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ABSTRACT

There is increasing impetus towards ‘Industry 4.0‘, a recently pro-

posed roadmap for process automation across a broad spectrum

of manufacturing industries. The proposed approach uses Evolu-

tionary Computation to optimise real-world metrics. Features of

the proposed approach are that it is generic (i.e. applicable across

multiple problem domains) and decentralised, i.e. hosted remotely

from the physical system upon which it operates. In particular, by

virtue of being serverless, the project goal is that computation can

be performed ‘just in time’ in a scalable fashion. We describe a case

study for value-based optimisation, applicable to a wide range of

manufacturing processes. In particular, value is expressed in terms

of Overall Equipment Effectiveness (OEE), grounded in monetary

units. We propose a novel online stopping condition that takes into

account the predicted utility of further computational effort. We

apply this method to scheduling problems in the (max ,+) algebra,

and compare against a baseline stopping criterion with no predic-

tion mechanism. Near optimal profit is obtained by the proposed

approach, across multiple problem instances.

CCS CONCEPTS

·Computer systems organization→Cloud computing; ·Ap-

plied computing → Supply chain management; · Comput-

ing methodologies → Genetic algorithms;

KEYWORDS

Plant optimisation, Genetic Algorithm, Value Curve, Stopping Con-

dition, Function as a Service, FaaS, Serverless Clouds.

1 INTRODUCTION

The ‘Industry 4.0‘ concept1 envisions increasingly automated man-

ufacturing, characterized by the integration of Computational In-

telligence methods into the production process. Properties typi-

cally associated with Industry 4.0 include a) interoperability of

the cyber-physical components of the system and b) decentralized

decision-making. Widespread adoption of Industry 4.0 will clearly

not be possible if the Computational Intelligence methods require

significant bespoke effort. The proposed methods must therefore

exhibit both a high degree of cross-domain genericity and also

require minimal end-user expertise to be applied to some variant

application domain. Relative to other optimisation methods, these

are both advantages enjoyed by Evolutionary Computation.

In this article, we present a case study of a distributed ‘Function

as a Servce’ (FaaS) system that uses Evolutionary Computation

1http://www.plattform-i40.de/I40/Navigation/DE/Home/home.html

to perform scalable optimisation. We address a real-world issue

that is frequently neglected in many traditional benchmarks: the

effect that time spent optimising has on overall manufacturing

profit (OEE). We present a novel stopping condition which takes

this into account. We define a model that combines manufacturing

profit/loss with the predicted value of further computation. To

obtain both genericity and real-world grounding, combined model

values are expressed in terms of monetary units (sometimes termed

‘$EE’ instead of OEE [17]).

The central notion of Industry 4.0 is that, by being rapidly re-

sponsive to the dynamic arrival of manufacturing orders, customers

can then require only several units of a highly customised product

[6]. They will have a set of highly configurable machines with au-

tomated material handling systems and a cloud-based management

system [3]. Such a service-oriented manufacturing model will also

aim to maximise the profit from the plant by sharing manufacturing

resources across a number of manufacturing orders [15].

An ubiquitous optimisation problem in smart factories is the

allocation of manufacturing resources over time, while satisfying

constraints in terms of time and cost [15]. But even a single ma-

chine can be configured in multiple ways, depending on the re-

quired manufacturing schedule (priorities, delivery time, etc) and

sustainability constraints (consumables and/or energy-saving con-

ditions) [4]. Hence, optimisation is naturally interleaved with the

manufacturing process in an online manner. This motivates the pro-

posed approach of scalable optimisation with a grounded stopping

criterion.

As all these parameters are chosen with the implicit aim of

maximizing profit, value-based heuristics may be perceived as par-

ticularly suitable to solve this optimisation problem. Value-based

heuristics have been shown to be beneficial in previous studies

(e.g. in case of HPC system overload [28]). With such heuristics, a

certain value is associated with each optimisation task. This value

represents the importance level of the task and is usually propor-

tional to the benefit accruing to the end-user from task completion.

In the proposed system, we associate a so-called value curve with

each manufacturing order, describing the temporal aspect of the

yielded profit. The utility of an optimisation is therefore intrinsical-

ly time-dependent: completion of the optimisation process at a time

point corresponding to a high value on the curve prevents the plant

from becoming idle, and thus can increase the overall profit even if

a better solution (viewed merely in terms of the optimisation task

itself, rather than that overall profit) could subsequently be found.

A typical scheduling problem in smart factories requires sub-

stantial computing resources each time the factory needs recon-

figuration, e.g. on arrival of a new manufacturing order. As these



resources are needed on demand, cloud based optimisation using

Genetic Algorithms (GA) is proposed in this paper. Evolutionary

algorithms have been shown to be particularly effective in such

applications [5] and performing the optimisation process in clouds

can decrease the related costs [16]. To reduce the optimisation cost

even further, the Function as a Service (FaaS) serverless cloud com-

puting model has been chosen. Using this architecture, customers

not only do not have to maintain the computing infrastructure, but

are billed for the actual execution time of the computing resources,

which are expected to become available within milliseconds of

request. Thanks to these properties, the proposed optimisation

scheme can be highly scalable depending on the size of the optimi-

sation problem and timing constraints. Each of these possibilities

is investigated in this paper.

Contribution: We propose a new modeling technique for man-

ufacturing orders. This technique benefits from (i) the a priori

knowledge of the dynamic value stemming from completion of

the optimisation process at certain time, (ii) predicted utility of

further optimisation, (iii) scalable computing resources available

on demand in the serverless cloud computing architecture.

It is typical in optimisation research for the trade-off between

solution quality and execution time to be implicit, with the latter

often being expressed in terms of a coarse measure such as ‘number

of evaluations of the objective function’. This is of course good

scientific practice, but is not sufficient to capture the needs of our

real-world application. The second contribution therefore employs

a value curve to make this trade-off completely explicit, grounding

computational processing in terms of monetary profit, as described

earlier.

2 RELATED WORK

In this Section, we discuss previous work related the three com-

bined aspects of this paper: i) GA stopping criteria, ii) value-based

heuristics, iii) evolutionary optimisation in the cloud:

Stopping Criteria

According to Michalewicz [19], the most common stopping cri-

teria of a GA are either a) statically-determined upper limits on

the number of generations or fitness function evaluations or b)

dynamic prediction of further improvement based on genotypic

and/or phenotypic convergence. Safe et al [21] argue that dynamic

prediction is preferable. One of such alternatives has been proposed

by Hernandez et al [12], with an adaptive stopping criterion which

was experimentally shown to stop at optimal solutions with a high

probability. In Hajji et al [10], a stopping criterion based on an

approximation of the objective function has been compared with

criteria based on both genotypic and phenotypic convergence. The

genotypic convergence was evaluated by comparing the percentage

convergence of each gene against a certain threshold. The phenotyp-

ic convergence was evaluated using twometrics: online performance

converges to a stable value when the solutions converge and offline

performance converges when the probability of improving the so-

lution decreases. The approximation-based method gave the best

results of the proposed approaches, but at the expense of greatest

computation time. The online and offline performances were much

faster and close to the approximation-based ones with regard to

quality. The genotypic criteria were shown to be not efficient. Con-

sequently, in our proposed approach only phenotypic convergence

is considered.

In Yin et al [29], the Standard Deviation (SD) of fitness values

is employed as a stopping criterion, terminating the optimisation

process when SD is lower than a given threshold. In that paper, an

SD-based stopping criterion has been shown to speed up the con-

vergence and shorten the search time for scheduling independent

tasks in a grid environment. This criterion is also used as a part of

our proposed stopping criterion.

Perroni et al focus on an estimation of a beneficial stopping

point for any swarm-based search algorithm [20]. In that paper,

a sequence of auto-adapted exponential and log-like curves are

proposed to model the algorithm convergence. In this paper, a

similar approach based on the rational function extrapolation [25]

is used to predict future fitness values and thus apply a value-based

heuristic to trade between the potential value gain due to a better

solution quality and the loss caused by the longer computation.

Value Based Heuristics

The main goal of value-based heuristics is to inform a decision

process that maximises overall value to end-user [1]. Several value-

based heuristics have been employed to allocate processing tasks.

Theocharides et al [27] assumed task values to be fixed, whearas

Burns et al [2] allow task values to change over time. In the lat-

ter case, the value can be described with a so-called value curve,

a function whose domain represents the computation time (with

origin at the release time of the process/container), whereas the

codomain represents the values themselves [13]. Typically, a value

curve is non-increasing and reaches a value of zero at a certain time

point. After that point, there is no benefit from computing the task

and it can be dropped to avoid consuming unnecessary processor

resource. During each scheduling event, a task with the highest

value at that moment can be selected, as discussed in Theocharides

et al. The innate risk of such technique is to select a task with large

outlying resource requirements, where a set of less computation-

ally expensive tasks may actually be preferable. Burkimsher et al

[1] proposed to first allocate tasks with maximal remaining value,

calculated as the area under the value curve from the current time

to the zero point. A number of value-related heuristics have been

compared by Singh et al [24], highlighting the benefits originating

from the access to historic execution data. In this paper, a similar

assumption is made: the estimated execution time of a GA invoca-

tion (termed a ‘stage’, hereafter), based on historically measured

cases, is used to decide whether to terminate stage sequencing.

Value-based allocation of Docker containers have been proposed

by Dziurzanski et al [8]. However, the authors of that paper focused

on allocation of multiple independent containers to maximise the

cumulative value, whereas the goal of this paper is to maximise the

profit obtained from a single manufacturing order. Moreover, the

related execution cost was not considered in that paper. Similarly,

containers were executed in a local cluster, with customised sched-

uler installed on each node, whereas we instead focus on execution

using serverless clouds.

A complementary notion to the value curve, entitled ‘price curve’,

has been used in Henzinger et al [11] to present a varied cost of
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Figure 1: General scheme of the proposed approach

computing resources. In contrast, we assume constant cost for

executing an optimisation engine in a cloud, as this is case for the

major cloud vendors. We share with Henzinger the expression of

value curves in monetary units.

Cloud-based Evolutionary Computation

A recent position paper [22] presents a conceptual workflow for

the deployment and execution of distributed GAs. The software

container technology (Docker) and a lightweight Linux distribution

created to execute containers (CoreOS) has been used for large and

scalable deployments on different infrastructure, focusing on secu-

rity, consistency and reliability. This idea has been further extended

in Salza et al [23], where evolutionary machine learning classifiers

have been deployed to the cloud. In the proposed solution, a similar

architecture is used for performing evolutionary optimisation. In

particular, Docker containers are used to execute instances of jMet-

al [7], a popular Java framework offering a variety of algorithms

for single- and multi-objective metaheuristic optimisation.

In Ma et al [16], a master-slave topology implementing a dis-

tributed evolution algorithm was employed. The master assigned

the individuals from each generation to the slave nodes based on

their load information and then collected the corresponding fitness

values. The comparison with allocation of the same number of in-

dividuals to each node has been conducted for 32, 48 and 64 nodes.

The obtained improvement of the computation time has ranged

from 6% to 39% depending on the cluster size. While shortest time

was achieved for the largest case, the strategy proposed in that

paper has not considered heterogeneous architecture or various

communication costs. The proposed solution also takes communica-

tion overhead into consideration. Since our approach is serverless,

the number of nodes is decided dynamically.

Leclerc et al [14] propose a cloud-based framework facilitating

large scale evolutionary experiments. Their framework provides

a master-slave architecture, with nodes communicating via JSON

over HTTP. The applied scheduling policy aims to uniformly spread

the load across peers. The slave node with minimal load is chosen

for each incoming fitness function evaluation task. There is no

possibility of sharing processing units between tasks. Consequently,

if there is no slave with an idle processing unit, the task is placed in

a FIFO queue. To guarantee the appropriate amount of computing

resources, the framework is intended to be executed on virtual

machines (VMs) whose number is steered by the cloud provider,

using facilities such as Amazon Auto Scaling Group. When the

smoothed expected time to empty the queue is larger or smaller

than certain thresholds, a VM is added or removed, respectively.

In contrast, in an approach advocated by a recent position pa-

per [26], the framework presented in this paper executes a GA

1 2 5 6

3 4

A C F

D

B E

Figure 2: Activity on Arrow representation of a plant

on several machines in accordance with the serverless computing

paradigm. The motivation for the serverless approach is to provide

both scalability and cost-effectiveness: payment is made only for

actual computation performed.

From this literature survey, it follows that there is no prior work

on stopping criteria for maximizing increase the overall benefits

of an optimization process that is itself costly. This problem is

investigated in this paper, the general scheme of which is illustrated

in Fig. 1.

3 SYSTEM ARCHITECTURE AND PROBLEM
DESCRIPTION

The class of optimisation problems analysed in this paper concern

manufacturing plants. The value gained by an end-user from the

optimisation depends on both solution quality and the time taken

by the optimisation process itself. Since the optimisation process

is performed by a serverless cloud, the system architecture covers

the problem domain model and the cloud configuration.

In the following, we further describe the two components of

Fig. 1. For the considered case study, the left-hand component

corresponds to the optimisation of manufacturing plant that is

specified via the (max ,+) algebra. In the right-hand component,

the stopping criterion is applied to the iterated application of the

optimisation process in order to maximise overall profit.

3.1 Plant Optimisation

The plant model used in this paper is based on max-plus algebra, a

discrete algebraic system in which themax operation takes the role

of addition (⊕) and the traditional addition operator instead takes on

the role of multiplication (⊗). The max-plus algebra is convenient

for modeling discrete event systems, since the basic operations of

such systems, such as temporal transitions and synchronisation,

can be described with a set of simple linear equations [9].

A simple example of a plant is presented in Fig. 2 using the

‘Activity On Arrow’ (AOA) notation. In this notation, the states

(1, . . . , 6 in Fig. 2) represent synchronisation points whereas the

actual manufacturing activities (a.k.a. processes) are performed

on traversal between states via arrows (A, . . . , F in Fig. 2). In this

example, a manufacturing process begins at time t1 in state 1. The

first manufacturing process is performed during transition A be-

tween states 1 and 2, which lasts for dA time units. Thus, state 2

is visited at t2 = t1 ⊗ dA = t1 + dA. Similarly, t3 = t2 ⊗ dB and

t4 = t3 ⊗ dD . The production process represented by arrow F can

start after both C and E are completed, so the max operator is ap-

plied, t5 = (t2 ⊗ dC ) ⊕ (t4 ⊗ dE ). Finally, the last manufacturing

process, represented by arrow F , is finished at t6 = t5 ⊗ dF .

3



In practice, the processing time in each manufacturing process

is not constant, as machines can operate in various modes [4], for

example full performance or eco modes. The optimisation process

then includes not only the assignment of jobs to machines, but also

the selection of the mode that minimises production cost, there-

by finding a compromise between processing time and dissipated

energy.

As discused above, in the considered optimisation problems, both

solution quality and optimisation time are relevant to the end-user.

The value stemming from the later is described by a value curve

VC [2, 13]. This curve is expressed in a monetary unit (e.g. GBP).

A value curve is usually a monotonically decreasing function. Its

highest value equals toVmax from the manufacturing order arrival

up to the deadline of the manufacturing order scheduling. Then

it trends towards zero with the increasing completion time due

to penalty, for example as shown in Fig. 3, where the value curve

VC of manufacturing order O assumes its maximal value from the

arrival time of O , AT , to the deadline of the optimisation of O , D.

The optimisation time of manufacturing order O lasts from AT to

ET . The total income of an end-user depends partially on the value

of the value curve at ET .

The reduction in the manufacturing order value due to delay

can be determined by observing the value of the value curve at

the delayed completion time. A long optimisation time may result

in zero value and thus the job becomes worthless to its end-user.

Further, the cost of this optimisation can be considered as a loss.

Therefore, the manufacturing order may be rejected if zero or a

negative value is expected after completing it.

3.1.1 GA encoding, operators and fitness. The underlying opti-

misation problem considered in this case study is the configuration

of a manufacturing process, specified by the sequencing of a fixed

number of machines, each with a fixed number of operating modes.

The corresponding geneome is therefore an integer-based represen-

tation, derived from the structure of the AoA network representing

the plant, e.g. as shown in Fig. 2. The genome consists of a sequence

of pairs (m,o) for machinem and operating mode o. There is one

such pair for each arrow in the corresponding AoA representation.

The chosen GA operators are the familiar random mutation,

one-point crossover and selection, with mutation probability 0.01

and crossover probability of 0.7, these values being obtained after a

small amount of manual tuning. The population size has been fixed

to 500 in all the experiments.

The fitness of a configuration is given as a weighted sum of the

makespan and energy dissipated, each of which are a function of

both machine placement in the AoA graph and the associated mode

of each machine. It has the same monetary unit as the given value

curve VC of the optimised problem.

3.2 Prediction of Revenue Improvement

The optimisation is performed during a number of stages. During

the i-th stage i ∈ {1, . . .n}, GA iterations are executed in parallel.

Then the results are gathered and a stopping condition is checked,

based on the prediction of the total value improvement in the sub-

sequent stage.

We now describe the parameterisation of the case study consid-

ered in this paper.

time t

value V

AT D
0

ET

Vmax

VC(t)

VC(ET)

Z

Figure 3: An example value curve of manufacturing orderO

Table 1: Symbols and abbreviations used in the paper

Symbol Description

O manufacturing order

VC value curve

AT manufacturing order arrival time

D manufacturing order optimisation deadline

Z manufacturing order zero value time

Vmax maximal value of the manufacturing order value curve

fi minimal fitness function value after the i-th stage

f̂i a predicted value of fi
β cost of a container execution per time unit (constant)

pi no. of containers executed during the i-th stage

ti time of computing of the i-th stage (measured)

ci cost of computing the i-th stage

Ti cumulative time of computing the first i stages

Ci cumulative cost of computing the first i stages

Pi profit generated after computing the i-th stage

P̂i prediction of Pi
t̂i prediction of ti
ĉi prediction of ci
Ii income obtained after the i-th stage

sdi standard deviation of the population after stage i

3.2.1 Problem parameters. Symbols and abbreviations used are

summarised in full in Table 1. Each problem instance is parame-

terised as follows:

• Input: manufacturing order O including: the plant given in

the AoA form, its value curve VC and arrival time AT , a po-

tentially unbounded number of slave processing nodes with

(monetary) execution cost per time unit β and the number

of individuals sent to each processing node.

• Objective: Maximise the profit obtained from the manufac-

turing order.

The profit from the manufacturing order depends on the follow-

ing factors:

• the fitness value returned by the GA,

• total processing time allocated to the optimisers,

• cloud processing cost (per container invocation).

4 PROPOSED APPROACH

We now proceed to describe the proposed approach.

4.1 Value curve

The value curve models the value of a process to its end-user as a

function of time,VC(t). It may assume various shapes, as discussed

in Burkimsher [1]. For the proposed approach, the shape shown

in Fig. 3 has been chosen, which models generating the maximum

4



value (e.g. as agreed in a contract) up to a certain deadline, after

which a certain penalty is imposed every time unit. This shape can

be intuitively explained as up to the deadline, the factory is occu-

pied with other, previously configured manufacturing orders. So

the deadline is the earliest time the factory can start manufacturing

new products. Thus, there is no extra benefit in computing a new

configuration well before the deadline, but after the deadline the

factory becomes idle until a new configuration is found. As during

this idle interval both relative overhead cost (ROC) and relative

direct labor cost (RDLC) are incurred proportional to the idle time,

the value of the solution decreases [17]. Without any further mod-

ification of the proposed approach, this shape can be exchanged

with any other non-increasing function if a curve better describing

a certain process is identified.

The chosen value curve assumes positive values starting from

the time of the manufacturing order arrival,AT . As in this paper we

consider only a single order scenario, without any loss of generality

it may be assumed that AT = 0. The maximum value of VC(t)

is equal to Vmax and is observed from AT to a certain deadline,

D > AT . Finally, VC(t) assumes zero value from zero value time,

Z > D. This shape of the value curve can be described with the

following equation

VC(t) =




Vmax for AT < t ≤ D,
−Vmax

Z−D (t − D) +Vmax for D < t ≤ Z ,

0 for t > Z .

(1)

4.2 Time and cost of stage execution

The optimisation is performed in stages until the applied stopping

condition is satisfied. The stage index is denoted with i , i ∈ N.

During the i-stage, the optimisation is performed on pi slave nodes.

As these nodes are executed in the FaaS manner, the monetary cost

of using them is given by value β per second for each instance (for

example, in IBM Cloud it was $0.000017 per second of execution,

per GB of memory allocated on 21.01.2018). The maximal slave

execution time in the i-th stage is equal to ti . Thus the upper-

bound on cost of the execution of this stage for container ci is given

by:

ci = β · ti · pi . (2)

The cumulative cost of computing the first i iterations, Ci , is

equal to:

Ci =

i∑

j=1

c j . (3)

The predicted execution time of a stage, t̂i is determined via the

extrapolation mechanism described in Section 4.3. The manufactur-

ing income yielded after the i-th iteration is a difference between

the income given by value curve VT at the moment of completion

the i-th stage and the manufacturing cost, described by fitness value

fi , i.e.

Ii = VC(Ti ) − fi . (4)

The profit generated after execution of the i-th stage is expressed

as a difference between the income and the cumulative cost of the

optimisation:

Pi = Ii −Ci . (5)

4.3 Value prediction

The values of ti and fi can be predicted via extrapolation. The

extrapolation method used is the Bluirsch and Stoer algorithm [25],

an extension of the well-known Neville interpolation/extrapolation

algorithm to diagonal rational functions p(x)/q(x) for polynomials

p,q where p is of degreem (the length of the history vector from

which to extrapolate) and the diagonal property requires that q is

of degreem orm + 1, according asm is even. In many cases, this

method can be analytically shown to provide superior accuracy

to more traditional methods of polynomial extrapolation [25]. For

history lengths of 3 or less, such extrapolation is either undefined

or else the result was empirically determined to be inaccurate: the

predicted value of fi is then given by the best fitness found so far

and that of ti by the last (actual) processing time. After predicting

the values f̂i , t̂i , they are used to predict the profit generated after

the subsequent, (i + 1)-th stage as follows:

P̂i+1 = VC(Ti + t̂i+1) − f̂i+1 −Cn − ĉi+1. (6)

This value can be used in a value-based stopping criterion, as

described in the subsection below.

4.4 Stopping criteria

The stopping criteria are evaluated for a container at each stage i .

We first apply an absolute criterion (ensuring that the process will

eventually terminate) by comparing the i to a fixed upper bound

on the number of stages (here, a value of 100 was empirically cho-

sen). The phenotypic convergence criterion compares the Standard

Deviation sdi of the GA population against a threshold value (here,

0.02), similarly to e.g. Yin et al [29]. The predicted profit criterion

uses the method of diagonal rational extrapolation described above

to predict whether the execution of the subsequent stage will not

decrease the profit generated by the optimised process or not:

Pn > P̂n+1. (7)

The benefits of these stopping criteria are evaluated in Section 6.

5 IMPLEMENTATION ISSUES

Similarly to Leclerc et al [14], the proposed optimisation process

is implemented using a master-slave paradigm: the master is ex-

ecuted locally and awaits manufacturing orders. Upon arrival of

a manufacturing order, its role is to prepare an appropriate plan-

t configuration scheme and generate a set of individuals for the

GA-based optimisation. This data is sent to a certain number of

slave nodes, where, at each stage, the actual GA-based optimisation

algorithm is executed for a certain number of iterations. Finally,

the results are returned to the master node which evaluates the

stopping condition as described earlier in this paper.

The GA-based optimiser, executed remotely by the slave nodes,

has been implemented within the jMetal framework and placed

inside a Docker container [18]. This container acts as a REST-

compliant Web service, awaiting input in the form of a population

of proposed plant configurations (i.e. manufacturing workflows)

to be optimised. After performing the stipulated number of GA

iterations (see Section 6), the container returns a new generation of

proposed plant configurations. Communication between the master

and slave nodes is performed via JSON over HTTP.

5



As previously mentioned, since the slave nodes are stateless, they

are not bound to a particular optimisation process and thus can be

executed in accordance with the serverless computing paradigm.

This means that the slave nodes are executed on demand without

provisioning virtual machines. Slave nodes do not have to be active

between consecutive invocations and thus the company is billed

only for the real computation time of the slaves. One of the public

vendors that offer ‘on demand’ execution of a Docker container is

IBM OpenWhisk2. When an OpenWhisk Docker action is invoked

by the master via a REST API call, OpenWhisk pulls the Docker

image for the slave node from Docker Hub and then forwards the

input HTTP POST request with the configuration and individuals.

After finishing the computation, the request responds with the

resulting population of configurations and the slave node is killed.

Alternatively, Apache OpenWhisk3 can be also used in a private

cloud or a public cloud provided by other vendors.

6 EXPERIMENTAL RESULTS

To evaluate the proposed optimisation approach, we first describe

the application to a single large manufacturing plant. We then

consider a larger number of problem instances.

6.1 A larger problem instance in-depth

The selected plant is representative of the larger instance sizes

encountered when the system is coupled to the real-world equip-

ment of the project’s industrial partners. It is described by an AoA

instance with 22 nodes, 6 levels and 43 arrows. Each manufactur-

ing process can be executed using one of 8 machine types, each

having from 1 to 9 operating modes with different performance

and energy dissipation. The manufacturing cost depends on the

selected machines and their modes, as described earlier. The search

space for such an instance is too large to be realistically solvable by

exhaustive methods without incurring overall monetary loss due

to increased optimisation time.

The value curve given for this particular instance is consistent

with equation (1), with assumed parameters AT = 0, D = 500s,

Z = 1000s, Vmax = 5000GBP. One second of computations is

assumed to cost β = 0.5GBP (lower values of this parameter are

applied later in this section) and the initial number of containers

run in parallel is set to p1 = 10. In each stage, a fixed number of

generations of a GA is executed.

As described above, the following baseline dynamic stopping

criteria are applied to each container: (i) the Standard Deviation

of population fitness after the ith stage, sdi ≤ 10−6 or (ii) minimal

fitness function value fi was not improved during the previous 20

stages or (iii) the number of stages i = 100, used as a guarantee

for the computation ending. The proposed criteria differs from this

baseline by the additional inclusion of profit prediction.

During execution, criterion (i) stopped the continuation in a

certain container after the 34th stage for the first time. So, after this

stage, 9 parallel containers continued the execution (i.e. p35 = 9)

up to stage 46th, where another container stopped computation

and so on. Finally, as many as 71 stages have been computed and

2https://console.bluemix.net/openwhisk/
3https://openwhisk.apache.org/
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Figure 4: Profit yielded after each stage of the example plant

with computation cost β = 0.5GBP
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Figure 5: Profit yielded after each stage of the example plant

with no computation costs

during the last stage only two containers continue the optimisation

process (p71 = 2).

After each ith stage, the fitness function value to be computed in

the next (i + 1-st) stage is predicted as described in subsection 4.3.

The average prediction error was circa 2%. This accurate prediction

can be well exploited by the proposed value-based stopping criteria,

as discussed later.

The profit Pi obtained after ending computation at each ith stage

is presented in Fig. 4. The highest profit is obtained after relatively

early i = 5th stage. After this point, due to increasing computation

cost and the decreasing slope of the value curve after the 40th

stage, the yielded profit is significantly lower and beyond the 49th

it becomes negative. Clearly, the baseline stopping criterion triggers

too late. This is in contrast to the criterion proposed in equation (7).

After applying this criterion, the profit is predicted to decrease after

the 6th stage, which is the second best during the whole analysed

range and only 2% worse than the highest possible profit.

In the previous example, a rather high cost of performing com-

putation has been assumed. Let us compare these results with the

second extreme case presented in Fig. 5, when the computation is

performed for free, i.e. β = 0. In this case, the proposed stopping

criterion from equation (7) terminates the execution after the 41st

stage, which yields the highest possible profit. After this stage, the

profit drops due to the decreasing slope of the associated value

curve.
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Figure 6: Profit and execution time obtained for containers

executing assorted iteration numbers

6.2 Granularity

In this experiment, different numbers of GA generations, namely

100, 200 and 500, have been executed at each stage, during each

container invocation. The experiment has been conducted for 10

different manufacturing orders, with representative characteristics,

with the number of required manufacturing processes ranging from

18 to 59. The averaged results are presented in Fig. 6. As it is visible

in the graph, the analysed granularity levels have no influence on

the profit yielded by algorithm, as in all three cases it is almost equal

to the maximal achievable profit from the given plants. However,

the execution times of the considered optimisation processes differ

significantly as it is more than 4 times longer for 500 generations

per stage than 100 generations per stage.

6.3 Scalability

The proposed approach benefits from a serverless cloud execu-

tion, so that the number of containers executed in parallel can be

easily scaled. The number of containers executed in parallel does

not influence the total computation time, but it increases the total

computation cost, as each second of container computation costs β .

Fig. 7 visualises the profit obtained from the optimisation of

the plant described in subsection 6.1. In this experiment, various

numbers of containers computing in parallel, from 1 to 10, were

tested, with computation costs ranging from β = 0 to β = 0.5GBP.

Despite the fact that ‘number of containers’ is discrete, a 3D surface

plot has been used to facilitate observation. It is worth noting

that the β axis is expressed in a logarithmic scale (excepting the

boundary case β = 0), as typical serverless computation cost is

expected to be close to 0.00005GBP, but other orders of magnitude

are added to cover a wider range of cloud architectures.

From this figure, it follows that the highest profits are yielded in

the middle of the analysed range, for pi = 4. This value can be then

treated as a trade-off between the benefits of parallel execution,

i.e. evolving the best results independently by a few optimisation

processes and the increased monetary cost by executing a higher

number of containers in parallel. But even in case of lower execution

costs (including the extreme case β = 0), no additional profit is

yielded by scaling pi beyond 4.

Since using the larger number of containers increases costs, the

higher standard deviation of the yielded profit considering various

β has been observed for the largest number of the containers run

in parallel pi = 10. This value decreases almost linearly up to

Figure 7: Computation cost per second by parallelisation

pi = 4, for which standard deviation of the yielded profit is almost

10 times lower than for pi = 10. So, if no parallelism is applied, the

computational cost β is less important.

6.4 Stopping criteria

In order to compare the proposed approach with the baseline stop-

ping criterion, 30 manufacturing orders whose number of manu-

facturing process steps ranged from 18 to 59 have been optimised

using both the approaches. The maximal possible income value

from each of the manufacturing order is equal to 5000GBP.

The stopping criterion used for baseline comparison does not

consider profits: it is triggered when the fitness function value

has not been improved for a certain number of generations. This

is in contrast with the proposed stopping criterion, which aims

to maximise profit by stopping the optimisation when no further

profit gain is predicted. Consequently, the optimisation of a manu-

facturing order is stopped much earlier. For the considered set of

manufacturing orders, the optimisation process has been complet-

ed 18.5 times faster. Hence, during such significantly shorter time,

the obtained fitness function values are, on average, 34% worse,

as shown in the box plot in Fig. 8 left (lower is better). However,

the goal of the proposed method is to maximise the profit, which

depends both on the fitness function value and the computation

time. The impact of the latter results in the fact that using the base-

line stopping criteria, 86% of the considered manufacturing orders

lead to financial loss, whereas all of them are profitable when the

proposed stopping criterion is applied. These profits are shown on

the right of Fig. 8 (higher is better). Applying the proposed criterion

leads to a cumulative profit of 83877GBP, whereas the baseline cri-

terion lead to the negative profit of -124497GBP. Formal statistical

comparison of the proposed and baseline profits for each problem

instance (pairwise, via the Wilcoxon Signed Rank test) confirms

significance (with p-value 1.9 ∗ 10−9).

7 CONCLUSION

This article describes a serverless, cloud-based architecture that

provides general and scalable support for the ‘Just in Time’ man-

ufacturing process envisioned for ‘Industry 4.0’. The architecture
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Figure 8: Comparison of the fitness function value (left) and

profit (right) obtained with the proposed and the baseline

stopping criteria

is equipped with a novel adaptive stopping criterion for optimis-

ing Overall Equipment Effectiveness (OEE), in which the predicted

cost/benefit ratio of performing further optimisation is grounded

in monetary units. The method was applied to a collection of repre-

sentative case studies for optimal configuration of manufacturing

plants, as specified via the (max ,+) algebra. We determined the

most effective parallelisation strategy (implemented via stateless,

Dockerised containers) and obtained near maximum profit from

the resulting optimisation.
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