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ABSTRACT

In this paper, we investigate both undirected and directed network evolution using the Euler-Lagrange

equation. We use the Euler-Lagrange equation to develop a variational principle based on the von

Neumann entropy for time-varying network structure. Commencing from recent work to approximate

the von Neumann entropy using simple degree statistics, the changes in entropy between different time

epochs are determined by correlations in the degree difference in the edge connections. Our Euler-La-

grange equation minimises the change in entropy and allows to develop a dynamic model to simulate

the changes of node degree with time. We first explore the effect of network dynamics on the three

widely studied complex network models, namely a) Erdős-Rényi random graphs, b) Watts-Strogatz

small-world networks, and c) Barabási-Albert scale-free networks. Our model effectively captures

both undirected and directed structural transitions in the dynamic network models. We apply our

model to a network time sequence representing the evolution of stock prices on the New York Stock

Exchange(NYSE) and sequences of Drosophila gene regulatory networks containing different devel-

opmental phases of the organism from embryo to adult. Here we use the model to differentiate between

periods of stable and unstable stock price trading and to detect periods of anomalous network evolu-

tion. Our experiments show that the presented model not only provides an accurate simulation of

the degree statistics in time-varying networks but also captures the topological variations taking place

when the structure of a network changes violently.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The study of network evolution plays an increasingly cru-

cial role in modelling and predicting the structural variance of

complex networks (Wolstenholme and Walden, 2015). Previ-

ous studies have addressed this problem from the perspectives

of both the local and the global characterization of network

structure. At the local level, the aim is to model how the de-

tailed connectivity structure changes with time (Lacasa et al.,

2008). Specifically, networks grow and evolve with the addi-

tion of new components and connections, or the rewiring of

connections from one component to another (Barabasi and Al-

bert, 1999; Ernesto and Naomichi, 2008). On the other hand,

at the global level, the aim is to model the evolution of char-

acteristics which capture the structure and hence the function

of a network and allow different types of network function to

∗∗Corresponding author: Tel.: +44-01904-32-5492;

e-mail: jw1157@york.ac.uk (Jianjia Wang)

be distinguished from one to another. Thermodynamic analy-

sis of network structure allows the macroscopic properties of

network structure to be described in terms of variables such as

temperature, associated with the internal structure (Wang et al.,

2017b). There are also models developed to learn the patterns

of network evolution. Examples here include generative and au-

toregressive models which allow the detailed evolution of edge

connectivity structure to be estimated from noisy or uncertain

input data (Han et al., 2015).

However, both the global and the local methods require to us

to develop models that can be fitted to the available data by es-

timating their parameters, which describe how vertices interact

through edges and how this interaction evolves with time (Wu

and Yang, 2013). There are few methods that are both sim-

ple and effectively predict the evolution of network structure

(Tambo et al., 2016). Motivated by the need to fill this gap in the

literature and to augment the methods available for understand-

ing the evolution of time-varying networks, there have been a

number of attempts to extend the scope of probabilistic genera-
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tive models using various forms of regressive or autoregressive

models (Han et al., 2015; Andreas et al., 2015). However, these

essentially local models are parameter intensive and a simpler

approach is to coach the model in terms of how different node

degree configurations co-occur on the edges connecting them

(Wang et al., 2017b).

In recent work we have addressed the problem by detailing

a generative model of graph-structure (Han et al., 2015) and

have shown how it can be applied to network time series us-

ing an autoregressive model (Andreas et al., 2015). One of the

key elements of this model is a means of approximating the

von Neumann entropy of both directed and undirected graphs

(Han et al., 2012). von Neumann entropy is the extension of

the Shannon entropy defined over the re-scaled eigenvalues of

the normalised Laplacian matrix. A quadratic approximation of

the von Neumann entropy gives a simple expression for the en-

tropy associated with the degree combinations of nodes forming

edges (Wang et al., 2017a). In accordance with intuition, those

edges that connect high degree vertices have the lowest entropy,

while those connecting low degree vertices have the highest en-

tropy (Aytekin et al., 2016; Wang et al., 2017b). Making con-

nections between low degree vertices is thus entropically un-

favourable. Moreover, the fitting of the generative model to

dynamic network structure involves a description length cri-

terion which describes both the likelihood of the goodness of

fit to the available network data together with the approximate

von Neumann entropy of the fitted network. This latter term

regulates the complexity of the fitted structure (Wolstenholme

and Walden, 2015; Andreas et al., 2015), and mitigates against

over-fitting of the irrelevant or unlikely structure. Moreover,

the change in entropy of the two vertices forming an edge be-

tween different epochs depends on the product of the degree of

one vertex and the degree change of the second vertex. In other

words, the change in entropy depends on the structure of the

degree change correlations.

The aim of this paper is to explore whether our model of net-

work entropy can be extended to model the way in which the

node degree distribution evolves with time, taking into account

the effect of degree correlations caused by the degree structure

of edges. We exploit this property by modelling the evolution

of network structure using the Euler-Lagrange equations. Our

variational principle is to minimise the changes in entropy dur-

ing the evolution (Wang et al., 2017b). Using our approxima-

tion of the von Neumann entropy, this leads to update equations

for the node degree which include the effects of the node de-

gree correlations induced by the edges of the network (Ye et al.,

2014). It is effectively a type of diffusion process that models

how the degree distribution propagates across the network. In

fact, it has elements similar to preferential attachment (Barabasi

and Albert, 1999), since it favours edges that connect high de-

gree nodes (Wang et al., 2017a,b).

This model can also be extended to directed graphs. In prior

work we have developed approximate expressions for the von

Neumann entropy of directed graphs (Ye et al., 2014), consid-

ering the cases where there is a) a mixture of unidirectional and

bidirectional edges, b) where the unidirectional edges dominate

(strongly directed graphs) and c) where the bidirectional edges

outnumber the unidirectional edges (weakly directed graphs).

Here we focus on the strongly directed graphs, where edges are

purely unidirectional and there are no bi-directional edges. Our

model distinguishes between the in and out degrees of vertices,

and we develop Euler-Lagrange equations for how the distribu-

tions quantities evolve with time.

The remainder of the paper is organized as follows. In Sec.2,

we provide a detailed analysis of entropy changes in dynamic

networks and develop models for degree statistics by minimis-

ing the von Neumann entropy change using the Euler-Lagrange

equations. We theoretically analyse both undirected and di-

rected networks separately. In Sec.3, we conduct numerical

experiments on the synthetic and real-world time-varying net-

works and apply the resulting characterization of network evo-

lution. Finally, we conclude the paper and make suggestions

for future work.

2. Variational Principle on Graphs

2.1. Preliminaries

Let G(V, E) be an undirected graph with node set V and edge

set E ⊆ V × V , and let |V | represent the total number of nodes

on graph G(V, E). The adjacency matrix A of a graph is defined

as

A =















1 if (u, v) ∈ E

0 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv.

The normalized Laplacian matrix L̃ of the graph G is defined

as L̃ = D−
1
2 LD

1
2 , where L = D − A is the Laplacian matrix

and D denotes the degree diagonal matrix whose elements are

given by D(u, u) = du and zeros elsewhere. The element-wise

expression of L̃ is

L̃uv =



























1 if u = v and du , 0

− 1√
dudv

if u , v and (u, v) ∈ E

0 otherwise.

(2)

2.2. Network Entropy

Severini et al. (Passerini and Severini, 2008) exploit the con-

cept of density matrix ρ from quantum mechanics in the net-

work domain. They obtain the density matrix for a network by

re-scaling the combinatorial Laplacian matrix by the reciprocal

of the number of nodes in the graph, i.e. ρ = L̃
|V | . The von

Neumann entropy of the network is then defined as the Shan-

non entropy of the scaled Laplacian eigenvalues λ1, ....., λV and

is given by

S = −Tr[ρ logρ] = −Tr(ρ logρ) = −
|V |
∑

i=1

λ̂i

|V | log
λ̂i

|V | (3)

Because of the overheads involved in computing the Laplacian

eigensystem (which is cubic in the number of nodes), Han et

al.(Han et al., 2012) render the computation of entropy more

tractable by making a second order approximation to the Shan-

non entropy. In so -doing they re-express the entropy it in terms



3

of the traces of the normalised Laplacian and its square. The

resulting approxminate von Neumann entropy depends on the

degrees of pairs of nodes forming edges, and is given by

S = 1 − 1

|V | −
1

|V |2
∑

(u,v)∈E

1

dudv
(4)

The approximation of von Neumann entropy avoids the cubic

complexity of computing the Laplacian eigensystem and gives

a formula for computing the von Neumann entropy which is

at most quadratic in the number of nodes. This allows it to

be used to efficiently compute the entropy of networks. It has

been shown to be an effective tool for characterizing structural

properties of networks, with extremal values for the cycle and

fully connected graphs (Han et al., 2015).

For directed graphs on the other hand, the approximate von

Neumann entropy is related to the in-degree and out-degree of

the nodes (Ye et al., 2014). First, the edge set E is divided into

two subsets E1 and E2, where E1 = {(u, v)|(u, v) ∈ E and (v, u) <

E} is the set of unidirectional edges, E2 = {(u, v)|(u, v) ∈
E and (v, u) ∈ E} is the set of bidirectional edges. The two

edge-sets satisfy the conditions E1∪E2 = E, E1∩E2 = ∅. With

this distinction between unidirectional and bidirectional edges,

the analogous approximation for the von Neumann entropy of

a directed graph is,

S d = 1 − 1

|V | −
1

2|V |2



















∑

(u,v)∈E

din
u

din
v dout2

u

+
∑

(u,v)∈E2

1

dout
u dout

v



















(5)

To simplify the expression according to the relative impor-

tance of the sets of unidirectional and bidirectional edges E1

and E2, the von Neumann entropy can be further approximated

to distinguish between weakly and strongly directed graphs.

For weakly directed graphs, i.e., |E1| ≪ |E2| most of the edges

are bidirectional, and we can ignore the summation over E1 in

Eq.(5), rewriting the remaining terms in curly brackets as

S wd = 1 − 1

|V | −
1

2|V |2



















∑

(u,v)∈E

din
u

dout
u
+

din
v

dout
v

dout
u din

v



















(6)

For the strongly directed graph the unidirectional edges dom-

inate, i.e., |E1| ≫ |E2|, there are few bidirectional edges, and we

can ignore the summation over E2 in Eq.(5), giving the approx-

imate entropy as

S sd = 1 − 1

|V | −
1

2|V |2



















∑

(u,v)∈E

din
u

din
v dout2

u



















(7)

Thus, both the strongly and weakly directed graph entropies

depend on the graph size and the in-degree and out-degree

statistics of edge connections (Ye et al., 2014).

2.3. Euler-Lagrange Equation

We would like to understand the dynamics of a network

which evolves so as to minimise the entropy change between

different sequential epochs. To do this we cast the evolution

process into a variational setting of the Euler-Lagrange equa-

tion (Wang, 2013), and consider the system which optimises

the functional

E(q) =

∫ t2

t1

G [

t, q(t), q̇(t)
]

dt (8)

where t is time, q(t) is the variable of the system as a function

of time, and q̇(t) is the time derivative of q(t). Then, the Euler-

Lagrange equation is given by

∂G
∂q

[

t, q(t), q̇(t)
] − d

dt
∂G
∂q̇

[

t, q(t), q̇(t)
]

= 0 (9)

Here we consider an evolution which changes just the edge

connectivity structure of the vertices and does not change the

number of vertices in the graph (Nuno et al., 2011). As a result,

the factors 1 − 1
|V | and 1

|V |2 are constants and do not affect the

solution of the Euler-Lagrange equation.

2.4. Undirected Graphs
Suppose that two undirected graphs Gt = (Vt, Et) and Gt+∆t =

(Vt+∆t, Et+∆t) represent the structure of a time-varying complex

network at two consecutive epochs t and t + ∆t respectively.

Then the change of approximate von Neumann entropy be-

tween two sequential undirected graphs can be written a

∆S = S (Gt+∆t) − S (Gt) =
1

|V |2
∑

(u,v)∈E,E′

du∆v + dv∆u + ∆u∆v

du(du + ∆u)dv(dv + ∆v)

(10)

where∆u is the change of degree for node u, i.e., ∆u = dt+∆t
u −dt

u;

∆v is similarly defined as the change of degree for node v, i.e.,

∆v = dt+∆t
v − dt

v. The entropy change is sensitive to degree

correlations for pairs of nodes connected by an edge.

We aim to study evolutions that minimise the entropy change

associated with the structure of the degree change correlations,

i.e. minimise the entropy change between time intervals. In or-

der to represent the change of entropy more accurately, here, we

approximate the denominator in Eq.(10) to the quadratic term

and apply the Euler-Lagrange equation G = ∆S with the en-

tropy change to obtain

G [t, du(t),∆u(t), dv(t),∆v(t)] =
du∆v + dv∆u + ∆u∆v

d2
ud2

v
(11)

For the vertex indexed u with degree du the Euler-Lagrange

equation in Eq.(9) gives,

∂G
∂du
− d

dt
∂G
∂∆u
= 0 (12)

First, solving for the partial derivative of the degree du, we find

∂G
∂du
= −du∆v + 2dv∆u + 2∆u∆v

d3
ud2

v

(13)

The detailed analysis above not only involves the terms to first

order in the node degree change but also those of second order,

i.e. degree difference correlations of the form ∆u∆v.

Then computing the partial time derivative to the first order

degree difference ∆u, we obtain

∂G
∂∆u
=

dv + ∆v
d2

ud2
v

(14)
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Substituting Eq.(13) and Eq.(14) into Eq.(12),

∂G
∂du
− d

dt
∂G
∂∆u
=

2∆2u − du∆̇u

d3
ud2

v

= 0 (15)

The solution for Euler-Lagrange equation in terms of node de-

gree difference is

∆u =

(

du

dv

)2

∆v +C (16)

where C is the constant term coming from the integral of the

differential equation. This leads to a detailed degree update

equation which involves a square term of du/dv and plus a con-

stant C. Since it considers the effects of second order terms in

the change of von Neumann entropy, this solution is accurate in

predicting the degree distribution

As a result, solving the Euler-Lagrange equation which min-

imises the change in entropy over time gives a relationship be-

tween the degree changes of nodes connected by an edge. Since

we are concerned with understanding how network structure

changes with time, the solution of the Euler-Lagrange equa-

tion provides a way of modelling the effects of these structural

changes on the degree distribution across nodes in the network.

The update equation for the node degree is at time epochs t and

t + ∆t is

dt+∆t
u = dt

u +
∑

v∼u

∆̇v∆t = dt
u +

∑

v∼u

(

∆u

∆t

)

v

∆t (17)

In other words by summing over all edges connected to node

u, we increment the degree at node u due to changes associated

with the degree correlations on the set of connecting edges. We

then leverage the solution of the Lagrange equation to simplify

the degree update equation, to give the result

dt+∆t
u = dt

u +
∑

v∼u

(

du

dv

)2

∆v + C (18)

This can be viewed as a type of diffusion process, which up-

dates edge degree so as to satisfy constraints on degree change

correlation so as to minimise the entropy change between time

epochs. Specifically, the update of degree reflects the effects

of correlated degree changes between nodes connected by an

edge.

2.5. Directed Graphs

2.5.1. Weakly Directed Graphs
In order to accommodate directed edges, we consider the

node u and let din
u be the number of edges incident on vertex

u or in-degree and dout
u be the number of edges leaving vertex u

or out-degree. The ratio of in-degree to out-degree is ru =
din

u

dout
u

and rv =
din

v

dout
v

. We use this ratio to re-write the directed graph

entropies in terms of the node in-degree and the in/out degree

ratio. As a result the weakly directed graph entropy is

S wd = 1 − 1

|V | −
1

2|V |2



















∑

(u,v)∈E

ru(ru + rv)

din
u din

v



















(19)

For two weakly directed graphs Gt
wd = (Vt, Et) and Gt+∆t

wd =

(Vt+∆t, Et+∆t), representing the structure of a time-varying com-

plex network at two consecutive epochs t and t+∆t respectively,

the change of von Neumann entropy is given by

∆S wd = S (Gt+∆t
wd ) − S (Gt

wd) (20)

= − 1

2|V |2
∑

(u,v)∈E,E′

{

(2ru + rv)∆ru + ru∆rv

din
u din

v

−
ru(ru + rv)(din

u ∆
in
v + din

v ∆
in
u )

(din
u din

v )2

}

where ∆in
u is the change of in-degree for node u, i.e., ∆in

u =

din
u (t + ∆t) − din

u (t); ∆in
v is similarly defined as the change of

in-degree for node v, i.e., ∆in
v = din

v (t + ∆t) − din
v (t). ∆ru and

∆rv are the change of degree ratio for the node u and node v
respectively.

The Euler-Lagrange equation for ru gives

∂∆S wd

∂ru
− d

dt
∂∆S wd

∂∆ru
= −

2(2ru + rv)(din
u ∆

in
v + din

v ∆
in
u )

(din
u din

v )2
= 0 (21)

and similarly for rv gives

∂∆S wd

∂rv
− d

dt
∂∆S wd

∂∆rv
= −

2ru(din
u ∆

in
v + din

v ∆
in
u )

(din
u din

v )2
= 0 (22)

Combining the Eq.(21) and Eq.(22), the relationship between

din
u and din

v is

∆in
u

din
u
= −
∆in

v

din
v

(23)

Thus, for the weakly directed graph, there exists a linear corre-

lation between ∆in
u /d

in
u and ∆in

v /d
in
v .

2.5.2. Strongly Directed Graphs
For a strongly directed graph the von Neumann entropy in

Eq.(6) can be expressed in terms of in-degree and in.our degree

ratio as

S sd = 1 − 1

|V | −
1

2|V |2



















∑

(u,v)∈E

r2
u

din
u din

v



















(24)

For two strongly directed graphs Gt
sd = (Vt, Et) and Gt+∆t

sd =

(Vt+∆t, Et+∆t), the change of von Neumann entropy is

∆S sd = S (Gt+∆t
sd ) − S (Gt

sd) (25)

= − 1

2|V |2
∑

(u,v)∈E,E′

din
u din

v ∆ru − ru(din
v ∆

in
u + din

u ∆
in
v )

(din
u din

v )2

where ∆in
u is the change of in-degree for node u; ∆in

v is similarly

defined as the change of in-degree for node v.

Now we apply the Euler-Lagrange equation to the changes

of entropy for strongly directed graph. The partial derivative of

the ratio ru is
∂∆S sd

∂ru
= −

din
u ∆

in
v + din

v ∆
in
u

(din
u din

v )2
(26)

And the partial time derivative to the first order ratio difference

∆ru is
∂∆S sd

∂∆ru
=

2

din
u din

v
(27)
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Then, the solution of the Euler-Lagrange equation for ru can be

computed as

∂∆S sd

∂∆ru
− d

dt
∂∆S sd

∂∆ru
= −

2(din
u ∆

in
v + din

v ∆
in
u )

(din
u din

v )2
= 0 (28)

Similarly, applying the Euler-Lagrange equation on the in-

degree din
u , we get

∂∆S sd

∂din
u
− d

dt
∂∆S sd

∂∆in
u
=

ru(din
u ∆

in
v + din

v ∆
in
u ) + din

v (ru∆
in
u − 2din

u ∆ru)

(din
u )3(din

v )2
= 0

(29)

Substituting Eq.(28) into Eq.(29), the relationship between du

and ru can be obtained

∆in
u

din
u
= 2
∆ru

ru
(30)

Therefore, the Euler Lagrange dynamics leads to a linear

relationship between
∆in

u

din
u

and
∆ru
ru

for strongly directed graphs.

This should be compared to the analogous relationship which

arises from the incremental analysis of the ratio ru =
din

u

dout
u

,

∆ru =
∆in

u

dout
u
−

din
u ∆

out
u

(dout
u )2

(31)

and as a result
∆ru

ru
=
∆in

u

din
u
−
∆out

u

dout
u

(32)

Combining with Eq.(30) gives the growth equation

∆out
u

dout
u
=

1

2

∆in
u

din
u

(33)

which is the out-degree grows at half the rate of the in-degree.

In the next section we explore empirically how well this rela-

tionship is observed.

3. Experimental Evaluation

3.1. Data Sets

Synthetic Networks: We generate three kinds of com-

plex network models, namely, a) Erdős-Rényi random graph

model, b) Watts-Strogatz small-world model (Watts and Stro-

gatz, 1998), and c) Barabási-Albert scale-free model (Barabasi

and Albert, 1999; Barabasi et al., 1999). These are created with

a fixed number of vertices with changing the parameters with

the network structure evolution. For the Erdős-Rényi random

graph, the connection probability is monotonically increasing

at the uniform rate of 0.005. Similarly, the link rewiring prob-

ability in the small-world model(Watts and Strogatz, 1998) in-

creases uniformly between 0 to 1 as the network evolves. For

the scale-free model (Barabasi et al., 1999), one vertex is added

to the connection at each time step.

Drosophila Gene Regulatory Networks: The time-evolving

network represents the DNA microarrays expressed at differ-

ent developmental stages from fertilization to adulthood during

the life cycle of Drosophila melanogaster. The developmental

(a) Random Graphs

(b) Small-world Networks

(c) Scale-free Networks

Fig. 1. Visualization of dynamic network structures in time evolution for

three network models (Erdős-Rényi random graphs, Watts-Strogatz small-

world networks, Barabási-Albert scale-free networks)

process has four stages, namely, the embryonic (1-30), larval

(31-40), pupal (41-58) and adulthood (59-66). The vertices in

the network are gene identities which vary in number from 588

to 4028 at different time epochs. This hence tests the ability of

our method to deal with networks of variable size. The gene

expression patterns are modelled as a binary Markov random

field (Song et al., 2009) which allow the edge connections to be

determined.

Financial Networks: The financial networks consist of the

daily prices of 3,799 stocks traded continuously on the New

York Stock Exchange over 6000 trading days. The stock prices

were obtained from the Yahoo! financial database (Silva et al.,

2015). A total of 347 stock were selected from this set, for

which historical stock prices from January 1986 to February

2011 are available. In our network representation, the nodes

correspond to stock and the edges indicate that there is a sta-

tistical similarity between the time series associated with the

stock closing prices (Silva et al., 2015). To establish the edge-

structure of the network we use a time window of 20 days is

to compute the cross-correlation coefficients between the time-

series for each pair of stock. Connections are created between

a pair of stock if the cross-correlation exceeds an empirically

determined threshold. In our experiments, we set the correla-

tion coefficient threshold to the value to ξ = 0.85. This yields a

time-varying stock market network with a fixed number of 347

nodes and varying edge structure for each of 6,000 trading days.

The edges of the network, therefore, represent how the closing

prices of the stock follow each other.

3.2. Synthetic Experiments

We first conduct experiments on the synthetic networks. We

generate three kinds of time-evolving network models from

Erdős-Rényi random graphs, Watts-Strogatz small-world net-
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Fig. 3. Visualization of degree distribution in network evolution with principle component analysis (Erdős-Rényi random graphs, Watts-Strogatz small-

world networks, Barabási-Albert scale-free networks).

works, and Barabási-Albert scale-free networks to evaluate our

theoretical analysis.

Using the degree update equation derived from the principle

of minimum entropy change and the Euler-Lagrange equation

in Eq.(18), we turn our attention to synthetic network data to

characterize the structural variance in network models. Fig.1

shows the visualization of the time evolution for three complex

networks. We fix the number of vertices to 200, for the ran-

dom graphs and evolve the networks from an initially sparse

set of edges with a low value of the connection probability. As

the connection probability increases, the structure of the ran-

dom graph exhibits a phase transition to a state with a high den-

sity of connection and a giant connected component. A phase

transition can also be observed for the Watts-Strogatz small-

world model, as the rewiring probability evolves with time.

Commencing from a regular ring lattice, the network structure

evolves to a small-world network with high rewiring probabil-

ity, and then to an Erdős-Rényi random graph structure with

unit rewiring probability. For the scale-free network, the evolu-

tion takes place via preferential attachment. The nodes with the

highest degree have the largest probability to receive new links.

This process produces several high degree nodes or hubs in the

network structure.

Now we explore whether the Euler-Lagrange equation can

capture structural properties in the time evolution. We use our

model to predict the network structure at subsequent time steps

and simulate the degree distribution. We then to compare the

predicted degree distribution with that from the original time se-
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Fig. 4. The degree distribution error with the different value of time steps

for three network models (Erdős-Rényi random graphs, Watts-Strogatz

small-world networks, Barabási-Albert scale-free networks). The degree

prediction error increases quickly after time step ∆t = 20.

ries. Fig.2 shows the simulation results and degree distribution

comparisons. The predicted degree distribution resulting from

Euler-Lagrange dynamics for the simulated networks fit quite

well to the observed distributions. This provides empirical evi-

dence that the Euler-Lagrange equation accurately predicts the

short-term evolution of the different network models.

To visualise how the different networks evolve over extended

time intervals, we apply the principal component analysis of the

degree distribution to project the degree distribution sequences
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for the networks into a low dimensional space. To commence,

we normalize the degree distributions so that the bin contents

sum to unity, and then we construct a long vector from the nor-

malised bin contents. We then construct the covariance ma-

trix for the set of long vectors representing the observed de-

gree distributions for the sample of networks. Finally, we apply

principal component analysis to the sample covariance matrix

for the sample of observed vectorised network degree distri-

butions. We project both the observed and predicted distribu-

tions into the principal component space spanned by the lead-

ing three eigenvectors of the covariance matrix. In this way,

we visualise the evolution of the observed and predicted degree

distributions in the principal component space. The results are

shown in Fig.3. The red points are the original network distri-

butions and the blue ones are the predicted ones. Fig.3 clearly

shows that for all three network models the predicted network

degree distribution evolves in a similar manner to the observed

network degree distribution.

Then, we explore the effect of length of time step on the per-

formance of the degree distribution prediction accuracy. Fig.4

shows the degree distribution error with a different value of the

time step for the three different network models. The predic-

tion error shown is the standard error over the normalised bin

contents (the standard deviation of the difference in observed

and predicted bin contents, divided by the square root of the

number of bins). The longer the time intervals ∆t, the higher

the prediction error in the degree distribution. For the random

graph, the errors sharply increase around the step ∆t = 20. This

is because, during the evolution, the random graph undergoes a

phase transition from being sparsely connected to containing a

giant connected component. At large time intervals, the predic-

tions fail because of the presence of this giant component.

A similar behaviour can be observed in the sample of small-

world networks. As the time step interval increases, there are

two instants in time separating three different evolution mod-

els. The first event occurs around ∆t = 15 and the second at

∆t = 25. The reason is that, during the evolution, the struc-

ture of network changes from a regular lattice at the beginning

to a small-world network, and then finally takes on a similar

structure to a random graph. These three epochs and the associ-

ated with a structural transitions impact on the performance of

degree distribution prediction. Finally, the degree prediction er-

ror for the scale-free network grows slowly and smoothly with

the time step, since there are no significant structure transitions

during the evolution. As a result, the topology of the scale-free

network remains stable. Overall, increasing the value of the

time interval results in a reduction of the prediction accuracy.

Our new model is capable of capturing the local trends arising

from the structural changes during the evolution.

3.3. Real-world Networks
For real-world network evaluation, we test our method on

data provided by the Drosophila genes and the New York Stock

Exchange. We first evaluate the undirected networks with the

life cycle of Drosophila genes dataset. Then we construct the

time sequential undirected and directed networks which consist

of the daily prices of 3,799 stocks traded continuously on the

New York Stock Exchange over 6000 trading days.

Fig. 5. Degree distribution of originally observed networks and simulated

networks before/after Black Monday.

Fig. 6. Degree distribution of originally observed networks and simulated

networks during Black Monday. The network becomes disconnected and

most vertices are disjoint, which results in the degree distribution following

the power-law.

3.3.1. Undirected Drosophila Gene Regulatory Networks
To commence, we represent the Drosophila gene regulatory

networks as undirected graphs evolving from the embryonic

stage to the adulthood stage. The four phases of the Drosophila

life cycle in genes represent the structural variations in the gene

regulatory network connections.

We compare the computed von Neumann entropy of the net-

work with that computed from the degree evolution predicted

by the Euler-Lagrange model in Eq.(18). Fig.7 plots the two

entropies for the entire life cycle of Drosophila development.

The four developmental phases, namely, embryonic (red line),

larval (black line), pupal (blue line), and adulthood (green line)

are represented by different colours. The entropy predicted by

the Euler-Lagrange model exhibits a similar time series com-

pared to that obtained with the von Neumann entropy computed

from the observed degree distribution. In other words, the de-

gree distribution predicted by the Euler-Lagrange equation ef-

fectively captures the changes in structure due to developmental

changes in the gene regulatory networks.

3.3.2. Undirected Financial Networks
Now we simulate the behaviour of the financial market net-

works. Here we focus on how the degree distribution evolves
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Fig. 8. The visualization of network structure at three specific days in Black

Monday financial crisis. The red line corresponds to the entropy difference

for the original networks and the grey line is the Euler-Lagrange model.

with time. We compare the simulated structure and the ob-

served network properties and provide a way to identify the

consequence of structural variations in time-evolving networks.

Our procedure is as follows. We first select a network at a

particular epoch from the time series and simulate its evolution

using the degree update equation in Eq.(18). Then we compare

the degree distributions for the real network sampled at a sub-

sequent time and the simulation of the degree distribution after

an identical elapsed time. One of the most salient events in the

NYSE is Black Monday. This event occurred on October 19,

1987, during which the world stock markets crashed, dropping

in value in a very short time.

We compare the prediction of consecutive time steps at dif-

ferent epochs, before/after and during the Black Monday crisis.

The results are shown in Fig.5 and Fig.6. The most obvious

feature is that the degree distribution for the networks before

and after Black Monday is quite different to that during the cri-

sis period. During the Black Monday crisis, a large number of

vertices in the network is disconnected. This results in a power-

law degree distribution. However, for time epochs before and

after Black Monday, the disconnected nodes recover their in-

teractions to one another. This increases the number of con-

nections among vertices and causes departures from the power

law distribution. This phenomenon is also observed in the net-

works simulated networks using our degree update equation.

This is an important result that shows empirically that the sim-

ulated networks reflect the structural properties of the original

networks from which they are generated. Moreover, our dy-

namic model can reproduce the topological changes that occur

during the financial crisis.

In Fig.8, we show network visualizations corresponding to

three different instants of time around the Black Monday crisis.

In order to compare the simulated network structures resulting

from the current model, we show the connected components

(community structures) at three-time epochs. As the network

approaches the crisis, the network structure changes violently,

and the community structure substantially vanishes. Only a sin-

gle highly connected cluster at the centre of the network per-

sists. These features can be observed in both the simulations

and original time evolution of the networks. At the crisis epoch,

most stocks are disconnected, meaning that the prices evolve in-

dependently without strong correlations to the remaining stock.

During the crisis, the persistent connected component exhibits

a more homogeneous structure as shown in Fig.8. Compared

to the first order model (Wang et al., 2017a), our new second

order network prediction gives structures that more closely re-

semble the original network structure. After the crisis, the net-

work preserves most of its existing community structure and

begins to reconnect again. This result also agrees with find-

ings in other literature concerning the structural organization of

financial market networks (Silva et al., 2015).

Finally, we explore the anomaly detection in dynamic net-

works. We validate our framework by analysing the entropy

differences between simulated networks and actual stock mar-

ket networks in the New York Stock Exchange (NYSE). In or-

der to quantitatively investigate the relationship between a fi-

nancial crisis and network entropy changes, we analyse a set

of well-documented crisis periods. These crisis periods are

marked alongside the curve of the first order entropy difference

in Fig.9, for all business days in our dataset.

The literature in the financial domain usually identifies the

potential crashes using either a) the trading volumes (Chesney

et al., 2015), b) the variation of expected returns (Bali and Ho-

vakimian, 2009) or c) Spearman’s rank correlation (Alanyali

et al., 2013). Recently, machine learning techniques, such as

conditional random fields, support vector machines and artifi-

cial neural networks, have been used to identify trading patterns

using various criteria on specific financial datasets (Choudhry

and Garg, 2008). Unfortunately, the complexity of these data-

driven methods is generally high due to the combination of mul-

tiple techniques. By contrast, our entropy based analysis is eas-

ily effected using our dynamic model which clearly indicates

the financial crises.

3.3.3. Directed Financial Networks
We extend our study to directed graph representations of the

New York Stock Exchange data. To extract directed graphs

from the stock times series data we compute the correlation

with a time lag. We measure the correlation over 30-day win-

dows separated by a time and then select the lag that results in

the maximum correlation. As with undirected graphs we thresh-

old the correlation to establish edges representing interactions

between stock. We determine the directionality of the edges

using the sign of the lag. All the resulting edges are unidirec-

tional. We, therefore, explore how the time evolution follows

our model for strongly directed graphs.
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Fig. 9. The von Neumann entropy difference in NYSE (1987-2011) for original financial networks and simulated networks. Critical financial events, i.e.,

Black Monday, Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the

Bankruptcy of Lehman Brothers and the European Debt Crisis, are associated with large entropy differences.

Fig. 10. The cumulative distribution of parameter ru = din
u /d

out
u in directed

financial networks before/during/after the Black Monday. The distribution

shrinks during the Black Monday crisis.

First, we investigate how the distribution of ru evolves with

the time. Fig.10 shows the distribution at three different time

epochs, i.e., before, during and after Black Monday. Here,

the parameter ru reveals the relationship between in-degree and

out-degree for each vertex. As shown in Fig.10, during the

Black Monday, the cumulative distribution becomes concen-

trated over a small range of values around unity. This reflects

the fact that a substantial fraction of vertices become isolated

during the Black Monday, without the out-edges. The remain-

ing connections exist with a balance between in-degree and out-

degree. After Black Monday, the network structure begins to

recover as the cumulative distribution widens to return to its

previous shape.

From the analysis leading to Eq.(23), there is a linear rela-

tionship between the quantities
∆ru
ru

and
∆in

u

din
u

. In order to test

whether this relationship holds in practice, Fig.12 shows scatter

plots of ∆ru
ru

versus
∆in

u

din
u

for epochs before, during and after the

Black Monday crisis. This provides evidence that there exists a

linear relationship between the fractional in-degree change and

the degree ratio change. By fitting a linear regression to the

sequence of scatter plots for the time series, we explore how

the slope parameters of the regression line and the regression

error evolve with time. Fig.13 shows the linear regression er-

rors, as well as the fitted slope, during the period around Black

Monday. Here we provide the regression error, for a) the flex-

ible fitting of the slope and b) the regression for a fixed value

of the slope. In the time interval around Black Monday, both

the linear regression parameter and its error changes abruptly.

This is because there are substantial structural differences in the

network evolution. During the Black Monday, many nodes be-

come disconnected and the connected components of vertices

become small and fragmented. Only a small number of com-

munity structures remain highly inter-connected. During Black

Monday itself, although the slope of the regression line is zero,

the scatter about the line is relatively small.

Furthermore, the linear regression error sequence for the en-

tire directed financial network time series is shown in Fig.11.

The peaks in the regression error correspond closely to the oc-

currence of the financial crisis. Our analysis in the directed

graph is effective and efficient to detect the abnormal structure

in dynamic networks. The most striking observation is that the

largest peaks of regression can be used to identify the corre-

sponding financial crisis. This shows that the theoretical analy-

sis of minimising the change of directed entropy is sensitive to

significant structural changes in networks. The financial crises

are characterized by significant entropy changes, whereas out-

side these critical periods remains stable.

4. Conclusion

In this paper, we explore how to model the time evolution

of networks using a variational principle. We use the Euler-

Lagrange equations to model the evolution of undirected and

directed networks that undergo changes in structure by min-

imising the change in von Neumann entropy. This treatment

leads to the model of how the node degree varies with time and

captures the effects of degree change correlations introduced

by the edge-structure of the network. In other words, because

of these correlations, the variety of one degree determines the

translation in connected nodes.
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Fig. 11. The linear regression error for the whole sequential financial data in NYSE (1987-2011). Critical financial events, i.e., Black Monday, Friday
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Fig. 12. The scatter plots of ∆in
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We conduct the experiments on a time-series of networks

representing life cycle of Drosophila and the stock trades on

the NYSE. Our model is capable of predicting how the degree

distribution evolves with time. Moreover, it can also be used to

detect abrupt changes in network structure.

In the future, it would be interesting to study different vari-

ational models for the network evolution, based on minimising

different physical quantities or different forms of the entropy. It

would also be interesting to understand the dynamics of quan-

tities such as the edge density and its variance.
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