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Abstract We investigate the radiation to infinity of mass-

less scalar field from a source falling radially towards a

Schwarzschild black hole using the framework of quantum

field theory at tree level. In the case where the source falls

from infinity, the monopole radiation is dominant for low

initial velocities but higher multipoles become dominant at

high initial velocities. It is found that, as in the electromag-

netic and gravitational cases, at high initial velocities the

energy spectrum for each multipole with l ≥ 1 is approxi-

mately constant up to the fundamental quasinormal frequency

and then drops to zero. We also investigate the case where

the source falls from rest at a finite distance from the black

hole. We find that the monopole and dipole contributions are

dominant in this case. We point out that this case needs to be

distinguished carefully from the unphysical process where

the source abruptly appears at rest and starts falling, which

would result in radiation of an infinite amount of energy. We

also investigate the radiation of massless scalar field to the

horizon of the black hole, finding some features similar to

the gravitational case.

1 Introduction

Black holes (BHs) stand out as the most relevant and sim-

ple objects described by General Relativity. BHs are trapped

regions even to light, due to their extremely intense gravita-

tional field. The boundary of no return, from which light

cannot escape, the BH event horizon, is determined as a

function of only three parameters associated to the BH, i.e.

mass, angular momentum and electric charge [1]. Particles

falling into BHs emit radiation which carries information

to infinity about the event horizon, as a “fingerprint” of the

ae-mail: laoliveira@ufpa.br
be-mail: crispino@ufpa.br
ce-mail: atsushi.higuchi@york.ac.uk

BHs [2–5]. Thus, in principle, evidence for the existence of

an event horizon, and therefore for the existence of BHs, can

be obtained by analyzing the radiation emitted from a source

falling into BHs. The scientific literature about the dynamics

of a test particle falling into BHs has developed significantly

in the early 1970’s. The existing results for the problem of

radiation emission from a particle falling radially into BHs

were obtained using the formalism of Classical Field The-

ory (CFT) [2–17], and the investigation of this kind of prob-

lems from the viewpoint of Quantum Field Theory (QFT)

has not been carried out. The formalism of QFT applied to

the problem of radiation emission has been used for the de-

termination of the radiation emission by sources and charges

rotating around a BH, known as synchrotron radiation [18–

25]. Furthermore, QFT has been used to investigate radi-

ation emission from a uniformly accelerated source in flat

spacetimes [26, 27] and also to investigate the interaction

of sources with Hawking radiation [28–34]. In this paper,

using QFT at tree level, we investigate in details the prop-

erties of the radiation emission due to the radial infall of a

particle source of massless scalar field into a Schwarzschild

BH. One of the main advantages in computing the emitted

energy using the framework of QFT at level tree is that this

approach makes the extension to the radiative quantum cor-

rections more straightforward. We note in passing that the

change in the geometry due to the Hawking radiation for an

astrophysical black hole is extremely small [35] and, as a re-

sult, that it is legitimate to use the eternal black hole in our

calculations.

The remainder of this paper is organized as follows. In

Sec. 2 we briefly review the general formalism used in this

paper. In Sec. 3 we describe the radial infall of a source

into a Schwarzschild BH according to General Relativity.

In Sec. 4 we obtain expressions for the emitted energy spec-

trum and the total emitted energy for a quantum scalar field

minimally coupled to the scalar source. In Sec. 5 we ob-
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tain the zero-frequency limit of the emitted energy spectra,

using approximate analytic solutions. In Sec. 6 we analyze

and discuss our numerical results for the radiation emission

obtained from the viewpoint of QFT. We summarize some

features of our results in Sec. 7. We use, unless otherwise

stated, natural units with G = c = h̄ = 1.

2 General Formalism of QFT in Schwarzschild

spacetime

The total Lagrangian density with a classical source j (xµ),

minimally coupled to a massless and chargeless scalar field

Φ̂ (xµ), can be written as

L =
√−g

(

1

2
∇µ Φ̂∇µ Φ̂ + jΦ̂

)

, (1)

where g ≡ det(gµν) is the determinant of the metric gµν .

The line element ds2 = gµν dxµ dxν of the Schwarzschild

spacetime can be written as

ds2 = f dt2 − f−1dr2 − r2
(

dθ 2 + sin2 θdφ 2
)

, (2)

where f (r) = 1−2M/r. Note that f (r = rh) = 0, with rh ≡
2M being the position of the event horizon of the Schwarzschild

BH, and f (r → ∞) = 1. This spacetime is asymptotically

flat.

The scalar field Φ̂ (xµ) can be expanded in terms of a

complete set of positive- and negative-frequency modes, uω l m

and u∗ω l m, as

Φ̂ =
∞

∑
l=0

m=l

∑
m=−l

∫ ∞

0
dω
[

uω l mâω l m +u∗ω l mâ
†
ω l m

]

, (3)

with ω > 0, where “∗” denotes complex conjugation, and

âω l m and its Hermitian adjoint â
†
ω l m are, respectively, the

annihilation and the creation operators [36]. These operators

satisfy the following non-vanishing commutation relations:
[

âω l m, â
†
ω ′ l′ m′

]

= δ
(

ω −ω ′)δl l′δmm′ . (4)

Since the Schwarzschild spacetime is spherically symmet-

ric, the positive-frequency modes uω l m (xµ), can be written

as:

uω l m (xµ) = Cω l m

ψ∗
ω l(r)

r
Yl m (θ ,φ)exp(−iωt), (5)

which satisfy the Klein-Gordon equation

∇µ ∇µ uω l m =
1√−g

∂µ

(√−ggµν ∂ν uω l m

)

= 0, (6)

where Cω l m is a normalization constant, Yl m (θ ,φ) are the

spherical harmonics [37] and
√−g= r2 sinθ [obtained from

the line element (2)]. The Klein-Gordon inner product for

the mode functions is defined as follows:

σKG (ϕ1,ϕ2) = i

∫

S
dSµ

[

ϕ∗
1 ∇µ ϕ2 − (∇µ ϕ∗

2 )ϕ1

]

, (7)

with dSµ = r2 sinθdrdθdφ δ
µ
0 / f (r), where S is a constant-

time hypersurface, which is a Cauchy surface [38]. The com-

mutation relations (4) imply that the modes uω l m are nor-

malized as follows:

σKG (uω l m,uω ′ l′ m′) = δ (ω −ω ′)δl l′δmm′ , (8)

σKG (u∗ω l m,uω ′ l′ m′) = 0. (9)

The conditions (8) determine the normalization constant Cω l m

in Eq. (5).

Substituting Eq. (5) into the Klein-Gordon equation (6),

we obtain the following ordinary differential equation for

ψω l(x):

[

d2

dr2∗
+ω2 −Vl(r)

]

ψω l(r∗) = 0, (10)

where Vl(r) is the effective potential, given by

Vl(r) = f (r)

[

l (l +1)

r2
+

1

r

d f

dr

]

, (11)

and the Regge-Wheeler coordinate r∗ is defined by dr∗/dr ≡
f (r)−1, which for the Schwarzschild BH can be explicitly

written as

r∗ = r+ rh log(r/rh −1) . (12)

Equation (10) admits two independent sets of solutions,

which can be represented by the modes ψ
up
ω l(r∗), purely in-

coming from the past horizon H−, and the modes ψ in
ω l(r∗),

purely incoming from the past null infinity J −. The solu-

tions ψ
up
ω l(r∗) and ψ in

ω l(r∗) satisfy, respectively, the follow-

ing boundary conditions at the event horizon (r∗ →−∞) and

at spatial infinity (r∗ → ∞):

ψ
up
ω l(r∗)≈







A
up
ω l χ

∗
hor +B

up
ω l χhor (r∗ →−∞) ,

χinf (r∗ → ∞) ,

(13)

and

ψ in
ω l(r∗)≈







χhor (r∗ →−∞) ,

Ain
ω l χ

∗
inf +Bin

ω l χinf (r∗ → ∞) .

(14)

The functions χhor and χinf are defined to be of the form

exp(−iωr∗) and exp(iωr∗), respectively, at leading order in

1/r∗. In our numerical computations we write these func-

tions near the horizon and near spatial infinity as

χhor = exp(−iωr∗)
jmax

∑
j=0

a j(r− rh)
j, (15)

χinf = exp(iωr∗)
jmax

∑
j=0

b j

r j
, (16)

where the coefficients a j and b j are obtained from Eq. (10),

with the choice a0 = 1 and b0 = 1. We let jmax = 10 in our
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computation. The coefficients A
up/in

ω l and B
up/in

ω l are deter-

mined by matching the boundary conditions (13) and (14)

with the numerical solution ψω l(r∗), obtained from Eq. (10),

at the event horizon r∗ →−∞ and at spatial infinity r∗ → ∞,

respectively. Note that the coefficients A
up/in
ω l and B

up/in
ω l are

related to the transmission coefficient |T up/in
ω l |2 and reflec-

tion coefficient |Rup/in
ω l |2, respectively, as follows:

|T up/in
ω l |2 ≡ 1

|Aup/in
ω l |2

, (17)

and

|Rup/in
ω l |2 ≡

∣

∣

∣

∣

∣

B
up/in
ω l

A
up/in
ω l

∣

∣

∣

∣

∣

2

. (18)

The reflection and transmission coefficients satisfy the fol-

lowing relation:

|Rup/in
ω l |2 + |T up/in

ω l |2 = 1. (19)

From the boundary conditions (13) and (14) and Eq. (8), we

find that the normalization constant Cω l m can be written as

C
up/in

ω l m =
1√

4πωA
up/in
ω l

. (20)

We note that, because of the complex conjugation in Eq. (5)

of ψω l(r), the modes uω l m(x
µ) are the modes purely ingo-

ing into the future horizon H+ [with ψ
up∗
ω l (r)] or purely out-

going to the future null infinity J + [with ψ in∗
ω l (r)]. These

are the modes we use for computing the radiation into the

horizon and to null infinity in the next section.

3 Radial infall of a source into a Schwarzschild Black

Hole

We consider a source falling radially into a Schwarzschild

BH. The source has zero angular momentum as a result.

Without loss of generality we let the source fall along the

z-axis. The stress-energy tensor for a point source can be

written as

T µν =
∫

dτ√−g
qδ 4 [xα − xα(τ)]

dxµ

dτ

dxν

dτ
, (21)

where τ is the source’s proper time.

By setting j(xµ)=T ν
ν (corresponding to a scalar source),

we find the following expression for a massive source

j(xµ) =
q√−gvt

δ (r− rs)δ (θ −θs)δ (φ −φs) , (22)

where (r,θ ,φ) = (rs,θs,φs) refers to the spatial coordinates

of the source at given time t in spherical polar coordinates, q

is a coupling constant between the source and a massless and

chargeless scalar field Φ̂ [18, 32] , and vt is the contravariant

t-component of the 4-velocity of the source. The factor 1/vt

makes the source boost invariant along its trajectory.

The 4-velocity vµ of a source infalling radially is given

by the following expression

vµ ≡ dxµ

dτ
=

[

E

f (r)
,−
√

E2 − f (r), 0, 0

]

, (23)

where E is the source’s conserved energy divided by its rest

mass [1]. If the source has initial position r = r0 and velocity

v0 in the ingoing radial direction (at t = 0), then [38]

E =

√

f (r0)

1− [v0/ f (r0)]
2
. (24)

Using Eqs. (2) and (23), we can find an expression for

the modulus of the velocity of the source (falling radially) at

position r in the static frame [39], namely

Ur =

∣

∣

∣

∣

f (r)−1 dr

dt

∣

∣

∣

∣

=
1

E

√

E2 − f (r). (25)

In Fig. 1, we exhibit plots of Ur for selected values of v0 and

r0.

We write the radial coordinate of the source as rs ≡ rs (ts),

with ts being the time coordinate in Eq. (2) associated with

the trajectory of the radial infall along its geodesic. The

function ts(rs) is obtained from the relation

dts

drs
=− E

f (rs)
√

E2 − f (rs)
. (26)

This formula follows from Eq. (23). Using the properties

of the Dirac delta function and Eqs. (23) and (26), we can

rewrite Eq. (22) as follows:

j(xµ) =
qδ (t − ts)δ (θ −θs)δ (φ −φs)

r2
s sinθ

√

E2 − f (rs)
, (27)

where ts(r) is the inverse function of r = rs(ts). The con-

stants θs will be set to 0 (and then φs will be ambiguous and

can be set to any value).

4 Total Emitted Energy

Now we turn to the computation of the total emitted energy

(for each multipole number l and azimuthal number m) by

a source j(xµ) minimally coupled to a scalar field Φ̂ (xµ)
in a background of a spherically symmetric spacetime us-

ing QFT at tree level. We start from the following expres-

sion [18, 19]:

E
hor/inf

l m =
∫ ∞

0
dωω|A up/in

ω l m |2, (28)

where the labels “inf” and “hor” correspond to the energy

radiated, respectively, to infinity and to the event horizon,
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Fig. 1 Modulus of the radial component of the velocity of the source (measured by a static observer, located at r, as particle passes by her [39]),

as a function of r, for a source released from spatial infinity (r0 → ∞) with initial velocity v0 = 0.5, v0 = 0.75 and v0 = 0.95 (plots on the left), and

for a source infalling from rest (v0 = 0) released at positions r0 = 5rh, r0 = 2.5rh and r0 = 1.1rh (plots on the right).

and A
up/in

ω l m are the emission amplitudes at tree level given

by

A
up/in

ω l m = 〈ω l m|i
∫

d4x
√−g j(xµ)Φ̂(xµ)|0〉, (29)

corresponding to a transition between the vacuum state and

one scalar particle state. By recalling that

âω l m|0〉= 0, (30)

with |0〉 being the Boulware vacuum [36, 40], and |ω l m〉=
â

†
ω l m|0〉, we have, using the commutation relations (4),

〈ω l m|â†
ω ′ l′ m′ |0〉= δ (ω −ω ′)δl l′δmm′ . (31)

Then, substituting Eq. (3) into Eq. (29), and using Eqs. (30)

and (31), we find

A
up/in

ω l m = i

∫

d4x
√−g j(xµ)u∗ω l m(x

µ). (32)

If we had chosen the Unruh or Hartle-Hawking vacuum [41,

42], then there would be absorption and stimulated emis-

sion of the scalar particles. The rates of these two processes

would be exactly the same, and, as a result, the net emis-

sion would be the same as in the Boulware vacuum (see, e.g.

[18, 43]). It is known that the Boulware vacuum is unphysi-

cal because the expectation value of the stress-energy tensor

is singular at the past and future horizons for this state [44].

Our results can be regarded to be about the net emission

from the scalar source in the Unruh vacuum, which is more

physical.

As we stated before, we let the motion be along of the

z-axis without loss of generality because of the spherical

symmetry of Schwarzschild spacetime. Thus, we consider

θs = 0 and φs = 0. (The value of φs is arbitrary once we have

θs = 0, but we choose this value for definiteness.) As a con-

sequence, only the mode m = 0 contributes to the emission

amplitude [9, 17]. Because of this fact, the only spherical

harmonics which will be associated to non-vanishing ampli-

tudes are Yl 0(θ ,φ) with

Yl 0 (0, 0) =

√

2l +1

4π
. (33)

From now on we will omit the azimuthal quantum number

m from A
up/in

ω l m and E
hor/inf

l m for the reason stated above.

By substituting Eqs. (5), (20), (27) and (33) into Eq. (32),

we are led to the following expression for the emission am-

plitude:

A
up/in

ω l =
iq
√

2l +1

4π
√

ωA
up/in

ω l

∫ r0

rh

drs

ψ
up/in

ω l (rs)exp(iωts)

rs

√

E2 − f (rs)
.

(34)

Using Eq. (26), we can rewrite Eq. (34) by integrating by

parts as follows:

A
up/in

ω l =
q
√

2l +1

4πEω
√

ωA
up/in

ω l

[

−B+
∫ r0

rh

drs

(

ψ
up/in

ω l

rs

d f

drs

+
f

rs

dψ
up/in

ω l

drs
− f ψ

up/in

ω l

r2
s

)

exp(iωts)

]

, (35)

where

B =

[

f (rs)ψ
up/in

ω l (rs)exp(iωts)

rs

]

rs=r0

. (36)

The expression (34), or equivalently (35), in fact represents

the emission amplitude from a scalar source that suddenly

appears at ts = 0 and starts falling. To obtain the amplitude

from a scalar source that is static until ts = 0 and then starts
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falling, we first convert the rs integral in Eq. (34) for the

amplitude back to the ts integral using Eq. (26) and find

A
up/in

ω l =
iq
√

2l +1

4πE
√

ωA
up/in

ω l

∫ ∞

−∞
dts

f (rs)

rs

×ψ
up/in

ω l (rs)exp(iωts) . (37)

Since rs(ts) = r0 for ts ≤ 0, we can readily evaluate the inte-

gral over (−∞,0] by changing exp(iωts) to exp(iωts + εts)
with ε > 0 and letting ε → 0. We integrate by parts over

[0,∞) and find that the boundary term is canceled by the in-

tegral over (−∞,0]. Thus, the result turns out to be Eq. (35)

with B = 0.

Finally, using Eq. (28), we write the emitted energy spec-

tra as 1:

E
hor/inf

ω l = ω|A up/in

ω l |2. (38)

5 The Zero-frequency limit

In this section we obtain the zero-frequency limit (ZFL) of

the spectra of the energy emitted to infinity [Eq. (28)], using

approximate analytic solutions of Eq. (10), in order to check

the results obtained for the energy spectra considering the

full numerical solution.

Since there is only one parameter M with dimensions

in Schwarzschild spacetime, the low-frequency limit is the

limit where ω ≪ M−1. Since the energy spectra Ehor/inf
ω l are

dimensionless, they are functions of Mω for r0 = ∞. Hence,

their ω → 0 limit for r0 = ∞ is achieved by letting M →
0 [45]. (Note that r0 introduces another parameter with di-

mensions if it is finite.) In this limit we may replace the po-

tential Vl(r) in Eq. (11) by its leading term for large r,

Vl(r)≈ l (l +1)/r2, (39)

and let

f (r)≈ 1. (40)

Equation (10) in this approximation is the wave equation in

Minkowski spacetime with the following familiar solutions:

(Ain
ω l)

−1ψ in
ω l(r)≈ 2ωr jl(ωr), (41)

where jl(ωr) are the spherical Bessel functions [37], up to

a phase factor. Thus, in the limit M → 0 Eq. (34) for r0 = ∞

becomes
√

ωA in
ω l =

iq
√

2l +1

2π

√

v−2
0 −1

×
∫ ∞

0
ωdrs jl(ωrs)exp(−iωrs/v0)

=
q
√

2l +1

2π

√

v−2
0 −1(−i)lQl(v

−1
0 ), (42)

1Some authors define E
hor/inf

ω l to be 1/2 times ours because the total

energy emitted is obtained by integrating Ehor/inf over ω from −∞ to

∞ in their case.

where Ql(z) is the Legendre function of the second kind with

the branch cut [−1,1]. Hence for r0 = ∞ we find the ω → 0

limit of the spectra of the energy emitted to infinity, E inf
ω l , as

E
inf,r0=∞

0 l =
q2(2l +1)

4π2
(v−2

0 −1)[Ql(v
−1
0 )]2. (43)

Now, if r is held fixed, then (see, e.g. Sec. VI of Ref. [32])

lim
ω→0

(Ain
ω l)

−1ψ in
ω l(r) = δ 0

l r. (44)

For r0 finite this limit can be used for all r ≤ r0 in Eq. (35)

(with B = 0). Thus, we find

E inf
0 l =

q2δ 0
l

4π2E2

(

1− 2M

r0

)2

=
q2δ 0

l

4π2

(

1− 2M

r0

)

if v0 = 0. (45)

Note that this formula is not valid for r0 = ∞ because the

limits ω → 0 and r0 →∞ do not commute. The zero-frequency

limit of (A
up
ω l)

−1ψ
up
ω l(r), relevant to the radiation emitted to

the horizon, is also known (see, e.g. Ref. [32]), and one can

use them to find the zero-frequency limit of the spectra of

energy emitted to the horizon, Ehor
ω l , for finite r0 in a similar

manner with the following result:

Ehor
0 l =

(2l +1)q2

π2E2
[Ql(r0/M−1)]2

(

1− 2M

r0

)2

=
(2l +1)q2

π2
[Ql(r0/M−1)]2

(

1− 2M

r0

)

if v0 = 0.

(46)

6 Numerical results

In Sec. 4 we described how to find the energy spectra of

massless scalar radiation from a source freely falling radi-

ally. In this section we present numerical evaluation of the

energy spectra. As for the source’s motion, we consider the

following two distinct cases: (i) the source coming from

r = ∞ with non-vanishing initial velocity v0, and (ii) the

source released from rest at a certain position r = r0.

The results for the spectra for the energy emitted to the

horizon, Ehor
ω l , and to infinity, E inf

ω l , for the radial infall of a

source starting from r = ∞ for selected values of initial ve-

locity v0 are shown in Fig. 2. These results were obtained

numerically from Eqs. (34) and (38), as a function of ω and

for selected values of the multipole number l. [We obtain

the same results by using Eq. (35), instead of Eq. (34), and

setting B = 0, because the boundary term (36) vanishes.]

We note that the spectrum of energy emitted to the hori-

zon, Ehor
ω l , (plots on the left in Fig. 2 ) starts from zero (at

ω = 0), reaches a maximum, and then slowly decreases to

zero (for high values of ω). Note that the energy emitted



6

to the horizon does not decrease as the multipole number l

increases unlike the energy emitted to infinity. This behav-

ior of the spectra Ehor
ω l is similar to that of the correspond-

ing spectrum for the gravitational radiation [5]. It reflects

the fact that the source has infinite self energy due to the

Coulomb-like potential and that the region of large energy

density passes through the horizon as the source approaches

it. The spectrum of energy emitted to infinity, E inf
ω l , (plots on

the right in Fig. 2 ) starts from a non-vanishing finite value

(at ω = 0), and goes to zero for high frequencies. The contri-

bution of higher multipoles decrease rapidly with increasing

l as in the gravitational case [4]. These spectra were stud-

ied by Brito [45], and our results are in agreement with his.

It is interesting that for high initial velocities the spectrum

for each l ≥ 1 is approximately constant and drops to zero

around the fundamental quasinormal frequency. [These fre-

quencies ωqn are given as ωqnrh = 0.215(l = 0),0.586(l =

1),0.967(l = 2),1.351(l = 3) and 1.733(l = 4) (see, e.g.

Ref. [46]).] The spectra for the gravitational and electromag-

netic radiation behave in a similar manner [7, 13].

The results for the emitted energy spectra Ehor
ω l and E inf

ω l ,

for the radial infall of a source starting from rest for selected

values of position r0 obtained numerically from Eqs. (35)

(with B = 0) and (38), are shown in Fig. 3 , as functions

of ω and for selected values of the multipole number l. We

note that the emission to infinity is dominated by lower mul-

tipoles (l = 0,1) while there is substantial contribution from

the modes with l ≥ 2 to the emission to the horizon, reflect-

ing the region of high energy density surrounding the source

passing through the horizon. Next we show the same spec-

tra using Eq. (34) instead of Eq. (35) (with B = 0). As we

stated before, the emission in this case is from a source that

emerges suddenly at r = r0 and starts falling. The results are

shown in Fig. 4 . We note that the spectra of the emitted en-

ergy both to the horizon and to infinity, Ehor
ω l and E inf

ω l , vanish

for both ω = 0 and ω → ∞, (i) oscillating between these

limits, for mid-to-large values of r0 (e.g., r0 = 5rh), or (ii)

behaving with a Gaussian-like profile, for small values of r0

(e.g., r0 = 2.5rh and r0 = 1.1rh).

In the plots of Fig. 5 , we show the energy emitted to

infinity E inf
l , obtained from Eq. (28), as a function of the ini-

tial velocity v0. The monopole (l = 0) emission is dominant

for low initial velocities while higher multipoles (l ≥ 1) be-

come significant for high initial velocities. We note that for

l = 0, as the initial velocity v0 increases, the value of E inf
0 de-

creases. It is interesting that this behavior for the multipole

number l = 0 is the opposite to that for the multipole num-

bers l ≥ 1. In the plots of Fig. 6 , we show the emitted energy

E inf
l , obtained from Eq. (28), as a function of the position r0.

We note that as the position r0 gets closer to the BH event

horizon, the emitted energy E inf
l goes to zero as expected.

The plot on the right uses Eq. (35) with B = 0. It can be

seen that the emission is mainly with l = 0 and l = 1, and

that it increases as a function of r0. The plots on the left use

Eq. (34). The spectrum does not decrease as a function of l.

This is an ultraviolet effect arising from sudden emergence

of a source at r = r0.

In Tables 1, 2 and 3, we compare the zero-frequency

limit (ZFL) of the energy spectra obtained numerically with

the corresponding analytic results. In Table 1, we compare

the ZFL of the spectrum of the energy radiated to infinity

from a source infalling from r = ∞ obtained analytically in

Eq. (43), with the ones obtained using the numerical solution

of Eq. (10) as a check of the numerical results. Similarly, in

Table 2 we compare the ZFL for the spectrum of the energy

radiated to infinity for the source infalling radially from rest

from a certain position r0, given by Eq. (45), with the ones

obtained using the numerical solution of Eq. (10).

In Table 3 we compare the ZFL for the spectrum of

the energy radiated to the event horizon for the source in-

falling radially from rest at a certain position r0, given by

Eq. (46), with the ones obtained using the numerical solu-

tion of Eq. (10). In all cases the ZFL of the numerical results

agree very well with the analytic expressions.

Table 1 Spectra of the energy radiated to infinity in the ZFL for multi-

pole numbers l = 0 ,1 ,2, considering the source released from infinity

with non-vanishing initial velocity. We compare the results obtained

numerically by using Eq. (10) with the ones obtained analytically in

Eq. (43).

v0 Method l = 0 l = 1 l = 2

0.5
Numerical 0.022854 0.002252 0.000176

Analytic 0.022929 0.002216 0.000170

0.75
Numerical 0.018646 0.00524 0.001162

Analytic 0.018650 0.00522 0.001150

0.95
Numerical 0.009132 0.007002 0.00406

Analytic 0.009182 0.007072 0.00413

Table 2 Spectra of the energy radiated to infinity in the ZFL for l = 0.

The numerical results are compared with the exact values given by

Eq. (45) (the results for l > 0 are identically zero), considering the

source released from rest at a certain finite position r0.

r0/rh Method l = 0

1.1
Numerical 0.002312

Analytic 0.002302

2.5
Numerical 0.015288

Analytic 0.015198

5.0
Numerical 0.020384

Analytic 0.020264
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Fig. 2 Numerical estimates of the spectra of the emitted energy, Ehor
ω l (plots on the left) and E inf

ω l (plots on the right), as functions of ω , for selected

values of the multipole number, obtained from Eqs. (38) and (34), for the radial infall of a source from spatial infinity (r0 → ∞), with the initial

velocity v0 = 0.5 (plots at the top), v0 = 0.75 (plots in the middle) and v0 = 0.95 (plots at the bottom).

7 Summary

In this paper we studied, using the formalism of QFT at tree

level, the radiation emission of massless scalar field from the

radial infall of a source into a Schwarzschild BH. We com-

puted numerically the spectra of the emitted energy, Ehor
ω l

(energy radiated to the event horizon) and E inf
ω l (energy ra-

diated to infinity), in two distinct situations related to the

initial condition of the radial infall of a source, namely: (i)

the source starting with non-vanishing velocity v0 from spa-

tial infinity, and (ii) the source infalling from rest at a certain

finite position r0.

Let us summarize some aspects of the case in which the

source comes from infinity with a certain non-vanishing ve-
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Fig. 3 Numerical estimates of the spectra of the emitted energy, Ehor
ω l (plots on the left) and E inf

ω l (plots on the right), as functions of ω , for selected

values of the multipole number, obtained from Eqs. (38) and (35) (with B = 0), for a source infalling from rest (v0 = 0) at positions r0 = 5rh (plots

at the top), r0 = 2.5rh (plots in the middle) and r0 = 1.1rh (plots at the bottom).

locity v0. For all multipole numbers l the spectra of the en-

ergy emitted to infinity are nonzero in the low-frequency

limit. For high initial velocities the spectrum is approxi-

mately constant until the frequency is around the fundamen-

tal quasinormal frequency and then rapidly goes to zero. For

low initial velocities the monopole (l = 0) radiation and the

dipole (l = 1) (to a lesser extent) are dominant while higher

multipoles are significant at higher initial velocities. Inter-

estingly, as the initial velocity v0 is increased, the emitted

energy for the monopole radiation (l = 0) decreases whereas

that for the higher multipoles increases. The spectrum of

the energy emitted to the event horizon starts from zero, in-

creases to a maximum and decreases very slowly, reflect-

ing the fact that, as the source falls toward the horizon, the
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Fig. 4 Numerical estimates of the spectra of the emitted energy, Ehor
ω l (plots on the left) and E inf

ω l (plots on the right), as a function of ω , for selected

values of the multipole number, obtained from Eqs. (34) and (38), considering a source infalling from rest (v0 = 0) at positions r0 = 5rh (plots at

the top), r0 = 2.5rh (plots in the middle) and r0 = 1.1rh (plots at the bottom).

Coulomb-like energy of the source passes through the black

hole.

Next, let us discuss some properties of the energy spec-

tra for the case where the source starts falling from rest at

a certain distance from the black hole. The monopole spec-

trum of the energy emitted to infinity starts from a nonzero

value while, for l ≥ 1 the spectra start at zero. These spec-

tra all rise to a maximum and then decrease to zero. As for

the spectrum of energy emitted to the event horizon, The

emission is mainly with l = 0 (monopole) and with l = 1

(dipole). The emission to the horizon has more contribution

from higher multipoles. We also pointed out that a naïve cal-

culation would lead to a source appearing abruptly and then

starting to fall and that a boundary term needs to be sub-
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Fig. 5 Numerical estimates of the emitted energy radiated to infinity, E inf
l , as a function of v0, for multipole numbers l = 0, 1, 2, 3, 4, obtained

from Eq. (28).
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l , as a function of r0, obtained using Eq. (28), considering Eq. (34) (plots

on the left) and Eq. (35) with B = 0 (plots on the right), for selected choices of multipole numbers obtained from Eq. (28).

Table 3 Spectra of energy radiated to the event horizon in the ZFL.

The numerical results are compared with the exact values given by

Eq. (46), for l = 0 ,1 ,2, considering the source released from rest at a

certain finite position r0.

r0/rh Method l = 0 l = 1 l = 2

1.1
Numerical 0.013133 0.005228 0.001612

Analytic 0.013240 0.005319 0.001667

2.5
Numerical 0.003944 0.000081 < 10−6

Analytic 0.003965 0.000085 < 10−6

5.0
Numerical 0.001000 < 10−6 < 10−8

Analytic 0.001009 < 10−6 < 10−8

tracted in order to calculate the emission from a source at

rest and then starting to fall.

Finally, we note that the behavior of the spectra of the

emitted energy, E inf
ω l , and the total emitted energy E inf

l , to

infinity for multipole numbers l ≥ 1 are similar to the elec-

tromagnetic and gravitational cases (see, e.g, Refs. [7, 8, 10,

13]).
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