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An individual’s ecological environment affects their mortality risk, which in

turn has fundamental consequences for life-history evolution. Inmany species,

social relationships are likely to be an important component of an individual’s

environment, and therefore theirmortality risk. Here, we examine the relation-

ship between social position and mortality risk in resident killer whales

(Orcinus orca) using over three decades of social and demographic data.

We find that the social position of male, but not female, killer whales in

their social unit predicts their mortality risk. More socially integrated males

have a significantly lower risk of mortality than socially peripheral males, par-

ticularly in years of low prey abundance, suggesting that social position

mediates access to resources. Male killer whales are larger and require more

resources than females, increasing their vulnerability to starvation in years

of low salmon abundance. More socially integrated males are likely to have

better access to social information and food-sharing opportunities which

may enhance their survival in years of low salmon abundance. Our results

show that observable variation in the social environment is linked to variation

inmortality risk, and highlight how sex differences in social effects on survival

may be linked to sex differences in life-history evolution.

1. Introduction
An individual’s mortality risk, their chance of dying at a given time, has funda-

mental evolutionary consequences [1]. Many aspects of life history have been

shown to be linked to mortality risk such as age at first reproduction, parental

care strategy and senescence [2]. Interestingly, males and females of the same

species often have differingmortality risks due to their differing reproductive strat-

egies [3]. For example, costly displays and intrasexual aggression increase the risk

of male mortality in many mammal and bird species [4–6]. This has in turn been

linked to life history; for example, higher rates of senescence have been reported in

males of some polygynous species [7]. Understanding factors that govern themor-

tality risk of individuals has the potential to explainmany important aspects of life

history and behaviour, and why they vary between the sexes.

Social behaviour is important for many species and may affect individual

mortality risk. In humans, for example, mortality risk has been linked to a variety

of aspects of sociality (e.g. [8–10]). Social behaviours are usually direct, occurring

between pairs or groups of individuals. However, an important feature of social

behaviour is that these direct interactions form part of a complex network of inter-

actions. An individual’s position within this network, their social position,
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depends partly on their own interactions and partly on the

interactions of others. An individual’s social position will

determine in part its access to resources and social information

(information that can be learnt by observation of, or inter-

action with, other individuals [11–16]) and may therefore

have implications for their mortality risk. Indeed, in several

species social position has been linked to early life mortality

risk [17–20]. However, the difficulty in collecting long-term

dynamic social data means that the proximate mechanism by

which sociality can affect mortality risk over the lifetime of

individuals are largely unknown. To understand the ultimate

processes driving the evolution of life-history strategies, and

why these strategies may differ between the sexes, it is impor-

tant to understand the link between social position and

mortality risk.

Killer whales (Orcinus orca) are a particularly interesting

species in which to study the relationship between sociality,

sex, ecology and mortality risk. They are highly social: resident

killer whales off the Pacific Northwest coast of the USA and

Canada live in hierarchical societies [21], the social structure of

which changes in different ecological conditions [22]. Social

information is important to allowwhales to find food, especially

when resources are scarce [23], and family relationships also

have important effects on the survival of individuals [24,25].

Male killer whales differ from females in their body mass [26],

feeding habits [27] and likelihood of responding to social infor-

mation [23]. In addition, resident killer whales have sexually

divergent lifespans, with females who reachmaturity predicted

to live to 53, whereas males who reach maturity are unlikely to

survive past 29 [25]. Killer whales are also one of only three

mammals where females are known to have an evolutionary

significant post-reproductive lifespan [28]. The importance of

social relationships, their sexually divergent lifespans and

their unusual life histories make killer whales a good species

in which to study the relationship between sociality and

mortality risk.

Here, we test the hypothesis that social position is linked

to mortality risk in resident killer whales using 34 years of

social and demographic data. Specifically, we (i) quantify the

relationship between social position and survival in male and

female resident killer whales and (ii) link this to resource abun-

dance, to give an insight into the proximate mechanisms

driving the relationship between sociality and mortality.

2. Methods

(a) Study site
This study was conducted on the southern resident killer whales
inhabiting the waters off the coast of Washington State, USA
and British Colombia, Canada. The population has been studied
by annual photographic census undertaken by Orca Survey since
1976. In the summer, the southern residents inhabit the area
around the San Juan islands, feeding almost exclusively on
Chinook salmon (Oncorhynchus tshawytscha) [29,30]. The abun-
dance of salmon in a given year has a significant impact on the
mortality risk of resident killer whales [29,30]. The southern resi-
dents are a closed population of 71–98 individuals (between
1976 and 2010), with no social or genetic exchange with other
sympatric killer whale populations [31,32]. Resident killer
whales inhabit a hierarchical society. The smallest unit is the
matriline consisting of the offspring and grand offspring of a
female [21] and neither sex disperse, staying in close association
with their matriline their whole life [21]. Higher levels include

pod, community and clans, sharing broadly similar dialects
and movement patterns [21].

(b) Data
Social associations were taken from the annual photographic
census of whales between 1976 and 2010. Whales photographed
within three body lengths (or within three body lengths of another
groupmember) were considered to be part of the same group (elec-
tronic supplementary material, S1). Association groups were
defined within an encounter (an observation of a group/groups
of whales; see electronic supplementary material, S1). Group sizes
ranged from single individuals to aggregations of 24 whales, with
a mean of 2.5 whales per group. Each whale was observed a
mean (+standard error) of 31.3+0.67 times per year. Pairs of
whales were observed together from 1 to 149 times per year with
a mean (+standard deviation) of five (+7.9) observations per
dyad.We use these association groups to construct a social network
based on the ‘gambit of the group’ paradigm with the strength of
association between two individuals calculated based on simple
ratio indices [33,34] (see electronic supplementary material, S1).
Whales in close association have the opportunity to hunt together
and share food [27]. Our association measure therefore indicates
the frequency with which individuals hunt, travel and socialize
together. For the years 1990–2010, all data from a given year
wereused to calculate a single socialnetwork for eachyear. Between
1976 and 1989, there was a comparatively lower sampling effort
and photographic data were sparser than in later years. To ensure
that we had sufficient data to reliably infer social structure [33],
in these early yearswe combined data into 2-year sampling periods
to construct the social networks. The southern resident killerwhales
are monitoredwhen they are inshore during the salmon runs in the
summer. Over winter, they are usually further offshore and not
observed.Most deaths occur over thewinter. Awhale is considered
to have died in a given sampling period if they are not observed in
the next summer (electronic supplementary material, S1).

Salmon abundance in the Pacific Northwest varies greatly
between years based on the El Niño–Southern Oscillation and,
more recently, fishing activity [35,36].We use the salmon index cal-
culated from test fisheries (begun in 1979) taken in the summer
range of the southern resident killer whales as an estimate of
salmon abundance ([37]; also used in [22,23]). The absence of
data means that data from 1976 to 1978 are not included in the
analysis including salmon abundance. Approximately half of all
whale deaths occur in years with the lowest quartile of salmon
abundance (34 of 65 deaths). For analysis, we classify the years
with this lowest quartile of abundance as low salmon years, and
the other years as high salmon years.

(c) Social communities
Resident killerwhales preferentially associatewith a small number
of individuals [21]. This is reflected in the distribution of social
association strength in the community [38], which is characterized
by some strong bonds and many weaker bonds (mean+ s.d.
social differentiation, S ¼1.09+0.18; electronic supplementary
material, S1). The biologically relevant social position for a
whale with regard to survival and ecology is most likely to be
within these smaller groups of important associates, rather than
over the whole population. In this study, we therefore concen-
trate on an individual’s social position within these networks of
preferential associates.

We use community analysis to allow the groups of preferential
associations to emerge from the patterns of social interaction.
Communities were detected in each weighted annual social struc-
ture using a random walk algorithm [39]. Communities were
defined independently in each network (example: figure 1).
These communities are a good representation of the social struc-
ture of the population as a high proportion of social associations
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are within, rather than between, communities: modularity was in
the range 0.63–0.84. The killer whale population is significantly
more modular than random (1000 data-stream permutations
[see below], p, 0.001 in all years; median modularity of per-
muted datasets was 0.13 [interquartile range ¼ 0.07–0.23]).
The assignment of individuals to communities is robust. Individ-
uals assigned to the same community in the original dataset are
consistently grouped together in 1000 bootstrapped replicates:
rcom ¼ 0.81+0.01 (mean+ standard deviation; electronic sup-
plementary material, S1; [40,41]). As a measure of confidence in
our calculatedwithin-community network structure, we estimated
the correlation between our observed association indices and the
‘true’ association indices [38]. Our within-community association
indices are a good (greater than 0.4, [38]) reflection of the
‘true’ association pattern: mean (+standard deviation) annual
r ¼ 0.75+0.09 (electronic supplementary material, S1; [38]).

Annually, the population contained a median of six large
(greater than five whales; see below) communities (range 5–9).
Each large community contained an average of 11+5.9 (mean+
standard deviation)whales. Communities tend to consist of amatri-
line, extendedmatriline or group of regularly associatingmatrilines.
Throughout this studyweuse ‘community’ to refer to the small units
derived from the social associations, rather than the larger separation
between the northern and southern resident populations, which
have also sometimes been referred to as communities [21].

(d) Quantifying social position
Social centrality is perhaps the most commonly used measure of
social position. In essence, social centrality describes howwell con-
nected an individual is to others in their social system [33]. Social
centrality therefore describes how well positioned an individual
is to receive, for example, information, resources or disease from
other members of their society [11–15]. In practice, an individual’s
likelihood of accessing resources or information held by other indi-
viduals will depend on two factors: (i) their direct connections to
others, governed partly by their own social decisions, and (ii)
their indirect connections to others in their community, which

partly depend on the social choices of others [42]. We use two
measures to capture the indirect anddirect aspects of social central-
ity: closeness and degree. Closeness is the inverse of the average
path length: the (weighted) number of steps from one individual
to all others in the community. A high closeness indicates small
number of weighted steps to all other individuals in the commu-
nity and therefore a high social centrality. Degree is a simple
unweighted count of a whale’s associates. This can be seen as a
measure of the number of social partners an individual has and
hence their potential access to information and resources held by
other members of the community [33]. Closeness depends on an
individual’s social position in the network and the indirect inter-
actions, and the strength of the interactions, it has with other
individuals. In contrast, degree depends only on an individual’s
direct associations. In this study, we are interested in an individ-
ual’s social position within their network of close associates,
their community. We therefore calculated centrality measures
(community closeness and community degree) within an individ-
ual’s local social community. To account for differing sizes
of communities and annual populations, both measures were
normalized for analysis. Measures were not calculated on commu-
nities with fewer than five whales, as patterns of social connection
are limited in such small groups. Additionally, as closeness is
highly skewed, it was also ranked within the network before nor-
malization. These two measures quantify different but related
aspects of social centrality. As would be expected, the measures
are correlated, but the correlation is weak and highly variable
(see electronic supplementary material, S2).

(e) Statistical analysis
We use survival analysis to investigate the social factors affecting
the mortality of whales over their observed lifetime. Survival
analysis describes an individual’s probability of surviving
beyond a specified time [43]. We analyse mortality risk using
Cox proportion hazard (Cox PH) models which describe how
the instantaneous risk (hereafter risk) of death occurring at a
given time is affected by covariates. We use extended Cox PH
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models to investigate how a whale’s probability of survival is
affected by their position within the social network, which can
change with time. For each Cox PH model we report the estimated
hazard ratio (Haz.: calculated as the exponential of themodel coeffi-
cient). A hazard ratio of exactly 1 indicates no differences in risk of
mortality as the variable changes; a hazard ratio of less than 1, there-
fore, indicates a decreasing risk of mortality with a higher value of
the variable. The hazard ratio is directly equivalent to increases (or
decreases) in mortality risk per unit of variable i.e. a hazard ratio
of 0.25 indicates a 75% decrease in the risk of mortality per unit of
variable. Generalized linear mixed-effect models (GLMMs) were
used for analyses not investigating survival. All GLMMs have a
binomial error structure with whale identity as a random effect.

To account for the inherent autocorrelation in network data, we
used permutations to produce a null distribution to compare to the
observed data. Unless indicated otherwise, analyses presented here
are based within social communities. For this within-community
analysis, we used 10 000 within-community node permutations to
produce the null models (see electronic supplementary material,
S1). When analysing at the population level (rather than the
within-community level), we used 10 000 data-stream permu-
tations to produce the null models (indicated by superscript d.s. by
the test name; see electronic supplementarymaterial, S1). Addition-
ally within each permutation, for whales of unknown sex we
assigned a sex at random with 1000 imputations per null model.
The mean network statistic of these 1000 sex imputations was
usedas thenetwork statistic for that iterationof thebroader network
permutation. Permuted null models were created for all Cox PH
models [15], and GLMMs analysing networked data. For each per-
mutation of the data themodel (CoxPHorGLMM) is applied to the
randomized data. These permuted data are used to create a null
distribution of the test statistic which is then compared to the
observed value [33]. For permuted analyses, reported p values indi-
cate the number of times the simulated test statisticwas greater than
orequal to the observed test statistic (sample included in the numer-
ator and denominator [44]). For analysis not including network
statistics, permutations were not used (indicated by the superscript
n.p by the test name). All analyses were performed in R using the
igraph, ggplot2, lme4 and survival packages.

3. Results

(a) Sex, centrality and survival
Within social communities, both direct and indirect social cen-

trality significantly relates to the survival probability of male,

but not female killer whales. Males with a higher community

closeness (a measure of indirect centrality) have a significantly

lower mortality risk than whales with a lower community clo-

seness (Haz. ¼ 0.33+0.2; Cox PH, z ¼ 21.67, events (e) ¼ 41,

p ¼ 0.0366; figure 2a). In contrast, the survival of female killer

whales is unrelated to their closeness centrality (Haz. ¼

1.06+0.72; Cox PH, z ¼ 0.03, e ¼ 40, p ¼ 0.6924; figure 2b).

Similarly, males associating with a larger number of individ-

uals in their community (within-community degree) have a

significantly lower mortality risk than individuals with fewer

associates (Haz. ¼ 0.21+0.14; Cox PH, z ¼ 21.95, e ¼ 41,

p ¼ 0.0009). In contrast, female within-community degree

does not significantly influence survival (Haz. ¼ 0.85+0.66;

Cox PH, z ¼ 20.005, e ¼ 40, p ¼ 0.112). The effect of social cen-

trality on survival is not simply an artefact of social group size:

network community size does not influence the survival of

either sex (male, Haz. ¼ 0.99+0.02, Cox PHd.s., z ¼ 20.42,

n ¼ 860, e ¼ 41, p ¼ 0.8529; female, Haz. ¼ 0.406+0.26,

z ¼ 21.76, n ¼ 1410, e ¼ 39, p ¼ 0.7999).

(b) Centrality, survival and salmon
We find that both male (Haz. ¼ 0.10+0.09; Cox PHn.p.,

z ¼ 22.7, n ¼ 825, p ¼ 0.001) and female (Haz. ¼ 0.03+0.03;

Cox PHn.p., z ¼ 24.16, n ¼ 1335, p, 0.001) survival is signifi-

cantly related to salmon abundance. Salmon abundance

has an important influence on the relationship between

social position and male survival; in years of low salmon

abundance, males with high social centrality have a lower

mortality risk (community degree: Haz. ¼ 0.002+0.006; Cox

PH, z ¼ 23.24, e ¼ 41, p ¼ 0.0001; community closeness:

Haz. ¼ 0.02+0.038; Cox PH, z ¼ 22.28, e ¼ 41, p ¼ 0.014;

figure 3). In contrast, in years of higher salmon abundance,

social centrality does not significantly relate to male morta-

lity risk (community degree: Haz. ¼ 0.641+0.72; Cox

PH, z ¼ 20.24, e ¼ 41, p ¼ 0.06; community closeness:

Haz. ¼ 1.03+0.92, Cox PH, z ¼ 20.10, e ¼ 41, p ¼ 0.4706;

figure 3). The survival of females is not significantly related

to their social centrality in years of either low salmon abun-

dance (community degree: Haz. ¼ 0.36+0.42; Cox PH,

z ¼ 20.72, e ¼ 39, p ¼ 0.215; community closeness: Haz. ¼

0.51+0.52; Cox PH, z ¼ 20.53, e ¼ 39, p ¼ 0.3046) or high

salmon abundance (community degree: Haz.¼ 0.95+1.2,
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Cox PH, z¼ 0.09, e¼ 39, p ¼ 0.1168; community closeness:

Haz. ¼ 1.54+1.77, Cox PH, z¼ 0.17, e ¼ 39, p¼ 0.4706).

Interestingly, males do not have a higher degree in

years of low salmon abundance (GLMM: b ¼ 0.14, z ¼ 0.46,

n ¼ 742, p ¼ 0.2449). This suggests that even though degree

is important for survival in years when salmon are scarce,

males do not appear to increase their direct centrality by

associating with more individuals.

4. Discussion
Our results show that the survival of male, but not female,

southern resident killer whales is significantly related to

their social position in their local community. Males in

the most central social positions (indirect centrality) have

one-third of the mortality risk of those in the least central

social positions. This is linked to salmon abundance: social

position is only related to male survival in years of low

salmon abundance.

Social position could affect the survival ofmales bymediat-

ing their access to resources via a number of mechanisms. For

example, social information about the location of salmon has

been shown to be important for resident killer whales who

often follow post-reproductive females during collectivemove-

ment, particularly during years of low salmon abundance [23].

A central social position may also increase a male’s likelihood

of receiving food from other whales. Resident killer whales,

particularly females, often share fish that they catch with

close associates [27]. An individual with more associates may

be more likely to be the recipient of these food-sharing

events, increasing their food intake, and in turn increasing

their probability of survival. Other social factors may affect

both social position and access to resources directly. Domi-

nance, for example, could mediate both an individual’s social

position (e.g. [45–47]) and access to resources (e.g. [48,49]).

Social mechanisms will be most important when resources

are scarce in years of low salmon abundance. Male killer

whales may be more reliant than females on socially mediated

resources because male resident killer whales are substantially

larger than females: adult female southern resident killer

whales are estimated to weigh up to 3338 kg, whereas adult

males are estimated to weigh up to 4434 kg [26]. Males are

estimated to require a 25% higher energetic intake to maintain

this body size [26,50]. This higher energetic requirement of

males will make them more vulnerable to starvation (e.g.

[51–53]). A higher reliance on social information and food

sharing may explain why the survival of males, but not

females, depends on their position within the social structure.

Given the importance of the number of associates to the

survival of male killer whales, it is interesting that they do

not appear to increase their number of associates in response

to low salmon abundance. There are possible behavioural

and social explanations for this lack of social flexibility. Behav-

iourally, animals are time-limited, and face a trade-off between

behaviours, including social and foraging behaviours [54]. In

times of low resource availability, foraging pressures may

reduce time available for social interactions, preventing males

from increasing their social centrality, even when it would

increase their probability of survival. The presence of such a

trade-off is supported by observations of the behaviour of resi-

dent killer whales which have a lower rate of association in

years of low salmon abundance [55] and a less interconnected

social network [22], suggesting that they are engaging in less

social behaviour. Competition for resources could also prevent

males increasing their social centrality in years of low salmon

abundance. Smaller group sizes in low resource conditions

have been observed in a range of species (e.g. [56,57]). In a

similar process, individuals may choose not to associate with

a given male in times of low salmon abundance to reduce

resource competition for themselves or their closer relatives.

These non-exclusive mechanisms may explain why males

appear unable to increase their social centrality in times of

low salmon abundance.

Sociality candecrease an animal’smortality risk in avariety

of ways. By living in groups animals can, for example, decrease

their risk of predation or increase their foraging efficiency [58].

Recently the importance of heterogeneity in sociality has been

highlighted, and a body of work shows that animals within a

population can have a wide variety of social positions and

social roles [59]. The heterogeneity of social bonds can have

important fitness consequences. In several species, an individ-

ual’s social bonds and affiliation (rather than social position)

have been shown to affect their survival [60–62], reproductive

success [18,63,64] and the survival of their offspring [17,18]. In

addition, infant survival has been linked to social position in
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savannah baboons (Papio cynocephalus) [20]. However, to our

knowledge, this is the first demonstration that social position

is related to the survival of individuals in a complex society

over their whole lifetime. In addition, we show that both the

direct and indirect components of social position have survival

implications and link these social effects to ecological con-

ditions. Linking social structure and survival has many

important evolutionary and ecological consequences [65]. For

example, if fitness varies for different individuals within a

group, we expect selection for individuals to move to these

favourable social positions by changing their social strategy.

However, an individual’s position in the broader social struc-

ture is dependent on the behaviours and decisions of others

in the population. Selection cannot, therefore, act directly on

social position: it is difficult to imagine behavioural choices

an individual could make to increase their indirect centrality.

This highlights how behavioural phenotypes within a group

interact to produce the fitness outcomes for the groupmembers

[66]. For male killer whales this means that their mortality risk

partly depends on social factors outside their control which

may contribute to their higher mortality rate in comparison

to females. This may have fundamental life-history conse-

quences, for example, by selecting for investment in

reproduction in early life, and leading to an earlier onset of

senescence [1,4].

In this study, we have shown that the survival of male resi-

dent killer whales is related to their position within a complex

social system, especially in years of low resource abundance.

Most models of social and life-history evolution assume a

relatively constant and homogeneous social environment. In

this study, we show that this may be an underestimation of

the complexity of the evolutionary consequences of sociality,

and that the heterogeneity and dynamics of social systems

can have fundamental fitness consequences.
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