
This is a repository copy of On the spin Calogero-Sutherland model at infinity.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/130043/

Version: Accepted Version

Article:

Nazarov, Maxim (2019) On the spin Calogero-Sutherland model at infinity. Progress in 
Mathematics. pp. 421-439. ISSN 0743-1643 

https://doi.org/10.1007/978-3-030-23531-4_11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



On the spin Calogero-Sutherland model at infinity

Maxim Nazarov

To Professor Anthony Joseph on the occasion of his 75th birthday

Abstract. For N = 1, 2, . . . we consider an action of the Yangian Y(gl
n
)

onN th symmetric power of the space of polynomials in one variable with
coefficients in C

n . This action is given by the Heckman operators [9] via
the Drinfeld functor [6]. We describe the limit of this action at N → ∞ .
This provides another solution to the problem already considered in [11].

Introduction

This quantum Calogero-Sutherland model describes a system of N bosonic
particles on a circle R/π Z with the Hamiltonian [3, 19]
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where 0 6 q1, . . . , qN < π . After conjugating by the vacuum factor
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and passing to the exponential variables xj = exp(2iqj) and to the parameter
α = β−1 the Hamiltonian (0.1) becomes
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6α2

where

H = α
∑

i

(xi ∂i )
2 +

∑

i<j

xi + xj

xi − xj

(xi ∂i − xj ∂j ) . (0.2)

Here ∂j denotes the derivation with respect to the variable xj . The operator
H acts on the symmetric polynomials in x1, . . . , xN . It can be included into a
quantum integrable hierarchy, that is into a ring of of commuting differential
operators with N generators of orders 1, . . . , N . The joint eigenfunctions of
these commuting differential operators are Jack symmetric polynomials [10].
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Two different constructions of generators of this operator ring are known.
The first set of generators consists of the coefficients of a certain polynomial
of degree N in an auxiliary variable called the Sekiguchi-Debiard determinant
[5, 16]. The second set consists of the power sums of degrees 1, . . . , N of the
Heckman operators [9], see our Section 2 for their definition. These operators
act on all the polynomials in x1, . . . , xN and do not commute, yet their power
sums preserve the space of symmetric polynomials. The commuting versions
of the Heckman operators were found by Cherednik [4].

It is fascinating to study the limit of the Calogero-Sutherland model
when the numberN of particles tends to infinity. The limit of the Hamiltonian
(0.2) has been known for a long time [18], but explicit description of the limit
of the quantum integrable hierarchy was not available until recently. In [14]
we described the limits of the generators yielded by the Sekiguchi-Debiard
determinant. In [15] we described the limits of the power sums of the Heckman
operators, and also identified the resulting integrable hierarchy as that of the
quantum counterpart of the classical Benjamin-Ono equation. This equation
describes internal waves in fluids of great depth. In [17] the same hierarchy
as in [15] was obtained by another approach, namely by describing the limits
of the Heckman operators themselves.

The Calogero-Sutherland model has a generalization [8] which describes
N bosonic particles on a circle, each particle now having n internal degrees of
freedom. Here n is any positive integer. The space of symmetric polynomials
used above generalizes now to the subspace in the tensor product

(Cn)⊗N ⊗ C[x1, . . . , xN ] (0.3)

consisting of the invariants under the similtaneous permutations of the N
tensor factors Cn and of the variables x1, . . . , xN . Remarkably, this subspace
comes [2] with an action of the Yangian Y(gln) . Using either the Cherednik
or the Heckman operators on C[x1, . . . , xN ] this action can be obtained as a
particular case of a general construction due to Drinfeld [6], see our Section 3.
The eigenstates of this model have been studied in [20].

In the present article we consider the limit of this generalization of the
Calogero-Sutherland model. This limit was already studied in [1]. Following
that work, we identify the limit at N → ∞ of the above mentioned subspace
of invariants in (0.3) with the bosonic Fock space F defined in our Section 1.
Using the approach of [17], in Section 2 for any given n we describe the limits
at N → ∞ of the Heckman operators now acting on (0.3). This description
determines the limiting action of the Yangian Y(gln) on F , see our Section 3.
This limiting action has been already studied in [11]. However our result has
a different form, see the end of Section 3 for an explanation of the difference.
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1. Fock space

Fix a positive integer n . Let F be the commutative algebra over the complex
field C with free generators pck where c = 1, . . . , n and k = 0, 1, 2, . . . . We
shall refer to F as to the Fock space with n spin degrees of freedom, see [1].

Now take the vector space Cn with the standard basis vectors e1, . . . , en .
Turn C

n into a commutative ring by setting eaeb = δab ea for a, b = 1, . . . , n
and extending this definition of multiplication on C

n by linearity. The element

e = e1 + . . .+ en

is a unit of this ring, that is e g = g for all g ∈ C
n . The vector space V = C

n[v]
of all polynomials in the variable v with coefficients in C

n then also becomes
a commutative ring. The element e is a unit of the latter ring as well.

For N = 1, 2, . . . take the tensor product V ⊗N of N copies of the ring V .
This tensor product can be naturally identified with (0.3). The symmetric
group SN acts on V ⊗N by permuting the N tensor factors. Consider the
subring (V ⊗N )SN ⊂ V ⊗N consisting of the elements invariant under this
action. Denote by ΛN this subring. Define a ring homomorphism

F → ΛN (1.1)

by mapping the identity element 1 ∈ F to e⊗N and also mapping the free
generators pck ∈ F to the sums

N
∑

i=1

e⊗(i−1) ⊗ ec v
k ⊗ e⊗(N−i) ∈ ΛN (1.2)

respectively. Then the sum
n
∑

c=1

pc0 ∈ F (1.3)

gets mapped to Ne⊗N . Our homomorphism (1.1) is surjective due to the next

Proposition 1.1. The ring ΛN is generated by the sums (1.2).

Proof. Let g1, . . . , gN ∈ C
n while k1, . . . , kN = 0, 1, 2, . . . . The vector space

ΛN is spanned by the sums of the tensor products

h1 v
l1 ⊗ . . .⊗ hN v lN

where the summation is over all N ! permutations (h1, l1), . . . , (hN , lN ) of a
given sequence of pairs (g1, k1), . . . , (gN , kN ) . LetM be the number of pairs in
the latter sequence which are different from (e, 0) . We will prove by induction
on M = 0, 1, . . . , N that the sum corresponding to the (g1, k1), . . . , (gN , kN )
belongs to the image of the homomorphism (1.1). Denote by S this sum. Let

Λ
(M)
N ⊂ ΛN

be the subspace spanned by all the sums S with the given number M .
If M = 0 then S = N ! e⊗N , that is N ! times the image of the identity

element 1 ∈ F under (1.1). Now suppose that M > 0 . Because the sum S
does not change when the sequence (g1, k1), . . . , (gN , kN ) is reordered, we will
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assume that it is the first M pairs (g1, k1), . . . , (gM , kM ) of the sequence that
differ from (e, 0) . Then consider the product over j = 1, . . . ,M of the sums

N
∑

i=1

e⊗(i−1) ⊗ gj v
kj ⊗ e⊗(N−i) ∈ ΛN . (1.4)

The difference between this product and S/(N−M)! belongs to the subspace

Λ
(0)
N + . . .+ Λ

(M−1)
N ⊂ ΛN .

Since (1.4) is a linear combination of the images (1.2) of the elements pck ∈ F

with c = 1, . . . , n and k = kj , we have now made the induction step. �

Proposition 1.2. The kernels of all homomorphisms (1.1) with N = 1, 2, . . .
have the zero intersection.

Proof. Consider the set of all free generators pck of the commutative ring F .
In this set of free generators we can replace pn0 by the sum (1.3), which will
be denoted here simply by q . Take any finite linear combination of unordered
monomials in the new generators of F . Suppose that it gets mapped to zero
by every homomorphism (1.1). Consider the terms in this linear combination
which have the maximal total degree in all the new generators but q . Let S
be the sum of these terms. Let M be their degree. If M = 0 then our linear
combination is just a polynomial in q with complex coefficients, which for all
N vanishes when mapping q 7→ Ne⊗N . Hence our linear combination is zero.

Suppose M > 0 . For any N > M apply to S the homomorphism (1.1).
Then apply to the resulting image of S in the subspace ΛN ⊂ V ⊗N the linear
map V ⊗N → V ⊗M projecting onto the tensor product of the first M tensor
factors V of V ⊗N . Arguments similar to those of the proof of Proposition 1.1
show that the image of S in V ⊗M must be zero. By letting the number N
vary like in the case M = 0 considered above, one can show that S = 0 then.
But the equality S = 0 contradicts to the assumption that M > 0 . �

We will regard the Fock space F as the limit at N → ∞ of the ring ΛN

by using the homomorphism (1.1). The complex general linear Lie algebra gln
acts on the vector space V , and diagonally on the tensor product V ⊗N . The
latter action commutes with the action of the group SN . Hence the action of
gln on V ⊗N preserves the subspace ΛN . In this section we will describe the
corresponding action of the Lie algebra gln on the vector space F . Namely,
for any standard matrix unit Eab ∈ gln we will describe its action on F which
makes commutative the following square diagram:

F F

ΛN ΛN

Eab

Eab

Here the vertical arrows indicate the homomorphism (1.1). It is easy to verify
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Lemma 1.3. The action of Eab on V is a ring endomorphism.

Note that the endomorphism Eab does not preserve the element e ∈ V
unless a = b . We will describe the action of Eab on F using the method of [17].
We will first consider the ring V ⊗F . It contains F via the embedding

ι : F → V ⊗F : f 7→ e⊗ f (1.5)

for all f ∈ F . The ring V ⊗F is generated by the elements ec v
k ⊗ 1 and the

elements e⊗ pck . Let us extend (1.1) to the ring homomorphism

πN : V ⊗F → V ⊗ ΛN−1

by mapping

ec v
k ⊗ 1 7→ ec v

k ⊗ e⊗(N−1) . (1.6)

We have

ΛN ⊂ V ⊗ ΛN−1 (1.7)

and our πN by definition maps the element e⊗pck ∈ V ⊗F to the sum (1.2).
We will describe an operator Fab on V ⊗F making commutative the diagram

V ⊗F V ⊗F

V ⊗ ΛN−1 V ⊗ ΛN−1

Fab

πN πN

Eab⊗id

(1.8)

To this end we will introduce another ring homomorphism

π ′
N : V ⊗F → V ⊗ ΛN−1

such that π ′
N will map the element e⊗ pck ∈ V ⊗F to the sum

N
∑

i=2

e⊗(i−1) ⊗ ec v
k ⊗ e⊗(N−i) (1.9)

instead of (1.2). The homomorphism π ′
N will still map (1.6) as πN does. So

πN (e⊗ pck ) = π ′
N (e⊗ pck ) + ec v

k ⊗ e⊗(N−1)

= π ′
N (e⊗ pck + ec v

k ⊗ 1) (1.10)

and

π ′
N (e⊗ pck ) = πN (e⊗ pck − ec v

k ⊗ 1) . (1.11)

By the definition of π ′
N we immediately obtain commutativity of the diagram

V ⊗F V ⊗F

V ⊗ ΛN−1 V ⊗ ΛN−1

Eab⊗id

π ′

N π ′

N

Eab⊗id
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In other words, the limit at N → ∞ of the operator Eab ⊗ id on V ⊗ ΛN−1

relative to the homomorphism π ′
N is just the operator Eab ⊗ id on V ⊗F .

Let us now turn to the homomorphism πN . By Lemma 1.3 the operator
Eab ⊗ id on V ⊗ΛN−1 is a ring endomorphism. Therefore our Fab will be an
endomorphism of the ring V ⊗F . Setting

Fab (ec v
k ⊗ 1) = Eab (ec v

k ) = δbc ea v
k ⊗ 1 (1.12)

will make the compositions πN Fab and (Eab⊗ id)πN coincide on the element
ec v

k ⊗ 1 ∈ V ⊗F , see (1.6) and (1.8). Again according to (1.8) we also need

πN Fab (e⊗ pck) = (Eab ⊗ id)πN (e⊗ pck) .

By (1.10) and (1.11) the right hand side of the above displayed relations equals

(Eab ⊗ id)π ′
N (e⊗ pck + ec v

k ⊗ 1) =

π ′
N (Eab ⊗ id) (e⊗ pck + ec v

k ⊗ 1) =

π ′
N (ea ⊗ pck + δbc ea v

k ⊗ 1) = π ′
N ((ea ⊗ 1) (e⊗ pck) + δbc ea v

k ⊗ 1) =

πN ((ea ⊗ 1) (e⊗ pck − ec v
k ⊗ 1) + δbc ea v

k ⊗ 1) =

πN (ea ⊗ pck − δac ea v
k ⊗ 1 + δbc ea v

k ⊗ 1) .

Hence

Fab (e⊗ pck) = ea ⊗ pck + (δbc − δac) ea v
k ⊗ 1 . (1.13)

So the actions of Fab and Eab ⊗ id on e⊗ pck differ unless δac = δbc . We get

Proposition 1.4. The endomorphism Fab of the ring V ⊗F defined by (1.12)
and (1.13) makes commutative the diagram (1.8).

To describe the action of Eab on F let us now consider the linear map

θ : V ⊗F → F : ec v
k ⊗ f 7→ pck f . (1.14)

This is not a ring homomorphism, but is F-linear relative to the embedding
ι : F → V ⊗F defined earlier. Moreover it makes commutative the diagram

V ⊗F F

V ⊗ ΛN−1 ΛN

θ

πN

θN

(1.15)

where the rightmost vertical arrow indicates the homomorphism (1.1), while
θN denotes the restriction of the action of the element

1 +

N
∑

i=2

(1i) ∈ CSN

to the subspace V ⊗ ΛN−1 ⊂ V ⊗N . Here (1i) ∈ SN is the transposition of
1 and i . To prove the commutativity of (1.15) observe that πN by definition
maps the subring F ⊂ V ⊗ F to the subring (1.7), while θN is ΛN -linear.
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Hence it suffices to chase the element ec v
k ⊗ 1 ∈ V ⊗F the two ways offered

by the diagram (1.15). But both ways yield the same result, the sum (1.2).
Let us now place two more commutative diagrams on the left of (1.15):

F V ⊗F V ⊗F F

ΛN V ⊗ ΛN−1 V ⊗ ΛN−1 ΛN

ι Fab

πN

θ

πN

Eab⊗id θN

Here we have the diagram (1.8) in the middle. The leftmost vertical arrow is
the homomorphism (1.1), the leftmost bottom arrow is the embedding (1.7).

Theorem 1.5. The element Eab ∈ gln acts on F as the composition θ Fab ι .

Proof. The composition θN (Eab ⊗ id) acts on the subspace (1.7) as the sum

N
∑

i=1

id⊗(i−1) ⊗Eab ⊗ id⊗(N−i) .

Hence the theorem follows from the commutativity of the latter diagram. �

Now consider the particular case when a = b . By (1.13) for c = 1, . . . , n
and k = 0, 1, 2, . . . we have Faa (e⊗ pck ) = ea ⊗ pck . More generally, for any
f ∈ F we have Faa (e⊗ f) = ea ⊗ f because Faa is an endomorphism of the
ring V ⊗F . By Theorem 1.5 and by definition of θ we get Eaa(f) = pa0 f .

2. Heckman operators

Let α be a complex parameter. For i = 1, . . . , N consider the Dunkl operator

Yi = α ∂i +
∑

j 6=i

1

xi − xj

(1− σij )

acting on the ring of all polynomials in the variables x1, . . . , xN with complex
coefficients. Here ∂i is the derivation in this ring relative to the variable xi ,
while σij is the operator on this ring exchanging the variables xi and xj . Note
that for any permutation σ of the variables x1, . . . , xN we have the relation

σ−1Yi σ = Yσ(i) . (2.1)

The operators Yi with i = 1, . . . , N pairwise commute. This fact is well
known, and goes back to the work [7]. Next consider the Heckman operator [9]

Zi = xi Yi = α xi ∂i +
∑

j 6=i

xi

xi − xj

(1− σij ) .

The operators Zi with i = 1, . . . , N preserve the polynomial degree, but they
do not commute if N > 1 . However, they satisfy the commutation relations

[Zi , Zj ] = σij (Zi − Zj ) . (2.2)
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Similarly to (2.1), for any permutation σ of the N variables we have

σ−1Zi σ = Zσ(i) . (2.3)

Therefore for every m = 1, 2, . . . the operator sum

Hm = Zm
1 + . . .+ Zm

N (2.4)

commutes with σ . Hence it preserves the space of symmetric polynomials in
x1, . . . , xN . The joint eigenvectors of operators (2.4) restricted to the latter
space are the Jack polynomials [10] corresponding to the parameter α .

Let us now regard V as the tensor product Cn ⊗C[v] of rings. Then we
can identify the ring V ⊗N with the tensor product of (Cn)⊗N by the ring of
polynomials inN variables with complex coefficients. The Heckman operators
act on the latter ring, and we can now extend them to V ⊗N so that they act on
(Cn)⊗N trivially. More explicitly, then xi and ∂i in Zi become the operators

ec v
k 7→ ec v

k+1 and ec v
k 7→ k ec v

k−1 (2.5)

respectively in the ith tensor factor of V ⊗N . Note that then σij in Zi acts
only on the variables v in the ith and j th tensor factors of V ⊗N . This action
differs from the permutational action of the transposition (ij ) ∈ SN on the
tensor product V ⊗N unless n = 1 .

However, when regarded as an operator on V ⊗N , every sum (2.4) still
commutes with the permutational action of the group SN . So the action of
this sum on V ⊗N preserves the subspace ΛN . In this section we will describe
the limit of the action of the sum (2.4) on ΛN atN → ∞ . This limit will be an
operator Im on the vector space F making commutative the square diagram

F F

ΛN ΛN

Im

Hm

(2.6)

Note that the operator Z1 on V ⊗N preserves the subspace V ⊗ ΛN−1 .
We will first describe the limit of the action of Z1 on this subspace. That will
be an operator Z on the vector space V ⊗F making commutative the diagram

V ⊗F V ⊗F

V ⊗ ΛN−1 V ⊗ ΛN−1

Z

πN πN

Z1

(2.7)

In the case n = 1 the operator Z was determined in [17]. We will extend this
result to any n . Let D1 and W1 be the operators on V ⊗N corresponding to

x1∂ 1 and
∑

j 6=1

x1

x1 − xj

(1− σ1j ) (2.8)
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respectively. The latter two operators act on the polynomials in the variables
x1, . . . , xN with complex coefficients. Then Z1 = αD1 +W1 as an operator
on V ⊗N . Note that both D1 and W1 preserve the subspace V ⊗ ΛN−1 .

Now introduce an operator on the vector space V ⊗F

D = v ∂ ⊗ id +

n
∑

d=1

∞
∑

l=1

ed v
l ⊗ p⊥

dl (2.9)

where v and ∂ are the operators (2.5) on V respectively, while p⊥
dl denotes

the product of l by the derivation in the free commutative ring F relative
to pdl . We claim that commutative is the diagram obtained by replacing Z
and Z1 in (2.7) by D and D1 respectively. To prove this claim, observe that
the operator v ∂ is a derivation of the ring V . So it suffices to show that the
compositions πND and D1πN coincide on any generator of the ring V ⊗ F :

ec v
k ⊗ 1 k ec v

k ⊗ 1 k ec v
k ⊗ e⊗(N−1) ,

D πN

ec v
k ⊗ 1 ec v

k ⊗ e⊗(N−1) k ec v
k ⊗ e⊗(N−1) ;

πN D1

e⊗ pck k ec v
k ⊗ 1 k ec v

k ⊗ e⊗(N−1) ,
D πN

e⊗ pck

N
∑

i=1

e⊗(i−1) ⊗ ec v
k ⊗ e⊗(N−i) k ec v

k ⊗ e⊗(N−1) .
πN D1

Consider W1 . For j 6= 1 let Uj be the operator on V ⊗N corresponding
to the summand in (2.8) with index j . Then W1 = U2 + . . .+ UN . Observe
that the restriction of the operator W1 to the subspace V ⊗ ΛN−1 coincides
with that of the composition (id⊗ θN−1 )U2 . This is because for j = 3, . . . , N
the conjugation of U2 by the action of (2j ) ∈ SN on V ⊗ ΛN−1 yields the
operator Uj , while the action of (2j ) on this subspace is trivial.

Now consider the ring V ⊗ V ⊗ F . It contains V ⊗ F as a subring via
the embedding id⊗ ι . In particular, it contains F via the natural mapping
f 7→ e⊗ e⊗ f for every f ∈ F . Let us extend (1.1) to a homomorphism

ρN : V ⊗ V ⊗F → V ⊗ V ⊗ ΛN−2

similarly to πN . Namely, our ρN maps

ec v
k ⊗ ed v

l ⊗ 1 7→ ec v
k ⊗ ed v

l ⊗ e⊗(N−2) (2.10)

and also maps e⊗ e⊗ pck to the sum (1.2). We get a commutative diagram

V ⊗F V ⊗ V ⊗F

V ⊗ ΛN−1 V ⊗ V ⊗ ΛN−2

id⊗ ι

πN ρN (2.11)

where the bottom horizontal arrow represents the natural embedding.
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Further let

ω : V ⊗ V ⊗F → V ⊗F

be a linear map defined by the assignment

ec v
k ⊗ ed v

l ⊗ f 7→ (ec v
k ⊗ f ) (e⊗ pdl − ed v

l ⊗ 1)

for every f ∈ F . The map ω is different from the more straightforward map

id⊗ θ : V ⊗ V ⊗F → V ⊗F .

Under the latter

ec v
k ⊗ ed v

l ⊗ f 7→ ec v
k ⊗ pdl f .

Later on we will also use the map id⊗ θ due to the equalizing property below.

Lemma 2.1. The action of ω and id⊗ θ is the same on any element of the

ring V ⊗ V ⊗F divisible by ec ⊗ e⊗ 1− e⊗ ec ⊗ 1 for some index c .

Proof. Any element of V ⊗ V ⊗F is a linear combination of tensor products
ea v

r ⊗ eb v
s ⊗ f where a, b = 1, . . . , n and r, s = 0, 1, 2, . . . and f ∈ F . Take

(ec ⊗ e⊗ 1− e⊗ ec ⊗ 1) (ea v
r ⊗ eb v

s ⊗ f) =

δac ea v
r ⊗ eb v

s ⊗ f − ea v
r ⊗ δbc eb v

s ⊗ f .

By applying the difference of maps id⊗ θ−ω to the last displayed line we get

δab δac v
r+s ⊗ f − δab δbc ea v

r+s ⊗ f = 0 . �

However, it is the map ω that makes commutative the diagram

V ⊗ V ⊗F V ⊗F

V ⊗ V ⊗ ΛN−2 V ⊗ ΛN−1

ω

ρN πN

id⊗ θN−1

(2.12)

To prove the commutativity of (2.12) observe that πN and ρN map F , as a
subring of respectively V ⊗F and V ⊗V ⊗F , to the ring ΛN . But the map ω
is F-linear, while the map id⊗ θN−1 is ΛN -linear. The maps at all four sides
of the diagram (2.12) also commute with multiplication by the elements of V
in the first tensor factor of their source and target vector spaces. So it suffices
to chase the element e⊗ ec v

k ⊗ 1 ∈ V ⊗ V ⊗F the two ways offered by the
diagram (2.12). Both ways yield the same result, which is the sum (1.9).

We will employ the operator U on the vector space V ⊗ V ⊗F making
commutative the diagram

V ⊗ V ⊗F V ⊗ V ⊗F

V ⊗ V ⊗ ΛN−2 V ⊗ V ⊗ ΛN−2

U

ρN ρN

U2

(2.13)
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Namely, we will set

W = ω U ( id⊗ ι) . (2.14)

Then commutative will be the diagram, obtained by replacing Z and Z1 in
(2.7) by W and W1 respectively. To prove this claim, it suffices to place the
diagrams (2.11) and (2.12) respectively on the left and on the right of (2.13).
It will then follow that Z = αD+W makes commutative the diagram (2.7).

Similarly to π ′
N let us introduce another ring homomorphism

ρ ′
N : V ⊗ V ⊗F → V ⊗ V ⊗ ΛN−2

such that ρ ′
N will map the element e⊗ e⊗ pck ∈ V ⊗ V ⊗F to the sum

N
∑

i=3

e⊗(i−1) ⊗ ec v
k ⊗ e⊗(N−i)

instead of (1.2). The homomorphism ρ ′
N will still map (2.10) as ρN does. So

ρN (e⊗ e⊗ pck ) = ρ ′
N (e⊗ e⊗ pck + ec v

k ⊗ e⊗ 1 + e⊗ ec v
k ⊗ 1) ,

ρ ′
N (e⊗ e⊗ pck ) = ρN (e⊗ e⊗ pck − ec v

k ⊗ e⊗ 1− e⊗ ec v
k ⊗ 1) .

For short let x and y denote the operators of multiplication by v respectively
in the first and the second tensor factors of V ⊗ V ⊗ F . Let τ be operator
on V ⊗ V ⊗F exchanging the variables v in these two tensor factors. By the
definition of ρ ′

N we immediately obtain commutativity of the diagram

V ⊗ V ⊗F V ⊗ V ⊗F

V ⊗ V ⊗ ΛN−2 V ⊗ V ⊗ ΛN−2

x

x− y
(1− τ)

ρ ′

N ρ ′

N

U2

(2.15)

For the purpose of determining the operator W on V ⊗ F via (2.14) it
suffices to find the action of U on the image of id⊗ ι , that is on the subspace

V ⊗ e⊗F ⊂ V ⊗ V ⊗F .

Furthermore, the maps ρN and U2 commute with multiplication by elements
of the subspace C

n ⊂ V in the first tensor factors of their source and target
vector spaces. Hence the operator U will have the same commuting property.
Therefore it suffices to find for l = 0, 1, 2, . . . the action of U on the elements

e v l ⊗ e⊗
∏

(c,k)∈P

pck = xl
∏

(c,k)∈P

(e⊗ e⊗ pck ) (2.16)

where P is any finite collection of pairs of c = 1, . . . , n and k = 0, 1, 2, . . . .
This collection is unordered, but may contain same pairs with multiplicity.
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By the commutativity of the diagrams (2.13) and (2.15) we have

ρN U
(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck )
)

= U2 ρN

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck )
)

=

U2 ρ
′
N

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck + ec v
k ⊗ e⊗ 1 + e⊗ ec v

k ⊗ 1)
)

=

ρ ′
N

( x

x− y

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck + ec v
k ⊗ e⊗ 1 + e⊗ ec v

k ⊗ 1)

− y l
∏

(c,k)∈P

(e⊗ e⊗ pck + ec ⊗ e vk ⊗ 1 + e vk ⊗ ec ⊗ 1)
))

=

ρN

( x

x− y

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck ) − y l
∏

(c,k)∈P

(e⊗ e⊗ pck +

ec ⊗ e vk ⊗ 1 + e vk ⊗ ec ⊗ 1− ec v
k ⊗ e⊗ 1− e⊗ ec v

k ⊗ 1)
))

=

ρN

( x

x− y

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck ) − y l
∏

(c,k)∈P

(e⊗ e⊗ pck +

(yk − xk ) (ec ⊗ e⊗ 1− e⊗ ec ⊗ 1 ))
))

.

This calculation shows that the operator U maps the element (2.16) to

x

x− y

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck ) − y l
∏

(c,k)∈P

(e⊗ e⊗ pck +

(yk − xk ) (ec ⊗ e⊗ 1− e⊗ ec ⊗ 1 ))
)

. (2.17)

Let us apply ω to the latter element. By applying the difference id⊗ θ−ω to

x

x− y

(

xl
∏

(c,k)∈P

(e⊗ e⊗ pck ) − y l
∏

(c,k)∈P

(e⊗ e⊗ pck )
)

=

x (xl − y l )

x− y

∏

(c,k)∈P

(e⊗ e⊗ pck )

we get the element

e v l ⊗
∏

(c,k)∈P

pck ∈ V ⊗F (2.18)

multiplied by l . This multiplication by l amounts to applying to (2.18) the
operator v ∂ ⊗ id . The element (2.16) is just the image of (2.18) under id⊗ ι .
Now by repeatedly using Lemma 2.1 we get the operator equality on V ⊗F

ω U ( id⊗ ι) = ( id⊗ θ )U ( id⊗ ι)− v ∂ ⊗ id . (2.19)

Here we also used the fact that the map ω commutes with multiplication by
elements of the subspace C

n ⊂ V in the first tensor factor of its source and
target vector spaces, like the operator U does.
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Now let p ∗
dl = αp⊥

dl , that is the product of α l by the derivation in F

relative to the generator pdl . Then we can recall that our Z = αD+W and
combine (2.9),(2.14) and (2.19) to get the following principal result.

Theorem 2.2. The diagram (2.7) is made commutative by the operator

Z = (α− 1) v ∂ ⊗ id +
n
∑

d=1

∞
∑

l=1

ed v
l ⊗ p ∗

dl + ( id⊗ θ )U ( id⊗ ι)

where ι and θ are defined by (1.5) and (1.14). The operator U on V ⊗V ⊗F

commutes with multiplication by elements of the subspace C
n ⊂ V in the first

tensor factor, and maps (2.16) to the element displayed in two lines (2.17).

Corollary 2.3. For m = 1, 2, . . . the diagram (2.6) is made commutative by

Im = θ Zm ι .

Proof. For any i = 2, . . . , N the conjugation of the operator Zm
1 by the action

of (1i) ∈ SN on V ⊗N yields the operator Zm
i . Therefore the composition

θN Zm
1 acts on the subspace ΛN ⊂ V ⊗N as the operator sum (2.4). Now the

required statement follows from the commutativity of the composite diagram

F V ⊗F V ⊗F F

ΛN V ⊗ ΛN−1 V ⊗ ΛN−1 ΛN

ι Zm

πN

θ

πN

Zm
1

θN

Here we use the commutativity of the diagrams (1.15) and (2.7). �

3. Yangian action

Consider the Yangian Y(gln) . This is a complex unital associative algebra

with an infinite family of generators T
(1)
ab , T

(2)
ab , . . . where a, b = 1, . . . , n . Now

let u be another variable. Introduce the formal power series in u−1

Tab(u) = δab + T
(1)
ab u−1 + T

(2)
ab u−2 + . . . (3.1)

with the coefficients in Y(gln) . Using both the variables u and v , the defining
relations in the algebra Y(gln) can be written as

(u− v) [Tab(u), Tcd(v) ] = Tcb(u)Tad(v)− Tcb(v)Tad(u) . (3.2)

If n = 1 then the algebra Y(gln) is commutative by this definition. The next
proposition is a particular case of a general construction due to Drinfeld [6].

Proposition 3.1. The algebra Y(gln) acts on vector space ΛN so that T
(m+1)
ab

with m = 0, 1, 2, . . . acts as the operator sum

N
∑

i=1

id⊗(i−1) ⊗Eab ⊗ id⊗(N−i) · (−Zi )
m . (3.3)
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Note that the operator Zi on V ⊗N by its definition commutes with the
action of the Lie algebra gln on any of the N tensor factors V . Further, due to
the relations (2.3) the operator (3.3) commutes with the permutational action
of the group SN on V ⊗N . So the operator (3.3) preserves the subspace ΛN .
To prove Proposition 3.1 it now remains to verify that the restrictions of these
operators to ΛN satisfy the relations (3.2). To this end one employs the series

δab +

∞
∑

m=0

N
∑

i=1

id⊗(i−1) ⊗Eab ⊗ id⊗(N−i) · (−Zi )
m u−m−1 =

δab +

N
∑

i=1

id⊗(i−1) ⊗Eab ⊗ id⊗(N−i) · (u+ Zi)
−1

with operator coefficients (3.3) and applies the commutation relations (2.2).
For the details of the verification of (3.2) see [12, Section 1].

Note that for any fixed m = 0, 1, 2, . . . the operator (2.4) on V ⊗N equals
(−1)m times the sum of operators (3.3) over a = b = 1, . . . , n . By using the
results of the previous sections, we can now describe the limit of the action of
Y(gln) on ΛN defined in Proposition 3.1 at N → ∞ . This limit is an action
of the algebra Y(gln) on the Fock space F determined by the next theorem.

Theorem 3.2. The algebra Y(gln) acts on the vector space F so that T
(m+1)
ab

with m = 0, 1, 2, . . . acts as the composition θ (−Z )m Fab ι .

Proof. The composition θN (Eab ⊗ id) (−Z1 )
m acts on the subspace (1.7) as

the operator sum (3.3). Hence the theorem follows from Proposition 3.1 by
using the commutativity of the diagrams (1.8),(1.15) and (2.7). �

Other limits at N → ∞ of the operators Eab ⊗ id and Z1 on V ⊗ΛN−1

were computed in [11]. Comparing our Theorems 1.5 and 2.2 with the results
of [11] shows that these limits were defined by the homomorphism π ′

N instead
of πN used in (2.7). This however entails changing our ι to the homomorphism

ι ′ : F → V ⊗F : pck 7→ e⊗ pck + ec v
k ⊗ 1 .

Further, once πN is changed to π ′
N in (1.15), our linear map θ also needs to be

changed, to keep the latter diagram commutative. The changed linear map

θ ′ : (ed v
l ⊗ 1)

∏

(c,k)∈P

(e⊗ pck + ec v
k ⊗ 1) 7→ pdl

∏

(c,k)∈P

pck

for any pair (d, l) and for any collection P of pairs (c, k) as in (2.16) above.
Indeed, after receiving a preliminary version of the present article which

included the above remark, Sergey Khoroshkin verified that the counterparts
from [11] of our operators Fab and Z on V ⊗F can be rewritten as

F ′
ab = ε Fab ε

−1 and Z ′ = εZ ε−1

where ε is the ring automorphism of V ⊗F identical on V ⊗ 1 such that

ε : e⊗ pck 7→ e⊗ pck + ec v
k ⊗ 1 .
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Since ι ′ = ε ι and θ ′ = θ ε−1 by the definition of the automorphism ε,
then for any m = 0, 1, 2, . . . we get the equalities of operators on F

θ ′ (Z ′ )m ι ′ = θ Zm ι

and
θ ′ (Z ′ )mF ′

ab ι
′ = θ ZmFab ι .

By Corollary 2.3 and by Theorem 3.2, these equalities show that the limits at
N → ∞ of the operators Hm on ΛN , and of the action of the algebra Y(gln)
on ΛN , are the same in [11] as in the present article. This should be the case,
because the mapping (1.1) which defined the limits in [11] is the same as ours.
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