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Label-free live single-cell Raman spectroscopy was used to obtain a chemical fingerprint of 
colorectal cancer cells including the classification of the SW480 and SW620 cell line model system, 
derived from primary and secondary tumour cells from the same patient. High-quality Raman 
spectra were acquired from hundreds of live cells, showing high reproducibility between 
experiments. Principal component analysis with linear discriminant analysis yielded the best cell 
classification, with an accuracy of 98.7±0.3% (standard error) when compared to discrimination 
trees or support vector machines. SW480 showed higher content of the disordered secondary 
protein structure amide III band, whereas SW620 showed larger α-helix and β-sheet band content. 
The SW620 cell line also displayed higher nucleic acid, phosphates, saccharide, and CH2 content. 
HL60, HT29, HCT116, SW620 and SW480 live single-cell spectra were classified using PCA/LDA with 
an accuracy of 92.4±0.4% (standard error), showing differences mainly in the β-sheet content, the 
cytochrome C bands, the CH-stretching regions, the lactate contributions and the DNA content. The 
lipids contributions above 2900 cm-1 and the lactate contributions at 1785 cm-1 appeared to be 
dependent on the colorectal adenocarcinoma stage, the advanced stage cell lines showing lower 
lipid and higher lactate content. The results demonstrate that these cell lines can be distinguished 
with high confidence, suggesting that Raman spectroscopy on live cells can distinguish between 
different disease stages, and could play an important role clinically as a diagnostic tool for cell 
phenotyping. 
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Introduction 

Mapping of tumours, from sub-cellular to whole 
organ length scales represents a major challenge 
in cancer research for understanding how 
biological changes relate to pathology.  Raman 
spectroscopy probes the vibrational modes of 
molecules, offering an information-rich, label-
free, technique for studying biological systems. 
Importantly, the technique can be used to probe 
living systems, providing biochemical information 
with sub-cellular and cellular spatial resolution on 
live cells.[1–5] It allows the discrimination between 
cell types at the single-cell level, and thus has a 

potential for application in studying cell 
heterogeneity, differential response to drugs, 
automatic mapping of tissue samples and 
microfluidic-based identification of cancers.[6] 

A number of groups have used Raman in studies 
on fixed cells, where the proteins within the cells 
are polymerized, keeping the cells in a non-viable 
chemically stable state. However, a number of 
publications[7–12] and recent reviews[5,13] indicate 
that formalin-fixed cells show a decrease in lipid 
and protein content, an overall weaker signal, 
new peaks due to the fixation and shifts in some 
bands. Raman spectroscopy has previously been 
undertaken in live cancer cell lines.[14,15] A major 
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challenge of Raman spectroscopy in living 
samples is that it can be complicated by apoptotic 
effects due to the removal of cell medium, which 
limits the measurement time, and thus the 
number of cells typically analysed is often in the 
low tens. 

Cells have a rich spectral content, which provides 
Raman with great potential as a diagnostic tool[16]. 
However, the differences between cell types are 
usually subtle. This, coupled with the need to 
sample large numbers of cells, means that 
multivariate analysis for discrimination between 
cell types or states is required.[17] Various 
chemometric methods have been employed to 
identify the main spectral variations in pre-
processed data.[17,18] The most common method 
for dimensionality reduction is principal 
component analysis (PCA), or PCA in conjunction 
with other multivariate methods such as linear 
discriminant analysis (LDA)[19] or cluster analysis 
(CA)[9,20]. LDA is a supervised multivariate method 
that looks for the axis that maximizes the 
between-class separation while minimizing the 
within-class scatter.[17] Other data mining 
techniques, such as support vector machines 
(SVM), genetic algorithms, discrimination trees 
(DTs) or artificial neural networks (ANN) can be 
very powerful for class separation, but are more 
difficult to relate to the underlying biology.[21] 
Tree classifiers, also known as DTs, have been less 
widely used[22,23] and even though they are 
sometimes less powerful than the previously 
mentioned classifiers, their output is easier to 
relate to the original spectral features and they 
can also capture non-linear relationships within 
the data. SVM are very powerful classification 
methods[24,25], but it is sometimes difficult to 
extract useful knowledge from the trained 
models. Partial Least Square Regression (PLSR) is 
a dimensionality reduction method alternative to 
PCA that allows assigning scores to each of the 
groups, finding the components that correlate 
with a particular characteristic of the classes.[26] It 
has previously been used to correlate metastasis 
potential with metabolic data[27].  

Colorectal cancer has an estimated mortality of 
56% (2012) and around 20% of diagnosed patients 
already have metastases at diagnosis.[28] Isolating 
the chemical fingerprint of metastatic colorectal 

cells will aid tissue and single-cell studies on the 
effectiveness of pre-operative treatments and 
tumour identification. For this study, the main cell 
lines chosen were SW480 and SW620, derived 
from a primary Duke’s stage B adenocarcinoma 
and secondary tumour in a lymph node from the 
same patient[29–31]. Using these cell lines can help 
isolate metastasis variability from the person-to-
person variation. Previous reports of vibrational 
spectroscopy on the SW620/SW480 model 
system at the single-cell level have been 
undertaken using synchrotron Fourier Transform 
Infra-Red Micro-spectroscopy on live cells[32] and 
Raman spectroscopy of a small number of fixed 
cells combined with Stimulated Raman 
scattering[33]. 

In addition, HL60, HCT116 and HT29 cells were 
analyzed. HL60 is a non-adherent blood cell line 
derived from human promyelocytic leukaemia 
and was used to show the ability of Raman to 
differentiate between cell lines with very different 
origins. HCT116 cells are derived from human 
colon carcinoma, so are expected to show 
similarities with primary colon cancer cell lines 
and will challenge the system to separate 
between different cancer types from the same 
tissue. HT29 cells are derived from Duke’s C stage 
human colon adenocarcinoma and are thus 
expected to show similarities with the SW480 cell 
line that is human colon adenocarcinoma Duke’s 
stage B, challenging the system to differentiate 
between different stages of the same disease. A 
schematic outlining the Duke’s stages of 
colorectal adenocarcinoma is shown in Fig. S1 
(Supporting information). Previous studies have 
done bulk Raman measurements in HL60 cell 
pellets[34–36], on single-nuclei of HL60 cells[37] and 
on fixed HT29 cells[38]. Single-cell live label-free 
Raman spectroscopy of these cell lines has been 
previously done comparing HCT116 cells with 
HT29 cells[39], studying apoptosis induction on 
HCT116 cells[40,41], studying proliferation effects 
caused by co-culture of HL60 cells with 
mesenchymal stem cells[42] and comparing HL60 
cells with peripheral blood mononuclear cells[43], 
but the number of cells analysed in these studies 
were always below 30. 

Here we present the first report of Raman 
spectroscopy on live cells on multiple colorectal 



Label-free biochemical fingerprint of live colorectal cancer cell lines 

J. Raman Spectrosc. 2017, x, x-x  

cell lines SW480/SW620/HT29/HCT116 and 
compare these to a non-colorectal cell line such as 
HL60. Data were obtained from 680 live cells, with 
excellent reproducibility between experiments. 
SW480/SW620 results were first analyzed using 
different multivariate methods – PCA/LDA, DT 
and SVM – to find an optimal multivariate method 
to differentiate between these primary and 
secondary cancer cells. Then, additional cell lines 
were added to the analysis to identify possible 
metastasis biomarkers compared to a greater 
pool of cells ranging from different disease states, 
different disease types within the same organ and 
different cell origins altogether. Results have 
successfully classified these cells with high 
accuracy and identified potential biomarkers that 
will need to be tested in further experiments in 
clinical samples. 

Materials and Methods 

Cell culture 

The SW480, SW620, HT29 and HCT116 cell lines 
were cultured in Dulbecco's Modified Eagle 
Medium (DMEM/F-12, Gibco). The HL60 cell line 
was cultured in Roswell Park Memorial Institute 
medium (RPMI 1640, Thermo Fischer Scientific). 
Media were supplemented with 10% fetal bovine 
serum (Sigma), 2 mM Glutamax (Thermo Fisher 
Scientific) and penicillin 100 units/mL 
streptomycin 100 µg/mL (Sigma). Phase contrast 
images of the SW620 and SW480 cell lines grown 
in flasks showed a more epithelial-like 
morphology for SW480’s and a more fibroblast-
like morphology for SW620’s as shown in Fig. S2 
(Supporting Information). Cells were not ‘synced’ 
to allow the natural cell cycle within sample 
variability of the cell lines. All experiments were 
done with passage numbers below 50. SW480, 
SW620, HT29 and HCT116 were washed with 
Dulbecco’s phosphate buffered saline (DPBS) and 
gently retrieved from 6-well plates by incubating 
with Cell Dissociation Buffer (Thermo Fisher 
Scientific) for 30 minutes, followed by 
centrifugation (100gs 1 min) and re-suspension in 
cell dissociation buffer. HL60 cells were retrieved 
from media by centrifugation (100gs 1 min) and 
washed with DPBS once before re-suspending in 
DPBS. When pipetted into the setup, cells 

sedimented onto the coverslip and showed no 
visible Brownian motion, remaining in a spherical 
shape. 

Raman spectroscopy 

Quartz slides (UQG Optics, 75x25x1 mm) and 
coverslips (25.4x25.4x0.15-0.25mm Alfa Aesar) 
were sonicated with acetone (VWR Chemicals), 2-
5% Decon 90 (VWR Chemicals) and rinsed with 
MilliQ. Hydrogen peroxide 30% (Thermo Fischer) 
and sulfuric acid >95% (Thermo Fischer) were 
mixed in a 3:7 proportion (Piranha solution) and 
used to clean the slides for 20 minutes. Slides and 
coverslips were stored in MilliQ and dried under a 
stream of nitrogen immediately before the 
experiment. Spacers were prepared using a 50 µm 
polyethylene terephthalate film (Goodfellow, 
UK). A nitrocellulose-based solution was used to 
bond the coverslip to the slide and was dried at 
80ºC for 30 min. The cell solution was pipetted 
into this chamber immediately before measuring. 
All experiments were done at room temperature 
and samples were measured for 1 h. 

The Raman system used was an inVia Raman 
confocal inverted microscope (Renishaw) 
integrated with a Leica DMi8/SP8 laser scanning 
confocal microscope system, with a DPSS Diode 
532 nm laser (intensity of 22 mW on the sample). 
Light was collected using a Newton EMCCD Sensor 
(DU970P, Andor, 1600x200 px). Prior to every 
experiment a spectrum of a silicon sample was 
collected using a 10x objective and the 
microscope was calibrated to the peak position 
(520.5 cm-1). The longer-term aim of our work is 
to measure the Raman signal of these cells in a 
microfluidic platform; thus the Raman spectra of 
detached cells were measured.  

The cell spectra were obtained using a 100x oil 
objective (HC PL APO CS2 FWD 0.13 mm NA 1.4) 
and a slit size of 20 µm. This objective and slit 
opening gave a 10.2 µm Full Width Half Maximum 
confocality when tracking the changes of Raman 
intensity of the 520.5 cm-1 with the distance to a 
silicon sample, ensuring the whole volume of the 
cell can be measured when using this 
configuration. The laser spot was defocused by 
50% using a beam expander, generating a laser 
spot of approximately 20 µm diameter. Each cell 
spectrum was obtained using a step configuration 
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with 1 s exposure time and 5 accumulations in two 
different windows (300 – 1800 cm-1 and 1800 – 
3200 cm-1) which gave a total exposure time of 10 
s per cell. Between 79 and 85 cell spectra were 
obtained per experiment, and the data from 
multiple experiments were combined for this 
paper (167 SW620 cells, 163 SW480 cells, 89 HL60 
cells, 190 HT29 cells and 71 HCT116 cells) without 
omitting any outliers. Five background spectra 
from cell-free regions of the sample measured at 
the same Z-position as the cells were obtained for 
each experiment. 

Pre-processing of the spectra 

The spectra obtained were cosmic ray filtered 
(WiRE® software) and exported as text files for 
further analysis using Matlab’s Statistics and 
Machine Learning Toolbox (MathWorks). The 
Matlab functions used are indicated by italics. The 
silicon peak of a calibration sample was used to 
calibrate the wavenumber axis of each spectrum 
and the spectra were translated vertically, such 
that the minimum intensity was zero. For each cell 
spectrum, the average background spectrum was 
multiplied by an adjustment factor before being 
subtracted from the cell spectrum to ensure the 
quartz band at around 480 cm-1 was fully 
corrected. The spectrum was smoothed using a 
Savitzky-Golay filter. The spectra were truncated 
to only consider the regions between 730 cm-1 
and 3100 cm-1. The spectra were baseline 
corrected using the algorithm developed by Koch 
et al (2016). [44] The regions of the spectra 
between 1750 cm-1 and 2800 cm-1 were not 
considered for subsequent analysis. In order to 
normalize to the protein content, for comparison 
with biochemical literature data, each spectrum 
was normalized such that the Amide I peak was 
unity.  

Statistical analysis and classification 

Statistical errors. Unless stated otherwise, all 
values are express ± the standard error calculated 

as 𝜎/√𝑁, where 𝜎 is the standard deviation and N 
the sample size. Performance of the multivariate 
models was calculated as the accuracy of the 
model using a 10-fold cross-validation with 5 

repetitions. Correlation Matrix. The correlation 
matrix of all the pre-processed data was 

calculated to help with the peak assignment. The 
function used was corrcoef. To simplify the 
correlation image, point with p-values > 0.0001 
were set to zero, and only the peaks that showed 
an absolute value of correlation greater than 0.3 

were considered in the analysis. PCA. The edited 
data was truncated to 730-1750 cm-1 and 2800-
3000 cm-1 and standardized using Standard 
Normal Variate. The function used was pca. LDA 
was performed keeping only the first 25 PCs using 
the function fitcdiscr using a ‘linear’ discriminant 
type. DT. The function used was fitctree using the 
exact algorithm, that fits a binary classification 

tree to the data. C5.0. R’s C5.0 package was used 
to train DT ensembles based on R. Quinlan 
algorithm, and the caret package was used to 
optimise training parameters. It trains multiple 
small DTs and analyses the most frequently 

chosen wavenumbers. SVM. R’s kernlab package 
was used to train SVM models, and the caret 
package was used to select an optimal kernel 
function (from amongst linear, polynomial and 
Gaussian kernels). As all the tested kernels 
showed a similar performance, the linear kernel 
was selected. PLSR function plsregress was used 
for the analysis. Scores in each of the components 
were compared in pairs using an unpaired two 
sample one-tailed t-tests, and the number of 
components was determined so cell lines showed 
a significant (p>0.01) increase with the 
adenocarcinoma stage. Final considered values all 
show at least p<.001. Duke’s stages [B primary, C 
primary, C metastasis] were fitted as [1,2,3]. 

Results  

Distinction between primary and secondary 
tumour cells 

Fig. 1A shows the SW620/SW480 averaged 
spectra, normalized to the Amide I peak, and 
variability for each cell line. The main peaks have 
been identified in accord with the established 
literature and are given in Table S1.[45–50] 

The -CH2 and -CH3 stretching contributions in the 
region of 2800-3200 cm-1 showed higher overall 
intensity for SW480 cells and a greater CH2 : CH3 
ratio for SW620 cells, indicating differences in 
lipid composition between the two cell lines with 
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higher lipid content for the larger size cells SW480 
(SW480 diameter =16.9±0.4 μm c.f.  SW620 
diameter = 14.4±0.3 μm) and in agreement with 
previous reports on fixed SW480/SW620 cells[33]. 
The fits of these peaks are shown in Fig. S3A and 
S3B (Supporting Information). 

The amide III band (1230-1300 cm-1) and the 
amide I band (1600-1690 cm-1) are widely used for 
studying the protein secondary structure. Peaks 
fitted to the amide III β-sheet, α-helix, α+β and 
disordered structures showed that disordered 
structure was higher for the SW480 cells and β-
sheet was higher for SW620 cells, whilst the ratios 
of α/β indicated that SW620 cells had more α-
helix to β-sheet content ratio than SW480 as 
shown in Fig. S3-B1 and S3-B2 (Supporting 
Information). Other protein related peaks 
associated with hydroxyproline, proline and 
phenylalanine all showed higher intensity for the 
SW620 cells. The Amide I bands showed a similar 
trend to the Amide III fitting for the variation in 
the β-sheet and α-helix content. 

The 782 cm-1 nucleic acid peaks and the 810 cm-1 
peak usually associated with bonded phosphates 
or phosphodiester bonds showed a larger 
contribution for SW620 than of SW480 cells, 
indicating higher nucleic acid to protein ratio. The 
1338 cm-1 band with mixed contributions of DNA 
and CH vibrations showed this same trend. This is 
consistent with the SW620 having larger RNA 
content[51] and nuclear area[52] that SW480. 

Most of the peaks associated with saccharide 
contributions show higher contribution in the 
SW620 spectra. This could be explained by higher 
concentrations of glycolysis intermediates such as 
acetate or lactate[53] and an increased secretion of 
pericellular hyaluronan in SW620 compared to 
SW480 cells.[54] Peaks associated with phosphates 
also show a higher contribution for the SW620, 
which is in agreement with previous reports that 
showed an increase of the phosphorylated status 
of these cells[32]. Peaks at around 1128, 1310 and 
1585 cm-1 have previously been labelled as 
cytochrome C resonance[46,55] and can be used to 
monitor early signs of apoptosis.[46] Peaks at 1157, 
1517, 1525 and 1620 cm-1 reveal higher 
contributions of double bonds to the SW620 
normalized spectra,[45] and have previously been 
reported as cancer biomarkers in different 
biological samples, assigning them to carotenoids 
or porphyrins[15,33,56].  

In summary, when normalizing to the Amide I 
band, SW620 cells show a larger contribution of 
α-helix proteins, saccharides, nucleic acids and 
double bonds related bands, whereas SW480 cells 
show larger contribution of lipids, β-sheet and 
disordered structure proteins.  

Peak correlation 

To aid peak assignments and help track cell state 
we used the p-value filtered correlation matrix of 
the pre-processed data (Fig. 1B). Only correlations 

Figure 1: (A) Average single-cell spectra and variability spectrum, for primary (SW480) and secondary (SW620) cells. The error around 
the average shows one standard deviation. The region around 2900 cm-1 is shown reduced by a factor of 4 to enhance the details in 
the fingerprint region. (B) Correlation matrix of the different bands for all cells, where the points with p-values > 10−4 were
considered not significant and set to 0 to simplify the plot. 



Label-free biochemical fingerprint of live colorectal cancer cell lines 

J. Raman Spectrosc. 2017, x, x-x  

with an absolute value higher than 0.3 were 
considered for this analysis. A series of strongly 
correlated peaks associated with cytochrome C 
were found at 748, 1128, 1156, 1175, 1310, 1431, 
1438, 1448, 1585, 2845-67 cm-1 which had a 
strong negative correlation with the Amide I 
peaks at 1682 and 1690 cm-1 (see (1) in Fig. 1B). 

Other highly correlated peaks in the spectra are 
the 810 cm-1 series (see (2) in Fig. 1B) that 
positively correlates with 781, 828 and 1732 cm-1. 
The 810 cm-1 is usually labelled as being due to 
phosphodiester or phosphate vibrations, with the 
781 cm-1 peak associated with the pyrimidine 
bases ring breathing mode and the 828 cm-1 peak 
due to phosphates. Overall, this indicates that this 
series is related to nucleic acid vibrations. 

Another notable correlation found is the series of 
1679 cm-1 (see (3) in Fig. 1B), which shows positive 
correlation along the Amide I peaks at 1642, 1671, 
1687, 1689 and 1697 cm-1. These bands are 
related to Amide I β (1679 and 1671), α (1642) and 
disordered (1687) structures that all show high 
correlation.  

Primary and secondary cell lines 
discrimination using classification 
algorithms 

The individual cell spectra were used to classify 
cells by three different methods: with PCA 
analysis, with DT – both using an individual DT and 
using the C5.0 algorithm[57] – and with linear 
kernel SVM. First, we consider this for the 
potentially more challenging case of SW480 and 
SW620 cell lines, which are of the same genetic 
origin and grown under the same conditions. 
Once optimized, we then extended this to other 
cell lines. 

Non-supervised Multivariate Analysis: PCA. 
Fig. 2A gives the first four principal components. 
Using PC1-3 was enough to separate the two cell 
lines, by plotting the scores of the first 2 PCs (Fig. 
2B). PC1 showed mainly lipid-related 
contributions and accounted for 26% of the 
variability. PC2 and 3 showed mixed RNA and 
protein related contributions and contributed to 
5.1% and 3.3% of the variability, respectively. PC4 
showed a strong contribution of the cytochrome 
C resonance. PCA showed that the SW620 cells 
are more heterogeneous than the SW480 cells, 
indicating greater within-class variability. PC2 was 
the component that better separated the two cell 
lines and showed two sharp peaks at 781 cm-1 
(DNA) and 1001 cm-1 (phenylalanine), and 
broader peaks around 1455 (CH2 vibrations), 1573 
(Carboxylic group or nucleic acids) and 1647 cm-1 
(Amide I). This component seems to be 
accounting for mixed contributions to proteins, 
lipids and nucleic acids. Interestingly, PC4 did not 
show different contributions between the SW620 
and SW480 cells but seemed to be related to the 
within-class heterogeneity of the cells. The 
histograms of the scores are given in Fig. S5 
(Supporting Information). 

Supervised Multivariate Analysis: PCA and 

LDA. Fig. 2A shows an example of a Linear 
Discriminant (LD) that provides a good 
classification of the two cell lines (98.7±0.3%). 
This LD is dominated by the PC2 contribution and 
shows positive values for SW620 cells and 
negative values for SW480 cells. The shape of the 
LD shows the enrichment in CH2 νs of the SW620 
and the increased contents in CH3 stretching 
vibrations of SW480 cells. The cytochrome-
associated peaks are absent, indicating that the 

Figure 2: PCA/LDA results. (A) Shape of the PCs 1 to 4 and of the LD (B) 2D plot of the scores for the first two PCs. (D) Histogram of 
the individual cell scores when projecting the cell data onto the LD from (A) with a vertical dashed line at the point of best separation.
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viability of the cells was similar and that the 
differences found here are not artefacts due to 
apoptosis. Modes related to phosphates were in 
general of negative sign, whilst the amino acid-
related peaks like phenylalanine, tyrosine or 
hydroxyproline and the Amide III band show 
positive contributions. In summary, the LDA/PCA 
confirm that the SW620 cells have a higher CH2 
/CH3 ratio as well as larger contributions from 
amino acids, phosphates and proteins than the 
SW480 cells at a single-cell level and that these 
are good biomarkers to classify the cells. The 
scores for the LD are shown in Fig. 2C. 

Comparison of performance of different 

Multivariate Methods. The performance of all 
the multivariate methods compared is shown in 
Fig. 4A. The final performance values obtained 
were of 98.7±0.3% for the PCA/LDA classifier, 
86±1% for the simple DT, 94.0±0.9% for the C5.0 
DT and 98.1±0.4% for linear kernel SVM. 
Multivariate methods often balance between 
intuitive results and good performance[21]. The 
PCA/LDA has the advantage that the LD shows the 
component of best separation and it is easier to 
relate the variance of specific spectral features 
and hence to relate it to the underlying biology. 
The simple DT and C5.0 output are of single 
bands, which is the simplest and most intuitive 
output to relate with the spectral changes from 
the ones reviewed here, but also gives a less 
powerful classifier. More information about these 
models can be found in the Supporting 
Information. 

Average and multivariate analysis of results 

of multiple cell lines. Fig. 3A shows the 
averaged spectra of each of the cell lines. The 
Amide III region is shown in Fig3B. 

The HL60 cell line shows lower intensity in the 749 
cm-1 band but not in other cytochrome related 
bands, probably indicating lower DNA content 
than the adherent cell lines, but with higher 
intensity in the 782 cm-1 band associated with 
nucleic acids, which could be showing a higher 
RNA content. When looking at the 782 cm-1 band 
and the 810 cm-1 bonded phosphates band, the 
normalized intensity follows the trend 
HL60>HCT116>SW620>HT29>SW480. 
Interestingly, the modal number of the cell lines 

according to the literature shows the inverse 
trend HT29 (68-72)>SW480 (58)>SW620 
(50)[58]>HL60 (46)>HTC116 (45)[59,60]. As the peaks 
are normalized to the Amide I, this could be 
showing that the protein content is strongly 
correlated with the DNA content. 

Previous studies of xenographs of HT29, HCT116 
and SW620 cells showed that the most common 
metabolites were amino acids and lactate[61], 
indicating that the 1725 cm-1 peak associated with 
ν C=O and the 885 and 898 cm-1 peaks probably 
have a strong contribution from lactate. These 
peaks show the trend 
HCT116>SW620>HT29>SW480≈HL60, which also 
agrees with previous magnetic resonance 
spectroscopy results [53,61]. This can be attributed 
to the Warburg effect, due to which highly 
proliferative cancerous cells have increased 
lactate contents; HCT116, SW620 and HT29 are 
known to have lower doubling times than SW480 
and HL60 cells[51,62–64]. For the carcinoma cell lines, 
the lactate contribution appears to be correlated 
with the cancer stage. 

In general, HL60 have higher phosphate than the 
colorectal cell lines. For the colorectal cancer cell 
lines, differences between the 810 and 828 cm-1 
peaks and the 1095 cm-1 peak could be indicating 
that HCT116, HT29 and SW620 cells have more 
bonded phosphates than SW480 cells and that 
HCT116 cells have lower free phosphate 
concentration than the other cell lines. 

Spectral regions around Amide III were fitted with 
Gaussian peaks as shown in Fig. S3 (Supporting 
Information). The Amide III band has very 
different shapes for the different cell lines. Both 
HL60 and SW620 cells showed high contributions 
for both β-sheet, disordered and α+β secondary 
structure, with a lower contribution of α-helix 
structure. In contrast, HCT116, HT29 and SW480 
cells showed reduced β-sheet peak height with 
higher disordered and α+β contributions, 
suggesting that increased ratio of α+β/β-sheet 
could be a signature of primary colorectal cancer. 
This would merit further investigation. SW620 
and SW480 cells showed higher α-helix 
contribution than the other cell lines. Amide I 
fitting showed a similar trend to the one seen in 
Amide III within fitting error, where HCT116 
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showed a significant higher contribution of 
random coils.  In terms of amino-acids content, 
the phenylalanine peak had a lower contribution 
for the adenocarcinoma primary cell lines (HT29 
and SW480) followed by SW620 cells, with higher 
contribution for the HCT116 cells and the HL60 
cells. 

Fitting to the CH stretching region, Fig. S3 
(Supporting Information), showed SW480, HL60 
and HCT116 to have higher contributions above 
2930 cm-1. HCT116 cells had a very low 
contribution in the 2848 cm-1 CH2 symmetric band 
compared to the other cells, showing higher fatty 
acids levels for HCT116 cells than for SW620 
cells[39,61]. Whilst for the adenocarcinoma cell 
lines, the contributions above 2900 cm-1 appear to 
be dependent on the cancer stage 
(SW480>HT29>SW620), a promising biomarker 
that would need to be confirmed in further 
experiments. 

In summary, the results suggest that HL60 cells 
show low DNA, lactate, β-sheet content and high 
bonded phosphates, lipids, disordered and α+β 
secondary protein structure, clearly separating it 
from the colorectal cell lines. HCT116 cells 
showed lower cytochrome C peaks, β-sheet 
content, free phosphates and CH2 symmetric 
stretching band, and higher lactate, disordered 
and α+β contributions, all possible signatures of 
colorectal carcinoma compared to 
adenocarcinoma.  For the colorectal 

adenocarcinoma cell lines, the lactate 
contribution measured using the 1725 cm-1 peak 
seems to be proportional to the cancer stage, 
whereas the CH stretching contributions above 
2900 cm-1 were inversely proportional to the 
cancer stage. This would indicate that more 
malignant cells would tend to increase their 
lactate/protein ratio – due to the Warburg effect 
– while decreasing their lipid/protein contents. 
Additionally, SW620 cells showed lower 
phenylalanine peak and lower α+β/β-sheet ratio 
and SW480 showed lower bonded phosphates. 

In general, the differences between the cell lines 
are subtle when looking at the average spectra, 
but are clear when applying the PCA/LDA model. 
The LD model consisted of 10 LDs, each of them 
maximizing the separation between a pair of the 
5 cell lines. Fig. 4B shows a 3D plot of three 
selected LDs that showed the best separation 
where the average and two standard deviations of 
each cell population has been shown as a sphere. 
All cell lines show very clear clustering separated 
from each other. HL60 clusters further from the 
other cell lines in LD1 as the only non-adherent 
cell line. HCT116 shows clear separation with the 
other colorectal cell lines, underlying the ability of 
Raman spectroscopy to separate between 
different cancer types even within the same 
organ. SW480 and HT29 lie very close to each 
other and show the worst separation as expected 
given that they both originate from colorectal 

Figure 3: (A) Average single cell spectra of the different cell lines used, where the error shows one standard deviation. (B) Average of
the spectra around the Amide III region with tentative assignment. The lighter coloured broad line represents the standard error. 
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adenocarcinoma. The PCA/LDA model using a 10-
fold cross validation showed a performance of 
92.4±0.4%. 

In order to find possible biomarkers for disease 
stage in colorectal adenocarcinoma, the spectra 
of the SW480/HT29/SW620 cell lines were fitted 
to a PLRS model looking for spectral features that 
change linearly with disease stage. Only 
components 1 and 2 that showed a significant 
increase with cancer stage (p<0.01) were 
considered for analysis, and the cell scores for 
each cell line are plotted in Fig. 4C. Among other 
potential biomarkers noticed in the average 
analysis, results showed a decrease of the 
stretching peak at 2850 cm-1, decrease of the DNA 
peak at 787 cm-1, increase of the 1438 cm-1 peak 
with a decrease around (1465-1490 cm-1) and a 
decrease in the Amide I contribution above 1675 
cm-1. An increase at 810-813 cm-1 (bonded 
phosphates and phosphodiester) may be linked 
with increased phosphorylated status with cancer 
stage and/or increased nucleic acid content. The 
1556 cm-1 peak related with double bonds and 
previously reported to increase in SW620 cells 
compared to SW480 cells[45], showed increase 
with cancer stage when considering HT29 cells. 
PLSR analysis also showed blue shifting of the 
phenylalanine peak at 1002 cm-1 and the 1174 cm-

1 peak from the cytochrome C series, and red 
shifting of the 747 and the 1227 cm-1 cytochrome 
C peaks with advancing adenocarcinoma stage. 
The shape of the components is shown in Fig. S7 
(Supporting Information). 

Conclusions 

We have shown that Raman spectroscopy of 
hundreds of live cells can readily be used to 
distinguish between different cell types and 
between different colorectal cancer cell lines 
including a primary and secondary cell line from 
the same patient. 

For the metastatic model system, we found that 
when normalizing to the Amide I peak, secondary 
tumour cells (SW620) displayed higher 
saccharides, phosphates, nucleic acid content, α-
helix, β-sheet and α+β secondary structure, 
increased ratio of α/β secondary structure and 
increased ratio of CH2 : CH3 stretching bands. The 
SW480 cells displayed a higher proportion of 
disordered structure and increased overall CH 
stretching intensity. PCA discrimination indicated 
that the cytochrome C peaks accounted for most 
of the within sample variability whilst the protein, 
nucleic acids and lipid-associated peaks gave the 
largest variability between cell lines.  

Supervised multivariate methods like LDA/PCA 
and SVM results yielded >98% accuracy in 
classification between the SW620/SW480 cell 
lines compared to DTs and C5.0 DTs, that gave 
good but lower performance, though they 
allowed obtaining single peak biomarkers. 

When comparing multiple colorectal cancer cell 
lines we found that the primary colorectal cancer 
cell lines (SW480, HT29 and HCT116) showed 
increased α+β/β-sheet ratio in the Amide III band 
compared to the HL60 and SW620 cells. The 
carcinoma cell line HCT116 showed lower 
cytochrome C, CH2 symmetric stretching and free 
phosphates, and higher lactate contributions 
compared to the adenocarcinoma cell lines. The 
analysis of the average and PLSR analysis with the 

Figure 4: (A) Performance of the four classification methods when applied to the SW620 and SW480 datasets. (B) 3D-plot of chosen
LDs of the different cell lines, where the spheres are centred on the average values and have radius of two standard deviations. (C)
Composite Box plots / bee-swarm plots for the scores of each cell line in the PLSR components 1 and 2, showing a linear trend with 
disease stage. The p-values for each pair was found to be <0.001. 
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colorectal adenocarcinoma stage showed an 
increase on the lactate contribution at 1725 cm-1, 
the 810-813 cm-1 peak associated with bonded 
phosphates and phosphodiester and the 1556 cm-

1 peak related with double bonds, and a decrease 
on the contributions above 2900 cm-1, the DNA 
peak at 787 cm-1 and the Amide I contribution 
above 1675 cm-1 among others, and their possible 
applications as biomarkers deserve further study. 
Overall, the PCA/LDA performance for the 
separation of different cancer types was 
92.4±0.4% showing the potential of Raman 
spectroscopy to separate between live healthy 
and cancerous cells – in future, we seek to extend 
these studies to patient samples. 
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