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Abstract 23 

Wood biomass is the most abundant feedstock envisioned for the development of modern 24 

biorefineries. However, the cost-effective conversion of this form of biomass to commodity 25 

products is limited by its resistance to enzymatic degradation. Here we describe a new family of 26 

fungal lytic polysaccharide monooxygenases (LPMOs) prevalent amongst white-rot and brown-27 

rot basidiomycetes, which is active on xylans - a recalcitrant polysaccharide abundant in wood 28 

biomass. Two AA14 LPMO members from the white-rot fungus Pycnoporus coccineus 29 

significantly increase the efficiency of wood saccharification through oxidative cleavage of 30 

highly refractory xylan-coated cellulose fibers. The discovery of this unique enzyme activity 31 

advances our knowledge on the degradation of woody biomass in nature and offers an innovative 32 

solution to improve enzyme cocktails for biorefinery applications. 33 

 34 

  35 
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Introduction 36 

Wood is the most abundant organic source of biomass on Earth, with an annual production of 37 

about 5.64 × 1010 tons of carbon1. Its widespread nature has allowed humans to use it in many 38 

contexts, most notably as a building material due to its exceptional mechanical properties and 39 

resistance to decay. In bio-based industries, the utilization of wood is taking on a new 40 

importance as it constitutes the most promising source for advanced biofuels and plant-derived 41 

products. Notwithstanding its potential, however, the cost-effective conversion of woody 42 

feedstocks is limited by a single key factor, the recalcitrance of the lignocellulosic matrix to 43 

degradation by enzyme cocktails2. To overcome this recalcitrance, biorefineries utilize energy-44 

demanding pretreatment processes to solubilize the inaccessible biomass components before 45 

enzymatic saccharification. The recalcitrant fraction reflects its heteroxylan content which is 46 

known to be particularly resistant to xylanases due to extensive decoration and because these 47 

xylans can adopt a flat conformation with their chains solidly adhering via hydrogen-bonds to the 48 

surface of cellulose microfibrils3,4. Finding sustainable means of overcoming this resistance to 49 

degradation is one of the main challenges faced by modern biorefineries. Indeed, the xylan 50 

problem is so severe that consideration is being given to engineering energy crops modified to 51 

contain fewer recalcitrant xylans5. 52 

In nature, fungi play a vital role in the terrestrial carbon cycle and dominate wood decomposition 53 

in boreal forests6. Wood-decaying basidiomycetes classified as white-rot and brown-rot fungi, 54 

naturally degrade cellulose and hemicelluloses using a large diversity of carbohydrate-active 55 

enzymes (CAZymes; www.cazy.org)7 and Fenton-type chemistry8. In this context, understanding 56 

of plant-cell wall deconstruction was recently overturned by the discovery of lytic 57 

polysaccharide monooxygenases (LPMOs) enzymes which cleave polysaccharides through an 58 
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oxidative as opposed to hydrolytic mechanism9-11. Such is their importance, that industrial 59 

enzyme mixtures for the conversion of agricultural residues to biofuels now incorporate 60 

cellulose-active LPMOs12, helping biorefineries move towards environmental and economic 61 

sustainability. Despite the significant efficiencies that LPMOs have brought to biomass 62 

degradation, industrial enzyme cocktails are still unable to degrade woody biomass completely 63 

and there is a major need to identify new enzymes capable of effecting this breakdown. From 64 

this perspective, there are three fungal LPMO families (termed AA9, AA11 and AA13 in the 65 

CAZy classification)7, which were discovered from genome sequences by virtue of their modular 66 

structure where the catalytic LPMO domain is sometimes appended to known substrate-targeting 67 

carbohydrate-binding modules (CBMs). Each fungal LPMO family is associated with the 68 

oxidative cleavage of distinct polysaccharides with AA9 acting mainly on cellulose and 69 

xyloglucan10, AA11 on chitin13 and AA13 on starch14,15: a solely xylan-acting LPMO is 70 

conspicuous by its absence. 71 

Using comparative post-genomic approaches among fungal wood decayers, we identified the 72 

existence of a previously unknown family of LPMO. This new family to be termed AA14 in the 73 

CAZy classification differs phylogenetically and structurally from the previous AA9, AA10, 74 

AA11 and AA13 families. The first characterized members from the white-rot basidiomycete 75 

fungus Pycnoporus coccineus target xylan chains covering wood cellulose fibers thus unlocking 76 

the enzymatic degradation of wood biomass.  77 
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Results 78 

Discovery of the AA14 family among fungal wood decayers 79 

The white-rot basidiomycete Pycnoporus coccineus is an efficient degrader of both hardwood 80 

and softwood16. While studying the effect of different types of biomass on P. coccineus growth 81 

using transcriptomics and secretomics, we identified a gene encoding a protein of unknown 82 

function that was highly up-regulated on pine and poplar as compared to control16. The 83 

corresponding protein (JGI ID 1372210; GenBank ID #KY769370) was secreted only during 84 

growth on pine and poplar suggesting a role in wood decay. A BLAST search against public 85 

sequence databases identified more than 300 proteins with significant similarity to #KY769370 86 

from P. coccineus, many of which from well-known saprotrophic fungi. Sequence alignment 87 

revealed a conserved N-terminal histidine (Supplementary Fig. 1), commensurate with a 88 

copper-binding histidine brace active site10, which is a hallmark of known LPMOs. A 89 

phylogenetic analysis shows that the newly identified sequences strongly cluster together with 90 

high bootstrap values and are very distant from AA9, AA10, AA11 and AA13 sequences 91 

(Supplementary Fig. 2), thereby defining a new LPMO family designated AA14 in the CAZy 92 

database. AA14 members are found in all well-known white-rot (Pleurotus ostreatus, 93 

Phanerochaete chrysosporium, Trametes versicolor) and brown-rot (Serpula lacrymans, 94 

Coniophora puteana, Postia placenta) basidiomycetes and in some wood-inhabitants 95 

ascomycetes within the Xylariaceae and Hypocreaceae families. A slight gene family expansion 96 

is observed in wood-decaying basidiomycetes (average number per species 3.35 in 97 

basidiomycetes and 1.28 in ascomycetes) (Fig. 1; Supplementary Data Set 1). None of the 98 

AA14 members identified in fungal genomes harbors a carbohydrate-binding module (CBM) 99 
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explaining why this family was not previously discovered together with AA11 and AA13 100 

through the “module walk” approach13,15. 101 

Expression and biochemical characterization of PcAA14 102 

Two P. coccineus proteins, PcAA14A (#KY769369) and PcAA14B (#KY769370), displaying 103 

65% sequence identity were produced to high yield in Pichia pastoris, purified to homogeneity 104 

and biochemically characterized (Supplementary Table 1; Supplementary Fig. 3 and 4). We 105 

confirmed the correct processing of the native signal peptide, which exposed the N-terminal 106 

histidine residue at position 1 in the mature polypeptide chain (Supplementary Table 1). Mass 107 

spectrometry analyses revealed that both proteins contained ~ one copper atom per protein 108 

molecule and treatment with EDTA led to partial apo forms (~0.1 copper atom per protein 109 

molecule). PcAA14A and PcAA14B were both able to produce hydrogen peroxide in the 110 

presence of ascorbate, cysteine or gallate as electron donors (Supplementary Table 2).  111 

Crystal structure of PcAA14 112 

The structure of PcAA14B was solved by multiple-wavelength anomalous dispersion data 113 

recorded at the gadolinium edge, and refined at 3.0 Å resolution. The core of the protein folds 114 

into a largely antiparallel immunoglobulin-like β-sandwich (Fig. 2a), a fold globally similar to 115 

that seen in LPMOs from other families. The active site of PcAA14B constituted by His1, His99 116 

and Tyr176 forming the canonical histidine brace is exposed at the surface (Fig. 2b). In contrast 117 

to the flat substrate-binding surfaces observed in AA9 LPMOs17, the PcAA14B surface has a 118 

rippled shape with a clamp formed by two prominent surface loops (Supplementary Fig. 5). 119 

Both loops are located in the N-terminal half of PcAA14B, and are equivalent to the L2 and L3 120 

loop regions in AA9 LPMOs. Conventionally, the N-terminal part of AA9 LPMOs upstream of 121 

the L2 loop region makes up a β-strand segment (single β-strand or a β-hairpin). No equivalent 122 
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β-strands are found in the PcAA14B structure, which, in contrast, forms loop segments 123 

immediately after the N-terminal His (Supplementary Fig. 5). The PcAA14B structure also 124 

reveals a cystine (Cys67-Cys90) in the L3-equivalent region, which borders an extension not 125 

present in AA9 LPMOs (Supplementary Fig. 5). It is highly interesting to note that the two 126 

loops making up the clamp in PcAA14B correspond to modified L2 and L3 loop regions, as 127 

these have been shown to be involved in LPMO-substrate interactions17. For AA9 LPMOs a 128 

conserved Tyr has been shown to be involved in substrate interactions at the active site surface17. 129 

Interestingly, PcAA14B possesses equally a conserved tyrosine residue at the edge of the 130 

substrate-binding surface, Tyr240, albeit located on a different loop region, which could 131 

potentially make substrate interactions. Overall the crystal structure of PcAA14B reveals novel 132 

features within its putative substrate binding site, which may suggest differences in terms of 133 

substrate specificity compared to known LPMOs. 134 

EPR spectroscopic analysis of the copper site of PcAA14 135 

Multi-frequency Electron Paramagnetic Resonance (EPR) analysis was carried out on both 136 

PcAA14A and PcAA14B to determine the nature of the copper active site (Figure 2C; 137 

Supplementary Fig. 6). The spin Hamiltonian parameters (Supplementary Table 3) displayed 138 

axial parameters (gx ≈ gy < gz) with a d(x2−y2) SOMO, placing the copper active site squarely 139 

within a type 2 Peisach-Blumberg classification18. Simulations required the addition of two (I=1) 140 

nitrogen atoms (coupling in the range of 30 to 36 MHz), as would be expected from the 141 

coordinating histidine side chains. Overall, these spin-Hamiltonian parameters are similar to 142 

those obtained for AA9 LPMOs confirming the presence of the copper(II) ion within the 143 

histidine brace coordination environment19. These data support the hypothesis that PcAA14s 144 

display LPMO characteristics and that copper is their native metal cofactor. 145 
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Substrate specificity of PcAA14 146 

Activity assays were initially carried out with PcAA14A and PcAA14B on a wide range of 147 

polysaccharides including cellulose and xylans in the presence of ascorbic acid, which is widely 148 

used as electron donor for LPMOs. Using standardized methods previously employed to 149 

characterize AA9 LPMOs20, no activity could be detected on these polysaccharides. Next, we 150 

performed saccharification assays on pretreated biomass including poplar, pine and wheat straw 151 

using a Trichoderma reesei CL847 cocktail mainly composed of cellulases and xylanases21. A 152 

boost of glucose release from poplar and pine was observed upon addition of either of the AA14 153 

enzymes to the cocktail (Fig. 3a). When the reactions were conducted in absence of a reductant 154 

the boost effect was maintained (Supplementary Fig. 8), suggesting that one of the components 155 

from the biomass (e.g. lignin) may act as an electron donor22. This improvement in glucose 156 

release was dose-dependent yielding up to ~100% increase on pretreated softwood (Fig. 3b). 157 

However, no significant boost was observed on wheat straw (Supplementary Fig. 8), which 158 

differs in terms of hemicellulose composition compared to wood, indicating that AA14 enzymes 159 

specifically target one of the components of woody biomass. In a finding with important 160 

consequences for biorefinery use of woody biomass as feedstock, the T. reesei CL847 cocktail 161 

enriched in AA9 LPMO acting on cellulose was also boosted by PcAA14A, suggesting that AA9 162 

and AA14 enzymes may act on different regions within the lignocellulosic matrix 163 

(Supplementary Fig. 8). Because AA14 members do not harbor any CBM module, we 164 

artificially attached a fungal CBM1 module targeting crystalline cellulose to PcAA14A. The 165 

resulting modular PcAA14A-CBM1 enzyme performed less efficiently than the catalytic module 166 

alone (Supplementary Fig. 8), suggesting that AA14 enzymes may not require specific binding 167 

to the flat crystalline cellulose surface. 168 
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To discern which polymer was attacked by AA14 enzymes, we used birchwood cellulosic fibers, 169 

consisting of 79% cellulose and 21% xylan, as a substrate. After incubation with PcAA14A or 170 

PcAA14B, wood fibers were disrupted (Fig. 4a) uncovering cellulose structures visualized at 171 

different scales using transmission electron microscopy and atomic force microscopy 172 

(Supplementary Fig. 9). These observations suggest a weakening of the cohesive forces that 173 

link the wood fibers together in a manner similar to that previously described with AA9 174 

enzymes23. Samples treated with AA14 enzymes were further analyzed using solid-state Cross-175 

Polarization Magic Angle Spinning 13C Nuclear Magnetic Resonance (13C CP/MAS NMR). The 176 

impact of AA14 enzymes on the fibers was different to that recently observed for AA9 177 

LPMOs23. In the case of PcAA14 enzymes, no meaningful change was observed on cellulose 178 

signals (Fig. 4b; Supplementary Fig. 10). Interestingly, however, significant changes in signal 179 

areas corresponding to hemicelluloses located at 101 ppm and 82 ppm were observed when the 180 

NMR spectra were deconvoluted in the C-1 and the C-4 regions (Supplementary Fig. 10). 181 

These results suggest that AA14 enzymes act on xylans bound to cellulose, which have a rigidity 182 

and a conformation similar to that of the underlying cellulose chains4. The specific attack of 183 

PcAA14 on xylan substrates differentiates this new class of enzymes from all other LPMOs24,25, 184 

none of which has previously been reported to oxidize xylan in such a selective and efficient 185 

manner. 186 

To further substantiate the idea that AA14 enzymes act on xylan bound to cellulose, we 187 

performed synergy assays of AA14 enzymes in combination with a fungal GH11 xylanase using 188 

birchwood cellulosic fibers. Addition of PcAA14A to a GH11 xylanase significantly increased 189 

by 40% the release of xylo-oligomers from birchwood cellulosic fibers (Figure 4C; 190 

Supplementary Fig. 11). Additionally, no improvement of xylan conversion was observed on 191 
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birchwood cellulosic fibers when the xylanase was combined with a cellulose-acting AA9 192 

LPMO (Fig. 4c).  193 

We further investigated the nature of soluble products generated after synergistic action of 194 

PcAA14A and the GH11 xylanase. Using ionic chromatography, a range of oligosaccharides 195 

eluted at similar retention time to C1-oxidized oligosaccharides (Supplementary Fig. 11). Mass 196 

spectrometry analyses performed on the same samples allowed the identification of several 197 

putative oxidative species with masses corresponding to C1-oxidized xylotriose (X3ox) and C1-198 

oxidized xylotetraose (X4ox) and non-oxidized xylo-oligosaccharides substituted with 199 

glucuronic acid (X3MeGlcA, X4MeGlcA, X5MeGlcA) (Supplementary Fig. 12). The structure 200 

of the C1-oxidized xylotriose with an aldonic acid on the reducing end (Fig. 4d) was confirmed 201 

by fragmentation of the species observed at 429 m/z by tandem MS (MS/MS) (Supplementary 202 

Fig. 12). The identification of oxidative products demonstrates that AA14 enzymes are LPMOs.  203 

 204 

Discussion 205 

Our findings that xylans are susceptible to AA14 oxidative cleavage only when adsorbed onto 206 

crystalline cellulose and not when in solution are supported by reports that showed that xylans 207 

exist in different contexts within the cell wall4,26. Recalcitrant xylans bound to cellulose 208 

microfibrils display a two-fold screw axis conformation aligned parallel to the cellulose chain 209 

direction4 that is compatible with the proper orientation of the carbohydrate H1 and H4 atoms 210 

with respect to the LPMO catalytic center22. Unravelling the substrate specificity of AA14s has 211 

been challenging as these enzymes are not active on xylans in solution most probably due to the 212 

three-fold helical screw conformation of the substrate27. Using multidisciplinary approaches, we 213 

reveal that AA14 LPMOs probably target specifically the protective shield made by heteroxylans 214 
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that cover cellulose microfibrils in wood. The conformation of xylan in this context contributes 215 

to wood recalcitrance and glycoside hydrolases are not able to access such a sterically restricted 216 

substrate. The cleavage of these rare motifs by AA14 LPMOs unlocks the accessibility of xylan 217 

and cellulose chains to glycoside hydrolases therefore improving the overall saccharification of 218 

woody biomass. These results not only greatly enhance our knowledge of wood superstructure, 219 

they also contribute to understand and better exploit biomass deconstruction by fungal 220 

saprotrophs. 221 
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Figure legends 313 

Figure 1. Phylogeny of the AA14 family of LPMOs. Phylogenetic tree of 283 fungi analyzed 314 

for AA14 members. The number of AA14 in fungal species (listed in Supplementary Data Set 315 

1) is represented by red bars (the scale is indicated at the bottom of the figure). When available, 316 

the mode of wood decay (brown-rots or white-rots) is specified next to the leaves of the tree. 317 

Pictures illustrate the taxonomical diversity of wood-decaying fungi displaying AA14 LPMOs; 318 

Genus (order) from top to bottom: Xylaria (Xylariales), Trichoderma (Hypocreales), Nectria 319 

(Hypocreales), Tremella (Hypocreales), Pycnoporus (Polyporales), Ganoderma (Polyporales), 320 

Serpula (Boletales), Gymnopilus (Agaricales). Photo credit: C. Lechat (AscoFrance) and A. 321 

Favel (CIRM-CF). 322 

 323 

Figure 2. Structure of AA14 LPMO and organization of the copper active site. (a) Overall 324 

three-dimensional structure of PcAA14B (ribbon depiction with active site residues shown as 325 

sticks under transparent surface). (b) Active site (Histidine brace) overlay of Cu-LsAA9A 326 

(magenta) and PcAA14B (gold). (c) Continuous wave X-band EPR spectrum (9.3 GHz, 165 K) 327 

with simulation (red) of PcAA14A. More data are presented in Supplementary Figures 5 and 6. 328 

 329 

Figure 3. Contribution of PcAA14 enzymes to the saccharification of biomass.  (a) Glucose 330 

release upon saccharification of pretreated pine and poplar by the CL847 Trichoderma reesei 331 

enzyme cocktail in the presence of PcAA14A or PcAA14B and ascorbic acid. Glucose was 332 

quantified using ionic chromatography. More saccharification assays are presented in 333 

Supplementary Figure 8. (b) Dose effect of the addition of PcAA14A on the saccharification of 334 
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pretreated pine. Concentration of PcAA14A was 0.1 µM (+), 0.5 µM (++) and 1 µM (+++). 335 

Error bars indicate standard error of the mean from triplicate independent experiments. Data 336 

points are shown as dots. 337 

 338 

Figure 4. Enzymatic activity of PcAA14 LPMOs. (a) Morphology of birchwood cellulosic 339 

fibers treated with PcAA14A and PcAA14B LPMOs. Images were recorded after dispersion. 340 

Images are representative of the samples analyzed. (b) Solid state 13C CP/MAS NMR analysis of 341 

LPMO-treated cellulosic fibers. The differences in hemicellulose content in enzyme-treated 342 

fibers were calculated from the C-1 and C-4 region deconvolution of NMR spectra and are 343 

indicated in Supplementary Figure 10. (c) Assays in the presence of a GH11 xylanase were 344 

performed on birchwood cellulose fibers. Xylobiose (X2) and xylotriose (X3) were quantified by 345 

ionic chromatography. Error bars indicate standard error of the mean from triplicate independent 346 

experiments. (d) Mass spectrometry identification of the X3 oxidized species detected at 347 

429.13 m/z generated from birchwood cellulosic fibers by PcAA14A in synergy with a GH11 348 

xylanase. The fragmentation pattern corresponds to a C1 oxidized species with an aldonic acid at 349 

the reducing end. : water losses. : H2CO losses. An expanded view of the spectrum is 350 

provided in Supplementary Figure 12. 351 

  352 
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On-line Materials and Methods 353 

Transcriptomics and secretomics of Pycnoporus sp. 354 

Transcriptomic and proteomic data of three-days-old cultures of Pycnoporus coccineus BRFM 355 

310 and Pycnoporus sanguineus BRFM 1264 grown on cellulose (Avicel), wheat straw, pine and 356 

aspen are described in16;28.  357 

Bioinformatic analysis of AA14 LPMOs 358 

P. coccineus AA14 sequences (Genbank ID KY769369 and KY769370) were compared to the 359 

NCBI non redundant sequence database using BlastP29 in February 2016. Blast searches 360 

conducted with AA14 did not retrieve AA9s, AA10s, AA11s or AA13s with significant scores, 361 

and vice-versa. MUSCLE30 was used to perform multiple alignments. To avoid interference from 362 

the presence or absence of additional residues, the signal peptides and C-terminal extensions 363 

were removed. Bioinformatic analyses were performed on 286 fungal genomes sequenced and 364 

shared by JGI collaborators. Protein clusters are available thanks to the JGI 365 

(https://goo.gl/ZAa2NX) for each of these fungi. A phylogenetic tree has been inferred using 100 366 

cleaned and merged alignments of proteins from selected clusters of proteins. Those clusters are 367 

present, as much as possible, in all fungi in 1 copy in order to maximize the score ∑1/n (with n, 368 

the number of copy in the genome). Sequences from clusters were aligned with Mafft31, trimmed 369 

with Gblocks32 and a phylogenetic tree was built with concatenation of alignments with 370 

Fasttree33.  The tree is displayed with Dendroscope34 and Bio::phylo35.  371 

Production of P.coccineus AA14 LPMOs 372 

The sequences corresponding to PcAA14A (Genbank ID KY769369) and PcAA14B (Genbank ID 373 

KY769370) genes from P. coccineus BRFM310 were synthesized after codon optimization for 374 
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expression in P. pastoris (GenScript, Piscataway, USA). The region corresponding to the native 375 

signal sequence was kept while the C-terminal extension region was removed. Synthesized genes 376 

were further inserted with into a modified pPICZαA vector (Invitrogen, Cergy-Pontoise, France) 377 

using BstBI and XbaI restriction sites in frame with the (His)6-tag located at the C-terminus of 378 

recombinant proteins. Fusion of PcAA14A with CBM1 was carried using the CBM1 domain of 379 

PaLPMO9E, which was added to PcAA14A at the end of the catalytic module using the linker 380 

sequence of PaLPMO9E20. Constructs without (His)6-tag sequence were also designed by adding 381 

a stop codon at the end of the AA14 catalytic module. P. pastoris strain X33 and the pPICZαA 382 

vector are components of the P. pastoris Easy Select Expression System (Invitrogen), all media 383 

and protocols are described in the manufacturer’s manual (Invitrogen).  384 

Transformation of competent P. pastoris X33 was performed by electroporation with PmeI-385 

linearized pPICZαA recombinant plasmids and zeocin-resistant P. pastoris transformants were 386 

screened for protein production as described in36. The best-producing transformants were grown 387 

in 2 L of BMGY medium containing 1 mL.L−1 Pichia trace minerals 4 (PTM4) salts in shaken 388 

flasks at 30°C in an orbital shaker (200 rpm) to an OD600 of 2 to 6. Cells were then transferred to 389 

400 mL of BMMY medium containing 1 ml.L−1 of PTM4 salts at 20°C in an orbital shaker (200 390 

rpm) for 3 days, with supplementation of 3% (v/v) methanol every day.  391 

Bioreactor productions were carried out in 1.3-L New Brunswick BioFlo 115 fermentors 392 

(Eppendorf, Hamburg, Germany) following the P. pastoris fermentation process guidelines 393 

(Invitrogen). Recombinant enzymes were secreted up to ~1 g.L-1 (Supplementary Figure 13). 394 

Purification of PcAA14 LPMOs 395 
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The culture supernatants were recovered by pelleting the cells by centrifugation at 2,700 g for 396 

5 min, 4°C and filtered on 0.45 µm filters (Millipore, Molsheim, France). For (His)6-tagged 397 

enzymes, the pH was adjusted to 7.8 and the supernatants were loaded onto 5 ml His Trap HP 398 

columns (GE healthcare, Buc, France) connected to an Akta Xpress system (GE healthcare). 399 

Prior to loading, the columns were equilibrated in 50 mM Tris HCl pH 7.8; 150 mM NaCl 400 

(buffer A). The loaded columns were then washed with 5 column volumes (CV) of 10 mM 401 

imidazole in buffer A, before the elution step with 5 CV of 150 mM imidazole in buffer A. 402 

Fractions containing the protein were pooled and concentrated with a 3-kDa vivaspin 403 

concentrator (Sartorius, Palaiseau, France) before loading onto a HiLoad 16/600 Superdex 75 404 

Prep Grade column (GE Helthcare) and separated in 50 mM sodium acetate buffer pH 5.2. Gel 405 

filtration analysis showed that both PcAA14 proteins are monomeric in solution. For enzymes 406 

without (His)6-tag, salts contained in the culture media were diluted ten-fold in 20 mM Tris-HCl 407 

pH 8, then culture supernatants were concentrated with a Pellicon-2 10-kDa cutoff cassette 408 

(Millipore) to a volume of approx. 200 mL and loaded onto a 20-mL High Prep DEAE column 409 

(GE Helthcare). Proteins were eluted using a linear gradient of 1 M NaCl (0 to 700 mM in 200 410 

mL). Fractions were then analyzed by SDS PAGE and those containing the recombinant protein 411 

were pooled and concentrated. The concentrated proteins were then incubated with one-fold 412 

molar equivalent of CuSO4 overnight before separation on a HiLoad 16/600 Superdex 75 Prep 413 

Grade column in 50 mM sodium acetate buffer pH 5.2. 414 

Biochemical analysis of AA14 LPMOs 415 

Concentration of purified proteins was determined by using the Bradford assay (Bio-Rad, 416 

Marnes-la-Coquette, France) or using a nanodrop ND-2000 device with calculated molecular 417 

mass and molar extinction coefficients derived from the sequences. Proteins were loaded onto 418 
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10% SDS-PAGE gels (Thermo Fisher Scientific, IL, USA) which were stained with Coomassie 419 

Blue. The molecular mass under denaturating conditions was determined with reference standard 420 

proteins (Page Ruler Prestained Protein Ladder, Thermo Fisher Scientific). Native IEF was 421 

carried out in the Bio-Rad gel system, using pI standards ranging from 4.45 to 8.2 (Bio-Rad). 422 

N-terminal amino acid sequence determination 423 

The N-terminal amino acid sequences of purified PcAA14A and PcAA14B were determined 424 

according to the Edman degradation. Samples were electroblotted onto a polyvinylidene 425 

difluoride membrance (iBlot, Life Technologies). Analyses were carried out on a Procise 426 

Sequencing System (Thermofisher).  427 

Matrix-assisted laser desorption ionization/mass spectrometry 428 

Matrix-assisted laser desorption ionization mass spectra analyses were performed on a Microflex 429 

II mass spectrometer (Bruker Daltonics). One μL of matrix [10 mg of 2,5-dihydroxybenzoic acid 430 

in 1 mL of CH3CN/H2O 50/50 (v/v), 0.1% formic acid (v/v)] was added to 1 μL of intact 431 

PcAA14A or PcAA14B protein sample (100 pmoles) in the same solution. Then, mixtures were 432 

allowed to dry at room temperature. Data acquisition was operated using the Flex control 433 

software. External mass calibration was carried out on Peptide calibration standard (Bruker 434 

Daltonics). 435 

Deglycosylation assays 436 

To remove N-linked glycans, purified enzymes were treated with EndoHf (New England 437 

Biolabs, Ipswich, MA) under denaturing conditions according to the manufacturer’s instructions. 438 

Briefly, 10 µg of protein were incubated in 0.5% SDS and 40 mM DTT and heated for 10 min at 439 

100°C for complete denaturation. Denaturated samples were subsequently incubated with 1,500 440 
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units of EndoHf in 50 mM sodium acetate pH 6.0 for 1 h at 37°C. Deglycosylated and control 441 

samples were analyzed by SDS-PAGE.  442 

Amplex Red assay 443 

A fluorimetric assay based on Amplex Red and horseradish peroxidase was used as described 444 

previously37. The reaction (total volume 100 μL, 30°C, 30 min) was measured in 50 mM sodium 445 

acetate buffer pH 6.0 containing 50 μM Amplex Red (Sigma-Aldrich, Saint-Quentin Fallavier, 446 

France), 7.1 U.mL−1 horseradish peroxidase, 0.2 to 4 μM enzyme, and 50 μM reductant, i.e. 447 

ascorbate, p-coumaric acid, caffeic acid, cinapic acid, vanillic acid, menadione, L-cysteine, 448 

tannic acid, syringic acid, gallic acid, 3-hydroxyanthranilic acid (3-HAA) and epigallocatechin 449 

gallate in water and fluorescence was detected using an excitation wavelength of 560 nm and an 450 

emission wavelength of 595 nm using a Tecan Infinite M200 plate reader (Tecan, Männedorf, 451 

Switzerland). The specific activity was counted from H2O2 calibration curve, and the slope 452 

(13,227 counts.μmol−1) was used to convert the fluorimeters’ readout (counts.min−1) into enzyme 453 

activity. 454 

ICP/MS Analysis 455 

To obtain apo enzymes, 100 mM EDTA treatment was performed overnight. Prior to the 456 

analysis, samples were mineralized in a mixture containing 2/3 of nitric acid (Sigma-Aldrich, 457 

65% Purissime) and 1/3 of hydrochloric acid (Fluka, 37%, Trace Select) at 120°C. The residues 458 

were diluted in ultra-pure water (2 mL) before ICP/MS analysis. The ICP-MS instrument was an 459 

ICAP Q (ThermoElectron, Les Ullis, France), equipped with a collision cell. The calibration 460 

curve was obtained by dilution of a certified multi-element solution (Sigma-Aldrich). Copper 461 
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concentrations were determined using Plasmalab software (Thermo-Electron), at a mass of 462 

interest m/z=63. 463 

Saccharification assays 464 

Wheat straw, pine and poplar biomass were pretreated under acidic conditions. Sugar 465 

composition was determined using the alditol acetate method. 38 Wheat straw consisted of 51.98 466 

± 2.02 % (w/v) glucose, 5.70 ± 0.23 % (w/v) xylose and 0.46 ± 0.04 % (w/v) arabinose. Pine 467 

consisted of 43.25 ± 1.34 % (w/v) glucose, 0.24 ± 0.01 % (w/v) xylose and 0.15 ± 0.02 % (w/v) 468 

arabinose. Poplar consisted of 50.85 ± 0.91 % (w/v) glucose, 0.39 ± 0.01 % (w/v) xylose and 469 

0.07 ± 0.01 % (w/v) arabinose. The enzymatic treatments were carried out in sodium acetate 470 

buffer (50 mM, pH 5.2) in a final volume of 1 ml at 0.5% consistency (w d.m./v). The LPMO 471 

treatment was carried out sequentially with a CL847 T. reesei enzyme cocktail21 provided by 472 

IFPEN (Rueil-Malmaison, France). Each PcAA14 enzyme was added to the substrate at a 473 

concentration of between 0.1 and 1 µM in the presence or absence of 1 mM ascorbic acid for 474 

72 h, followed by addition of 1 mg.g-1 dry matter (d. m.) substrate of commercial cellulases from 475 

T. reesei for 24 h. Enzymatic treatments were performed in 2-ml tubes incubated at 45°C and 476 

850 rpm in a rotary shaker (Infors AG, Switzerland). Then, samples were centrifuged at 14,000 g 477 

for 5 min at 4°C and the soluble fraction was heated for 10 min at 100°C to stop the enzymatic 478 

reaction. Glucose was quantified by high performance anion exchange chromatography coupled 479 

with amperometric detection (HPAEC-PAD) as described in20. 480 

Polysaccharides cleavage assays 481 

Avicel was purchased from Sigma-Aldrich and lichenan (from Icelandic moss), curdlan, starch, 482 

barley β-1,3/1,4-glucan, konjac glucomannan, wheat arabinoxylan, tamarind xyloglucan were 483 
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purchased from Megazyme (Wicklow, Ireland). PASC was prepared from Avicel as described 484 

previously20 in 50 mM sodium acetate buffer pH 5.2. A similar protocol was used to prepare 485 

swollen squid pen chitin provided by Dominique Gillet (Mahtani Chitosan, India). 486 

Glucuronoxylans were extracted from birchwood as described previously39.  487 

All the cleavage assays contained between 0.5 and 1 μM of PcAA14s in the presence of 1 mM 488 

ascorbate and 0.1% (w/v) polysaccharides. The enzyme reactions were performed in 2-mL tubes 489 

and incubated in a thermomixer (Eppendorf, Montesson, France) at 45°C and 850 rpm. After 16 490 

h of incubation, samples were heated for 10 min at 100°C to stop the enzymatic reaction and then 491 

centrifuged at 14,000 g for 15 min at 4°C to separate the soluble fraction from the remaining 492 

insoluble fraction before determination of soluble products using HPAEC as described above 493 

with oligosaccharides standards (Megazyme). 494 

Microscopy 495 

Aqueous dispersions of Kraft birchwood cellulosic fibers (kindly provided by Sandra Tapin, 496 

FCBA, Grenoble, France) were adjusted to pH 5.2 with acetate buffer (50 mM) in a final 497 

reaction volume of 5 mL. Each PcAA14 enzyme was added to the fibers at a final concentration 498 

of 20 mg.g-1 in the presence of 1 mM of ascorbic acid. Enzymatic incubation was performed at 499 

40 ºC under mild agitation for 48 h. Samples were then dispersed by a Polytron PT 2100 500 

homogenizer (Kinematica AG, Germany) for 3 min, and ultrasonicated by means of a QSonica 501 

Q700 sonicator (20 kHz, QSonica LLC., Newtown, USA) at 350 W ultrasound power for 3 min 502 

as described previously23. The reference sample was submitted to the same treatment but it did 503 

not contain the PcAA14 enzyme. Birchwood cellulose fibers (reference and PcAA14-treated) 504 

were deposited onto a glass slide and observed by a BX51 polarizing microscope (Olympus 505 

France S.A.S.) with a 4× objective. Images were captured by a U-CMAD3 camera (Olympus 506 
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Japan). For the atomic force microscopy (AFM) experiments, samples were deposited onto mica 507 

substrates from fiber solutions at 0.1 g L-1, and allowed to dry overnight. Topographical images 508 

on mica were registered by a Nanoscope III-A AFM (Brukernano, Santa Barbara, US). The 509 

images were collected in tapping mode under ambient air conditions (temperature and relative 510 

humidity) using a monolithic silicon tip (RFESP, Brukernano) with a spring constant of 3 N m-1, 511 

and a nominal frequency of 75 kHz. Image processing was performed with the WSxM 5.0 512 

software. For transmission electron microscopy (TEM) experiments, fiber solutions at 0.1 g L-1 513 

in water were deposited on freshly glow-discharged carbon-coated electron microscope grids 514 

(200 mesh, Delta Microscopies, France) and the excess of water was removed by blotting. The 515 

sample was then immediately negatively stained with uranyl acetate solution (2%, w/v) for 2 min 516 

and dried after blotting. The grids were observed with a Jeol JEM 1230 TEM at 80 kV. 517 

NMR spectroscopy 518 

Solid state 13C NMR experiments were performed on a Bruker Avance III 400 spectrometer 519 

operating at a 13C frequency of 100.62 MHz using a 4 mm double-resonance (H/X) magic angle 520 

spinning (MAS) probe. Samples were dialyzed against ultrapure water (MWCO 12-14000) for 7 521 

days to remove buffer, ascorbate and released soluble sugars. Experiments were conducted at 522 

room temperature at a MAS frequency of 9 kHz using a cross-polarization sequence (CP/MAS). 523 

The 13C chemical shift was referenced using the carbonyl signal of glycine at 176.03 ppm. The 524 

cross polarization pulse sequence parameters were: 3.2 μs proton 90° pulse, 2.50 ms contact time 525 

at 67.5 kHz, and 10 s recycle time. Typically, the accumulation of 5,120 scans was used. All 526 

spectra obtained were processed and analyzed using Bruker Topspin version 3.2. To determine 527 

the crystallinity and the general cellulose’s morphology of the C-1 and C-4 region of the 528 

samples, we used the sophisticated approach40 that is described in details in our previous work23. 529 
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For the C1-region, this approach used three Lorentzian lines for the crystalline part (Cr (Iα) and 530 

Cr (Iβ)) and one Gaussian line for the less ordered cellulose (para-crystalline cellulose, PCr). For 531 

the C-4 region, four lines for the crystalline part corresponding to crystalline and para-crystalline 532 

(PCr) cellulose and three Gaussian lines for the amorphous part (accessible surfaces, AS, and 533 

inaccessible surface, IAS) were used. The cellulosic fibers contained xylan, which was 534 

considered in the spectral decomposition: in the C-1 region with one line at 101.4 ppm and in the 535 

C-4 region with one broad line centered at 81.6 ppm. 536 

Synergy assays with xylanase 537 

Assays were run on the birchwood cellulose fibers used in microscopy and NMR experiments. 538 

Fibers were grinded (< 0.18 mm particle size) and hydrated in water under stirring for 48 h prior 539 

to enzymatic assays. One mL reaction volumes containing 0.5% (w/v) birchwood fibers were 540 

incubated with 1 μM of PcAA14s and 0.1 µM of GH11 xylanase M4 (Aspergillus niger) from 541 

Megazyme (reference E-XYAN4) in 10 mM sodium acetate pH 5.2 supplemented or not with 542 

1 mM L-cysteine. Prior to the reaction, the GH11 xylanase was buffer exchanged with 10 mM 543 

sodium acetate pH 5.2 using a PD-10 column (GE Helthcare) to remove any trace of ammonium 544 

sulfate. Enzymatic reactions were performed in 2-mL tubes and incubated in a thermomixer 545 

(Eppendorf, Montesson, France) at 45°C and 850 rpm for 24 h. Samples were then centrifuged at 546 

14,000 g for 5 min at 4°C to separate the soluble fraction from the remaining insoluble fraction. 547 

Proteins were removed from the soluble oligosaccharides fraction by filtering the supernatants 548 

using Nanosep 3K Omega centrifugal devices (Pall corporation). Soluble oligosaccharides 549 

generated were analyzed by HPAEC as described previously and mass spectrometry (see below) 550 

using non-oxidized xylo-oligosaccharides (Megazyme) as standards. Corresponding C1-oxidized 551 
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standards (from DP2 to DP4) were produced from non-oxidized xylo-oligosaccharides by using 552 

purified PaCDHB prepared as described previously. 20 All assays were carried out in triplicate. 553 

Electrospray mass spectrometry (ESI-MS and MS/MS) 554 

Experiments were performed on a Synapt G2Si high-definition mass spectrometer (Waters 555 

Corp., Manchester, UK) equipped with an Electrospray ion (ESI) source. Two types of mass 556 

measurements were performed on the samples: firstly, a mass profile was done on a mass range 557 

of 300-2000 m/z (M/S). Ions of interest were further isolated and fragmented by collision-558 

induced dissociation in the transfer cell of the instrument (MS/MS). In these experiments, ion 559 

mobility (IM) was activated to reduce interference from sample impurities. IM was performed in 560 

a travelling-wave ion mobility (TWIM) cell. The gas flows were held at 180 mL.min-1 He in the 561 

helium cell and at 90 mL.min-1 N2 in the mobility cell. The IM traveling wave height was set to 562 

40 V and its wave velocity was set to 480 m.s-1 for positive ionization mode and 500 m.s-1 for 563 

negative ionization mode. Samples were diluted 10-fold in MeOH/H2O (1:1, v/v) and infused at 564 

a flow rate of 5 μL.min−1 in the instrument. The instrument was operated in positive or negative 565 

polarity, and in “sensitivity” mode. 566 

Crystallization, data collection, structure determination and refinement 567 

All crystallization experiments were carried out at 20°C by the sitting-drop vapour-diffusion 568 

method using 96-well crystallization plates (Swissci) and a Mosquito® Crystal (TTP labtech) 569 

crystallization robot. Reservoirs consisted of 40 µL of commercial screens and crystallization 570 

drops were prepared by mixing 100 nL reservoir solution with 100, 200 and 300 nL of protein 571 

solution. An initial hit was obtained after 1 week from a condition of the AmSO4 screen (Qiagen) 572 

consisting of 2.4 M (NH4)2SO4 and 0.1 M citric acid pH 4.0. This condition was further 573 
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optimized to obtain diffraction-grade crystals by mixing protein solution at 28 mg mL-1 with 574 

precipitant solution consisting of 2.4 M (NH4)2SO4 and 0.1 M citric acid pH 4.4 at a volume ratio 575 

of 3:1. PcAA14B crystals grew to dimensions of 0.15×0.15×0.05 mm in one week. Crystals 576 

belong to space group P41212 with cell axes 204×204×110 Å and two molecules per asymmetric 577 

unit. 578 

Crystals of PcAA14B were soaked for 5 min in a solution where 2.4 M (NH4)2SO4 of the mother 579 

liquor was replaced by 2.4 M Li2SO4 for the sake of cryoprotection prior to flash-cooling in 580 

liquid nitrogen. As X-ray fluorescence scans on native crystals did not reveal a significant 581 

presence of copper within the crystals, a heavy atom derivative was prepared by soaking the 582 

crystals in reservoir solution supplemented with 55 mM of the gadolinium complex gadoteridol 583 

prior to cryo-cooling. Native diffraction data were collected on beamline ID23-1, while a MAD 584 

dataset at wavelengths of 1.711 and 1.698 Å for peak/inflection and remote energies, was 585 

collected on beamline ID30B at the European Synchrotron Radiation Facility (ESRF), Grenoble, 586 

France. Data were indexed and integrated in space group P41212 using XDS41 and subsequent 587 

processing steps were performed with the CCP4 software suite42. Determination of the Gd3+ 588 

substructure and subsequent phasing combined with solvent flattening were carried out with 589 

SHELXC/D/E42, leading to a pseudo-free correlation coefficient of 71.8%. Starting from 590 

experimental phases, an initial model comprising 526 residues (out of 584), was automatically 591 

built with Buccaneer43 and manually completed with Coot44. This initial model was used for 592 

rigid body refinement followed by restrained refinement against native data with the program 593 

Refmac45. A random set of 5% of reflections was set aside for cross-validation purposes. Model 594 

quality was assessed with internal modules of Coot44 and using the Molprobity server46. Figures 595 

representing structural renderings where generated with the PyMOL Molecular Graphics System 596 
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(DeLano, W.L. The PyMOL Molecular Graphics on http://www.pymol.org/). Atomic 597 

coordinates and structure factors have been deposited within the Protein Data Bank 598 

http://www.rcsb.org47. Data collection and refinement statistics are summarized in 599 

Supplementary Table 4.  600 

EPR 601 

Continuous wave (cw) X-band frozen solution EPR spectra of a 0.2 to 0.3 mM solution of 602 

Cu(II)-PcAA14A and PcAA14B, prepared and copper loaded as described above, in 10% v/v 603 

glycerol at pH 5.2 (50 mM sodium acetate buffer) and 165 K were acquired on a Bruker EMX 604 

spectrometer operating at ~9.30 GHz, with modulation amplitude of 4 G, modulation frequency 605 

100 kHz and microwave power of 10.02 mW (4 scans). Both enzymes showed identical EPR 606 

spectra. Cw Q-band frozen solution spectra of 1.0 mM solution of Cu(II)- PcAA14A at pH 5.2 607 

(50 mM sodium acetate buffer) and 113 K were acquired on a Jeol JES-X320 spectrometer 608 

operating at ~34.7 GHz, with modulation width 1 mT and microwave power of 1.0 mW (8 609 

scans). 610 

Spectral simulations were carried out using EasySpin 5.0.348. Simulation parameters are given in 611 

Supplementary Table 3. gz and |Az| values were determined accurately from the absorptions at 612 

low field. It was assumed that g and A tensors were axially coincident. Accurate determination 613 

of the gx, gy, |Ax| and |Ay| was obtained by simultaneous fitting of both X and Q band spectra. 614 

The superhyperfine coupling values for the nitrogen atoms could not be determined accurately, 615 

although it was noted that satisfactory simulation could only be achieved with the addition of 616 

two nitrogen atoms with coupling in the range 30-36 MHz. 617 

Statistics 618 
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For all statistics, n = 3 values were used to calculate the standard error of the mean. Values 619 

resulted from independent experiments. For all representative results, experiments were repeated 620 

at least two times and at least 20 images were collected for microscopy analyses. 621 

 622 

Accession codes 623 

PcAA14A and PcAA14B sequences were deposited in GenBank under accession numbers 624 

KY769369 and KY769370, respectively. The X-ray structure of PcAA14B was deposited in the 625 

Protein Data Bank with accession 5NO7. Raw EPR data are available on request through the 626 

Research Data York (DOI: 10.15124/8758d712-1e67-467e-b0f0-f0dd99f0232a).  627 

Data Availability Statement 628 

All data generated or analysed during this study are included in this published article (and its 629 

supplementary information files). 630 
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