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Abstract

The generalised additive models (GAM) are widely used in data analysis.

In the application of the GAM, the link function involved is usually assumed

to be a commonly used one without justification. Motivated by a real data

example with binary response where the commonly used link function does not
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work, we propose a generalised additive models with unknown link function

(GAMUL) for various types of data, including binary, continuous and ordinal.

The proposed estimators are proved to be consistent and asymptotically normal.

Semiparametric efficiency of the estimators is demonstrated in terms of their

linear functionals. In addition, an iterative algorithm, where all estimators can

be expressed explicitly as a linear function of Y , is proposed to overcome the

computational hurdle for the GAM type model. Extensive simulation studies

conducted in this paper show the proposed estimation procedure works very

well. The proposed GAMUL are finally used to analyze a real data set about

loan repayment in China, which leads to some interesting findings.

Key words and phrases: Generalized additive model; Local linear smoothing; Quasi-

likelihood; Asymptotical properties; Semiparametric efficiency.

1 Introduction

The additive models and the generalised additive models (GAM) are widely used in

data analysis to explore the nonlinear effects of the covariates on the response variable.

Whilst getting away with the “curse of dimensionality”, they are also reasonably

flexible. The relevant literature includes Stone (1985, 1986), Breiman and Friedman

(1985), Buja et al.(1989), Hastie and Tibshirani (1990), Linton and Nielsen (1995),

Linton and Härdle (1996), Opsomer and Ruppert (1997), Fan et al.(1998), Mammen

et al.(1999), Opsomer (2000), Linton (2000), Horowitz and Mammen (2004), Nielsen

and Sperlich (2005), Mammen and Park (2006), Yu et al.(2008) and the reference

therein.

When using GAM to fit a data set, people usually assume the link function is a

commonly used one without much justification, e.g., the link function is assumed to

be a logit function when the response variable is binary, a logarithmic function when

the response variable is a count variable. However, in some real data analysis, the

commonly used link function may not be appropriate, and the misspecification of the

link function results in biased estimators for the component functions. The analysis
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of the real data set, which stimulates this paper, is the case. The data set is about

the delay in loan repayment, and it comes from a financial company in China. For

the sake of confidentiality, we call this financial company FCC in this paper. What

FCC is interested in is if and how some factors affect the behavior of a customer’s

repaying his/her loan for buying a smart phone. The factors concerned are Tongdun

score (a credit score), price of the mobile phone, loan amount, and income. The

data set consists of the information of 2160 customers about the four factors and

whether there is a delay in loan repayment (denoted by Y , Y = 1 if there is a delay,

0 otherwise). As there is no evidence showing the impacts of the factors concerned

on Y are linear, given the sample size of 2160, which is quite decent, we apply GAM

to fit the data. Rather than assuming the link function involved is logit function,

as people usually do, we estimate the link function based on the data set using the

methodology developed in this paper. The estimated link function is presented in

Figure 3(e). Figure 3(e) shows the estimated link function is quite different to the

commonly used logit function, which suggests the commonly used logit function is not

appropriate for this data set. This example provides a compelling case for developing

the generalised additive models with unknown link function, which is the purpose of

this paper.

Investigating data driven approaches to specify the link function in the generalised

linear type models has appeared in literature. See Aranda-Ordaz (1981), Scallan et

al.(1984), Weisberg and Welsh (1994), Carroll et al.(1997), and the references therein

for the generalised linear models with unknown link function. Zhang et al.(2015)

considered the generalised varying-coefficient models with unknown link function. Let

Y be the response variable, X = (X1, · · · , Xd)
′ the vector of covariates, Horowitz

and Mammen (2007) proposed a general class of additive regression models, which

can be written as

Y = m {g1(X1) + · · ·+ gd(Xd)}+ ε, i = 1, · · · , n, (1.1)

where m(·), gj(·), j = 1, · · · , d, are unknown function and ε is an unobserved

random variable satisfying E(ε|X) = 0. They also developed an estimation procedure

for model (1.1) based on spline smoothing, and established optimal convergence rate

3



for their estimators. Model (1.1) is an extension of the additive models, however,

it is not very suitable for the cases where the response variable is categorical or

discrete variable. The categorical or discrete response should also follow the respective

distribution; any other predicted values are not logically possible. For example, a

researcher may be interested in predicting one of three possible discrete outcomes.

In this case, the dependent variable can only take 3 distinct values, and follows

a multinomial distribution. The generalised type models provide a distributional

framework for the response according to the type of the response. Therefore, there is

difference between model (1.1) and the generalised additive model with unknown link

function. Whilst the theoretical properties of the estimators proposed in Horowitz

and Mammen (2007) are appealing, the implementation of their estimation procedure

can be very difficult due to the high dimensional optimization involved, indeed, we

found, in our simulation studies, the computational algorithm does not converge for

quite a few cases.

In this paper, based on the framework of the generalised type models, we pro-

pose the generalised additive models with unknown link function (GAMUL), which

is defined through

µ = E(Y |X) = m{g1(X1) + · · ·+ gd(Xd)},

V ar(Y |X) = V (µ),
(1.2)

where gj(·), j = 1, · · · , d, are unknown additive component functions, m(·) is the

unknown link function, and V (·) is a known variance function and determined by the

type of data. For example, for binary response, V (µ) = µ(1− µ).

The proposed GAMUL are more general than the generalised additive models

on two aspects: (1) the link function is left unspecified in GAMUL, (2) we do not

assume Y , given X, follows the exponential family distribution. Zhang, Li and Xia

(2015) also considered the generalised models with unknown link function, but under

the varying-coefficient framework. Compared with the model addressed by Zhang, Li

and Xia (2015), our model has several challenges. Firstly, the functional coefficients

in the model in Zhang, Li and Xia (2015) share the same variable, therefore, all of
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them can be simultaneously locally linearized by one-dimensional kernel smoothing.

While different components in our model have different variables, they cannot be

simultaneously locally linearized by one-dimensional kernel smoothing. Hence, the

local quasi-likelihood method proposed by Zhang, Li and Xia (2015) would suffer

from the curse of dimensionality for our model. The difference between the model in

Zhang, Li and Xia (2015) and our model is like the difference between the varying

coefficient models and the additive models.

To avoid the curse of dimensionality, we use backfitting iterative method, the

estimation of each curve at each point depends on all other functions, the theoretical

properties of the proposed method are more involved than the local quasi-likelihood

method since the proposed method is defined implicitly as the limit of a complicated

iterative algorithm.

The proposed iterative estimation procedure is based on the backfitting quasi-

likelihood idea. The advantage of the proposed estimation procedure is each step of

the estimation procedure only involves one-dimensional smoothing and has a closed

form, this has dramatically reduced the computational burden and difficulty in con-

vergence. On theoretical front, we will show the proposed estimators are uniformly

consistent, asymptotically normal, and enjoy the semiparametric efficiency, defined

by Bickel et al.(1993), under some technical conditions. Particularly, compared with

the estimation procedure in Horowitz and Mammen (2007) for model (1.1), the pro-

posed estimation procedure is more easy to implement due to the closed form of our

estimator, and also is more efficient due to the using of the quasi-likelihood, which

utilizes the structure on the conditional variance.

The paper is organised as follows. We begin in Section 2 with a description

of the proposed estimation procedure. The asymptotic properties of the proposed

estimators are presented in Section 3. The performance of the proposed estimation

procedure is also assessed by simulation studies in Section 4. In Section 5, we apply

the proposed GAMUL together with the proposed estimation procedure to analyze

the real data set, mentioned before, about loan repayment. The analysis reveals some

quite interesting findings. A brief discussion about further research in this direction
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is made in Section 6. Technical proofs are relegated to the Appendix.

2 Estimation procedure

Apparently, models (1.2) are not identifiable. To make (1.2) identifiable, we assume

E{gj(Xj)} = 0, j = 1, · · · , d,
d∑

j=1

V ar{gj(Xj)} = 1, and Cov(X1, g1(X1)) > 0.

(2.1)

Following the proof of Proposition 3.1 in Horowitz and Mammen (2007), we can show

models (1.2) are identifiable under Condition (2.1). Denote the support of Xj by Aj ,

we state this in the following proposition.

Proposition 1 For continuously differentiable functions m(·), gj(·), j = 1, · · · , d
with bounded support, we assume that the functions gj(·) are nonconstant for at least

two values of j(1 ≤ j ≤ d), ṁ(z) > 0 for z ∈ R, m{g1(x1) + · · · + gd(xd)} =

m̌{ǧ1(x1) + · · · + ǧd(xd)} for any xj ∈ Aj, 1 ≤ j ≤ d, and Condition (2.1) holds.

Then m(·) ≡ m̌(·) and gj(·) ≡ ǧj(·) for j = 1, · · · , d on the corresponding supports.

Let (Yi, Xi), i = 1, · · · , n, be an i.i.d. sample from (Y, X). (Y, X) fol-

lows the proposed models (1.2) and satisfies the identification condition (2.1), g(·) =
(g1(·), · · · , gd(·))′. In this section, we are going to build an estimation procedure for

the unknown functions m(·) and g(·) in the GAMUL.

Our estimation is quasi-likelihood based coupled with kernel smoothing. It is easy

to see the log quasi-likelihood function of m(·) and g(·) is

Q(g, m) =

n∑

i=1

L(µi, Yi) (2.2)

with L(µi, Yi) being defined through

∂L(µi, Yi)/∂µi = V −1(µi)
{
Yi −m

( d∑

j=1

gj(Xij)
)}
.
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The proposed estimation procedure is a backfitting procedure. To make the pre-

sentation more clear, we first present the estimation procedure for m(·) when g(·)
given, then the estimation procedure for gj(·) when m(·) and gk(·), k 6= j, are given.

Finally, we present the proposed iterative algorithm.

2.1 Estimation of m(·) when g(·) is given

By the Taylor’s expansion, for any given u, we have

m
( d∑

j=1

gj(Xij)
)
≈ m(u) + ṁ(u)

{ d∑

j=1

gj(Xij)− u
}

(2.3)

when
∑d

j=1 gj(Xij) is in a small neighbourhood of u. (2.3) together with (2.2) leads to

that the quasi-likelihood estimator of m = (m1, m2)
′ ≡ (m(u), ṁ(u))′ is the solution

of the equation

Sm(m; g)=̂

n∑

i=1

{
Yi −Wi(u; g)′m

}Wi(u; g)

V (µi)
Khm

( d∑

j=1

gj(Xij)− u
)
= 0 (2.4)

whereWi(u; g) = (1,
∑d

j=1 gj(Xij)−u)′, and hm is a bandwidth. Hence, the estimator

for (m(u), ṁ(u))′ is

(
m̂(u)

ˆ̇m(u)

)
=
[∑n

i=1Wi(u; g)Wi(u; g)
′Khm

{∑d
j=1 gj(Xij)− u

}
/V (µi)

]−1

×
∑n

i=1Wi(u; g)Khm

{∑d
j=1 gj(Xij)− u

}
Yi/V (µi). (2.5)

2.2 Estimation of gj(·) when m(·) and {gk(·), k 6= j} are given

Applying the Taylor’s expansion to gj(·), for any given x, we have

gj(Xij) ≈ gj(x) + ġj(x)(Xij − x)

when Xij is in a small neighbourhood of x. This together with (2.2) leads to that

the quasi-likelihood estimator of δj = (ζj , γj)
′ = (gj(x), ġj(x))

′ is the solution of the
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equation

Uj(δj ; g, m, ṁ) = 0 (2.6)

where

Uj(δj ; g, m, ṁ) ≡ 1

n

n∑

i=1

[
Yi −m

{∑

k 6=j

gk(Xik) + ζj + γj(Xij − x)
}]

Υij(x)

×ṁ
{ d∑

k=1

gk(Xik)
}
Khj

(Xij − x)/V (µi),

Υij(x) = (1, Xij − x)′, and hj is a bandwidth.

The nonlinearity ofm(·) demands an iterative algorithm, such as Newton-Raphson

iteration, in the calculation of δj = (gj(x), ġ(x))
′. This may lead to considerably

intensive computation because the iteration has to be repeated over xs varying in the

support of Xij and js varying in {1, · · · , d} for each given m(·) and ṁ(·). To avoid

such expensive computation, in this paper, we apply the Taylor’s expansion to m(·)
at
∑d

k=1 gk(Xik), which results in

m
{∑

k 6=j

gk(Xik) + ζj + γj(Xij − x)
}

= m
[ d∑

k=1

gk(Xik)−
{
gj(Xij)− ζj − γj(Xij − x)

}]

≈ m{
d∑

k=1

gk(Xik)} − ṁ{
d∑

k=1

gk(Xik)}
{
gj(Xij)− ζj − γj(Xij − x)

}
. (2.7)

Plugging (2.7) into (2.6) and solving the equation, we have the estimator of (gj(x), ġj(x))
′

as (
ĝj(x)

ˆ̇gj(x)

)
=
( n∑

i=1

ρ2(Xi)Υij(x)Υij(x)
′Khj

(Xij − x)/V (µi)
)−1

×

n∑

i=1

[
Yi −m{

d∑

k=1

gk(Xik)}+ ρ(Xi)gj(Xij)
]
Υij(x)ρ(Xi)Khj

(Xij − x)/V (µi),

where ρ(Xi) = ṁ{
∑d

k=1 gk(Xik)}.
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2.3 Iterative algorithm for m(·) and g(·)

To start the proposed iterative algorithm, we need an initial value. We have two

choices. One is using the method proposed Horowitz and Mammen (2007, HM).

Although the HM estimator ignores the heteroscedasticity and may be inefficient, the

estimator is consistent. Our simualtion studies also show the HM serves well as an

initial value. In addition, we also can start with an initial estimator by combining

B-spline approximation form(·) and the algorithm proposed by Hastie and Tibshirani

(1990, p.141) if the HM estimator fails to convergy.

We are now ready to present the proposed iterative algorithm for m(·) and g(·).
Let g

(r−1)
j (·), m(r−1)(·) and ṁ(r−1)(·) be the estimators of gj(·), m(·) and ṁ(·) obtained

after the (r − 1)th iteration, respectively, and

µ
(r−1)
i = m(r−1)

{ d∑

j=1

g
(r−1)
j (Xij)

}
, ρ(r−1)(Xi) = ṁ(r−1){

d∑

j=1

g
(r−1)
j (Xij)}

In the rth iteration, we update the estimators as follows

• For each given j, j = 1, · · · , d, we apply the estimation procedure in Section

2.2 to estimate gj(·) and standardise the obtained estimator. Specifically, let

X(j1) < · · · < X(j,dj) be the distinct points in {Xij : i = 1, . . . , n}. For each

x, x ∈ {X(j1), · · · , X(j,dj)}, we first estimate gj(x) and ġj(x) by
(
ĝj(x)

ˆ̇gj(x)

)
=
( n∑

i=1

{
ρ(r−1)(Xi)

}2
Υij(x)Υij(x)

′Khj
(Xij − x)/V (µ

(r−1)
i )

)−1

×
n∑

i=1

([
Yi − µ

(r−1)
i + ρ(r−1)(Xi)g

(r−1)
j (Xij)

]

×Υij(x)ρ
(r−1)(Xi)Khj

(Xij − x)/V (µ
(r−1)
i )

)
, (2.8)

then standardise the obtained estimator. We use the standardised estimator

g
(r)
j (Xij) to update the estimator of gj(Xij) obtained in the (r− 1)th iteration,

where

g
(r)
j (Xij) =

ĝj(Xij)−Avg(ĝj){∑d
j=1 V ar(ĝj)

}1/2
, i = 1, . . . , n, j = 1, . . . , d,
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with

Avg(ĝj) =
1

n

n∑

i=1

ĝj(Xij), V ar(ĝj) =
1

n− 1

n∑

i=1

{ĝj(Xij)− Avg(ĝj)}2 ,

and the restriction of
∑n

i=1 {Xi1 −Avg(X1)} g(r)1 (Xi1) > 0.

• We use the estimation in Section 2.1 to estimate (m(·), ṁ(·)). Specifically, let
U(1) < · · · < U(dm) be the distinct points in

{ d∑

j=1

g
(r)
j (Xij) : i = 1, · · · , n

}
.

For each u, u ∈ {U(1), · · · , U(dm)}, we estimate (m(u), ṁ(u))′ by

(
m̂(u)

ˆ̇m(u)

)
=
[∑n

i=1Wi(u; g
(r))Wi(u; g

(r))′Khm

{∑d
j=1 g

(r)
j (Xij)− u

}
/V (µ

(r−1)
i )

]−1

×
∑n

i=1Wi(u; g
(r))Khm

{∑d
j=1 g

(r)
j (Xij)− u

}
Yi/V (µ

(r−1)
i ). (2.9)

Let m(r)(U(k)) = m̂(U(k)) and ṁ(r)(U(k)) = ˆ̇m(U(k)), k = 1, · · · , dm, we use

(m(r)(U(k)), ṁ
(r)(U(k))) to update the estimator of (m(·), ṁ(·)) obtained in

(r − 1)th iteration.

Repeat the iteration until convergence. In practice, the convergence is defined as

supj,x |g(r)j (x) − g
(r−1)
j (x)| < a0 and supu |m(r)(u) − m(r−1)(u)| < a0, where a0 is a

prespecified small number.

Remark The proposed iterative estimation procedure is easy to implement as there is

a closed form at each step. It also converges very quickly because only one-dimensional

smoothing is involved at each step. The local convergence of the algorithm is shown

in Appendix B, provided that the link function m(·) is appropriately smooth. The

proposed iterative estimation procedure also applies to the models (1.1), proposed in

Horowitz and Mammen (2007), and it is more efficient than the estimation proposed

there since the proposed method takes the heteroscedasticity into account and uses the

backfitting procedure. The efficiency is confirmed by the extensive simulation studies
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in Section 4. Moreover, on theoretical ground, the proposed iterative estimation pro-

cedure is shown to be semiparametrically efficient when the conditional distribution is

an exponential family distribution, see Theorem 3 in Section 3.

3 Asymptotic properties

The proposed estimation procedure is defined implicitly as the solution to a com-

plicated iterative algorithm, as Yu, Park and Mammen (2008) rightly pointed out,

asymptotic properties for such estimation procedure are difficult to establish. Appeal-

ing some advanced techniques, we will show the proposed estimators are uniformly

consistent and asymptotically normal. In addition to that, we will also show the pro-

posed estimators enjoy the semiparametric efficiency defined by Bickel et al.(1993)

when the conditional distribution of the response variable is an exponential family

distribution. This underlines the combined advantages of quasi-likelihood idea and

iterative backfitting algorithm.

Let e be a d-dimensional vector with elements 1, and fj be the density function

of Xij, and fζ be the density of the random variable e′ζ(X) associated with ζ. The

following assumptions are required for the asymptotic properties of the proposed

estimators.

(A1) The kernel function K(·) is a symmetric density function with compact support

[−1, 1] and a bounded derivative.

(A2) Xi is bounded with compact subset of Rd. For notational simplicity, assume

that Xi ∈ [−1, 1]d.

(A3) The second derivatives of functions gj(·), j = 1, · · · , d and m(·) on [−1, 1] are

bounded. Without the loss of generality, ‖gj‖∞ ≤ 1, j = 1, · · · , d and ‖m‖∞ ≤
1. The variance function V (·) is continuously differential and bounded away

from zero on [−1, 1].
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(A4) The conditional distribution of Yi has subexponential tails. That is, there are

constants C, M > 0 such that

E[|Yi|ℓ|Xi] ≤ Cℓ!M ℓ, ∀ 2 ≤ ℓ ≤ ∞.

(A5) Denote m = (m1, m2)
′ and

uj(ζ,m; x) = E
[
{m(e′g(Xi))−m1(e

′ζ(Xi))} m2(e′ζ(Xi))

V (m1{e′ζ(Xi)})
|Xij = x

]
fj(x),

sm(ζ, m1; u) = E [{m(e′g(Xi))−m1(u)}/V (m1 (e
′ζ(Xi)))|e′ζ(Xi) = u] fζ(u).

Define u(ζ,m;x, u) =
(
{uj(ζ,m; xj)}dj=1, sm(ζ, m1; u)

)′
. Then, one shall as-

sume that u(ζ,m;x, u) = 0 has a unique root over ζ ∈ Cd, m1 ∈ C1, where Cd
and C1 are defined in Appendix A.

(A6) hj → 0 andnhj/(logn) → ∞, j = 1, · · · , d,m, as n→ ∞.

(A7) Ψ−1 and (Hg − Hm ◦ Hmg)
−1 exist and are bounded uniformly, where Ψ is an

operator-type matrix, and Hg and Hm are vector-valued operators, and all of

them are defined in Appendix A.

These conditions are used for deriving the convergence properties, asymptotic

representation and efficiency for the proposed estimators. Conditions (A1)-(A4) are

regular conditions for the kernel function, covariates, the functions of interest and the

distribution. uj(ζ,m; x), j = 1, · · · , d and sm(ζ, m1; u) in essential are the population

version of quasi-score function for gj(x), j = 1, · · · , d and m(u), respectively. The

proposed estimator converges to the root of quasi-score function. Hence, Condition

(A5) ensures the proposed estimator converges to a determined value. Condition

(A6) is the most often used condition for the bandwidths. Condition (A7) ensures

the existence of asymptotic variance of the proposed estimator for g(x) and m(u).

For the sake of convenience, without any confusion, we denote hm by hd+1, and for

any x = (x1, · · · , xd)′ ∈ [−1, 1]d, we denote (ĝ1(x1)− g1(x1), · · · , ĝd(xd)− gd(xd))
′

by ĝ(x)− g(x).
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Theorem 1 Under the Conditions (A1)-(A6), when n −→ ∞, we have

sup
x∈[−1,1]

|ĝj(x)− gj(x)| −→ 0, j = 1, · · · , d,

and

sup
u∈[−1,1]

|m̂(u)−m(u)| → 0,

in probability.

Theorem 1 shows the proposed estimator ĝj(·), j = 1, · · · , d, is uniformly conver-

gent, and so is the proposed estimator of m̂(·)

Theorem 2 Under the Conditions (A1)-(A7), we have

Ψ

(
ĝ(x)− g(x)

m̂(u)−m(u)

)
= (nH)−1/2M(x, u)−1/2ϕ+H2B(x, u)+op[

d+1∑

k=1

{h2k+(nhk)
−1/2}],

uniformly on x ∈ [−1, 1]d, u ∈ [−1, 1], where Ψ is an operator-type matrix and

defined in Appendix A, H = diag(h1, · · · , hd+1), ϕ is a random vector following the

standard normal distribution, both B(x, u) and M(x, u) are defined in Appendix A.

Theorem 2 shows the asymptotic bias of the proposed estimator (ĝ(x)′, m̂(u))′

is of order h2 = max
1≤j≤d+1

h2j , and the asymptotic variance is of order (nh)−1. As a

consequence, the theoretical optimal bandwidth for the estimator is of order n−1/5,

and the convergence rate of the estimator is of order n−2/5.

Theorem 2 implies the following Corollary 1.

Corollary 1 Under the Conditions (A1)-(A7). For any given x ∈ [−1, 1]d and

u ∈ [−1, 1], if nh5k = O(1) for any k = 1, · · · , d+ 1, we have

(nH)1/2

{(
ĝ − g

m̂−m

)
(x, u)−H2Ψ−1(B)(x, u)

}
→ N(0,V(x, u)),

where

V(x, u) = [Ψ−1(M−1/2)(x, u)][Ψ−1(M−1/2)(x, u)]′.
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Linear functionals are important because any smooth function f can be approx-

imated by an expansion of the orthonormal basis functions ψ0, ψ1, · · · (e.g. Fourier

basis), in which the coefficients are of form such linear functionals. Estimators

for the function f(·) are obtained by substituting estimators for the coefficients in

a truncated or a tapered expansion of f(·) in the orthonormal basis ψ0, ψ1, · · · .
Hence, we determine the efficiency of the functional estimator via the coefficients,

that has the form of linear functionals. In the appendix, if the conditional dis-

tribution of Yi given Xi is an exponential family distribution, we prove our es-

timator τ̂ =
∑d

j=1

∫ 1

−1
ĝj(x)ψj(x)dx +

∫ 1

−1
m̂(u)ψm(u)du for the linear functionals

τ =
∑d

j=1

∫ 1

−1
gj(x)ψj(x)dx +

∫ 1

−1
m(u)ψm(u)du has the same asymptotic variance

with that of the maximum likelihood estimator for τ under some parametric sub-

model. This is actually semiparametrically efficient in the sense of Bickel et al.

(1993). Theorem 3 presents the semiparametric efficiency, which is a justification

for the optimality of the proposed approach. Let

D = {ψ(z) has a continous derivative on [−1, 1] and

∫ 1

−1

ψ(z)dz = 0}.

Theorem 3 Under the conditions (A1)-(A7). When nh4k → 0, h2kh
−1
j log(n) → 0

and nhkhj/(log(n))
2 → ∞ for any k, j = 1, · · · , d + 1, for any functions ψj(x),

j = 1, · · · , d, and ψm(u), if ψj ∈ D, j = 1, · · · , d, and ψm(u) has a continuous

derivative, we have

d∑

j=1

∫ 1

−1

(ĝj − gj)(x)ψj(x)dx+

∫ 1

−1

(m̂−m)(u)ψm(u)du→ N(0, σ2
v).

In particular,
∑d

j=1

∫ 1

−1
ĝj(x)ψj(x)dx+

∫ 1

−1
m̂(u)ψm(u)du is an efficient estimator of

∑d
j=1

∫ 1

−1
gj(x)ψj(x)dx +

∫ 1

−1
m(u)ψm(u)du if the conditional distribution of Yi given

Xi is an exponential family distribution, where σ2
v is defined in Appendix A.

Theorem 3 imply that the estimator of the parameter
∑d

j=1

∫
gj(x)ψj(x)dx +

∫
m(u)ψm(u)du is

√
n−consistent when hk = o(n−1/4). The requirement of under-

smoothing to gain
√
n-consistent estimators is common in semi-parametric regression

(Carroll, et al., 1997; Hastie and Tibshirani, 1990).
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Theorem 3 shows the proposed estimators enjoy the semiparametric efficiency. Es-

sentially, the using of likelihood function is the key for the semiparametric efficiency.

To illuatrate it, we take the estimation of m = (m(u), ṁ(u))′ as an example. Sub-

stituting (2.3) into the quasi-likelihood function, which indeed is the full likelihood

function when the conditional distribution is an exponential family distribution, has

the form of

Q(g, m) =
n∑

i=1

L(µi, Yi)Khm
(Ri − u) +

n∑

i=1

L(µi, Yi) {1−Khm
(Ri − u)}

≈
n∑

i=1

L(µ̄i, Yi)Khm
(Ri − u) +

n∑

i=1

L(µi, Yi) {1−Khm
(Ri − u)} , (3.1)

where Ri =
∑d

j=1 gj(Xij) and µ̄i = m(u)+ṁ(u)(Ri−u). The µi in the second term of

(3.1) can not be approximated by the linear function µ̄i = m(u)+ṁ(u)(Ri−u) because
Ri is out of the neighborhood of u, which indicated by the weight 1−Khm

(Ri − u).

Differentiating the likelihood function Q(g, m) with respect m = (m(u), ṁ(u))′, and

setting the derivatives to zero leads to the following score equations:

n∑

i=1

(
Yi − µ̄i

)Wi(u; g)

V (µ̄i)
Khm

(Ri − u) = 0. (3.2)

Noting that V (µ̄i) ≈ V (µi) when Ri is in the neighborhood of u, indicated by the

weight Khm
(Ri−u), the proposed estimating equation (2.4), Sm(m; g) = 0, is exactly

the same with the socre equation (3.2) for estimating m, implying the efficiency of

the estimator for m.

4 Numerical studies

In this section, we are going to use four simulated examples to demonstrate how

well the proposed estimation procedure works. We will also compare the proposed

estimation procedure with the method in Horowitz and Mamman (2007), denoted by

HM, which is designed for model (1.1).
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We define the bias, standard deviation (SD) and root mean integrated squared

error (RMISE) of an estimator f̂(·) of f(·) as

bias =

(∫ [
E
{
f̂(v)

}
− f(v)

]2
dv

)1/2

, SD =

(∫
var

{
f̂(v)

}
dv

)1/2

and

RMISE =
(
bias2 + SD2

)1/2
,

respectively, and use them to assess the accuracy of the estimator f̂(·).

The kernel function used in the proposed estimation procedure is the Epanech-

nikov kernel for all simulated examples in this section and the real data analysis in

Section 5. For each simulated example, we assess the accuracy of the proposed esti-

mation procedure for sample size n = 200, 400, 800, or 1600 and for each case, we

compute the bias, sd and RMISE of an obtained estimator based on 200 simulations.

We consider the following four settings.

Example 1. (Binary Case). In models (1.2), we set d = 2, and

g1(x) = sin(πx), g2(x) =
1

2
(x+ 1)2 − 2

3
.

We generate Xi1 and Xi2, i = 1, · · · , n, from the uniform distribution U [−1, 1],

and Yi = I{g1(Xi1) + g2(Xi2) > Ui}, where Ui is generated by a mixed normal

0.5N(−2/3 + 0.05, 0.52) + 0.5N(−2/3 − 0.05, 0.52) and I is the indicator function.

Hence given Xi1 and Xi2, Yi has the Bernoulli distribution B(1, pi) with

pi = E(Yi|Xi1, Xi2) = m {g1(Xi1) + g2(Xi2)} ,

m(x) = 0.5Φ

{
x+ 2/3− 0.05

0.5

}
+ 0.5Φ

{
x+ 2/3 + 0.05

0.5

}
.

It is clear m(·) is not the commonly used logit function for binary response.

Example 2. (Poisson Case). We still set d = 2, in models (1.2), but

g1(x) = sin(πx), g2(x) = Φ(3x)− 0.5, m(x) = (3x+ 8.5)2.
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Xi1 and Xi2, i = 1, · · · , n, are still generated in the same way as that in Exam-

ple 1. However, Yi, given Xi1 and Xi2, is independently generated from a Poisson

distribution with mean

m {g1(Xi1) + g2(Xi2)} .

Example 3. (Normal Distribution Case). This example is to compare the proposed

estimation procedure, when applied to model (1.1), with the one in Horowitz and

Mamman (2007) which is developed only for model (1.1). To make the comparison

more convincing, we generate data from the similar setup as that used in Horowitz

and Mamman (2007) for simulation. Specifically, d is still set to be 2, and

g1(x) = sin(−4πx), g2(x) = Φ(3x)− 0.5, m(x) = −(3x+ 3.5)2.

Xi1 and Xi2, i = 1, · · · , n, are generated in the same way as that in Example 1. Yi,

given Xi1 and Xi2, is generated through

Yi = m {g1(Xi1) + g2(Xi2)}+ Ui

where Ui is generated from the normal distribution N(0, 0.52), and independent of

Xi1 and Xi2.

Example 4. (Normal Distribution Case with Four Components). This example is

similar to the example 3 with normal distribution and m(x) = −(3x+ 17/3)2 except

for d = 4 components,

g1(x) = sin(πx), g2(x) = Φ(3x)− 0.5, g3(x) = x2 − 1/3, g4(x) = cos(πx).

Xi1, Xi2, Xi3 and Xi4, i = 1, · · · , n, are generated in the same way as that in

Example 3. Yi, given Xi1, Xi2, Xi3 and Xi4, is generated through

Yi = m {g1(Xi1) + g2(Xi2) + g3(Xi3) + g4(Xi4)}+ Ui

where Ui is generated from the normal distribution N(0, 0.52), and independent of

Xi1, Xi2, Xi4 and Xi4.
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We apply either the proposed estimation procedure or HM to the simulated data.

The biases, SDs, and RMISEs of the estimators of the functions gj(·), j = 1, 2, 3, 4

and m(·), obtained by either approach with its optimal smoothing parameter that

minimizing RMISE over several pre-specified value of smoothing parameter, are pre-

sented in Tables 1 to 4. The summaries are based on convergent cases in the 200

replicates. For Example 1, the bandwidths h1 = 0.3, h2 = 0.3, hm = 0.9 are used for

the proposed method, 4 interior knots and smoothing parameter 10−5 are used for the

HM method. For Example 2, the bandwidths h1 = 0.2, h2 = 0.2, hm = 0.6 are used

for the proposed method, 2 interior knots and smoothing parameter 5×10−5 are used

for the HM method. For Example 3, the bandwidths h1 = 0.05, h2 = 0.1, hm = 0.35

are used for the proposed method, 17 knots and smoothing parameter 5 × 10−7 are

used for the HM method. For Example 4, the bandwidths h1 = 0.15, h2 = 0.2, h2 =

0.2, h3 = 0.3, h4 = 0.15, hm = 0.3 are used for the proposed method, 3 knots and

smoothing parameter 10−5 are used for the HM method.

The NOC in Tables 1 to 4 is the total number of the simulations where conver-

gence has attained in the 200 simulations. Tables 1 to 4 show the proposed estimation

procedure is always convergent except when sample size n = 200, even for that case,

there are only 7 and 11 simulations for 2 and 4 components respectively where conver-

gence is not attained. On the other hand, there are quite a few cases where HM does

not converge, especially when sample size is 200 and the response is Poisson variable,

there are more than half cases where HM fails to converge. Tables 1 to 4 also show the

estimators obtained by the proposed estimation procedure have much smaller RMISE

than that obtained by HM. So, we can conclude the proposed estimation procedure

works much better than HM.

To have a more visible idea about how well the proposed estimation procedure

works, and how better it compared with HM, we choose Example 1 and sample size

n = 400 as an example. For the proposed estimation procedure, we plot out in Figure

1 the average of the estimates of each unknown function across the 200 simulations,

and superimpose its 95% pointwise confidence interval on it. We do exactly the same

for HM, and also present the results in Figure 1. Figure 1 shows the average of
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Table 1: The simulation results for Example 1 with binary response

N=400 N=800 N=1600

ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂

Prop.

RMSE 0.122 0.122 0.024 0.095 0.095 0.022 0.083 0.079 0.021

Bias 0.070 0.068 0.018 0.070 0.065 0.018 0.069 0.064 0.019

SD 0.099 0.102 0.016 0.064 0.069 0.012 0.045 0.047 0.008

NOC 200 200 200

HM

RMSE 0.192 0.208 0.048 0.164 0.164 0.041 0.132 0.139 0.030

Bias 0.133 0.137 0.018 0.119 0.111 0.023 0.115 0.096 0.021

SD 0.139 0.156 0.045 0.112 0.121 0.034 0.065 0.102 0.022

NOC 186 198 198

Table 2: The Simulation Results for Example 2 with Poisson response

n=200 n=400 n=800

ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂

Prop.

RMISE 0.110 0.041 1.038 0.039 0.020 0.212 0.029 0.015 0.172

Bias 0.020 0.005 0.265 0.016 0.007 0.165 0.016 0.007 0.152

SD 0.108 0.040 1.004 0.031 0.018 0.133 0.025 0.013 0.079

NOC 193 200 200

HM

RMISE 0.064 0.037 0.905 0.048 0.024 0.764 0.033 0.019 0.636

Bias 0.011 0.007 0.277 0.013 0.008 0.323 0.014 0.009 0.363

SD 0.063 0.036 0.862 0.046 0.023 0.693 0.030 0.016 0.522

NOC 96 181 198

the estimates, obtained by the proposed estimation procedure, is very close to the

true function, and more than that obtained by HM close to the true function. This

suggests the proposed estimators have smaller bias than the estimators obtained by

HM. Furthermore, it is evident, from the 95% pointwise confidence interval in Figure
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Table 3: The Simulation Results for Example 3 with normal response

n=200 n=400 n=800

ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂ ĝ1 ĝ2 m̂

Prop.

RMISE 0.052 0.047 1.796 0.040 0.031 1.318 0.027 0.023 1.012

Bias 0.013 0.008 0.785 0.015 0.005 0.724 0.014 0.006 0.707

SD 0.050 0.047 1.615 0.037 0.031 1.101 0.024 0.022 0.725

NOC 200 200 200

HM

RMISE 0.071 0.067 3.812 0.051 0.044 2.629 0.035 0.031 1.816

Bias 0.016 0.013 1.460 0.010 0.008 0.725 0.007 0.003 0.251

SD 0.070 0.066 3.521 0.050 0.044 2.527 0.034 0.031 1.799

NOC 190 196 200

1, that the proposed estimators have smaller standard deviation than the estimators

obtained by HM.

5 Application to a microfinance data

With the advancement of mobile phone technology, the functionality of a smartphone

has gone far beyond its traditional role of communication. It acts as a portable

computer in many cases, and plays an important role in people’s daily life. A modern

and fashionable smart phone typically costs around 5000 RMB in China, which is not

affordable for some Chinese with lower income. On the other hand, fashion pursuit

and keeping up with the Joneses are a habit of some Chinese, which makes some

people appeal to personal loan for a fancy smartphone. Whilst the financial service

providers, the loan companies, make big profit from such kind of loans, they are

also inflicted by the loss from loan default or delay of repayment from time to time.

Therefore, credit check becomes very important for financial service providers.

In this paper, we define the credit score of a person as the probability of this

20



Table 4: The Simulation Results for Example 4 with four components

n=200

ĝ1 ĝ2 ĝ3 ĝ4 m̂

Prop.

RMISE 0.036 0.020 0.016 0.032 0.290

Bias 0.007 0.003 0.005 0.007 0.169

SD 0.035 0.020 0.015 0.032 0.236

NOC 189

HM

RMISE 0.039 0.023 0.018 0.041 0.568

Bias 0.005 0.002 0.003 0.018 0.070

SD 0.039 0.023 0.017 0.037 0.563

NOC 193

n=400

ĝ1 ĝ2 ĝ3 ĝ4 m̂

Prop.

RMISE 0.027 0.013 0.012 0.025 0.226

Bias 0.009 0.003 0.005 0.006 0.157

SD 0.025 0.013 0.011 0.024 0.162

NOC 200

HM

RMISE 0.029 0.015 0.012 0.031 0.344

Bias 0.007 0.003 0.003 0.016 0.022

SD 0.028 0.014 0.012 0.026 0.343

NOC 197

n=800

ĝ1 ĝ2 ĝ3 ĝ4 m̂

Prop.

RMISE 0.018 0.010 0.008 0.018 0.197

Bias 0.009 0.004 0.005 0.007 0.165

SD 0.016 0.009 0.007 0.016 0.107

NOC 200

HM

RMISE 0.020 0.011 0.009 0.025 0.245

Bias 0.009 0.004 0.004 0.016 0.075

SD 0.018 0.010 0.008 0.018 0.233

NOC 200
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Figure 1: The averaged estimates of component curves (top) and link function (bot-

tom) (dashed—proposed estimator; dotted—HM estimator; black shadow—95% con-

fidence limit of proposed estimator; gray shadow—95% confidence limit of the HM

estimator; solid-red—true functions) for Example 1.

person repaying his/her loan in time. We are going to build a credit rating model

based on the proposed GAMUL model, thereby, we can estimate the credit score of

a loan applicant and decide whether to lend the loan to this person.

The dataset for us to study is a microfinance dataset, collected from a financial

service provider, which records the repayment statuses of 2160 loans for buying smart-
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phone and the personal information of the 2160 borrowers. Due to confidentiality,

we cannot disclose the identity of this financial service provider. We use Yi to denote

the loan repayment status of the ith borrower, Yi = 0 if the loan is fully repaid in

time, Yi = 1 otherwise. The variables of interest are the Tongdun score (denoted by

Xi1 for the ith borrower), the price of the smartphone to buy (in 1000RMB, denoted

by Xi2), loan amount (in 1000RMB, denoted by Xi3), and the logarithm of personal

income per month in 1000RMB (denoted by Xi4).

To have a basic idea about what the data is like, we plot out the histograms of

the four variables of interest in Figure 2.

histogram of x1

x1(Tongdun Score)

Fr
eq

ue
nc

y

10 20 30 40 50 60

0
20

0
40

0
60

0
80

0
10

00

histogram of x2

x2(Total Price)

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0

histogram of x3

x3(loan)

Fr
eq

ue
nc

y

1 2 3 4 5

0
20

0
40

0
60

0

histogram of x4

x4(Income)

Fr
eq

ue
nc

y

0 1 2 3 4 5 6

0
20

0
40

0
60

0
80

0
10

00
12

00

Figure 2: Histogram of four covariates
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As the response variable Yi is binary, a typical approach to analyse such kind

of dataset would be the logistic regression with logit link function, which could be

too restrictive for our dataset and has the danger of misspecification. The proposed

GAMUL model is much more flexible than the commonly used logistic regression.

Given the sample size of the dataset is in the order of thousands, we are going to

use the proposed GAMUL model to fit the dataset, which is detailed as follows: we

assume 



pi = m{g1(Xi1) + g2(Xi2) + g3(Xi3) + g4(Xi4)},

σ2
i = pi(1− pi)

where

pi = E[Yi|Xi], σ2
i = V ar[Yi|Xi], Xi = (Xi1, Xi2, Xi3, Xi4)

′,

m(·) and gj(·) are unknown functions to be estimated, and

E{gj(Xij)} = 0, j = 1, 2, 3, 4.

d∑

j=1

V ar{gj(Xij)} = 1,

with the restriction of Cov {Xi1, g1(Xi1)} > 0.

Due to non-uniformly distributed covariates, see Figure 2, we use the adaptive

bandwidth (Brockmann et al., 1993) in our estimation. Specifically, for each covariate,

we select an adaptive bandwidth such that the resulting neighbourhood covers a given

portion, denoted by q, of the observations. We apply the K-fold cross-validation (Cai

et al., 2000; Fan et al., 2006) to choose q. The number K is usually chosen to be

K = 5 or K = 10. K is set to be 5 for our dataset. Denote the full dataset by B,

and denote cross-validation training and test sets by B − Bk and Bk, respectively,

for k = 1, · · · , K. For each bandwidth q and k, we find the estimator g(−k)(x) of g(x)

using the training set B − Bk, and form the cross-validation criterion based on the

predict error PE(h) for the test sets. We then find the optimal bandwidth q that

minimizes the criterion PE(q). Specifically, we minimize

PE(q) =

K∑

k=1

1

nk

∑

i∈Bk

1

mi

mi∑

j=1

[
Yij − m̂(−k)

{
d∑

j=1

ĝ
(−k)
j (Xij)

}]2
,
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where nk is the number of the observations in set Bk, and q = (q1, · · · , qd, qm) for

g1(·), · · · , gd(·) and m(·), respectively. The obtained q’s are q1 = 0.5 for g1(·), q2 = 0.4

for g2(·), q3 = 0.4 for g3(·), q4 = 0.4 for g4(·), and qm = 0.6 for the link function m(·).

The estimated component functions and link function, by the proposed estima-

tion procedure, are presented in Figures 3(a)-3(e) in solid line along with their 95%

confidence intervals (dark shadow). To make a comparison of proposed method with

the HM method, we also apply the HM method, with optimal smoothing parameters,

to estimate the component functions and link function for our dataset, and superim-

pose the obtained estimates on their counterparts obtained by the proposed method

in Figures 3(a)-3(e) in dashed line along with their 95% confidence intervals (gray

shadow).

Figures 3(a)-3(e) show that although the trend of each estimated function obtained

by the proposed method is similar to that obtained by the HM method, the HM

method produces much wider 95% confidence interval (gray shadow). As a result, the

HM method has failed to detect the significant effects of the four variables concerned

on the probability of a borrower repaying his/her loan for buying a smartphone,

whereas the proposed method has successfully identified that Tongdun score and

loan amount significantly affect the probability of a borrower repaying his/her loan.

Importantly, Figure 3(e) shows the estimated link function is quite different to the

commonly used logit function. In fact, the logit function (the dotted line in Figure

3(e)) is even not in the 95% confidence interval of the link function. This suggests

the commonly used logit function is not appropriate for this data set.

It is easy to see, from Figures 3(a) and 3(c), that neither the 95% confidence

interval of g1(Xi1) nor the 95% confidence interval of g3(Xi3) covers the zero function,

this suggests both Tongdun score and loan amount have significant impact on the

probability of repaying the loan. Furthermore, Figure 3(a) shows the higher the

Tongdun score, the bigger the risk of default or repayment delay, and this risk is

linearly increasing when the Tongdun score is less than 45, then tends to steady. This

is consistent with empirical observation. Figure 3(c) is quite interesting, it shows that
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when the loan amount is less than 3900 RMB, the larger the loan the bigger the risk

of default or repayment delay, however, when the loan amount is greater than 3900

RMB, the larger the loan the smaller the risk of default or repayment delay. This is

because the penalty incurred, as a result of the delay of repayment, does not have

big difference when the loan is smaller than a threshold, therefore, the larger the

loan, the more likely people delay their repayment. However, when the loan is larger

than that threshold, the penalty would have a big jump, which deters people delaying

their repayment. That is why the larger the loan the smaller the risk of default or

repayment delay when the loan amount is greater than 3900 RMB.

Finally, to examine the prediction accuracy, we randomly divided the data into

two subsets: the training set and validation set. We use the model concerned to fit

the training set. For each subject in the validation set, we predicted the subjects loan

repayment status by the fitted model obtained from the training set. We investigated

the performance of the model by examining the squared difference of observed loan

repayment status and the prediction of loan repayment status in each of the training

set. We take the training sets to be 70%, 80% and 90%, respectively, of full dataset,

using the same bandwidth and smoothing parameters mentioned above. The pre-

diction error (PE) for the proposed method and HM method are presented in Table

5, which suggest that regardless whatever the percentage of the training sets is, the

proposed method always outperforms the HM method.

Table 5: Prediction error for the Proposed method and HM method

Training Set Rate Prop. HM

0.7 0.1523 0.1535

0.8 0.1513 0.1527

0.9 0.1532 0.1542
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Figure 3: Estimated component and link functions for the mobile phone microfinance

data and their 95% confident interval by proposed method (solid line and black area,

respectively) with q1 = 0.5, q2 = 0.4, q3 = 0.4, q4 = 0.4, and qm = 0.6 and by the

HM estimator and their 95% confident interval with 2 interior knots and smoothing

parameter 10−3 (dashed line and gray area, respectively). The dotted line in (e) is

the logit function.

6 Discussion

In the paper, we propose a generalized additive model for normal and non-normal

response. Different from the existing methods (Horowitz, 2001; Horowitz and Mam-
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men, 2007), our method can handle with heteroscedastic variance data, hence is more

flexible and efficient. To estimate the component and link functions, we propose quasi-

likelihood backfitting method, which involves just one-dimensional kernel hence avoid

the problem of the curse of the dimensionality. Moreover, the proposed estimator has

a closed form, this has dramatically reduced the computational burden. Finally, the

proposed method is shown to be uniformly consistent, asymptotically normal and

semiparametrically efficient in terms of Bickel et al. (1993) if the conditional distri-

bution belongs to an exponential family. The simulation study and real data analysis

show that our estimator is more efficient and robust than the existing method.

It is straightforward to extend our method to the generalized additive models (1.2)

with unknown variance function V (·), but larger amount of information is required

because the estimation of variance function involves the second order moment.

In practice, the number of covariates may be large, we need to estimate the com-

ponent functions and select the significant covariates simultaneously, which is com-

monly conducted by adding a penalty term to a objective function. However, since

the proposed method estimates the component functions point-by-point, it may not

be suitable to combine the proposed method with a penalty method to simultaneously

estimate and select the covariates. Some spline regression method may be a better

choice.
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7 Appendix A: Notations

Let ζ(x) = (ζ1(x1), ζ2(x2), ..., ζd(xd))
′, γ(x) = (γ1(x1), γ2(x2), ..., γd(xd))

′, β(x) =

(ζ(x), γ(x)), and m(u) = (m1(u), m2(u))
′. Let e be a d-dimensional vector with

elements 1, ej be a d-dimensional vector with the j-th element 1 and the rest d − 1

elements 0, and e−j be the vector with the j-th element 0 and the others 1. Let fj

be the density function of Xij, and fζ be the density of the random variable e′ζ(X)

associated with ζ. Define

Cd = {ζ(·) : ζ(·) is continuous on [−1, 1]d, and satisfying
∫
ζj(x)fj(x)dx = 1, j = 1, · · · , d,

∫
(ζ1(x)− 1)2f1(x)dx = 1}.

and C1 = {ζ(·) : ζ(·) is continuous on [−1, 1]}.

The following operators are used in Theorem 2, which are defined by

Hmj(q)(x) = E
[
q [e′g(Xi)]× ṁ (e′g(Xi)) /V

(
m(e′g(Xi))

)
|Xij = x

]
fj(x), ∀ q ∈ C1,

Hgj(q)(x) = E
[
[ṁ (e′g(Xi))]

2
e′jq(Xi)/V

(
m(e′g(Xi))

)∣∣Xij = x
]
fj(x), ∀q ∈ Cd,

Hmg(q)(u) = E[{m(e′(g(Xi) + q(Xi)))−m(e′g(Xi))}/V
(
m(e′g(Xi))

)∣∣ e′g(Xi) = u]fg(u).

Based on this, we define vector-valued operators as follows

Hg(q)(x) =
{
Hg1(q)(x1), · · · ,Hgd(q)(xd)

}′
, Hm(q)(x) =

{
Hm1(q)(x1), · · · ,Hmd(q)(xd)

}′
.

Define an operator-type matrix Ψ =

(
Hg Hm

Hmg I

)
, where I is the identity operator.

Denote µ2 =
∫ 1

0
x2K(x)dx, B(x, u) := (B1(x1), B2(x2), ..., Bd(xd), Bd+1(u))

′,

Bj(xj) = µ2g̈j(xj)fj(xj), j = 1, 2, ..., d, Bd+1(u) = µ2m̈(u)fg(u).

M(x, u) = (Mk,j(x, u)) is defined to be a semidefinite matric with the following

elements

Mk,j(x, u) = E
[
ṁ2 (e′g(Xi)) |Xi,k = xk, Xi,j = xj

] fk(xk)

Hgj(ej)(xk)

fj(xj)

Hgj(ej)(xj)
, k, j = 1, ..., d;

Mk,d+1(x, u) = ṁ(u)fg(u)/V (m(u))
fk(xk)

g̃k(xk)
, k = 1, ..., d;

Md+1,d+1(x, u) = fg(u)/V (m(u)).
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The following notations are used in Theorem 3. Let σ2
v = E[ΦiΛiΦ

′
i], Φi =

(e′φ̃(Xi), φm(e
′g(Xi)))

′ with φ̃(Xi) =
(
φ1(Xi1)/Hgj(ej)(Xi1), ...., φd(Xid)/Hgj(ej)(Xid)

)
,

and Λi is a 2× 2 symmetric matrix, which can be expressed as

Λi =

(
Ai,11 Ai,12

Ai,12 Ai,22

)
,

where??

Ai,11 = [Yi −m (e′g(Xi))]
2
ṁ2 (e′g(Xi)) , Ai,12 = [Yi −m (e′g(Xi))]

2
ṁ (e′g(Xi)) ,

Ai,22 = [Yi −m (e′g(Xi))]
2
.??

Appendix B: Proofs of Theorems

We firstly present two Lemmas, which are needed to prove Theorems.

Lemma 1 Suppose conditions (A1)-(A3) hold and g(x, y, z) is any bounded and con-

tinuous function. Then

sup
x∈[−1,1]

|cn(x)− Ecn(x)| = Op((logn)
1/2(nh)−1/2).

where cn(x) =
1
n

∑n
i=1 g(Xi, (Xi − x)/h, x)Kh(Xi − x).

This Lemma is similar to Lemma 4 of Chen, al et.(2010) and follows from Theorem

37 and Example 38 in Chapter 2 of Pollard (1984).

Note that Theorem 37 of Pollard (1984) requires the bound of the random function,

and it is no longer valid to the unbounded random variable, such as the case where

Yi is unbounded. To solve this problem, we need to introduce another concentration

inequality for unbounded random variables in Hilbert spaces (Pinelis, 1985).
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Lemma 2 Let ξi (i = 1, ..., n) be independent random variables with values in a

Hilbert space such that Eξi = 0. If for some constants M,V > 0, the bound E‖ξi‖ℓ ≤
1
2
ℓ!M ℓ−2V holds for every 2 ≤ ℓ <∞, then there holds

Prob

{
∥∥

n∑

i=1

ξi
∥∥ ≥ ε

}
≤ 2 exp

{
− ε2

2(εM + V m)

}
∀ε > 0.

Proof of Theorem 1.

For any vector functions β(·) and m(·) , set

Uj(β,m; x) =
1

n

n∑

i=1

[
Yi −m1

{
e′−jζ(Xi) + ζj(x) + γj(x)(Xij − x)

}]
Υij(x)

×m2 (e
′ζ(Xi))Khj

(Xij − x)/V
(
m1(e

′ζ(Xi))
)
, j = 1, 2, ..., d,

Sm(ζ,m; u) =
1

n

n∑

i=1

[Yi −m1(u)−m2(u)× (e′ζ(Xi)− u)]×Khm
(e′ζ(Xi)− u)

Wi(ζ; u)

V
(
m1(e′ζ(Xi))

) ,

where Wi(ζ; u) = [1, e′ζ(Xi)− u]′ and Υij(x) is defined in Section 2. Then the deter-

ministic terms of Uj(β,m; x) and Sm(ζ,m; u) are given respectively by uj(ζ,m; x)

and sm(ζ, m1; u), which are defined in Section 3.

Define U(β,m;x, u) =
(
{Uj(β,m; xj)}dj=1, Sm(ζ,m; u)

)′
. Then, the proposed it-

erative algorithms and the model (1.2) show thatU([ĝ, ̂̇g], m̂;x, u) = 0 and u(g, [m,m2];x, u) =

0 for any bounded function m2.

Define Bd
n = {f : ‖f‖∞ ≤ C, ‖f(z1)− f(z2)‖ ≤ c‖z1 − z2‖+ bn, z1, z2 ∈ [−1, 1]d},

B1
n = {f : ‖f‖∞ ≤ C, ‖f(z1)− f(z2)‖ ≤ c‖z1 − z2‖+ b1n, z1, z2 ∈ [−1, 1]},

for some constants C > 0 and c > 0, where bn = maxk=1,··· ,d{hk+(nhk)
−1/2(log n)1/2},

b1n = {hd+1 + (nhd+1)
−1/2(log n)1/2} with hd+1 = hm.

To show the uniform consistency of ĝ and m̂ , it suffices to prove the following

conclusions:

(i) For any continuous function vectors ζ, m1 and bounded functions γ,m2,
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sup
(x,u)∈[−1,1]d+1

‖U(β,m;x, u)− u(ζ,m;x, u)(1, 0)′‖ = op(1).

(ii) sup(x,u)∈[−1,1]d+1 ‖U(β,m;x, u)− u(ζ,m;x, u)(1, 0)′‖ = op(1) uniformly holds

over ζ ∈ Bd
n, m1 ∈ B1

n and bounded γ,m2.

(iii) P{ĝ ∈ Bd
n, m̂ ∈ B1

n} → 1.

Once (i)-(iii) are established, applying the Arzela-Ascoli theorem in Bk
n (k = 1, d)

for the estimators {ĝ, m̂}, we can show that for any subsequence of {ĝ, m̂}, there exists
a convergence subsequence {ĝ, m̂}nk, such that uniformly over (x, u) ∈ [−1, 1]d+1,

{ĝ, m̂}nk → {g∗, m∗} in probability, and it is easily seen that g∗ ∈ Cd and m∗ ∈ C1,
where C1 is the continuous function class. Note that

u(g∗, [m∗, ̂̇m];x, u)(1, 0)′ = u(g∗, [m∗, ̂̇m];x, u)(1, 0)′ − u({ĝ, m̂}nk;x, u)(1, 0)′

+u({ĝ, m̂}nk;x, u)(1, 0)′ −U({[ĝ, ̂̇g], m̂}nk;x, u).

It follows from (ii) and (iii) that u(g∗, [m∗, ̂̇m];x, u) = 0 over (x, u) ∈ [−1, 1]d+1. Since

u(ζ, [m1, ̂̇m];x, u) = 0 has a unique root at [g, m] by condition (A5), we conclude that

[g, m] = [g∗, m∗], which ensures the uniform consistency of ĝ and m̂. This completes

the proof of Theorem 1.

Proof of (i). For convenience, we only give the proof of ‖Uj(β,m; x)−uj(ζ,m; x)(1, 0)′‖.
The similar arguments lead to the conclusions about Sm(ζ,m; u) and Sℓ(ζ, m1,σ; z).

To estimate Uj(β,m; x)−uj(ζ,m; x)(1, 0)′, we consider the following decomposition,

Uj(β,m; x)− uj(ζ,m; x)(1, 0)′

= {Uj(β,m; x)− Uj([ζ, 0],m; x)}+ {Uj([ζ, 0],m; x)− ũj(ζ,m; x)}
+ [ũj(ζ,m; x)− uj(ζ,m; x)(1, 0)′]

≡ I1 + I2 + I3,

where ũj(ζ,m; x) is the mean of Uj([ζ, 0],m; x).
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First consider I1. Denote the modulus of continuity of f by wf(h). Observing

that

‖I1‖ ≤ 1

n

n∑

i=1

wm1 [γj(x)(Xij − x)]‖Υij(x)‖ ×
∣∣m2 (e

′ζ(Xi))
∣∣ Khj

(Xij − x)

V
(
m1(e′ζ(Xi))

) .

For any given i ∈ {1, 2, ..., n} and any bounded function γj, note that

wm1 [γj(x)(Xij − x)]‖Υij(x)‖ ×
∣∣m2 (e

′ζ(Xi))
∣∣ Khj

(Xij − x)

V
(
m1(e′ζ(Xi))

)

≤ wm1(C[Xij − x])‖Υij(x)‖ ×
∣∣m2 (e

′ζ(Xi))
∣∣ Khj

(Xij − x)

V
(
m1(e′ζ(Xi))

) ,

and it is easy to check that

∫ 1

−1

wm1(uj − x)Khj
(uj − x)fj(uj)duj = Op(wm1(hj)) for all x ∈ [−1, 1].

For any bounded functions β and m , this follows from Condition A3 that

E[‖I1‖] ≤ Op(wm1(hj)).

Hence Lemma 1 shows that, for any given continuous functions β and m,

sup
x∈[−1,1]

‖I1‖ = Op(wm1(hj)) +Op((log n)
1/2(nhj)

−1/2) → 0 as n→ ∞. (7.1)

To estimate I2, it suffices to verify the conditions given in Lemma 2. Condition

(A1) means that Kh lies in a Sobolev space denoted by H2 with the property: ‖f‖∞ ≤
c‖f‖H2, for any f ∈ H2. Then using Condition A3, we have

sup
x∈[−1,1]

‖I2‖ ≤ Op((logn)
1/2(nhj)

−1/2). (7.2)

Next consider I3. By replacing ζj(x) with ζj(Xij) in ũj(ζ,m; x), a difference controlled

by w(m1◦ζj)(hj) is caused for all x ∈ [−1, 1]. Moreover, we note that

∫

[−1,1]d
[m (e′g(Xi))−m1 (e

′ζ(Xi))]×m2 (e
′ζ(Xi))Khj

(Xij − x)/V
(
m1(e

′ζ(Xi))
)
dF (Xi)

=

∫ 1

−1

H(uj)Khj
(uj − x)fj(uj)duj → uj(ζ,m, σ1; x) ashj → 0,
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where F is the joint distribution function of Xi,

H(uj) = E
[
[m (e′g(Xi))−m1 {e′ζ(Xi)}]×m2(e

′ζ(Xi))/V
(
m1(e

′ζ(Xi))
)
|Xij = uj

]
.

By Lemma 1, it can be shown that

sup
x∈[−1,1]

‖I3‖ = Op(w(m1◦ζj)(hj)). (7.3)

Thus we complete the proof of (i) by combining (7.1), (7.2) with (7.3).

Proof of (ii). Noting that x and u are bounded, the arguments used to prove (ii)

is essentially the same with those in Chen, et.al (2009). In fact, uniform laws of large

numbers for infinite space plays an important role in proving this part.

Proof of (iii). Because the proofs involving these two components are the same

with each other, we only give the proof for ĝ ∈ Bd
n.

Given any x1, x2 ∈ [−1, 1] with |x1 − x2| ≤ hj , denoting the first component of Uj

by Uj1. Since Uj1(β̂, m̂; x1) = 0 and Uj1(β̂, m̂; x2) = 0. By the Taylor expansion and

Condition A1, it follows that

Uj1(β̂, m̂; x1)− Uj1(β̂, m̂; x2) =
1

n

n∑

i=1

[
Yi − m̂

{
e′−j ĝ(Xi) + ĝj(x1) + ̂̇gj(x1)(Xij − x1)

}]

×
̂̇m (e′ĝ(Xi))

V
(
m̂(e′ĝ(Xi))

) [Khj
(Xij − x1)− [Khj

(Xij − x2)] +
1

n

n∑

i=1

[ ̂̇m (e′ĝ(Xi))

V
(
m̂(e′ĝ(Xi))

)Khj
(Xij − x2)

]

× ˙̂m
(
e′−jĝ(Xi) + ĝj(x1) + ̂̇gj(x1)(Xij − x1)

)
{ĝj(x2)− ĝj(x1)− ̂̇gj(x1)(x2 − x1)

+(̂̇gj(x2)− ̂̇gj(x1))(Xij − x1)}+O
{
(ĝj(x2)− ĝj(x1))

2 + (x2 − x1)
2 + b2n + bn(ĝj(x2)− ĝj(x1))

}

≡ I × (x2 − x1) + II × (ĝj(x2)− ĝj(x1)) + II × ̂̇gj(x1)(x2 − x1) + III × (̂̇gj(x2)− ̂̇gj(x1))
+O

{
(ĝj(x2)− ĝj(x1))

2 + (x2 − x1)
2 + b2n + bn(ĝj(x2)− ĝj(x1))

}

By the similar discussion in Cai, Fan and Yao (2000), we have I = Op(1), II = Op(1)

and III = Op(bn). Note that ̂̇gj is bounded, (iii) is held immediately.

Proof of Theorem 2.
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For convenience of notation, denote Hd = diag(h1, · · · , hd),

an = max
1≤k≤d+1

{h2k + (nhk)
−1/2(log n)1/2}, cn = sup

x∈[−1,1]d
‖ĝ(x)− g(x)‖,

dn = sup
x∈[−1,1]d

‖Hd
̂̇g(x)−Hdġ(x)‖, en = sup

u∈[−1,1]

|m̂(u)−m(u)|,

πn = sup
u∈[−1,1]

|hm ̂̇m(u)− hmṁ(u)|, µ2 =

∫ 1

0

x2K(x)dx, Q =

(
1 0

0 µ2

)
.

First, we claim that uniformly over x ∈ [−1, 1], we have

Uj([ĝ, ˆ̇g], [m̂, ˆ̇m]; x)− Uj([g, ġ], [m, ṁ]; x) = (1, 0)′[Hgj(ĝ − g)(x)] + Hmj(m̂−m)(x)

+Op

(
cn(an + cn + dn + en) + dn(an + dn + en + πn)

)
, (7.4)

where Hgj is an integral-type map from Cd to C1 and Hmj is an integral operator on

C1, both are defined in Appendix A.

To prove (7.4), we write,

Uj([ĝ, ˆ̇g], [m̂, ˆ̇m]; x)− Uj([g, ġ], [m, ṁ]; x) ≡ J1 + J2

where

J1 = Uj([ĝ, ˆ̇g], [m̂, ˆ̇m]; x)− Uj([g, ġ], [m̂, ˆ̇m]; x),

J2 = Uj([g, ġ], [m̂, ˆ̇m]; x)− Uj([g, ġ], [m, ṁ]; x).

Similar to the proof of Theorem 1, we can show that ˆ̇gj and ˆ̇mj are both bounded

with high probability, furthermore ‖ˆ̇gj − ġj‖ → 0 and ‖ ˆ̇mj − ṁj‖ → 0. Thus by

uninform the laws of large numbers and Taylor expansion of m(·), we conclude that

J1 = (1, 0)′
(
Hgj(ĝ − g)

)
(x) +Op(an(cn + dn + πn) + cnen + c2n + dn(dn + cn + πn + en)).

Similarly, we can obtain that

J2 = (1, 0)′Hmj(m̂−m)(x) +Op(anen + anπn + enπn).

Consequently, this together with J1 and J2 yields the conclusion of (7.4).
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Next we consider Sm(ĝ, [m̂, ̂̇m]; u) − Sm(g, [m, ṁ]; u), which can be decomposed

into the following aspects: J3 + J4, where

J3 := Sm(ĝ, [m̂, ̂̇m]; u)− Sm(ĝ, [m, ṁ]; u)

and

J4 := Sm(ĝ, [m, ṁ]; u)− Sm(g, [m, ṁ]; u).

By a simple calculation, we easily obtain that

J3 =
1

n

n∑

i=1

[
m̂(u)−m(u) + ( ˆ̇m− ṁ)(u)(e′ĝ(Xi)− u)

]
Khm

(e′ĝ(Xi)− u)
Wi(ĝ; u)

V
(
m̂(e′ĝ(Xi))

)

= Q
[
(m̂−m)(u), hm( ˆ̇m− ṁ)(u)

]
fĝ(u)/V (m(u)) +Op(e

2
n + enπn + anen + anπn)

= Q
[
(m̂−m)(u), hm( ˆ̇m− ṁ)(u)

]
fg(u)/V (m(u)) +Op(e

2
n + enπn + dncn + dnπn + anen)

where the second equality is derived by repeating the process for bounding J1 as

above, and the last one is derived by taking the Taylor expansion of fĝ(u) at e′g.

Similarly, we also have that

J4 = (1, 0)′E[m(e′g(X))−m(e′ĝ(X))
∣∣ e′g(X) = u]fg(u)/V (m(u)) +Op(d

2
n + andn + ancn + cndn).

Hence, combining with J3 and J4, we have that

Sm(ĝ, [m̂, ̂̇m]; u)− Sm(g, [m, ṁ]; u) = Q
[
(m̂−m)(u), hm( ˆ̇m− ṁ)(u)

]
fg(u)/V (m(u))

+(1, 0)′
(
Hmg

)
(ĝ − g)(u) +Op(d

2
n + dncn + dnπn + e2n + enπn + anen). (7.5)

On the other hand, using Condition (A1), Lemma 1 implies that

sup
(x,u)∈[−1,1]d+1

‖U([g, ġ], [m, ṁ];x, u)‖ = Op(an).

Note thatU([ĝ, ˆ̇g], [m̂, ˆ̇m];x, u) = 0, and it follows from the second component in (7.4)

and (7.5) that dn = Op(an+ cn(bn+ cn+ en+dn)) and πn = Op(an+ en(bn+ cn+ en)).

This further implies that

dn = Op(an + cn(bn + cn + en)). (7.6)
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Let Uj1 be the first component of Uj, and denote U1 = (U11, ..., Ud1)
′. Combining

(7.4) with (7.6) we have

Hg(ĝ − g)(x) + Hm(m̂−m)(x) = −U1([g, ġ], [m, ṁ];x) +Op(cnbn + cnen + enan),(7.7)

By the same way as above, let Sm1 be the first components of Sm, and it follows

from (7.5) that

(
m̂−m

)
(u) +

(
Hmg

)
(ĝ− g)(u) = −Sm1(g, [m, ṁ]; u) +Op(anbn + anen + cnen). (7.8)

Consequently, this together with (7.7) and (7.8) implies that

[Hg −Hm ◦Hmg](ĝ − g)(x) = −U1([g, ġ], [m, ṁ];x)

+Hm(Sm1(g, [m, ṁ]))(x) +Op(anbn + anen + cnen), (7.9)

where we used the fact that Hm is a bounded operator on C1. Following Condition A7,

(Hg −Hm ◦Hmg)
−1 exists and is bounded on Cd, the supremum norm of the left-side

hand of (7.9) is equivalent to cn.

Besides, Lemma 1 can show that
∥∥U1([g, ġ], [m, ṁ]; ·) − Hm(Sm1(g, [m, ṁ]))

∥∥ =

Op(an). By (7.9), we have cn = Op(an + anen). Similarly, it can be shown that

en = Op(an + ancn) and νn = O(an). Hence we have

cn = Op(an) = Op(en). (7.10)

Then by Condition A7, we note that Ψ is linear and so Ψ−1 is linear and bounded

on Cd × C1 × C1. Combining (7.7), (7.8) and (7.10), we have

Ψ

(
ĝ − g

m̂−m

)
(x, u) =

(
−U1([g, ġ], [m, ṁ];x)

−Sm1(g, [m, ṁ]; u)

)
+Op(anbn). (7.11)

On the other hand, note that Uj1([g, ġ], [m, ṁ], σℓ; ; x) can be expressed as

Uj1([g, ġ], [m, ṁ]; x) = Vn,j(x) +Bn,j(x)
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where

Vn,j(x) =
1

n

n∑

i=1

[Yi −m (e′g(Xi))] ṁ (e′g(Xi))
Khj

(Xij − x)

V
(
m(e′g(Xi))

)

Bn,j(x) =
1

n

n∑

i=1

[ṁ (e′g(Xi))]
2g̈j(x)(Xij − x)2

Khj
(Xij − x)

V
(
m(e′g(Xi))

) + op(h
2
j ).

Lemma 1 is applied again to show that

Bn,j(x) = µ2g̈j(x)E
[
[ṁ (e′g(X))]2/V

(
m(e′g(X))

)
|X·j = x

]
fj(x)h

2
j + op(h

2
j ).

Similarly, we can obtain

Sm1(g, [m, ṁ]; u) =
1

n

n∑

i=1

[Yi −m(e′g(Xi))]
Khm

(e′g(Xi)− u)

V
(
m(e′g(Xi))

) +Bd+1(u)h
2
m + op(h

2
m),

where Bd+1(·) is defined in Appendix A. Denote Vn,d+1(u) by

1

n

n∑

i=1

[Yi −m(e′g(Xi))]
Khm

(e′g(Xi)− u)

V
(
m(e′g(Xi))

)

and we write An(x) = −(Vn,1(x1), Vn,2(x2), ..., Vn,d(xd), Vn,d+1(u)). Then it follows

from (7.11) that

Ψ

(
ĝ − g

m̂−m

)
(x, u) = An(x, u) +H2B(x, u) +Op(anbn) + op(

d+1∑

k=1

h2k),

where H = diag(h1, · · · , hd+1) and B(x, u) is defined in Appendix A. The classical

central limit theorem implies that (nH)1/2An(x, u) is asymptotically normal with zero

mean and finite covariance matrix M. Thus the proof of Theorem 2 is completed.

Proof of Theorem 3.
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First, we derive the asymptotic variance of
∑d

j=1

∫ 1

−1
ĝjψj(x)dx+

∫ 1

−1
m̂(u)ψm(u)du.

Conditioned on hj and hm, from (7.11), we have

d∑

j=1

∫ 1

−1

[ĝj(x)− gj(x)]ψj(x)dx+

∫ 1

−1

(m̂−m)(u)ψm(u)du

=
1

n

n∑

i=1

[Yi −m (e′g(Xi))] ṁ (e′g(Xi))

d∑

j=1

?φj(Xij)

Hgj(ej)(Xij)
+

1

n

n∑

i=1

Yi −m (e′g(Xi))

V (m(e′g(Xi)))
?φm(e

′g(Xi))

+Op(anbn). (7.12)

where we used the fact that
∫ 1

−1
xK(x)dx = 0. Using the classical central limit

theorem, we get

d∑

j=1

∫ 1

−1

[ĝj(x)− gj(x)]ψj(x)dx+

∫ 1

−1

(m̂−m)(u)ψm(u)du→ N(0, σ2
v), (7.13)

where σ2
v is defined in Section 3. In particular, the quantity (7.12) shows that the

variance of
∑d

j=1

∫ 1

−1
ĝj(x)ψj(x)dx+

∫ 1

−1
m̂(u)ψm(u)du equals to

σ̄2 = E

[(
ṁ (e′g(X)) e′φ̃(X) + φm(e

′g(X))
)2]/(

n

d+1∑

j=1

hj

)
. (7.14)

Next show the asymptotic efficiency of
∑d

j=1

∫ 1

−1
ĝjψj(x)dx +

∫ 1

−1
m̂(u)ψm(u)du.

Consider the following parametric submodel with unknown parametric β,

(g(x, β), m(u, β)) =
(
g(x), m(u)) + β(φ̃(x), (V

(
m(g(x))

)
φm)(u)

)
.

Obviously, β0 = 0 is the true value of β. Based on the definition of the quasi-likelihood

(2.1), the score of this parametric submodel at β0 is

1√
n

n∑

i=1

[Yi −m (e′g(Xi))] ṁ (e′g(Xi)) e
′φ̃(Xi) +

Yi −m (e′g(Xi))

V (m(e′g(Xi)))
φm(e

′g(Xi)),(7.15)

whose variance is σ̄2. Thus, the maximum likelihood estimator of β, denoted by β̃,

satisfies
√
n(β̃ − β0) → N(0, (σ̄2)−1).
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For any vector functions ψ(x, u) = ({ψj(x)}dj=1, ψm(u)), we observe that

∫

[x,u]∈[−1,1]d+1

[(g(x, β̃), m(u, β̃))− (g(x, β0), m(u, β0))]ψ(x, u)
′dxdu

= (β̃ − β0)

∫

[x,u]∈[−1,1]d+1

[φ̃(x), φm(u)]ψ(x, u)
′dxdu. (7.16)

Moreover, we observe that
∫

[x,u]∈[−1,1]d+1

[φ̃(x), (σ2φm)(u)]ψ(x, u)
′dxdu = σ̄2.

Then it follows from (7.16) that

√
n

∫

[x,u]∈[−1,1]d+1

[(g(x, β̃), m(u, β̃))− (g(x, β0), m(u, β0))]ψ(x, u)
′dxdu→ N(0, σ̄2).

This together with (7.14) shows that the asymptotic variance of
∑d

j=1

∫ 1

−1
ĝj(x)ψj(x)dx+∫ 1

−1
m̂(u)ψm(u)du is the same as that of

∫
[x,u]∈[−1,1]d+1(g(x, β̃), m(u, β̃))ψ(x, u)′dxdu.

In other words,
∑d

j=1

∫ 1

−1
ĝj(x)ψj(x)dx+

∫ 1

−1
m̂(u)ψm(u)du is asymptotically efficient

for the estimation of
∑d

j=1

∫ 1

−1
gjψj(x)dx+

∫ 1

−1
m(u)ψm(u)du. Thus we complete the

proof of Theorem 3.

Convergence of the iterative algorithm

Let u(β,m;x, u) be defined as above. In the proof of Theorem 1, we have

shown that, there exists a solution of U(β,m;x, u) = 0 denoted by ([ĝ, ̂̇g], m̂),

such that ([ĝ, ̂̇g], m̂) converges to ([g, ġ], [m, ṁ]) in the sup-norm on x ∈ [−1, 1].

We claim that, on a neighbor of ([ĝ, ̂̇g], m̂), the proposed iterative algorithms con-

verges to ([ĝ, ̂̇g], m̂) as the number of iterative steps increase. It can be checked

from (2.8) and (2.9) that, the solution of ([ĝ, ̂̇g], m̂)(x) is determined by the solu-

tions of ([ĝ, ̂̇g], m̂)(x1),...,([ĝ, ̂̇g], m̂)(xn). Thus, it suffices to consider the solutions

of ([ĝ, ̂̇g], m̂)(x1), ..., ([ĝ, ̂̇g], m̂)(xn). In particular, for some r ∈ N+, provided that

‖([g(r), ġ(r)],m(r))− ([ĝ, ̂̇g], m̂)‖ = ãn on all the sample points, we need to show that

‖([g(r+1), ġ(r+1)],m(r+1)) − ([ĝ, ̂̇g], m̂)‖ ≤ θãn + b̃n with some θ ∈ (0, 1), where b̃n is

referred to as statistical error independent of our iterative algorithm. That is, this

implies that the proposed iteramtive algorithm locally converges with linear order.
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To this end, we write Π
(r)
kj :=

∑n
i=1 ρ

(2r)(Xi)Υij(x)Υij(x)
′Khj

(Xij −Xkj)/V (µ
(r)
i )

for the ease of symbols. For any Xkj with k = 1, ..., n and j = 1, ..., d, we obtain from

(2.8) that

( (
g
(r+1)
j − ĝj

)
(Xkj)(

ġ
(r+1)
j − ˆ̇gj

)
(Xkj)

)
:=
(
Π

(r)
kj

)−1 ×Θ
(r)
j , (7.17)

where

Θ
(r)
j =

n∑

i=1

(
Yi − µ

(r)
i + ρ(r)(Xi)g

(r)
j (Xij)

)(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)
−Π

(r)
j

(
ĝj(Xkj)

ˆ̇gj(Xkj)

)

=
n∑

i=1

(
Yi − µ

(r)
i + ρ(r)(Xi)g

(r)
j (Xij)− ρ(r)(Xi)ĝj(Xkj)− ρ(r)(Xi)(Xij −Xkj)ˆ̇gj(Xkj)

)

(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)

=
n∑

i=1

(
Yi −m

( d∑

j=1

g(Xij)
)
+ m̂

( d∑

j=1

ĝ(Xij)
)
− µ

(r)
i +m

( d∑

j=1

g(Xij)
)
− m̂

( d∑

j=1

ĝ(Xij)
)

+ρ(r)(Xi)
[
g
(r)
j (Xij)− ĝj(Xkj)

])(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)

−
n∑

i=1

ρ(r)(Xi)(Xij −Xkj)ˆ̇gj(Xkj)
(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)

=: Ω1 + Ω2 + Ω3 + Ω4

where

Ω1 =
n∑

i=1

(
m̂
( d∑

j=1

ĝ(Xij)
)
− µ

(r)
i + ρ(r)(Xi)

[
g
(r)
j (Xij)− ĝj(Xkj)

])(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)

Ω2 =
n∑

i=1

(
m
( d∑

j=1

g(Xij)
)
− m̂

( d∑

j=1

ĝ(Xij)
))(

Υij(x)ρ
(r)(Xi)

Khj
(Xij −Xkj)

V (µ
(r)
i )

)

Ω3 =
n∑

i=1

(
Yi −m

( d∑

j=1

g(Xij)
))(

Υij(x)ρ
(r)(Xi)

Khj
(Xij −Xkj)

V (µ
(r)
i )

)

Ω4 =

n∑

i=1

ρ(r)(Xi)(Xkj −Xij)ˆ̇gj(Xkj)
(
Υij(x)ρ

(r)(Xi)
Khj

(Xij −Xkj)

V (µ
(r)
i )

)
.
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We call Ω1 as algorithmic error, since it is induced by the r-th step iteration. Obvi-

ously, Ω2 is referred to as estimation error, and Ω3 is mainly determined by the noise

error of our model. Ω4 reflects the error induced by the local linear approximation to

nonparametric functions.

From the decomposition of Θ
(r)
j as above, we see that Ω1 is the most important

term for justifying the local convergence of our proposed algorithm. Furthermore, Ω1

can be bounded by the following two terms:

∥∥(Π(r)
kj

)−1
Ω1

∥∥
∞

≤
n∑

i=1

(
(‖ ˙̂m‖∞ + |ρ(r)(Xi)|)

∣∣g(r)j (Xij)− ĝj(Xkj)
∣∣)Π(r)

ijk +
n∑

i=1

‖m̂−m(r)‖∞Π
(r)
ijk

where Π
(r)
ijk =

∥∥∥
(
Π

(r)
kj

)−1
Υij(x)ρ

(r)(Xi)
Khj

(Xij−Xkj)

V (µ
(r)
i )

∥∥∥
∞
. It remains to prove that

∑n
i=1

(
(‖ ˙̂m‖∞+

|ρ(r)(Xi)|)
)
Π

(r)
ijk as well as

∑n
i=1Π

(r)
ijk is strictly less than 1. Since m(r) and g

(r)
j

(j = 1, ..., d) are close enough to the true functions (m, gj), ρ
(r) and µ(r) approxi-

mate well to ρ and µ respectively. If ‖ρ‖∞ is strictly less than one, we can justify the

above conclusion following the definition of
(
Π

(r)
kj

)−1
. In addition, we observe that

the other terms in Θ
(r)
j except Ω1 primarily reflect statistical error and the errors

induced by iterative algorithm can be negligible. Thus, we complete the proof of the

algorithm convergence together with Theorem 1, which generates the parameter b̃n.
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