
This is a repository copy of Errata for three papers (2004-05) on fixed-priority scheduling
with self-suspensions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/128123/

Version: Published Version

Conference or Workshop Item:
Audsley, Neil Cameron orcid.org/0000-0003-3739-6590, Bletsas, Konstantinos, Nelissen,
Geoffrey et al. (3 more authors) (2018) Errata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. In: UNSPECIFIED.

https://doi.org/10.4230/LITES-v005-i001-a002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Errata for three papers (2004-05) on fixed-priority

scheduling with self-suspensions

Konstantinos Bletsas1, Neil C. Audsley3, Wen-Hung Huang2, Jian-Jia

Chen2, and Geoffrey Nelissen1

1 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto

Porto, Portugal

{ksbs, grrpn}@isep.ipp.pt

2 TU Dortmund

Dortmund, Germany

{wen-hung.huang, jian-jia.chen}@tu-dortmund.de

3 University of York

York, United Kingdom

neil.audsley@york.ac.uk

Abstract

The purpose of this article is to (i) highlight the

flaws in three previously published works [3][2][7]

on the worst-case response time analysis for tasks

with self-suspensions and (ii) provide straightfor-

ward fixes for those flaws, hence rendering the ana-

lysis safe.

2012 ACM Subject Classification MANDATORY: Please refer to www.acm.org/about/class/2012

Keywords and phrases MANDATORY: Please provide 1–5 keywords as a comma-separated list

Digital Object Identifier 10.4230/LITES.xxx.yyy.p

Received Date of submission. Accepted Date of acceptance. Published Date of publishing.

Editor LITES section area editor

1 Introduction1

Often, in embedded systems, a computational task running on a processor must suspend its2

execution to, typically, access a peripheral or launch computation on a remote co-processor. Those3

tasks are commonly referred to as self-suspending. During the duration of the self-suspension, the4

processor is free to be used by any other tasks that are ready to execute. This seemingly simple5

model is non-trivial to analyse from a worst-case response time (WCRT) perspective since the6

classical “critical instant” of Liu and Layland [13] (i.e., simultaneous release of all tasks) no longer7

necessarily provides the worst-case scenario when tasks may self-suspend. A simple solution8

consists in modelling the duration of the self-suspension as part of the self-suspending task’s9

execution time. This so-called “self-suspension oblivious” approach allows to use the “critical10

instant” of Liu and Layland but often at the cost of too much pessimism. Therefore, various11

efforts have been made to derive less pessimistic, but still safe, analyses.12

The results published in [3, 2, 7, 6] propose solutions for computing upper bounds on the13

response times of self-suspending tasks. However, we have now come to understand that they14

were flawed, i.e., they do not always output safe upper bounds on the task WCRTs. Through this15

paper, we therefore seek to highlight the respective flaws and propose appropriate fixes, rendering16

the two analysis techniques previously proposed in [3][2][7] safe.17

© Konstantinos Bletsas, Wen-Hung Huang, Jian-Jia Chen, Neil Audsley, and Geoffrey Nelissen;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–21
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

2 Errata for three papers on FP scheduling with self-suspensions

Figure 1 Examples of task graphs for task with self-suspensions. White nodes represent sections of

code with single-entry/single-exit semantics. Grey nodes represent remote operations, i.e., self-suspending

regions. The nodes are annotated with execution times, which in this example are deterministic for

simplicity. The directed edges denote the transition of control flow. Any task execution corresponds to a

path from source to sink. For task graph (a), two different control flows exist (shown with dashed lines).

In this case, the software execution and the time spent in self-suspension are maximal for different control

flows. As a result of this, C < X + G; specifically, C = X = 25 and G = 10. However, task graph (b) is

linear, so it holds that C = X + G for that task.

2 Process model and notation18

We assume a single processor and n independent sporadic1 computational tasks scheduled under a19

fixed-priority policy. Each task τi has a distinct priority pi, an inter-arrival time Ti and a relative20

deadline Di, with Di ≤ Ti (constrained deadline model). Each job released by τi may execute21

for at most Xi time units on the processor (its worst-case execution time in software – S/W22

WCET) and spend at most Gi time units in self-suspension (its “H/W WCET”). What in the23

works [3, 2, 7, 6] is referred to as (simply) “the worst-case execution time” of τi, denoted by Ci, is24

the time needed for the task to complete, in the worst-case, in the absence of any interference from25

other tasks on the processor. Hence Ci also accounts for the latencies of any self-suspensions in26

the task’s critical path2. This terminology differs somewhat from that used in other works, which27

call WCET what we call the S/W WCET. This is mainly because it echoes a view inherited28

from hardware/software co-design that the task is executing even when self-suspended on the29

processor, albeit remotely (i.e., on a co-processor).30

As illustrated on Figure 1, in the general case, Ci ≥ Xi, Ci > Gi but Ci ≤ Xi + Gi, because31

Xi and Gi are not necessarily observable for the same control flow, unless it is explicitly specified32

or inferable from information about the task structure that Ci = Xi + Gi.33

Additionally, lower bounds on the S/W and the “H/W” best-case execution times are denoted34

by X̂i and Ĝi, respectively.35

Our past work considered two submodels (referred to as “simple” and “linear”), depending on36

the degree of knowledge that one has regarding the location of the self-suspending regions inside37

1 The original papers, assumed periodic tasks with unknown offsets. It was in the subsequent PhD thesis [6]
that the observation was made that the results apply equally to the sporadic model, which is more general
in terms of the possible legal schedules that may arise.

2 We assume, as in [3, 2, 7, 6], that there is no contention over the co-processors or peripherals accessed during
a self-suspension.

K. Bletsas et. al. 3

Figure 2 Under the simple model any job by a given task τi can execute for at most Xi units in software,

at most Gi time units in hardware and at most Ci time units overall. The locations and number of the

hardware operations (self-suspensions, from the perspective of software execution) may vary arbitrarily

for different jobs by the same task, subject to the previous constraints. This is depicted here for a task

τi, with the parameters shown, which (for simplicity) is the only task in its system. Upward-pointing

arrows denote task arrivals (and deadlines, since the task set happens to be implicit-deadline). Shaded

rectangles denote remote execution (i.e., self-suspension).

the process activation and whether or not Ci = Xi + Gi.38

2.1 The simple model39

The simple model, assumed in [2, 3], is also called “floating” or “dynamic self-suspension model”40

in many later works of the state-of-the-art. This model is entirely agnostic about the location41

of self-suspending regions in the task code. Hence, there is no information on the number of42

self-suspending regions, on the instants at which they may be activated and for how long each43

of them may last at run-time. Moreover, the self-suspension pattern may additionally differ for44

subsequent jobs released by the same task τi. The sums of the lengths of the “S/W” and “H/W”45

execution regions are however subject to the constraints imposed by the attributes Ci, Xi and46

Gi. Figure 2 illustrates this concept.47

2.2 The linear model48

The linear model, which was presented in [7], is also known as the “multi-segment self-suspension49

model” in many later works. It assumes that each task is structured as a “pipeline” of interleaved50

software and self-suspending regions, or “segments”. Each of these segments has known upper51

and lower bounds on its execution time. This means that, in all cases, Ci = Xi + Gi and the52

task-level upper and lower bounds on its software (respectively, hardware) execution time, Xi53

and X̂i (respectively, Gi and Ĝi) are obtained as the sum of the respective estimates of all the54

software (respectively, hardware) segments.55

3 The analysis in [2, 3], its flaws and how to fix it.56

The two works [2, 3] that targeted the simple model, sought to derive the task WCRTs by shifting57

the distribution of software execution and self-suspension intervals within the activation of each58

higher-priority task in order to create the most unfavorable pattern, across job boundaries. This59

also involved aligning the task releases accordingly, in order to obtain (what we thought to be)60

the worst case. In order to facilitate the explanation of the specifics, it is perhaps best to first61

4 Errata for three papers on FP scheduling with self-suspensions

Figure 3 For a job by some task τk that executes in software for Xk time units and Ck time units

overall (i.e., in software and in hardware), the latest that it can start executing in software, in terms

of net execution time (i.e., excluding preemptions) is after having executed for Ck − Xk time units in

hardware. Differences in the placement of software and hardware execution across different jobs of τk

manifest themselves as jitter for its sofware execution.

present the corresponding equation for computing the WCRT of a task τi derived in [3]:62

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Cj − Xj)

Tj

⌉

Xj (1)63

where the term hp(i) is the set of tasks with higher-priority than τi. For the special case64

where Ci = Xi + Gi , ∀i, the above equation can be rewritten as [2]65

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + Gj

Tj

⌉

Xj (2)66

Intuitively, τi is pessimistically treated as preemptible at any instant, even those at which it67

is self-suspended. Each interfering job released by a higher-priority task τj contributes up to Xj68

time units of interference to the response time of τi. However, the variability in the location of69

self-suspending regions creates a jitter in the software execution of each interfering task. The70

term (Cj − Xj), for each τj ∈ hp(i), in the numerator, which is akin to a jitter in Equation 1,71

attempted to account for this variability. Intuitively, it represents the potential internal jitter,72

within an activation of τj , i.e., when its net execution time (in software or in hardware) is73

considered, and disregarding any time intervals when τj is preempted. Figure 3 illustrates this74

concept for some task τk.75

However, as we will show in Example 1, in the general case the jitter can be larger than76

(Cj − Xj). This is because the software execution of τj can be pushed further to the right along77

the axis of time, due to the interference that τj suffers from even higher-priority tasks.78

It is worth noting that the authors of [2] were fully aware at the time that the term
⌈

Ri+(Cj−Xj)
Tj

⌉

Xj79

is not an upper bound on the worst-case interference exerted upon τi from any individual task80

τj ∈ hp(i). However, it was considered (and erroneously claimed, with faulty proof) that81

∑

j∈hp(i)

⌈
Ri + (Cj − Xj)

Tj

⌉

Xj was nevertheless an upper bound for the total interference jointly82

caused by all tasks in hp(i), in the worst case. The flaw in that reasoning came from assuming83

that the effect of any additional jitter of interfering task τj , caused by interference exerted upon it84

by even higher-priority tasks would already be “captured” by the corresponding terms modelling85

the interference upon τi by hp(j) ⊂ hp(i). This would then suppress the need to include it twice.86

K. Bletsas et. al. 5

τi Ci Xi Gi Ti

τ1 1 1 0 2

τ2 10 5 5 20

τ3 1 1 0 ∞

Table 1 A set of tasks with self-suspensions. The lower the task index, the higher its priority.

Accordingly, then, the worst-case scenario for the purposes of maximisation of the response87

time of a task τi, released without loss of generality at time t = 0 would happen when each88

higher-priority task89

is released at time t = −(Cj − Xj) and then releases its subsequent jobs with its minimum90

inter-arrival time (i.e., at instants t = Tj − (Cj − Xj), 2Tj − (Cj − Xj), . . .;91

switches for the first time to execution in software (for a full Xj time units) at t = 0, for its92

first interfering job, i.e., after a self-suspension of Cj − Xj time units;93

executes in software for Xj time units as soon as possible for its subsequent jobs.94

Figure 4(a) plots the schedule that reproduces this alleged worst-case scenario, for the lowest-95

priority task in the example task set of Table 1. In this case, the top-priority task τ1 happens96

to be a regular non-self-suspending task, so its worst-case release pattern reduces to that of Liu97

and Layland. However, for the middle-priority task τ2 which self-suspends, its execution pattern98

matches that described above.99

However, this schedule does not constitute the worst-case, as evidenced by the following100

counter-example:101

◮ Example 1. Consider the task set of Table 1. Assume that the execution times of software102

segments and the durations of self-suspending regions are deterministic. As shown below using a103

fixed point iteration over Equation 1, the analysis in [2, 3] would yield R3 = 12:104

R3 = C3 +

⌈
R3 + C1 − X1

T1

⌉

X1 +

⌈
R3 + C2 − X2

T2

⌉

X2 ⇒ R3 = 1 +

⌈
R3

2

⌉

1 +

⌈
R3 + 5

20

⌉

5105

106

107

R
(0)
3 =1108

R
(1)
3 =1 +

⌈
1

2

⌉

1 +

⌈
1 + 5

20

⌉

5 = 7109

R
(2)
3 =1 +

⌈
7

2

⌉

1 +

⌈
7 + 5

20

⌉

5 = 10110

R
(3)
3 =1 +

⌈
10

2

⌉

1 +

⌈
10 + 5

20

⌉

5 = 12111

R
(4)
3 =1 +

⌈
12

2

⌉

1 +

⌈
12 + 5

20

⌉

5 = 12112

113

The corresponding schedule is shown in Figure 4(a). However, the schedule of Figure 4(b), which114

is perfectly legal, disproves the claim that R3 = 12, because τ3 in that case has a response time115

of 22 − 5ǫ, where ǫ is an arbitrarily small quantity. It therefore proves that the analysis initially116

presented in [2] and [3] is unsafe.117

6 Errata for three papers on FP scheduling with self-suspensions

Figure 4 Subfigure (a) depicts the schedule, for the task set of Table 1 that was supposed to result

in the WCRT for τ3 according to the analysis presented in [2, 3]. Subfigure (b) depicts a different legal

schedule that results in a higher response time for τ3.

K. Bletsas et. al. 7

Let us now inspect what makes the scenario depicted in the schedule of Figure 4 so unfavour-118

able that the analysis in [2, 3] fails, and at the same time let us understand how the analysis119

could be fixed.120

Looking at the first interfering job released by τ2 in Figure 4, one can see that almost all its121

software execution is still distributed to the very right (which was supposed to be the worst-case122

in [3]). However, by “strategically” breaking up what would have otherwise been a contiguous123

self-suspending region of length G2 in the left, with arbitrarily short software regions of length ǫ124

beginning at the same instants that the even higher-priority task τ1 is released, a particularly un-125

favourable effect is achieved. Namely, the execution of τ1 on the processor and the self-suspending126

regions of τ2, “sandwiched” in between are effectively serialised. In practical terms, it is the equi-127

valent of the execution of τ1 on the processor preempting the execution of τ2 on the co-processor!128

This means that, when finally τ2 is done with its self-suspensions, its remaining execution in129

software is almost its entire X2, but occurs with a jitter far worse than that modelled by Equa-130

tion 1. And, when analysing τ3, this effect was not captured indirectly, via the term modelling131

the interference exerted by τ1 onto τ3.132

So in retrospect, although each job by each τj ∈ hp(i) can contribute at most Xj time units133

of interference to τi, the terms (Cj − Xj) in Equation 1, that are analogous to jitters, are unsafe.134

The obvious fix is thus to replace those with the true jitter terms for software execution. As135

proven in Lemma 2 below, safe upper bounds for these are Rj − Cj , ∀ τj ∈ hp(i).136

Reconsidering the analysis presented in [2, 3] in light of this counter-example, one can draw137

the following conclusions:138

1. the terms Xj , one for every higher-priority task, in Equation 1, which model the fact that139

each job released by a task τj ∈ hp(i) can contribute at most Xj time units of interference,140

do not introduce optimism;141

2. the terms (Cj − Xj), one for every higher-priority task, in Equation 1, that are analogous to142

jitters, are unsafe.143

Formally, these conclusions can be summarised by the following Lemma 2, that serves as a144

sufficient schedulability test:145

◮ Lemma 2 (Corresponding to Corollary 1 in [9]). Consider a uniprocessor system of constrained-146

deadline self-suspending tasks and one task τi among those, in particular. If every task τj ∈147

hp(i) is schedulable (i.e., if an upper bound Rj on the worst-case response time of τj exists with148

Rj ≤ Dj ≤ Tj) and, additionally, the smallest solution to the following recursive equation is149

upper-bounded by Di,150

Ri = Ci +
∑

j∈hp(i)

⌈
Ri + (Rj − Xj)

Tj

⌉

Xj (3)151

then τi is also schedulable and its worst-case response time is upper-bounded by Ri, as computed152

by Equation 3.153

3.1 Proof of Lemma 2154

Consider a schedule Ψ of the self-suspending task system in consideration whereby some job of155

task τi is released at time ri and completed at time fi.156

We define a transformed scheduled Ψ′ as the schedule in which (i) the jobs of every higher-157

priority task τj ∈ hp(i) are released at the exact same instants as in Ψ; (ii) only one job by τi158

is released, at time ri; (iii) no jobs by lower-priority tasks are released and (iv) the suspensions159

by all higher-priority jobs take place during the exact same intervals as in Ψ; additionally (v) we160

8 Errata for three papers on FP scheduling with self-suspensions

modify the job of τi (which in Ψ executed on the processor for xi time units and was suspended161

for gi time units) such that it executes on the processor for Ci ≥ xi +gi time units. Recall that Ci162

is defined as the worst-case combined execution in software and hardware, i.e., sum of processor-163

based execution and self-suspension. After this last conversion (a safe, widely used transformation164

known in the literature as “conversion of suspension to processor-based computation´´, followed165

by a potential increase of that processor-based execution time), we can verify (see also Lemma 3166

just below) that: (i) Over the interval [ri, fi), for every instant that the job by τi in Ψ is executing167

or suspended or suspended and no higher-priority task is executing on the processor, the job by168

τi in Ψ′ is executing on the processor, at the same instant. And (ii) for the completion time f ′
i169

of τ ′
i in Ψ′, it holds that f ′

i ≥ fi; in other words the response time of the job in consideration in170

Ψ′ does not decrease over that in Ψ.171

For notational brevity, we denote the (only) job of τi in Ψ′ as originating from a task τ ′
i with172

C ′
i = X ′

i = Ci, G′
i = 0, D′

i = Di, T ′
i = Ti. Note that Ψ′ remains a fixed-priority schedule.173

◮ Lemma 3 (Corresponding to Lemma 2 in [9] with minor variations). Assuming that the worst-case174

response time of τi is upper bounded by Ti and given the definition of schedule Ψ′, the response time175

of the job of τ ′
i in consideration in Ψ′ is not smaller than the response time of the corresponding176

job of τi in Ψ, for any possible xi, gi such that xi ≤ Xi and gi ≤ Gi and xi + gi ≤ Ci.177

Proof. We know, by definition of fixed-priority schedules, that jobs by lower-priority tasks do not178

impact the response time of the jobs by τi. Therefore, their elimination in Ψ′ has no impact on179

the response time of the jobs of τi. Moreover, since from the assumption in the claim, the worst-180

case response time of τi is upper-bounded by Ti, no other job by τi in Ψ impacts the schedule of181

the job by τi released at ri. Since all other parameters (i.e., releases and suspensions of higher-182

priority tasks) that may influence the scheduling decisions are kept identical between Ψ and Ψ′,183

the response time (R̄) of the job by τi released at time ri would have been identical in Ψ′ to the184

one in Ψ if we had not converted that job’s suspension time to processor-based computation.185

Let xi and gi respectively denote the total duration of processor-based execution and self-186

suspension characterising the job of τi in consideration. Given that xi + gi ≤ Ci for any job by τi187

means that additionally substituting in Ψ′ the particular job τi by a job by τ ′
i as defined above188

cannot result in the response time being lower than R̄, which in turn was shown to be no less189

than the response time of the job in Ψ. ◭190

We now analyse the properties of the fixed-priority schedule Ψ′. For any interval [ri, t), with191

t ≤ fi, we are going to prove an upper bound (denoted as exec(ri, t)) on the amount of time192

during which the processor is executing tasks.193

Because in Ψ′ there exist no jobs of lower priority than that of τ ′
i , we only focus on the194

execution of the tasks in hp(i) ∪ τ ′
i . (Recall that we use the notation τ ′

i here instead of simply τi,195

because when constructing Ψ′ from Ψ, we replaced the self-suspending job of τi released at ri by196

a job of the same priority that executes entirely in software for X ′
i

def
= Ci ≤ Xi + Gi time units.)197

◮ Lemma 4. For any t such that ri ≤ t < f ′
i , the cumulative amount of time that τ ′

i executes on198

the processor over the interval [ri, t), denoted by execi(ri, t) is strictly smaller than Ci.199

Proof. Since the finishing time of the transformed job by τi is f ′
i > t, it means that it has executed200

for strictly less than its total execution time of Ci. ◭201

◮ Lemma 5 (Corresponding to Lemma 8 in [9]). Assume that Rj ≤ Tj for all jobs by τj in Ψ′. Let202

Jj be the last job of τj released before ri in Ψ′ and let x∗
j be the remaining processor execution203

time of Jj at time ri. For any task τj ∈ hp(i) and any ∆ ≥ 0, it holds that204

execj(ri, ri + ∆) ≤ Ŵ 0
j (∆, x∗

j)205

K. Bletsas et. al. 9

where206

Ŵ 0
j (∆, x∗

j)
def
=







W 1
j (∆) if x∗

j = 0

∆ if x∗
j > 0 and ∆ ≤ x∗

j

x∗
j if x∗

j > 0 and x∗
j < ∆ ≤ ρj

x∗
j + W 1

j (∆ − ρj) if x∗
j > 0 and ρj < ∆

(4)207

with208

W 1
j (∆)

def
=

⌊
∆

Tj

⌋

+ min

{

∆ −

⌊
∆

Tj

⌋

Tj , Xj

}

(5)209

and ρj
def
= Tj − Rj + x∗

j210

Proof. We explore two complementary cases:211

Case x∗
j = 0: In this case, there is no residual (sometimes called carry-in) workload of τj at212

time ri. Furthermore, execj(ri, ri + ∆) is maximised when every job of τj released after ri213

executes on the processor for its full processor execution time Xj , with any self-suspension214

strictly occurring (if at all) after it completes its Xj time units of execution on the processor.215

(Remember that there is no carry-in workload and hence pushing the execution of a job216

later by means of self-suspension will not increase the amount of computation within the217

window [ri, t)). This is analogous, in terms of processor-based workload pattern, to τj being218

a sporadic, non-self-suspending task with a worst-case execution time of Xj time units on219

the processor. Since, as already shown in the literature [5], W 1
j (∆), which is usually called220

workload function, is an upper bound on the cumulative amount of time that a sporadic task221

with a worst-case execution time Xj and inter-arrival time Tj can execute on the processor222

without self-suspension, we know that execj(ri, ri + ∆) ≤ W 1
j (∆). This proves case 1 of (4).223

Case x∗
j > 0: By assumption, there is Rj ≤ Tj . Additionally, the earliest completion time for224

the job Jj of τj with residual workload x∗
j at time ri must be ri +x∗

j (from the definition of x∗
j).225

Therefore, the earliest arrival time of a job of τj strictly after ri is at least ri + x∗
j + (Tj − Rj),226

which is equal to ri + ρj . Since no other job of τj is released in [ri, ri + ρj), this means that227

execj(ri, ri + ∆) is upper-bounded by min{∆, x∗
j } for ∆ ≤ ρj , thereby proving cases 2 and228

3 of (4). Furthermore, by assumption, the job of τj with residual workload x∗
j at time ri229

completes no earlier than time ri + ρj . Therefore, following the same reasoning as for the230

case that x∗
j = 0, it holds that execj(ri + ρj , ri + ∆) is upper bounded by W 1

j (∆ − ρj) when231

∆ > ρj . This proves the fourth case of (4).232

◭233

◮ Lemma 6 (Lemma 9 in [9]). ∀∆ > 0, it holds that Ŵ 0
j (∆, Xj) ≥ Ŵ 0

j (∆, x∗
j).234

Proof. See proof in [9]. ◭235

◮ Lemma 7. For any ∆ > 0, it holds that236

Ŵ 0
j (∆, Xj) ≤

⌈
∆ + Rj − Xj

Tj

⌉

Xj (6)237

238

10 Errata for three papers on FP scheduling with self-suspensions

Proof. From the definition of W 1
j (∆) in (5), we have239

W 1
j (∆) =

⌊
∆

Tj

⌋

Xj + min

{

∆ −

⌊
∆

Tj

⌋

Tj , Xj

}

240

≤

⌈
∆

Tj

⌉

Xj (7)241

242

If 0 < ∆ ≤ Xj , then by (4), it holds that Ŵ 0
j (∆, Xj) = ∆. Moreover, because the worst-case243

response time Rj of a task cannot be smaller than its worst-case execution time Cj ≥ Xj , we244

have that
∆+Rj−Xj

Tj
> 0. Hence, Ŵ 0

j (∆, Xj) = ∆ ≤ Xj ≤
⌈

∆+Rj−Xj

Tj

⌉

Xj245

If ∆ > Xj , then by the third and fourth cases of (4) and using (7) that we just proved,246

it holds that Ŵ 0
j (∆, Xj) ≤ Xj + W 1

j (∆ − (Tj − Rj + Xj)) ≤ Xj +
⌈

∆−Tj+(Rj−Xj)
Tj

⌉

Xj ≤247

⌈
∆+Rj−Xj

Tj

⌉

Xj . ◭248

Now that we have derived an upper bound on the cumulative execution time execj(ri, ri + ∆)249

by each task τj in Ψ′, we can use these upper bounds in order to derive properties for the schedule250

over any interval [ri, t).251

Recall that, for the schedule Ψ′, the finishing time of the job of τ ′
i in consideration is f ′

i ≥ fi252

(where fi is its corresponding finishing time in Ψ).253

◮ Lemma 8. Assuming that the worst-case response time of τi is upper bounded by Ti, and254

assuming that Rj ≤ Tj for all jobs by τj in Ψ′. ∀t | ri ≤ t < f ′
i it holds that:255

Ci +

i−1∑

j=1

⌈
t − ri + Rj − Xj

Tj

⌉

Xj > t − ri (8)256

Proof. When we constructed Ψ′, we transformed any suspension time of τi into processor execu-257

tion time. Hence, it must hold that there is no idle time within [ri, f ′
i), i.e., between the release258

and completion time of the transformed job of τi. Indeed, if there was an idle time within [ri, f ′
i),259

it would mean that either τi completed its job before f ′
i or the scheduler would not be work260

conserving. A contradiction with the assumptions of this problem in both cases.261

Therefore, for every t such that ri ≤ t < f ′
i , it holds that

∑i

j=1 execj(ri, t) = t − ri. By262

application of Lemmas 5 and 6 to the LHS, we get263

execi(ri, t) +
i−1∑

j=1

Ŵ 0
j (t − ri, Xj) ≥ t − ri264

Further, applying Lemma 7,265

execi(ri, t) +

i−1∑

j=1

⌈
t − ri + Rj − Xj

Tj

⌉

Xj ≥ t − ri266

The fact that the (transformed) job by τi has not yet completed at t < f ′
i in Ψ′ also means267

(see Lemma 4) that execi(ri, t) < Ci. Substituting to the LHS of the above equation yields268

Ci +
∑i−1

j=1

⌈
t−ri+Rj−Xj

Tj

⌉

Xj > t − ri. ◭269

◮ Corollary 9. Consider a uniprocessor system of constrained-deadline self-suspending tasks and270

one task τi among those, in particular. Assume that the worst-case response time of τi does not271

exceed Ti and also that Rj ≤ Tj , ∀τj ∈ hp(i), where Rj denotes an upper bound on the worst-case272

K. Bletsas et. al. 11

response time of the respective task τj. Then, the worst-case response time of τi is upper-bounded273

by the minimum t greater than 0 for which the following inequality holds.274

Ci +
∑

j∈hp(i)

⌈
t + (Rj − Xj)

Tj

⌉

Xj ≤ t (9)275

276

Proof. Direct consequence of Lemma 8. ◭277

Having proven Corollary 9, what remains to show is the following:278

◮ Lemma 10. Consider a uniprocessor system of constrained-deadline self-suspending tasks and279

one task τi among those, in particular. Assume that Rj ≤ Tj , ∀τj ∈ hp(i), where Rj denotes an280

upper bound on the worst-case response time of the respective task τj. If the worst-case response281

time of τi is greater than Ti or unbounded (which implies that τi is unschedulable), it holds that282

Ci +
∑

j∈hp(i)

⌈
t + (Rj − Xj)

Tj

⌉

Xj > t, ∀t|0 < t ≤ Ti (10)283

284

Proof. By the assumption that Ri > Ti for some task τi, there exists a schedule Ψ such that the285

response time of at least one job of τi is strictly larger than Ti. Consider the first such job in286

the schedule, and suppose that it arrives at time ri. At that instant, there is no other unfinished287

job by τi in the system (or else, this would contradict the assumption that the job arriving at ri288

is the first job of τi whose response time exceeds Ti). So by Lemma 7 we can safely remove all289

other jobs by task τi that arrived before or at time ri, without affecting the response time of the290

job that arrived at time ri. Nor is its response time affected, if we additionally remove all other291

jobs of τi that arrived after time ri. Let fi be the finishing time of the job by τi that arrived292

at ri in the above schedule, after removing all other jobs of that task. We therefore know that293

fi − ri > Ti.294

Then, we can follow all the procedures and steps in the proof of Corollary 9, to eventually295

reach Equation 10. ◭296

The joint consideration of Corollary 9 and Lemma 10, which we have now proven, serves as297

proof of Lemma 2.298

3.2 Discussion299

We had already publicised the flaws in [2, 3] and the proposed fix, immediately upon realising300

the problem, in a technical report [8]. However, this article addresses the issue more rigorously,301

in terms of proofs.302

Note also that Huang et al. already proposed a correct variation of Equation 3 in [12], using303

the deadline Dj of each higher priority task as the equivalent jitter term in the numerator of304

Equation 1 (see Theorem 2 in [12]). Although slightly more pessimistic, this solution has the305

advantage of remaining compatible with Audsley’s Optimal Priority Assignment algorithm [1].306

The fix proposed in Lemma 2, in this article, mirrors the approach taken by Nelissen et al.307

in [15], for which a proof sketch had already been provided (see Theorem 2 in [15]). Later, that308

approach was also extended for a more general result [9]. Compared to [9], the corrected analysis309

in the present article has the following differences:310

12 Errata for three papers on FP scheduling with self-suspensions

1. In [9], the authors combine a second, newer technique for upper-bounding task response times,311

that had not been invented at the time that the papers under correction [2, 3] were published.312

That aspect of their analysis makes it more general.313

2. In [9], the authors assume a model whereby Ci = Xi + Gi, ∀i. Instead, in this article, as in314

[3], we assume a slightly more general model whereby Ci ≤ Xi + Gi. This makes the present315

analysis more general, in that regard, although there is no fundamental reason why the result316

in [9] cannot be similarly extended.317

Other than the above observations, one “side-effect” of the proposed fix is that the WCRT318

estimate output by Equation 3 is no longer guaranteed to always dominate the estimate de-319

rived under the pessimistic but jitterless “suspension-oblivious” approach. In the “suspension-320

oblivious” approach, self-suspensions are treated as regular S/W executions on the processor.321

That is, every task τi ∈ τ is modelled as a sporadic non-self-suspending task with a WCET equal322

to Ci ≥ Xi. Using our notation described above, the corresponding WCRT equation for the323

suspension-oblivious approach is given by:324

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉

Cj (11)325

A simple way for obtaining a WCRT upper bound that dominates the suspension-oblivious326

one is to always pick the smallest of the two WCRT estimates, output by Equations 3 and 11.327

4 The analysis in [7], its flaws and how to fix it.328

For the “linear model” described earlier, a different analysis was proposed in [7]. It uses the ad-329

ditional information available on the execution behaviour of each task, to provide tighter bounds330

on the task WCRTs. That analysis was called synthetic because it attempts to derive the WCRT331

estimate by synthesising (from the task attributes) task execution distributions that might not332

necessarily be observable in practice but (were supposed to) dominate the real worst-case exe-333

cution scenario. Unfortunately, that analysis too, was flawed – and as we will see, the flaw was334

somehow inherited from the “simple” analysis already discussed in Section 3.335

The linear model permits breaking up, for modelling purposes, the interference from each task336

τj upon a task τi into distinct terms Xjk
, each corresponding to one of the software segments of337

τj . These software segments are spaced apart by the corresponding self-suspending regions of τj ,338

which, for analysis purposes, translates to a worst-case offset (see below) for every such term Xjk
.339

This allows in principle, for more granular and hence less pessimistic modelling of the interference.340

However, one problem that such an approach entails is that different arrival phasings between τi341

and every interfering task τj would need to be considered to find the worst-case scenario. This is342

yet undesirable from the perspective of computational complexity.343

The main idea behind the synthetic analysis was to calculate the interference from a higher-344

priority task τj exerted upon the task τi under analysis assuming that the software segments345

and the self-suspending regions of τj appear in a potentially different rearranged order from the346

actual one. This so-called synthetic execution distribution would represent an interference pattern347

that dominates all possible interference patterns caused by τj on τi, without having to consider348

every possible phasing in the release of τj relative to τi. This approach is conceptually analogous349

to converting a task conforming to the generalised multiframe model [4] into an accumulatively350

monotonic execution pattern [14] - with the added complexity that the spacing among software351

segments is asymmetric and also variable at run-time (since the self-suspension intervals vary in352

duration within known bounds).353

K. Bletsas et. al. 13

In terms of equations, the upper bound on the WCRT of a task τi claimed in [7] is given by:354

Ri = Ci +
∑

j∈hp(i)

n(τj)
∑

k=1
Ri>ξOjk

⌈

Ri − ξOjk
+ Aj

Tj

⌉

ξXjk
(12)355

where n(τj) is the number of software segments of the linear task τj and the terms ξXjk
(a356

per-software-segment interference term), ξOjk
(a per-software-segment offset term) and Aj (a357

per-task term analogous to a jitter) are defined in terms of the worst-case synthetic execution358

distribution for τj .359

For a rigorous definition, we refer the reader to [6]. However, for all practical purposes, one360

can intuitively define ξXj1
as the WCET of the longest software segment of τj ; ξXj2

as the WCET361

of the second longest software segment; and so on. Analogously, ξGj1
is the best-case of the362

shortest hardware segment (i.e., self-suspending region) of τj (in terms of their BCETs); ξGj2363

is that of the second shortest one; and so on. However, in addition to the actual self-suspending364

regions of τj , when creating this sorted sequence ξGj1 , ξGj2 , . . . a so-called “notional gap” Nj of365

length Tj − Rj is considered3. For tasks that both start and end with a software segment, this is366

the minimum spacing between the completion of a job by τj (i.e. its last software segment) and367

the time that the next job by τj arrives4 . This is so that the interference pattern considered368

dominates all possible arrival phasings between τj and τi.369

As for ξOjk
, it was defined5 as370

ξOjk
=

{

0, if k = 1
∑k−1

ℓ=1 (ξXjℓ
+ ξGjℓ

), otherwise
(13)371

Finally, Aj is given by372

Aj = Gj − Ĝj (14)373

As we will now demonstrate with the following counter-example, it is in the quantification of374

this final term Aj , that the analytical flaw lies.375

◮ Example 11. Consider a task set with the parameters shown in Table 2. Each task is described376

as a vector consisting of the execution time ranges of its segments in the order of their activation;377

self-suspending regions are enclosed in parentheses. In this example, the execution times of the378

various software segments and self-suspending regions are deterministic. The analysis in [7],379

as sanitised in [6] with respect to the issue of Footnote 3, would be reduced to the familiar380

uniprocessor analysis of Liu and Layland [13] for the first few tasks, since τ1 and τ2 lack self-381

suspending regions. So we would get R1 = 2 and R2 = 4.382

3 In [7], the length of the notional gap was incorrectly given as Tj − Cj . In this paper, we consider the correct
length of Tj − Rj , as in the thesis [6].

4 For tasks that start and/or end with a self-suspending region, the Ĝ of the corresponding self-suspending
region(s) is also incorporated to the notional gap. But that is part of a normalisation stage that precedes
the formation of the worst-case synthetic execution distribution, so the reader may assume, without loss of
generality, that the task both starts and ends with a software segment. For details, see page 115 in [6].

5 It is an opportunity to mention that in the corresponding equation (Eq. 12) of that thesis [6], there existed
two typos: (i) the condition for the first case has “k = 0” instead of “k = 1” and (ii) the right-hand side for
the second case does not have parentheses as should. We have rectified both typos in Equation 13 presented
here.

14 Errata for three papers on FP scheduling with self-suspensions

τi execution distribution Di Ti

τ1 [2] 5 5

τ2 [2] 10 10

τ3 [1, (5), 1] 15 15

τ4 [3] 20 ∞

Table 2 A set of linear tasks where the numbers within parentheses represent the lengths of the

self-suspending regions and the other numbers represent the lengths of the S/W execution regions.

Using Equation 12 for τ3 would yield R3 = 19. Note that since the software segments and383

the intermediate self-suspending region of τ3 execute with strict precedence constraints, it is also384

possible to derive another estimate for R3 by calculating upper bounds on the WCRTs of the385

software/hardware segments and adding them together6. Doing this, and taking into account386

that the hardware operation suffers no interference, yields R3 = 5 + G3 + 5 = 15. This is in fact387

the exact WCRT, as evidenced in the schedule of Figure 5, for the job released by τ3 at t = 0.388

Next, to obtain R4 we need to generate the worst-case execution distribution of τ3. Since, in389

the worst-case, τ3 completes just before its next job arrives (see time 15 in Figure 5) its “notional390

gap” N3 = (T3 − R3) is 0. Then, the synthetic worst-case execution distribution for τ3 is391

[1, (0), 1, (5)]392

which is equivalent to a non-self-suspending task with a WCET C3 = 2.393

From the fact that software and self-suspending region lengths are deterministic, we also have394

A3 = 0 (using Equation 14). In other words, to compute R4 according to this analysis is akin395

to replacing τ3 with a (jitterless) sporadic task without any self-suspension, with C3 = 2 and396

D3 = T3 = 15. Then, the corresponding upper bound computed with Equation 12 for the WCRT397

of τ4 is R4 = 15.398

However, the schedule of Figure 5, which is perfectly legal, disproves this. In that schedule,399

τ1, τ2, and τ3 arrive at t = 0 and a job by τ4 arrives at t = 40 and has a response time of 18 time400

units, which is larger than the value obtained for R4 with Equation 12. Therefore, the analysis401

in [7] is also flawed.402

For the purposes of fixing the analysis, we note that the characterisation of the interference403

by τj upon τi is correct for any schedule where no software segment by τj interferes more than404

once with τj . This holds by design, because the longest software segments and the shortest405

interleaved self-suspending regions are selected in turn (according to the property of accumulative406

monotonicity). Moreover, even in the case that there is interference multiple times by one or more407

software segments of the synthetic τj , i.e., when some γ segments interfere β > 1 times with τi and408

the remaining segments interfere β − 1 times with it, by the design of the equation it is ensured409

that these are its γ longest segments and that they are clustered together in time as closely as410

possible. Therefore, the problem lies in the quantification of the per-task term Aj , that acts as411

jitter for the task execution. Given that, for the simpler dynamic model, it was shown before412

that a value of Rj − Xj for this jitter was safe, one may conjecture that using Aj = Rj − Xj413

would also make the synthetic analysis for the segmented linear self-suspension model safe. After414

6 In [6], the definition of WCRT is extended from tasks to software or hardware segments: The WCRT Rij
of a

segment τij
is the maximum possible interval from the time that τij

is eligible for execution until it completes.
This approach of computing the WCRT of a self-suspending task by decomposing it in subsequences of one
or more segments and adding up the WCRTS of those subsequences is also described there.

K. Bletsas et. al. 15

Figure 5 A schedule, for the task set of Table 2, that highlights the flawedness of the synthetic

analysis [7]. The job released by τ4 at time 40 has a response time of 18 time units, which is more than

the estimate for R4 (i.e., 15) output by the analysis presented in [7].

all, in the latter model, there is a smaller degree of freedom, in the execution and self-suspending415

behaviour of the tasks.416

Indeed, not only is the above conjecture true, but below we are going to show that a smaller417

jitter term of Aj = Rj − Xj − Ĝ also works and makes the analysis safe.418

◮ Lemma 12. Consider a uniprocessor system of constrained-deadline linear (i.e., segmented)419

self-suspending tasks and one task τi among those, in particular. If for every task τj ∈ hp(i) an420

upper bound Rj ≤ Tj on its WCRT exists, and, additionally, the smallest positive solution Ri to421

the following recursion is upper-bounded by Ti, then the WCRT of is τi is upper-bounded by Ri,422

as defined below.423

Ri = Ci +
∑

j∈hp(i)

n(τj)
∑

k=1
Ri>ξOjk

⌈

Ri − ξOjk
+ Aj

Tj

⌉

ξXjk
(15)424

where425

ξOjk
=

{

0, if k = 1
∑k−1

ℓ=1 (ξXjℓ
+ ξGjℓ

), otherwise
426

and427

Aj = Rj − Xj − Ĝk428

Proof. Let us convert the self-suspension of τi to computation. Then, whenever τi is present in429

the system and a higher-priority task is executing τi is preempted. Then the response time of a430

job of τi is maximised if the total execution time by higher-priority tasks, between its release and431

its completion, is maximised. Therefore we can upper-bound the WCRT of τi by upper-bounding432

the total execution time of higher-priority tasks during its activation. We are, pessimistically,433

going to do that by upper-bounding the execution time of every τj ∈ hp(i) and then taking the434

sum.435

16 Errata for three papers on FP scheduling with self-suspensions

Figure 6 Illustration of the minimum time separation between two different instances of a segment of

the same task τj .

Consider some τj ∈ hp(i). Without loss of generality we will consider the canonical form436

where it both starts and ends with a software segment. Then, it has the form437

[xj1
, gj1

, xj2
, . . . , gjn(τj)−1

, xjn(τj)
]438

Let us consider one software segment xjk
. As shown in Figure 6, from the moment that this439

segment completes, until another instance of the same segment (belonging to the next job of τj)440

executes for one time unit, there is a minimum time separation. Indeed:441

All subsequent self-suspensions and software segments of the original job (if any) must execute,442

i.e., gjk
, xjk+1

, . . . , gjn(τj)−1
, xjn(τj)

.443

Then, there is at least Nj = Tj − Rj time units until the next job of τj arrives (i.e., what we444

earlier called the notional gap).445

Then all preceding software segments and self-suspensions (if any) of the next job of τj must446

complete, i.e., [xj1 , gj1 , xj2 , . . . , gjk−1
]447

The workload generated by τj in any window of a given length is maximised when its execution448

segments execute for their respective WCETs and those belonging to jobs released after τi are449

released as early as possible where as those belonging to a carry-in job by τj (if any) are released450

as late as possible. This implies that self-suspending regions of τj overlapping with that time451

window execute for their respective minimum suspension time. Under this scenario, it follows452

that the minimum time separation between time instants where two different instances of segment453

xjk
execute is454

∑

k≤ℓ≤n(τj)−1

Ĝjℓ
+

∑

k<ℓ≤n(τj)

Xjℓ
+ Tj − Rj
︸ ︷︷ ︸

notional gap

+
∑

1≤ℓ≤k−1

Xjℓ
+

∑

1≤ℓ≤k−1

Ĝjℓ
455

= Tj − Rj + Xj + Ĝj − Xjk
(16)456

This is also illustrated in Figure 6. Note that for successive instances of xjk
released no earlier457

than τi, under this worst-case scenario, the corresponding minimum time separation is Tj − Xjk
.458

This means that, in the above scenario, within any time interval of length ∆t ≤ Tj − Rj +459

Xj + Ĝj − Xjk
, the execution by segment xjk

is at most Xjk
time units. And within any time460

interval of length ∆t = (Tj − Rj + Xj + Ĝj) + M , with M > 0, the total execution time by461

segment xjk
is no more than Xjk

+ ⌊ M
Tj

⌋Xjk
+ min(Xjk

, M − ⌊ M
Tj

⌋Tj).462

This means that, over a time interval of length ∆t, the worst-case amount of execution by463

segment xjk
is the same as the corresponding worst-case amount of execution, over an interval of464

length ∆t, of an independent periodic non-suspending task with a WCET equal to Xjk
, a period465

of Tj and a release jitter equal to (Rj − Xj − Ĝj).466

K. Bletsas et. al. 17

Then, for any particular given phasing of the interfering tasks, the response time of a job of467

τi is upper-bounded by the smallest solution to468

R∗
i = Ci +

∑

j∈hp(i)

∑

xjk
∈τj

⌈

R∗
i + (Rj − Xj − Ĝj) − Ojk

Tj

⌉

0

Xjk
(17)469

where Ojk
is an offset that describes the phasings of the different segments and ⌈·⌋0

def
=470

(max⌊·⌉, 0).471

Now, observe that the leftmost interfering segment of τj , within the interval under consider-472

ation, will not necessarily be τj1 . It could be any other segment, depending on the release offset.473

So, it will not hold in the general case that Ojk
< Ojk+1

, k ∈ {0, 1, n(τj)}. Let us use introduce474

some notation to refer to the segments of τj by the order that they first appear in the time interval475

under consideration. So, if the βth segment of τj is the one to appear first (i.e., leftmost), then476

let477

x′
j1

def
= xjβ

478

and479

x′
jk

def
= xjβ+k−1

, ∀k ∈ {1, 2, . . . , n(τj)}480

Accordingly Equation 17 can be rewritten as481

R∗
i = Ci +

∑

j∈hp(i)

∑

x′

jk
∈τj

⌈
R∗

i + A′
j − O′

jk

Tj

⌉

0

X ′
jk

(18)482

where A′
j = Rj − Xj − Ĝj and it will hold that O′

jk
< O′

jk+1
, k ∈ {0, 1, n(τj)}. Intuitively,483

the RHS is maximised when the O′
jk

positive offsets are minimised. And a lower-bound on each484

of those is485

O′
j1

= 0486

O′
j2

= X ′
j1

+ Ĝ′
j1

487

. . .488

O′
jk

=

(
k−1∑

ℓ=1

X ′
jℓ

)

+

(
k−1∑

ℓ=1

Ĝ′
jℓ

)

, k ∈ {1, . . . , n(τj)} (19)489

where g′
jk

is defined as the self-suspension interval immediately after segment x′
jk

(or, the490

notional gap, in the special case that x′
jk

is xjn(τj)
.)491

Now compare Equation 19 with Equation 15, from the claim of this lemma. By the design of492

the latter equation, it holds that493

ξXjk
≥ X ′

jk
, ∀j, k ∈ {1, 2, . . . , n(τj)}494

ξOjk
≤ O′

jk
, ∀j, k ∈ {1, 2, . . . , n(τj)}495

18 Errata for three papers on FP scheduling with self-suspensions

Aj = A′
j496

This means that the RHS of Equation 15 dominates the RHS of Equation 18, so the respective497

solution to the former upper-bounds the response time of τi under any possible combination of498

release phasings of higher-priority tasks. This proves the claim. ◭499

5 Additional discussion500

Priority assignment: In [2], it was claimed that the bottom-up Optimal Priority Assignment501

(OPA) [1] algorithm could be used in conjunction with the simple analysis. However, once the502

proposed fix is applied, it becomes evident that this is not the case. Namely, we now need503

knowledge of Rj , ∀j ∈ hp(i) in order to compute Ri. In turn, these values depend on the relative504

priority ordering of tasks in hp(i). This contravenes the basic principle upon which OPA relies [1].505

Resource sharing In [3], WCRT equations are augmented with blocking terms, for resource506

sharing under the Priority Ceiling Protocol. However, there was an omission of a term in those507

formulas (since those blocking terms have to be multiplied with the number of software segments508

of the task – or, equivalently, the number of interleaved self-suspensions plus one). This has509

already been acknowledged and rectified in [6], p. 101, but we repeat it here too, since this is the510

erratum for that paper.511

Multiprocessor extension of the synthetic analysis In Section 4 of [7], a multiprocessor512

extension of the synthetic analysis is sketched, assuming multiple software processors and a global513

fixed-priority scheduling policy. Showing whether or not this would work for the corrected analysis514

is a conjecture that we would like to tackle in future work.515

6 Some experiments516

Finally, we provide some small-scale experiments, with synthetic randomly-generated tasks in517

order to have some indication about:518

The performance of the corrected analysis techniques, as compared to the baseline suspension-519

oblivious approach.520

The extent by which the original flawed techniques were potentially optimistic.521

The metric by which we compare the approaches is the scheduling success ratio. We gen-522

erated7 hundreds of implicit-deadline task sets with n = 6 tasks each. The total processor523

utilisation (
∑n

i=1
Xi

Ti
) of each task set did not exceed 1, in order to avoid generating task sets524

that would be a priori unschedulable. Additionally, the suspension-oblivious task set utilisation525

(
∑n

i=1
Ci

Ti
) of each task set ranged between 0.6 and 1.2, with a step of 0.05. Each generated task526

consisted of 3 software segments and 2 interleaved self-suspending regions. For simplicity, the527

best-case execution time of each software segment and self-suspending region matched its worst-528

case execution time. Task inter-arrival times were uniformly chosen in the range 105 to 106. For529

each suspension-oblivious task set utilisation (i.e., 0.6, 0.65, . . ., 1.2) we generated 100 such task530

sets. For each target suspension-oblivious utilisation we used the randfixedsum function [11] to531

randomly generate the suspension-oblivious utilisations of the individual tasks, which could not532

7 We are grateful to José Fonseca, for having granted us use of his Matlab-based task generator and schedulab-
ility testing tool, which he has been developing in the context of his ongoing PhD.

K. Bletsas et. al. 19

exceed 1. Then, the suspension-oblivious execution time Ci of each task was derived by multiply-533

ing with the task inter-arrival time Ti. Subsequently, for each task, we randomly generated its534

Xi and Gi parameters: Gi was randomly chosen between 5% and 50% of Ci and Xi was set to535

Ci −Gi. The function randfixedsum was again invoked to randomly generate the execution times536

of the individual software segments and self-suspending regions from Xi and Gi, respectively.537

Figure 7 plots the results from applying the following schedulability tests.538

obl The baseline suspension-oblivious approach (Equation 11).539

simple The simple approach from [2, 3] as corrected in Section 3 (namely Equation 3).540

simple∪obl Applying both “simple” and “obl” and picking the smallest WCRT.541

synth The “synthetic” approach from [7], already partially corrected8 in the Thesis [6] and542

as further corrected in Section 4 (namely Equation 15, that uses for Aj the value perscribed543

by Lemma 12).544

synth∪obl Applying both “synth” and “obl” and picking the smallest WCRT of the two.545

simple-bad The original, flawed technique from [2, 3], which was proven to be unsafe in546

Section 3.547

synth-bad The “synthetic” analysis technique from [7], as partially corrected in [6], which548

was proven unsafe in Section 4.549

The main findings from this experiment are as follows:550

1. The suspension-oblivious analysis trails all other approaches in performance.551

2. The benefits of the synthetic approach over the simple approach when used as a schedulability552

test are limited but non-negligible.553

3. Combining either of the suspension-aware tests with the suspension-oblivious test offers a slight554

improvement in the middle region of the plot. This means that a small but not negligible555

number of task sets is found schedulable by the suspension-oblivious test but not by the556

suspension-aware tests.557

4. The original flawed formulations of the simple and the synthetic analysis “perform” identic-558

ally. The region of the plot enclosed between these curves and synth∪obl upper-bounds the559

potential incidence of task sets that are in fact unschedulable but would have been erroneously560

deemed schedulable by those flawed tests.561

7 Conclusions562

It is very unfortunate that the above flaws found their way to publication undetected. However,563

as obvious as they may seem in retrospect, they were not at the time to the authors and reviewers564

alike. At least, this errata paper comes at a time when the topic of scheduling with self-suspensions565

is attracting more attention by the real-time community. Therefore we hope that it will serve as566

a stimulus for researchers in the area to revisit past results and scrutinise them for correctness.567

For more details regarding the state of the art, Chen et al [10] have recently provided high-level568

summaries of the general analytical methods for self-suspending tasks, the existing flaws in the569

literature, and potential fixes.570

Acknowledgements571

This paper is supported by DFG, as part of the Collaborative Research Center SFB876 (http://sfb876.tu-572

dortmund.de/) project B2.573

8 With respect to the length of the “notional gap”.

20 Errata for three papers on FP scheduling with self-suspensions

References

1 N. C. Audsley. On priority assignment in fixed pri-
ority scheduling. Information Processing Letters,
79(1):39–44, 2001.

2 N. C. Audsley and K. Bletsas. Fixed priority tim-
ing analysis of real-time systems with limited par-
allelism. In Proc. 16th Euromicro Conf. on Real-
Time Systems (ECRTS), pages 231–238, 2004.

3 N. C. Audsley and K. Bletsas. Realistic analysis
of limited parallel software/hardware implement-
ations. In Proc. 10th IEEE Real-Time and Em-
bedded Technology and Applications Symposium
(RTAS), pages 388–395, 2004.

4 Sanjoy K. Baruah, Deji Chen, Sergey Gorinsky,
and Aloysius K. Mok. Generalized multiframe
tasks. Real-Time Systems, 17(1):5–22, 1999.

5 Marko Bertogna, Michele Cirinei, and Giuseppe
Lipari. New schedulability tests for real-time task
sets scheduled by deadline monotonic on multi-
processors. In Proc. 9th Int. Conf. on Principles
of Distributed Systems (OPODIS), pages 306–321,
2005.

6 K. Bletsas. Worst-case and Best-case Timing Ana-
lysis for Real-time Embedded Systems with Limited
Parallelism. PhD thesis, Dept of Compputer Sci-
ence, University of York, UK, 2007.

7 K. Bletsas and N. C. Audsley. Extended analysis
with reduced pessimism for systems with limited
parallelism. In Proc. 11th Int. Conf. on Embedded
and Real-Time Computing Systems and Applica-
tions (RTCSA), pages 525–531, 2004.

8 Konstantinos Bletsas, Neil C. Audsley, Wen-Hung
Huang, Jian-Jia Chen, and Geoffrey Nelissen. Er-
rata for three papers (2004-05) on fixed-priority
scheduling with self-suspensions. Technical report,
CISTER Research Centre, ISEP, Porto, Portugal,
2015.

9 Jian-Jia Chen, Wen-Hung Huang, and Geoffrey
Nelissen. A unifying response time analysis

framework for dynamic self-suspending tasks. In
Proc. 28th Euromicro Conf. on Real-Time Sys-
tems (ECRTS), 2016.

10 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung
Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard,
Frédéric Ridouard, Neil, Audsley, Raj Ra-
jkumar, Dionisio de Niz, and Georg von der
Brüggen. Many suspensions, many problems:
A review of self-suspending tasks in real-time
systems. Technical Report 854, 2nd version,
Faculty of Informatik, TU Dortmund, 2017.
http://ls12-www.cs.tu-dortmund.de/daes/

media/documents/publications/downloads/

2017-chen-techreport-854-v2.pdf.
11 P. Emberson, R. Stafford, and R. I. Davis. Tech-

niques for the synthesis of multiprocessor tasksets.
In Proc. 1st International Workshop on Analysis
Tools and Methodologies for Embedded and Real-
time Systems (WATERS 2010), pages 6–11, 2010.

12 Wen-Hung Huang, Jian-Jia Chen, Husheng Zhou,
and Cong Liu. PASS: Priority assignment of real-
time tasks with dynamic suspending behavior un-
der fixed-priority scheduling. In To appear in the
proceedings of the 52nd Design Automation Con-
ference (DAC), 2015.

13 C. L. Liu and James W. Layland. Scheduling al-
gorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61,
1973.

14 A. K. Mok and D. Chen. A multiframe model for
real-time tasks. In Proc. 17th IEEE Real-Time
System Symposium (RTSS), pages 22–29, 1996.

15 Geoffrey Nelissen, José Fonseca, Gurulingesh
Raravi, and Vincent Nelis. Timing analysis of
fixed priority self-suspending sporadic tasks. In
Proc. 27th Euromicro Conf. on Real-Time Sys-
tems (ECRTS), 2015.

K. Bletsas et. al. 21

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

20

40

60

80

100
obl

simple

simple + obl

simple-bad

synth

synth + obl

synth-bad

Figure 7 A comparison of the performance of different schedulability tests. The y-axis is the fraction

of task sets deemed schedulable. The x-axis is the suspension-oblivious task set utilisation, defined as
∑n

i=1

Ci

Ti
. The original flawed variants of the analysis techniques corrected by this paper are also included

in the plot.

	Introduction
	Process model and notation
	The simple model
	The linear model

	The analysis in ecrts:2004,rtas:2004, its flaws and how to fix it.
	Proof of Lemma 2
	Discussion

	The analysis in rtcsa:2005, its flaws and how to fix it.
	Additional discussion
	Some experiments
	Conclusions

