
This is a repository copy of Cheap Remarks about Concurrent Programs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129497/

Version: Accepted Version

Proceedings Paper:
Walker, Michael and Runciman, Colin orcid.org/0000-0002-0151-3233 (Accepted: 2018)
Cheap Remarks about Concurrent Programs. In: Proceedings of 14th International
Symposium on Functional and Logic Programming. Springer (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cheap Remarks about Concurrent Programs

Michael Walker and Colin Runciman

University of York, UK
{msw504, colin.runciman}@york.ac.uk

Abstract. We present CoCo, the Concurrency Commentator, a tool
that recovers a declarative view of concurrent Haskell functions operat-
ing on some shared state. This declarative view is presented as a collec-
tion of automatically discovered properties. These properties are about
refinement and equivalence of effects, rather than equality of final re-
sults. The tool is based on testing in a dynamically pruned search-space,
rather than static analysis or theorem proving. Case studies about con-
current stacks and semaphores demonstrate how use of CoCo can inform
understanding of program behaviour.

1 Introduction

Concurrency is a necessary paradigm for many applications, and yet it is difficult
to get right in an imperative setting, where the order of effects is both important
and unpredictable. Declarative programming, whether logical or functional, of-
fers the promise of a simpler alternative; the programmer describes the desired
program, and does not need to worry about the explicit order of effects.

Haskell is a purely functional language. Concurrency in Haskell is modelled
with a monad abstraction which is built on top of effectful operations on shared
state[11]. Once again, the order of effects is both important and unpredictable.
Concurrent Haskell programs are not so declarative.

In this paper we present CoCo, a tool to recover a declarative view of con-
current programs. CoCo takes as input a collection of operations on some shared
mutable state. CoCo outputs are declarative properties of equivalence and re-
finement between concurrent expressions: see §3 and §5 for examples.

A list of such declarative properties is useful in a number of ways: (1) it can
be an addition to existing documentation; (2) the programmer may gain new
insights about their program; and (3) the absence of expected properties, or the
presence of unexpected ones, may indicate an error.

Our technique uses testing, so is potentially unsound. A property is a con-
jecture supported only by a finite set of test cases. So some reported properties
may not hold in general.

Contributions We present a method, based on program synthesis and systematic
concurrency testing, to discover properties of stateful operations in a declarative
language. Furthermore, we demonstrate the viability of this method by imple-
menting the CoCo tool in Haskell. We then obtain illustrative results from CoCo
for some simple applications.

Roadmap The rest of the paper is structured as follows: §2 introduces three key
concerns in the implementation of a tool such as CoCo. §3 gives an introduc-
tory example. §4 gives a detailed discussion of how CoCo generates terms and
discovers properties. §5 presents two case studies. §6 considers related work and
how our contributions differ from it. §7 presents conclusions and evaluates the
approach.

2 Key Concerns of Observing Concurrent Programs

In implementing a tool to discover properties of concurrent programs, we have
some concerns which are not applicable to sequential programs. Firstly, concur-
rent programs are nondeterministic; so if we simply compared results of single
executions, the discovered properties may not hold in the general case. Secondly,
mutable state is subject to interference from other threads; so if we do not con-
sider concurrent interference, the discovered properties may not hold when there
are more threads involved. Finally, we need to decide what it means for two con-
current programs to be related.

Nondeterminism If we restrict the nondeterminism in our program to sched-
ule nondeterminism, we can use systematic concurrency testing (SCT)[4,7,9,10]
techniques. These techniques aim to test a variety of schedules, making use of
runtime knowledge of the program to reduce the number of required executions,
without necessarily sacrificing completeness.

We have previously developed Déjà Fu[14] an SCT tool for Haskell, based
on a typeclass-abstraction over the primitive concurrency operations. CoCo uses
Déjà Fu to produce the set of results of a generated program fragment.

Interference We do not know what sort of interference may lead to interesting re-
sults. So CoCo requires the programmer to supply a function with effects, which
is executed concurrently during property discovery, to provide this interference.
By supplying different sorts of interference, the programmer can see how the
API they provide behaves in different concurrent contexts.

Properties We formulate our properties in terms of observational refinement [8],
where the observations we take are snapshots of the shared state. CoCo requires
the programmer to supply an observation function to produce these snapshots.
By varying their observation function, the programmer can see different aspects
of the API they provide.

We define a behaviour of a concurrent program as a pair of a final observation,
taken after the program terminates, and a possible failure. Failures are states
like a deadlock, or an uncaught exception. By considering the set of a program’s
possible behaviours, rather than simply final observations, we can distinguish
between operations which may fail and those which do not. Properties that we
report are of the form A === B, meaning that the sets of behaviours of A and
B are equal; and A ->- B, meaning that the set of behaviours of A is a strict
subset of the set of behaviours of B.

type C = Concurrency

sig :: Sig (MVar C Int) (Maybe Int) (Maybe Int)

sig = Sig

{ initialise = maybe newEmptyMVar newMVar

, expressions =

[-- example 1

lit "putMVar" (putMVar :: MVar C Int -> Int -> C ())

, lit "takeMVar" (takeMVar :: MVar C Int -> C Int)

, lit "readMVar" (readMVar :: MVar C Int -> C Int)

]

, backgroundExpressions =

[-- example 2

lit "tryPutMVar" (tryPutMVar :: MVar C Int -> Int -> C Bool)

]

, interfere = \v _ -> putMVar v 42

, observe = \v _ -> tryReadMVar v

, backToSeed = \v _ -> tryReadMVar v

}

Fig. 1. CoCo signature for MVars holding Ints.

3 An Illustrative Example

Let us now show an example use of CoCo. We consider a type of concurrent
shared variable in the Haskell libraries. An MVar is a mutable memory cell
which may be full or empty. Instead of the standard version of the functions
from Haskell’s Control.Concurrent library module, we instead use typeclass-
generalised versions which Déjà Fu can test. We shall examine three basic oper-
ations over MVars: put, take, and read. To put is to block until the MVar is empty
and then set its value. To take is to block until the MVar is full, remove its value,
and return the value. To read is to take, but without emptying the MVar. Each
function has a non-blocking try variant, which returns an indicator of success.

Allowing shared values of type Int, we have the following type signatures:

putMVar :: MVar Concurrency Int -> Int -> Concurrency ()

takeMVar :: MVar Concurrency Int -> Concurrency Int

readMVar :: MVar Concurrency Int -> Concurrency Int

Here Concurrency is an implementation of the concurrency-typeclass. In this
case, the return type of each function is of the form Concurrency x, meaning
that the result of the function produces an x value and also has some effects
in the concurrency execution context. The MVar type is parameterised by the
monad type; MVar is an abstract type, with the concrete type determined by the
monad.

Term Seed Final State Deadlocks

Read Nothing Just 42 No
Just 0 Just 0 No

Take / Put Nothing Just 42 No
Just 0 Just 0 No

Just 42 Yes

Table 1. The behaviours of the terms in property (2).

Signatures When we use CoCo, we must provide the functions and values which
may appear in properties. We must also provide a way to initialise the state,
an observation function, and an interference function. We call this collection of
programmer-supplied definitions the signature.

Figure 1 shows a signature for MVar operations. The initialisation function
constructs an empty or a full MVar. The interference function simply stores a new
value. The observation function takes a snapshot of the state. The backToSeed

function is used to check whether the state has been changed: if the original and
final seed values are the same, the state is unchanged.

It is essential to provide an initialisation function which gives a representative
collection of states, and an interference function which can disrupt the functions
of interest. If our initialisation function only produced a full MVar, we could find
properties which do not hold when the MVar is empty. Because our interference
function only writes to the MVar, we may find properties which do not hold
when there are multiple consumers. Developing a fuller understanding of the
functions under test may require examining the different property-sets found
under different execution conditions.

MVar properties Given putMVar, takeMVar, and readMVar, CoCo produces:

readMVar @ === readMVar @ >> readMVar @ (1)

readMVar @ ->- takeMVar @ >>= \x -> putMVar @ x (2)

takeMVar @ === readMVar @ >> takeMVar @ (3)

putMVar @ x === putMVar @ x >> readMVar @ (4)

Here @ is the state argument, in this case the MVar.
Property (1) shows that readMVar is idempotent; (2) shows that it is not

merely a take followed by a put, it is rather a distinct operation; (3) and (4)
show that it does not modify the MVar, and that it does not block when the MVar
is full. Property (4) may appear to be type-incorrect, but remember that CoCo
does not consider equality of term results, only the effects.

We see the effect of the interference in (2): with no other producers, this would
be an equivalence; it is only when interference by another thread is introduced
that the equivalence breaks down and the distinction is revealed. Table 1 shows
the possible behaviours. This property is a strict refinement because, while the
behaviours for the seed value Nothing are the same, the behaviours of the left
term for the seed value Just 0 are a strict subset of the behaviours of the right.

Background expressions Sometimes when expressing properties it is necessary
to call upon other expressions which are of secondary interest. Such expressions
are commonly called background expressions. A property is only reported if each
side includes at least one non-background expression. If we include tryPutMVar
as a background expression, CoCo discovers these additional properties:

readMVar @ === readMVar @ >> tryPutMVar @ x

readMVar @ === readMVar @ >>= \x -> tryPutMVar @ x (5)

readMVar @ ->- takeMVar @ >>= \x -> tryPutMVar @ x

putMVar @ x === putMVar @ x >> tryPutMVar @ x1

Property (5) shows how important the choice of interference function is. The left
and right terms are not equivalent. If the interference were to empty a full MVar
then the right term could restore its original value. As our interference function
only produces, rather than consumes, it will never alter the value in a full MVar.

The above example takes about 4 seconds to run in total, and the output
displayed here is the output of the tool, aside from the property numbers.

4 How CoCo Works

A simplified version of our approach is to generate all terms up to some syntactic
size limit, compute and store their behaviours, and then find properties by com-
paring the sets of behaviours of each pair of terms. This would be slow, however.
Following the lead of QuickSpec[3,12] we make three key improvements:

1. We generate schemas with holes, rather than terms with variables (§4.1)
2. We only compute the set of behaviours of the most general term of every

schema (§4.2)
3. We interleave property discovery with schema generation, and aggressively

prune redundant schemas (§4.3)

The main difference between our approach and QuickSpec is how we han-
dle monadic operations, and that QuickSpec compares equality of term results

whereas we compare refinement of term behaviours. Furthermore, we generate
lambda-terms in a restricted setting whereas QuickSpec does not do so at all.

4.1 Representing and Generating Expression Schemas

We can greatly reduce the number of expressions by not generating alpha-
equivalent ones. Instead of generating an expression like push @ x >> push @ y

we will instead generate the expression push @ ? >> push @ ? where each ? is a
hole for a variable. These expressions-with-holes are called schemas. One schema
can be instantiated into many terms by assigning variable names to groups of
holes. The push-push schema has two semantically distinct term instances: the
single-variable and the two-variable cases.

data Expr s h = Lit String Dynamic

| Var TypeRep (Var h)

| Bind TypeRep (Expr s h) (Expr s h)

| Ap TypeRep (Expr s h) (Expr s h)

| State

data Var h = Hole h | Named String | Bound Int

type Schema s = Expr s ()

type Term s = Expr s Void

Fig. 2. Representation of Haskell expressions.

Figure 2 shows our expression representation. The Expr type is parameterised
by the state type and a hole type. The state parameter ensures expressions that
assume different execution contexts cannot be inadvertently combined. The hole
parameter allows for a statically enforced distinction between schemas and terms.
Each Expr constructor carries around a type (except the state, which is implicit).
We hide the details of this representation and provide smart constructor func-
tions to ensure only well-typed expressions can be constructed.

Schema generation Generating new schemas is straightforward. We give expres-
sions a notion of size and generate schemas in size order. The needed expressions
of size 1 are supplied in the user’s signature. For larger sizes we combine pairs
of appropriately sized known schemas and keep the type-correct ones.

We interleave generation with evaluation and property discovery. In this way
we can partition schemas into equivalence classes and use only the smallest of
known-equivalent schemas when generating new ones.

Monadic expressions The expressions of most interest to us are monadic ex-
pressions. Such expressions allow us to combine smaller effects to create larger
ones. We simplify this task by taking inspiration from Haskell’s do-notation.
Do-notation is a syntactic sugar for expressing sequences of monadic operations
in an imperative style, which has explicit variable bindings and makes the se-
quencing of effects clear. Rather than generating lambda-terms, we use a kind
of first-class do-notation where the monadic bind operation binds the result of
evaluating the binder to zero or more holes in the body. Restricting ourselves
to this simpler case allows us to avoid many of the complexities of trying to
generate lambda-terms directly.

For example, the schema pop @ >>= \x -> push @ x is generated like so:

1. Combine pop and @ to produce pop @

2. Combine push and @ to produce push @

3. Combine push @ and ? to produce push @ ?

4. Combine pop @ and push @ ? to produce both pop @ >> push @ ? and
pop @ >>= \x -> push @ x.

Bound variables use de Bruijn indices[5]. Names are only assigned when ex-
pressions are displayed to the user.

4.2 Evaluating Most General Terms

Time spent evaluating terms dominates the execution cost of CoCo. In the worst
case the number of executions needed for a term is exponential in the number
of threads, pre-emptive context switches, and blocking operations[9].

What is more, our term evaluation always involves at least two threads: the
term thread executing the term itself, and an interference thread. The term
thread may fork additional threads. The interference thread is essential to dis-
tinguish refinement from equality in some cases, such as in property (2).

To avoid repeated work, we compute the behaviours of all the terms for a
schema when it is generated. We annotate each schema with some metadata,
including its behaviour-sets, and compare these cached behaviours later when
discovering properties. While possibly a significant space cost, storing this data
reduces the execution time of some of our test applications from hours to minutes.

Deriving terms from schemas One schema may have many term instances. For
example, given a schema with two holes of two types, we can produce four
semantically distinct terms, here ordered from most general to most constrained:

f (? :: Int) (? :: Bool) (? :: Bool) (? :: Int)

f (w :: Int) (x :: Bool) (y :: Bool) (z :: Int)

f (w :: Int) (x :: Bool) (y :: Bool) (w :: Int)

f (w :: Int) (x :: Bool) (x :: Bool) (z :: Int)

f (w :: Int) (x :: Bool) (x :: Bool) (w :: Int)

We use a simple reduce-and-conquer algorithm to eliminate holes:

1. Pick a type and find the set of all holes of that type.

2. For each partition of the hole-set make a distinct copy of the schema and in
each case assign to each subset in the partition a distinct variable name.

3. If there are remaining hole types, continue recursively from (1).

Evaluating terms To compute the behaviours of every term for a schema, we
need only consider the most general term. The behaviours of all less-general
terms can be derived from the most general case by restricting to cases where
the variables are equal. For example, given the behaviours of f x y, we throw
away those where x 6= y to obtain the behaviours of f x x.

Déjà Fu allows us to make an observation of the final state even if evaluation
of the term deadlocks. This is essential, as an operation which deadlocks may
have altered the state before blocking.

4.3 Property Discovery and Schema Pruning

Not only do we interleave generation with evaluation, we also interleave it with
property-discovery. After all schemas of a given size are generated and their most
general terms evaluated, we compare each such new schema against all smaller
ones to discover equivalences and refinements.

As one schema may correspond to many terms, we may discover many prop-
erties between a pair of schemas. In practice, most of these properties are con-
sequences of more general ones. We solve this problem by first producing all
properties between the pair of schemas, and then pruning properties which are
simple consequences of another. Property P2 is made redundant by property P1

if (1) both P1 and P2 are equivalences or both are refinements; and (2) P1 has
a more general allocation of variables to holes. As ->- is strict refinement, it is
impossible for both S === T and S ->- T to hold.

Smallest schemas To avoid discovering the same property multiple times, we
maintain a set of smallest schemas. At first we assume all schemas to be smallest.
If a syntactically smaller schema is a refinement of a larger one, the larger is
annotated as “not smallest”. When generating new monadic binds:

– A schema S >> T is only generated if both S and T are smallest schemas.
– A schema S >>= \x -> T[x] is only generated if T is a smallest schema.

We also only consider properties S === T or S ->- T where both S and T

are smallest schemas.

Neutral schemas A schema N is neutral if and only if, for all other schemas
S, these identities hold: N >> S === S === S >> N. For example, readMVar is
not a neutral MVar operation, as it may block, but the non-blocking alternative
tryReadMVar is neutral. A sufficient condition for a schema to be neutral is if its
most general term instance is (1) always atomic; (2) never fails; and (3) never
modifies the state.

We use a heuristic method based on execution traces to determine if a schema
is atomic, and use the seed values to determine if it modifies the state. If a schema
is judged to be neutral, we do not use it when constructing larger schemas.

Projection to a common namespace We compute the behaviours of every term
individually, yet we construct properties from pairs of terms. Each term intro-
duces its own variable namespace: the variable “x” in one term is unrelated to
the variable “x” in another. When discovering properties, we must first project
both terms into a common namespace. Each variable in each term can either be
given a unique name, or identified with a variable in the other term. We never
reduce the number of distinct variables in a term. To do so would only reproduce
another term generated from the same schema.

As a pair of terms may have many projections, we may discover many prop-
erties between them: at most one for each projection. In practice, most of these
properties are consequences of more general ones. We only keep the most general.

newtype LockStack m a = LockStack (MVar m [a])

push :: MonadConc m => a -> LockStack m a -> m ()

push a (LockStack v) = modifyMVar v (\as -> return (a:as, ()))

pop :: MonadConc m => LockStack m a -> m (Maybe a)

pop (LockStack v) = modifyMVar v (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => LockStack m a -> m (Maybe a)

peek (LockStack v) = fmap listToMaybe (readMVar v)

Fig. 3. A lock-based mutable stack.

5 Case Studies

We now present two illustrative case studies: concurrent stacks in §5.1, and
semaphores in §5.2.

5.1 Concurrent Stacks

Lock-based stacks Mutable stacks are commonly used for synchronisation amongst
multiple threads. A simple mutable stack is just an immutable list inside an MVar

shared variable, as in Figure 3. We now run CoCo on those functions, where the
initialisation function constructs a stack from a list, the observation function
converts it back to a list, and the interference function sets the contents of the
stack to a given list. CoCo discovers the following properties:

peek @ ->- push x @ >> pop @ (6)

peek @ ->- (push x @) ||| (pop @) (7)

peek @ ->- pop @ >>= \m -> whenJust push @ m (8)

Here whenJust is defined as \f s -> maybe (pure ()) (‘f‘ s) and ||| is
concurrent composition. Property (6) may seem surprising: the left term returns
the top of stack whereas the right term returns the value pushed. Remember
that CoCo does not consider equality of results when determining properties,
only the effect on the state. Property (7) is a consequence of (6). Property (8) is
analogous to the readMVar properties presented in §3, as we might expect given
how the stack operations are defined.

Buggy functions Suppose we add an incorrect push2 function, which is meant
to push two values atomically, but which only pushes the second value twice.
CoCo finds this property:

push2 x1 x @ ->- push x @ >> push x @

As this is a strict refinement, we now know that push2 is more deterministic in
some way than two pushes. As we know that the composition of two pushes is
not atomic, this strongly suggests that push2 is. We can also see the effect of
push2 on the state, and that it is incorrect!

newtype CASStack m a = CASStack (CRef m [a])

push :: MonadConc m => a -> CASStack m a -> m ()

push a (CASStack r) = modifyCRefCAS r (\as -> (a:as, ()))

pop :: MonadConc m => CASStack m a -> m (Maybe a)

pop (CASStack r) = modifyCRefCAS r (\as -> (drop 1 as, listToMaybe as))

peek :: MonadConc m => CASStack m a -> m (Maybe a)

peek (CASStack r) = fmap listToMaybe (readCRef r)

Fig. 4. A lock-free mutable stack.

Choice of observation Properties are discovered using a programmer-supplied
observation function, so different functions can be used to discover different
properties. By changing the observation of our stack from equality-as-a-list to
peek, we discover a new collection of properties. Here we have fixed the push2

function to behave correctly and also removed ||| from the signature.

peek @ ->- push x @ >> pop @

peek @ === pop @ >>= \m -> whenJust push @ m

push x @ === pop @ >> push x @

push x1 @ === push2 x x1 @ (9)

push x1 @ === push x @ >> push x1 @ (10)

whenJust push @ m === whenJust (push2 x) @ m

Properties (9) and (10) show the power of supplying a custom observation func-
tion: in the left and right terms, the stack states are not equal. In both (9) and
(10) the left term increases the stack depth by one, and the right by two. We
now see that push2 leaves its second argument on the top of the stack. We could
not directly observe this before, as a single push would leave the stack sizes out
of balance. Throwing away unnecessary details, in this case the tail of the stack,
allows us to see more than we previously could.

It is important to bear in mind that there is no best observation to make,
no best interference to consider, and no best set of properties to discover. Each
choice of observation and interference will reveal something about the functions
under test. By considering different cases, we can arrive at a fuller understanding
of our code.

Choice of implementation Due to their blocking behaviour, MVars can have
poor performance under contention. An alternative concurrency primitive is the
CRef,1 corresponding to a lock-free mutable location in memory. An atomic
compare-and-swap operation updates CRef values efficiently even with contention.
Figure 4 shows our implementation, which is similar to the MVar stack.

1 In regular GHC Haskell this is the IORef, here Déjà Fu deviates from the norm.

A feature of CoCo that differentiates it from other property-discovery tools
is the ability to compare two different signatures which have compatible obser-
vation types. We can compare the MVar and CRef stacks by simply supplying
both signatures to the tool, each of which contains push, pop, peek, whenJust,
and |||. CoCo then reports 19 properties, including these three:

popM @ === popC @ (11)

peekM @ === peekC @ (12)

pushM x @ === pushC x @ (13)

Here we use the list observation again. Functions with names ending M are for
MVar stacks, functions with names ending C for CRef stacks. Properties (11),
(12), and (13) tell us what we want to know: the CRef stack is equivalent to the
MVar stack.

A common approach when first writing a program is to do everything in a
simple and clearly correct fashion. After checking correctness, we may gradually
rewrite components to meet performance requirements. At which point testing
must establish that the rewritten components preserve the behaviour. The ability
to determine observational equivalence of different implementations of the same
API is an alternative to the more-common unit-testing for this task[8].

5.2 Semaphores

A semaphore is a common synchronisation primitive. A semaphore can be thought
of as a record of how many units of some abstract resource are available, with
operations to adjust the record in a race-free way. Binary semaphores only have
two states, and are used to implement locks. Counting semaphores have an arbi-
trary number of states. An implementation of counting semaphores is provided
in the Control.Concurrent.QSemN library module.

Figure 5 shows the signature we provide to CoCo. CoCo supports polymor-
phic function types, as can be seen in the type of |||, where A and B are types we
use as type variables. The commLit function indicates that the supplied binary
function is commutative, which is used to prune the generated schemas further.

The new, wait, signal, and remaining functions are provided by the QSemN
library module. We construct a new semaphore by allocating an arbitrary amount
of resource; we observe how much resource remains; and we interfere by taking
and then replacing half of the resource. The interference thread is interleaved
with the term thread, so it may cause the term thread to block.

CoCo finds 57 properties in this example, so in the remainder of the section
we only discuss selected properties.

Waiting and signalling CoCo tells us that the effect of waiting for zero resource
and of signalling the availability of zero resource are the same — neither affects
the state of the semaphore:

wait @ 0 === wait @ 0 >> wait @ 0 (14)

signal @ 0 === wait @ 0 >> wait @ 0

type C = Concurrency

sig :: Sig (QSemN C) Int Int

sig = Sig

{ initialise = new . abs

, expressions =

[lit "wait" (wait :: QSemN C -> Int -> C ())

, lit "signal" (signal :: QSemN C -> Int -> C ())

]

, backgroundExpressions =

[commLit "|||" ((|||) :: C A -> C B -> C ())

, commLit "+" ((+) :: Int -> Int -> Int)

, lit "-" ((-) :: Int -> Int -> Int)

, lit "0" (0 :: Int)

, lit "1" (1 :: Int)

]

, interfere = \q n -> let i = n ‘div‘ 2 in wait q i >> signal q i

, observe = \q _ -> remaining q

, backToSeed = \q _ -> remaining q

}

Fig. 5. CoCo signature for the QSemN type.

Property (14) also shows that waiting for zero resource is not a neutral operation,
as if it were CoCo would prune the property away. This suggests that wait may
block.

CoCo also generates properties revealing another implementation detail, that
the programmer can wait for a negative value instead of calling signal:

signal @ 1 === wait @ (0 - 1)

signal @ (1 + 1) === wait @ (0 - (1 + 1))

Wemight suspect that the more general property signal @ x === wait @ (-x)

holds for all positive x. CoCo finds this form if we extend our signature with abs

and negate:

signal @ (abs x) === wait @ (negate (abs x)) (15)

A lack of composability CoCo reports some strict refinements involving signal

and wait where we might expect equivalences:

signal @ 0 ->- signal @ x >> wait @ x (16)

signal @ (x + x1) ->- signal @ x >> signal @ x1 (17)

signal @ (x + x1) ->- (signal @ x) ||| (signal @ x1) (18)

We have just seen with property (15) that funny things happen with negative
numbers, so it should be no surprise that these refinements are only equivalences
when x and x1 are positive.

Term size 1 2 3 4 5 6 7 8

Schemas 15 29 56 88 238 385 1689 2740
Properties 0 0 0 0 1 1 55 55
Time (s) 0.03 0.03 0.45 0.45 9.2 9.2 970 970

Time / schema2 1.3e-4 3.6e-5 1.4e-4 5.8e-5 1.6e-4 6.2e-5 3.4e-4 1.3e-4

Table 2. Scaling behaviour of the semaphore case study.

Types Signalling or awaiting a negative quantity is a breach of the semaphore
protocol. Perhaps a better interface for semaphores would only allow nonnega-
tive quantities. The change might avoid accidental breakage in the future if the
semantics of negative values are unwittingly changed.

CoCo supports many types, but not all. If the programmer wishes to use
types outside of the built-in collection, they must provide some information: a
way to enumerate values, an equality predicate, and a symbol to use in variable
names. In this way, the programmer can extend CoCo to work with arbitrary
types, or alter the behaviour of existing types. If we have signal and wait use
natural numbers rather than integers, properties (16–18) become equivalences:

signal @ 0 === signal @ n >> wait @ n

signal @ (n + n1) === signal @ n >> signal @ n1

signal @ (n + n1) === (signal @ n) ||| (signal @ n1)

We could pursue this issue further by examining the terms with Déjà Fu
when given a negative quantity, or we could change the type of the function to
forbid that case. Ideally, illegal states should be unrepresentable.

Scaling Table 2 shows how CoCo scales as the term size increases. The execution
time grows rapidly, but the time to compare pairs of schemas So reducing the
number of schemas is the most effective way to reduce the execution time. One
such area for future improvement is in cases where one schema is an instance
of another. Such schemas may arise when the signature includes constants. For
example, the schema signal @ 1 is an instance of signal @ x. The ‘most gen-
eral term’ rule does not apply here, as these are different schemas. If CoCo were
able to synthesise preconditions, it would be possible in some cases to eliminate
constants from signatures, solving this problem.

6 Related Work

QuickSpec and Speculate The main related work to ours is QuickSpec[3,12],
which automatically discovers equational laws of pure functions by generating
schemas and testing terms. The Speculate[1] tool is similar to QuickSpec but in
addition can discover conditional equations and inequalities. Speculate properties
may have preconditions, which the tool can find. CoCo does not support condi-
tional equations, but they could be useful. To return to the semaphore case study

from §5.2, the presence of conditional equations would allow us to discover the
conditional property x >= 0 ==> signal @ x === wait @ (negate x), with-
out needing to introduce the abs function. Neither QuickSpec nor Speculate
support functions with effects or generating lambda-terms.

Bach The Bach[13] tool uses a database of examples of input/output values from
functions to synthesise properties using a Datalog-based oracle. It uses a notion
of evidence to decide whether an inferred property holds: negative evidence con-
sists of counterexamples; positive evidence consists of witnesses. Bach requires
functions to have at most one output for each input, to construct negative evi-
dence. This makes Bach unsuitable for concurrency, which is nondeterministic.

Daikon The Daikon[6] tool discovers likely invariants of C, C++, Java, and
Perl programs. It observes variables during program execution, applying machine
learning techniques to discover properties. Daikon does not synthesise and test
program terms. It is only able to discover invariants which exist in the program.
In contrast, the tools mentioned so far, including CoCo, discover properties of
combinations of expressions that may not appear in the original program at all.

7 Conclusions and Evaluation

Our broad aim is to help programmers overcome the difficulty of writing correct
concurrent programs even in a declarative setting. To work towards this, we
have presented a new tool, CoCo, to discover behavioural properties of effectful
functions operating on shared state.

Applicability beyond Haskell CoCo is tied to Haskell in two ways: it has some
knowledge of Haskell types, which is used to generate expressions; and it relies
on the Déjà Fu tool to find the results of executing an expression under different
schedules. However, it could be reimplemented for another language. For exam-
ple, in Erlang the objects of interest are processes. Initialisation is to create a
process in a known state. Observation is to request information from a process.
Interference is to instruct a process to change its internal state. The PULSE tool
for systematically testing Erlang programs[2] would play the part of Déjà Fu.

Value of reported properties Although only supported by a finite number of test
cases, the properties reported by CoCo are surprisingly accurate in practice.
These properties can provide helpful insights into the behaviour of functions.
As demonstrated in the semaphore case study (§5.2), surprising properties can
suggest that implementations of some functions rely on unstated assumptions.

Ease of use Ideally, a testing tool should not force the programmer to structure
their code in a specific way. CoCo requires the use of the concurrency typeclass
from Déjà Fu, which is not widespread in practice. However, it has been our expe-
rience that reformulating concurrent Haskell code for the necessary abstraction
is a type-directed and mechanical process, requiring little insight.

References

1. Rudy Braquehais and Colin Runciman. Speculate: Discovering conditional equa-
tions and inequalities about black-box functions by reasoning from test results.
In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell,
Haskell 2017, pages 40–51, New York, NY, USA, 2017. ACM.

2. Koen Claessen, Michal Palka, Nicholas Smallbone, John Hughes, Hans Svensson,
Thomas Arts, and Ulf Wiger. Finding race conditions in Erlang with QuickCheck
and PULSE. In Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’09, pages 149–160. ACM, 2009.

3. Koen Claessen, Nicholas Smallbone, and John Hughes. QuickSpec: Guessing formal
specifications using testing. In Proceedings of the 4th International Conference on
Tests and Proofs, TAP’10, pages 6–21. Springer-Verlag, 2010.

4. Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. Bounded
partial-order reduction. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, pages 833–848. ACM, 2013.

5. N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Proceedings), 75(5):381–392, 1972.

6. Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for dynamic
detection of likely invariants. Sci. Comput. Program., 69(1-3):35–45, 2007.

7. Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05, pages 110–121.
ACM, 2005.

8. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined resume, pages
187–196. Springer Berlin Heidelberg, 1986.

9. Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for system-
atic testing of multithreaded programs. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implementation, PLDI
’07, pages 446–455. ACM, 2007.

10. Madanlal Musuvathi and Shaz Qadeer. Fair stateless model checking. In Proceed-
ings of the 29th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’08, pages 362–371. ACM, 2008.

11. Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’96, pages 295–308. ACM, 1996.

12. Nicholas Smallbone, Moa Johansson, Koen Claessen, and Maximillian Algehed.
Quick specifications for the busy programmer. Journal of Functional Programming,
27, 2017.

13. Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. Discovering relational specifi-
cations. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 616–626. ACM, 2017.

14. Michael Walker and Colin Runciman. Déjà Fu: A concurrency testing library for
Haskell. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell
2015, pages 141–152. ACM, 2015.

	Cheap Remarks about Concurrent Programs

