen so as to minimize i and j. Then the symbolic height of r, as defined in

(6.2), is qsym = bi
(

b j−i − 1
)

≤ b j. Since the IFS defining F is assumed to satisfy

the strong separation condition, the distance between x and r is comparable to b−m,

where m is the largest index for which ωi = τi for all i ≤ m. In fact, a careful analysis

shows that |x− r| ≥ b−(m+2), though the precise constant factor is not relevant. We

claim that if j ≥ ℓ, then

b−m ≥
b−ℓ

b j j1/δ
, (6.4)

which demonstrates that (6.3) holds with κ = b−(ℓ+2). We now separate into two

cases:

Case 1: m ≤ j + ℓ. In this case, we have

b−m ≥ b− jb−ℓ ≥
b−ℓ

b j j1/δ
,

as required.

Case 2: m > j+ℓ. In this case, by the mth letter, the sequence τ will have already be-

gun to repeat. The longest repeated string in the sequence τ1 · · ·τm is τi+1 · · ·τm−( j−i)

= τ j+1 · · ·τm. Note that although the two sides of this equation represent distinct

instances of the same string as a substring of τ1 · · ·τm, the two instances may over-

lap with each other; this happens if and only if m > 2 j − i. For the purposes of our

calculations, it does not matter whether these two instances overlap or not.

By the definition of m, we have ω1 · · ·ωm = τ1 · · ·τm, so ω also has a repeated

string ωi+1 · · ·ωm−( j−i) = ω j+1 · · ·ωm of length (m− j) occurring in the first m letters.

On the other hand, by the definition of ℓ, there exists m− j− ℓ < n ≤ m− j such that

n ∈ Bω , which implies that ω has no repeated string of length n occurring in the first

k n + n−1 letters of ω . Since n ≤ m− j, it follows that m > k n + n−1, and thus

k n ≤ m−n < j + ℓ ≤ 2 j.

Since k ≥ 2 and n ≥ m− j− ℓ+ 1, this implies

k m− j−ℓ ≤ j.

Raising both sides to the power of 1/δ gives

bm− j−ℓ ≤ j1/δ ,

and rearranging gives (6.4).
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