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The creation and subsequent evolution of marginally-unstable modes have been observed in a wide range of
fusion devices. This behaviour has been successfully explained, for a single frequency shifting mode, in terms
of phase-space structures known as a ‘hole’ and ‘clump’.
Here, we introduce stochasticity into a 1D kinetic model, affecting the formation and evolution of resonant

modes in the system. We find that noise in the fast particle distribution or electric field leads to a shift in
the asymptotic behaviour of a chirping resonant mode; this noise heuristically maps onto microturbulence via
canonical toroidal momentum scattering, affecting hole and clump formation. The profile of a single bursting
event in mode amplitude is shown to be stochastic, with small changes in initial conditions affecting the
lifetime of a hole and clump. As an extension to the work of Lang and Fu[1], we find that an intermediate
regime exists where noise serves to decrease the effective collisionality, where microturbulence works against
pitch-angle scattering.

I. INTRODUCTION

Toroidal Alfvén eigenmodes, (TAEs) are of particular
interest to the fusion community. With frequencies on
the order of 100 kHz [2], they have the ability to be-
come amplified via RF heating and energetic particles.
Due to defects in the magnetic field periodicity in real
tokamaks, spatially localised modes (gap TAEs) can ex-
ist in the frequency gap between TAEs and BAEs (beta-
induced Alfvén eigenmodes; frequency < 50 kHz, close to
GAM frequency). Unlike continuum Alfvén modes, gap
TAEs exist as coherent waveforms which are resilient to
shear damping. Energetic particles undergoing Landau
resonance with plasma waves under go radial diffusion,
which can lead to large fast particle losses in tokamaks
[2–5]; gap TAEs exist for longer timescales than contin-
uum modes, allowing for greater particle loss.
It is well known that hole and clump structures [6–

8] can form in the non-linear phase of the evolution of
an energetic particle driven mode, such as a TAE. It is
understood that mode chirping is directly correlated with
hole and clump structures; consequently, chirping modes
can allow for greater radial diffusion. As a result, even
in the case of continuum Alfvén eigenmodes, rapid mode
chirping can also lead to a significant channel for fast ion
loss; in such a case, the rate of energy loss via chirping is
comparable to the sum of damping rates (e.g. collisional,
radiative, continuum damping).
The effects of random, small-scale phenomena have

been previously examined in the literature[5–8]: mech-
anisms such as pitch-angle scattering can destroy holes

a)Electronic mail: benjamin.woods@york.ac.uk
b)Electronic mail: vduarte@pppl.gov

FIG. 1: A sketch of a hole and clump on a distribution
function peaked near the origin for a chirping, resonant

mode interacting with a tokamak plasma. The
resonance ω + (m+ l)ωθ − nωϕ = 0 undergoes pitchfork

bifurcation as the hole and clump move. Stochastic
fluctuations modelled in this paper heuristically map
onto fluctuations a function of pϕ; these effect the
formation and evolution of the hole and clump.

and clumps. However, the effect of microturbulence on
the evolution of a bursting mode in its non-linear phase
is relatively unexplored. Recent work by Duarte et al. [9
and 10] proposes that enhanced stochasticity in resonant
particle dynamics, in the form of fast ion microturbu-
lence, can be a key mechanism for chirping suppression
in several tokamak scenarios. The prediction stimulated
dedicated experiments on DIII-D by Van Zeeland et al.

[11] with negative triangularity, known for suppressing
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drift-like instabilities. The experiments have shown a
clear correlation between chirping emergence and scenar-
ios with very low turbulent activity.
This motivates the work detailed in this paper: here,

we carefully explore the inclusion of stochasticity into 1D
kinetic models, allowing us to examine in closer detail the
resultant effects on the evolution of resonant modes.

II. STOCHASTIC MODEL

A. Resonant damping

f In a tokamak, TAEs resonate with a quasi-2D fast-ion
distribution function where the linear stability is deter-
mined by competing df/d|v| and df/dpϕ [2]. These cor-
respond to resonance with the poloidal and toroidal tran-
sit frequencies ωθ and ωϕ respectively, [2 and 12] given by
ω+(m+ l)ωθ −nωϕ = 0. Here, m and n are the poloidal
and toroidal modenumbers, and l ∈ Z

∗ correspond to
poloidal harmonics of the drift velocity (see FIG. 1).
We model the same key instability physics by exam-

ining hole and clump formation on a 1D bump-on-tail
distribution function. This allows us to model energetic
particle drive via the positive slope of the distribution
function between the bulk and the beam, while modelling
energetic losses as a damping term. [6, 7, 13–15]
The evolution of the system is determined by cou-

pling the Boltzmann equation to Maxwell’s equations;
our model is given here by a multiple species generalisa-
tion of kinetic models used by Vann et al.[14] and De-Gol
[15]:

∂tfl = Cl[fl]− v∂xfl −
ql
ml

E∂vfl ∀l (1a)

∂tE = − 1

ǫ0

∞
∫

−∞

v
∑

l

(qlfl) dv − αE (1b)

where {Cl} are collision operators, fl(x, v, t) is the fast
particle distribution function for the lth species, E(x, t) is
the electric field, and ǫ0 is the permittivity of free space.
Damping is effected in the system via α(x, t), and acts as
a sink of electromagnetic field energy. Formally, one can
show that this augmentation still preserves momentum
and energy globally (see derivation in Appendix A from
classical field theory).

B. Two species model for turbulence

Here, we model the plasma by using two separate dis-
tributions of identical particles: a fast ion distribution
fion with a deterministic trajectory, and a turbulent dis-
tribution ftur with a stochastic trajectory. By modelling
the plasma using two separate distributions, one is able
to vary with ease the fraction of particles that are tur-
bulent. Fluctuations in ftur lead to fluctuations in the

electric field via (1b). Fluctuations in the electric field
interact with fion via (1a), heuristically mapping via αE
onto the energy exchange associated with particle reso-
nance along df/d|v|. Accordingly, the model captures
stochasticity in a comparable way to momentum scatter-
ing in pϕ as previously explored by Lang and Fu.[1]
We treat the electrons as existing within a neutralising

background that do not move with the ions, or resonate
with the electric field. This allows the model to become
a two species plasma:

∂tfion = Cion[fion]− v∂xfion − E∂vfion (2a)

∂tftur = Ctur[ftur]− v∂xftur − E∂vftur (2b)

∂tE = −
∞
∫

−∞

v(fion + ftur) dv − αE (2c)

The normalisation is as follows:

Nion = 1 ; mion = 1 ; ωp = 1 ; vth = 1 (3)

where for the non-turbulent fast ions, Nion is the num-
ber of particles, ωp is the plasma frequency. The quasi-
thermal quantity vth normalises the energy of the sys-
tem, but the equilibrium is not a thermal equilibrium.
We utilise a Fokker-Planck diffusive collision operator
for Ctur, in alignment with kinetic descriptions of mode
chirping based on pitch angle scattering νeff in the liter-
ature [7, 9, 10, and 16]; this also allows for comparison
with the LBQ[17] and BOT[18] codes. However, it is im-
portant to note that the operator relaxes to the initial
distribution function; accordingly, energy transfer may
occur during relaxation.
For C = O(∂3

v), one can show that the resultant hyper-
jerk equation ∂tf = C[f ] at fixed t can be represented
in the form ∂vg = F(g) where g ∈ R

n where n ≥ 3,
and F(g) is a smooth function [19]. Via the Poincaré-
Bendixson theorem [20–22], this meets the minimum re-
quirements for chaotic behaviour; a simple reductio ad

absurdum shows that replacing n with a value less than
3 prevents the formation of chaotic solutions.
Consequently, we find that the collision operator Ctur

must include terms O(∂3
v) to allow for stochastic be-

haviour. In lieu of an implemented collisional model
beyond Fokker-Planck theory, we instead define the tra-
jectory of ftur ad hoc to investigate the key resultant
physics.
As a result:

∂tfion = ν∂2
v(fion − F0)− v∂xfion − E∂vfion (4a)

ftur = ftur(x, v, t) (4b)

∂tE = −
∞
∫

−∞

v(fion + ftur) dv − αE (4c)

where F0(v) ≡ fion(x, v, t = 0).
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(a) Sketch of a frequency spectrogram for a seed
mode (ωs) launched at a frequency much greater
than that of a resonant mode (ωj(t = 0) ∼ ωp).

(b) Sketch of the bump-on-tail distribution, F0(v).

FIG. 2: Diagrams detailing non-stochastic drive for the system. A resonant mode undergoing chirping does so in a
frequency bandwidth much lower than the frequency of the launched seed mode (FIG. 2a), with mode drive

generated via inverse Landau damping on the positive slope of F0(v) (FIG. 2b) between 0 and vB .

C. Approximations

We make a few assumptions to simplify the model com-
putationally. These rely on a Fourier series representa-
tion of the distribution function and other quantities:

f(x, v, t) =
1

2

∑

j

[

fj(v, t)e
ikjx + f∗

j (v, t)e
−ikjx

]

(5)

where we sum over a set of initial modes, {j}. We
define the velocity Fourier transform by symmetric defi-
nitions:

f̃(x, s, t) =
1√
2π

∞
∫

−∞

f(x, v, t)e−isv dv

f(x, v, t) =
1√
2π

∞
∫

−∞

f̃(x, s, t)eisv dv

(6)

First, we replace α(x)E(x) with α(x) ∗ E(x); via the
convolution theorem, this allows for a piecewise product
of α and E in k-space. However, as it does not preserve
the canonical form of the Hamiltonian (see Appendix A),
conservation of energy is violated except for the trivial
case where α(x) is a constant. Here, we examine this
trivial case, and therefore ∀j : αj = 2α.

Secondly, we ignore three-wave coupling; this means
that no modes exist except for harmonics of the initial
set of modes. We allow this as three-wave coupling of
gap TAEs will generate modes which exist in the Alfven
continuum, which are quickly dissipated. [2]
Thirdly, we also ignore all harmonics of the initial set

of modes except for the fundamental; this is justified

by requiring physically that these harmonics are rapidly
damped.
Finally, we force E0 to be evanescent, and set it to 0

via boundary conditions (see Appendix A 2), removing
mean current from the Maxwell-Ampere law. This leads
to the caveat:

∣

∣

∣

∣

α0E0

∣

∣

∣

∣

>>

∣

∣

∣

∣

∞
∫

−∞

v(fion,0 + ftur,0) dv

∣

∣

∣

∣

(7)

In principle, (7) is violated, but we find that the in-
duced mean current is very small. Overall, for a single
mode simulation after spectral decomposition and veloc-
ity Fourier transforms:

∂tf̃ion,j = −νs2f̃ion,j + kj∂sf̃ion,j − Ej f̃ion,0 (8a)

∂tf̃ion,0 = −νs2(f̃ion,0 − F0)

− is

4

[

E∗
j f̃ion,j + c.c.

] (8b)

f̃tur = f̃tur(x, s.t) (8c)

∂tEj = −
∞
∫

−∞

[

W (f̃ion,j + f̃tur,j)
]

ds− 1

2
αjEj (8d)

E0 = 0 (8e)

where W (s) ∈ I is the formally divergent integral
(which acts a removable singularity in the current):

W (s) ≡ 1√
2π

∞
∫

−∞

veisv dv
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(a) A sketch of a typical set of values for the fast
ion distribution fion,0(v, t > 0): in the vicinity of

v ∼ 1/kj , a hole and clump can form during
resonance.

(b) A sketch of a typical set of values for the
turbulent distribution ftur,j(v, t = 0): blue dotted
line denotes 〈ftur,j〉v(v, t = 0), red dashed line

denotes Nf,j(v, t = 0).

FIG. 3: Sketches highlighting features of ftur and fion. Both ftur and fion have a constant number of particles, and
ftur contains no net energy.

D. Seed electric field

We define E using three parts: a perturbation δE, a
deterministic part ES , and a stochastic part EN :

E = δE + ES + EN (9)

One can show that (8d) now takes the form:

∂tδEj = −
∫

W · (f̃ion,j + f̃tur,j) ds−
1

2
αjδEj +Dj

where the drive term Dj is given by:

Dj ≡ ∂t(ES,j + EN ) +
1

2
αj(ES,j + EN )

We desire that the seed terms ES and EN exchange
no free energy with the system. Ad hoc definitions which
are independent of δE and {fl} achieve this:

ES,j = D(1− ǫE,j)e
iωst ; EN ,j = EN ,j(t)

where ωs is the seed mode frequency, and ǫE,j al-
lows us to define stochastic seeding of the electric field
with wavenumber kj ; ǫE,j = 1 is fully stochastic seed-
ing, ǫE,j = 0 is non-stochastic seeding. D is the typical
amplitude of (ES + EN ).
For EN ,j(t), we use Gaussian noise, with a mean value

of 0, and a domain of [−∞,∞]. The standard deviation
of the values EN ,j(t) takes is σE,j , which we treat as the
typical amplitude. Accordingly, σE,j = ǫE,jD.

In order for the seed field (EN + ES) to not directly
interact with the plasma (and attenuate), the constituent
frequencies must be much greater than the plasma fre-
quency. If we utilise pseudorandom noise, it oscillates on
a timescale comparable to the timestep. For ES , we have
to enforce ωs >> ωp (see FIG. 2a).

E. Turbulent distribution

The fast-ions are modelled using a 1D bump-on-tail
distribution (see FIG. 2b):

F0(v) =
1√
2π

[

η exp

(

−v2

2

)

+
1− η

vt
exp

(

− (v − vb)
2

2v2t

)]

(10)
such that (1−η) is the fraction of particles in the beam,

vt is the beam width, and vb is the beam velocity. We
define the turbulent population as the sum of a top-hat
function and a noise term; the noise term is defined to
yield a particle population of zero (see FIG. 3b). This al-
lows us to parametrically modify the stochasticity of ftur
via noise without changing the total number of particles.
After Fourier transforms:

f̃ion(x, s, t) = F̃0(s) + δ̃f ion(x, s, t) (11a)

f̃tur,j(s, t) =
1√
2π

ǫf,j sinc

(

sLv

2

)

+ Ñf,j (11b)

f̃tur,0(s, t) = 0 (11c)

where sinc(s) ≡ sin(s)/s is the sinc function,
Nf (x, s, t) is a noise term, and Lv is the length of the
codomain of F0(v). Accordingly, the fraction of non-
turbulent particles is 1/[1+ ǫf,j ]. We assume that broad-
band noise in v-space will still be broadband noise in
s-space, weighted accordingly via Parseval’s theorem; ac-
cordingly we relate amplitudes as:

|Ñf,j |
|Nf,j |

≈ Lv√
2π

For Nf,j(v, t), we use raised cosine noise, with a mean
value of 0. The domain is given by:
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Nf,j(v, t) ∈



−σf,j

√

3π2

π2 − 6
, σf,j

√

3π2

π2 − 6





The typical amplitude is equal to the standard devi-
ation σf,j , and accordingly to force positive ftur every-
where:

σf,j ≤ σ
(max)
f,j ; σ

(max)
f,j ≡ ǫf,j

Lv

√

π2 − 6

3π2
(12)

We also require for conservation of energy and particle
number (at constant ǫf ) that the 0th and 2nd moment of

ftur vanish. To enable this, we enforce that Ñf (x, s, t)
has a real part that is odd, and an imaginary part that
is even. One finds that the net energy content of the
turbulent distribution is given by:

Utur =
1

24
ǫf,jL

3
v (13)

III. COMPUTATIONAL METHOD

A. DARK

We utilise a new, modular code based on previous work
by Arber, Vann and De-Gol. [15 and 23]. DARK (D-
dimensional Augmented Resonance Kinetic solver) al-
lows for a single framework which can incorporate fun-
damentally different models and approximations by us-
ing a Strang split set of partial flows. Each partial flow
is solved separately to yield the full solution across a
timestep. Appendix C 1 details the exact form of the
splitting scheme.
Fourier decomposition reduces Nx grid points in x to

(Nk + 1) equations (here the number of modes Nk = 1).
By using s-space, the code computes collisions and ve-
locity advection at the same time, giving a factor 2 in-
crease in speed, and only requires backwards transforms
via FFTW[24] (Fastest Fourier Transform in the West)
on distribution function output, providing a potential
O(Nv logNv) decrease in computational time on each
timestep.

B. Global parameters

Our global parameters were selected to be:

vb = 10 ; vt = 4 ; η = 0.95
ωs = 2.0 ; kj = 0.15

∆t = 0.1 ; v ∈ [−28, 88] ; Nv = 8192
(14)

Selecting kj = 0.15 means that if we define kj as the
fundamental eigennumber of the system (the length of

the 1D box Lx = 2π/kj), in turn all of the higher har-
monics resonate with the bulk particles, where they un-
dergo strong Landau damping. While some studies have
shown that strongly Landau damped modes can be non-
linearly unstable [25 and 26], here we assume that this
is not possible due to small initial mode amplitude; this
allows us to justify the lack of three-wave coupling in the
model.
The timestep was picked to be small enough to allow

for a reasonable frequency analysis without becoming too
computationally expensive. At ∆t = 0.1, using a window
size of 2000 timesteps, we obtain a frequency resolution
∆ω = π/100 provided that δω < ∆ω across the time-
frame of the bin. Furthermore, the Fourier spectrum
of EN should be dominated by structures in the region
ω >> ωp.
It is also a requirement for the code to adhere to the

Courant-Friedrichs-Lewy (CFL) [27] limit for spatial ad-
vection in s-space via the piecewise parabolic method
(PPM)[28] routine; the number of v-points Nv and the
domain of v adheres to the CFL limit.
Noise in the system is provided by using a pseudonum-

ber random generator (PRNG) with a given seed value.

C. Benchmarking

FIG. 4: Change in energy content (∆U) for a
simulation from Section IV with αj = 0.6. The total

energy in the system increases linearly in the non-linear
phase due to injective collisions.

Energy is not conserved in these simulations; the
Fokker-Planck collisions heat the fast ion distribution,
always aiming to restore the energy content in the distri-
bution function to U0:

U0 ≡ 1

2

∞
∫

−∞

F0v
2 dv =

1

2

[

η + (1− η)(v2b + v2T )
]

(15)

For the purpose of benchmarking, we use a very simple
model for symmetric mode flattening with a local pop-
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ulation transfer (f0 − F0) ∼ −(v − v0) exp[−(v − v0)
2]

near resonance. This yields the corresponding energy
flux from collisions in the weakly non-linear regime:

U̇coll. ≡
1

2

∫

∂2
v(f0 − F0)v

2 dv ∼ −v0
√
π (16)

We test the energy conservation by examining a simu-
lation with the same parameters employed in Section IV,
at αj = 0.6. As is shown in FIG. 4, the total energy
content in the system is roughly constant initially. As
we approach the non-linear phase, the energy lost from
fion increases sharply. One expects this energy loss to be
equal to that lost to the mode Ej , and damping αj ; the
total energy injected into the system via ν at this time
is very small.
Once the distribution function has suitably relaxed,

the deficit in the energy content should asymptote to that
lost via damping αj , however we observe a small discrep-
ancy in the energy content (roughly 0.45% of the total
energy content). We believe that this discrepancy is due
to approximations made regarding higher harmonics of
fion,j and Ej , and deem this discrepancy to be negligible
for the single burst simulations examined here.

IV. STOCHASTIC LIFETIME OF HOLE AND CLUMP

FIG. 5: A sketch of a bursting mode near marginal
stability. Constituent regions tl, tg, tp, and td are

labelled.

Here, we consider a system with noise only in the elec-
tric field; that is Nf = 0. We consider no particles in
the turbulent population ftur, such that the simulations
reduce to single species.
The electric field is only seeded by noise; Dj = 10−7

was used, with ǫE , j = 0. A set of 2500 simulations
were employed, allowing for 50 varying values of tNL,
each tested for 50 different initial seeds of the PRNG. k
and ν were fixed to 0.150 and 10−7 respectively, with 50

values of αj on the interval [0.06, 0.158]. The low value
of ν justifies a relatively large timestep of ∆t = 0.1.

A. Burst characterisation

To characterise the behaviour of a single bursting
event, a set of simulations were used to produce data for
the length of four temporal regions: lag, growth, plateau,
and decay. Each of these regions are labelled in FIG. 5
for a sketch burst.
For an overall burst time tb = tg + tp + td, the con-

stituent times can fluctuate (functional dependences de-
termined from simulation). The theoretical maximum
and minimum amplitudes were used to create a fit rou-
tine, allowing one to acquire from the mode amplitude
|Ej | the constituent times as a function of the param-
eters kj , αj , and ν. We find that these times are not
deterministic, but instead are stochastic:

lag: tl = t
(0)
l + δtl

growth: tg = t
(0)
g

plateau: tp = t
(0)
p + δtp

decay: td = t
(0)
d + δtd

(17)

where {δtX} denote stochastic terms. The fluctuation
of each of the times has a well defined mean and standard
deviation, and are analysed such that the mean is 0; here,
we find that the lag, plateau, and decay times are highly
stochastic. We find that at small tNL the mean plateau

time t
(0)
p is roughly constant, while the mean decay time

t
(0)
d is a linear function of tNL, while the mean lag time

t
(0)
l is a non-linear function of tNL.

B. Linear phase

When a single mode bursts, the electric field grows
linearly via the bump-on-tail instability, provided that
the mode lies on the positive slope of the ‘bump’. For
ν = ES = EN = 0, the frequency and growth rate in the
linear phase are then determined by [29]:

p+
αj

2
=

∫

Ω

v ∂vF0

p+ ikjv
dv (18)

where Ω is the suitable Landau contour for the prob-

lem, and p ≡ γj − iω
(0)
j , such that the overall linear

growth rate for the jth mode is given by:

γj(kj , αj) = γj,L(kj , αj)−
αj

2
(19)

where the unperturbed linear growth rate γj,L is equiv-
alent to γj in the absence of dissipation.
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(a) Plateau time tp: approximately constant as a
function of tNL, with a relative stochastic

fluctuation σl/t
(0)
l ∼ 10−2.

(b) Decay time tp: increases linearly as a function
of tNL, with a relative stochastic fluctuation

σl/t
(0)
d ∼ 10−1.

FIG. 6: Graphs showing calculated values for tp(tNL) and td(tNL) from simulations in Section IV. Observed values
(‘+’) and mean values (‘•’) from fit routines.

The frequency ω
(0)
j is the initial frequency of the jth

mode. If one solves (8d) for negligible current, on aver-
age:

|δEj |min ≈ Dj

αj/2

[

1− e−αj∆t/2

]

+O
(

e−(αj∆t)2
)

(20)

The simulated noise is static over a timestep, leading
to an error which manifests as the term ∼ exp(−αj∆t/2).

One can interpret this physically as a finite bandwidth
for the noise; we expect ITG turbulence spectral fre-
quencies to typically be much slower than the plasma
frequency [30], however here we examine noise with a
frequency spectrum that is typically below the plasma
frequency, corresponding to high frequency turbulence.
The peak value for the electric field is the non-linear satu-
ration point, which can be approximated by the following
value:[6]

|Ej |max ≈ (γj,L)
2 (21)

Accordingly, as we expect exponential growth in the
linear phase, the total time spent in the linear phase is
given by:

(t(0)g )theory ≈ 2

γj
log

[

αjγj,L
2Dj [1− exp(−αj∆t/2)]

]

(22)

Simulations were found to strongly agree with this

value; we find t
(0)
g = (−91.0 ± 8.1) + (1.15 ± 0.01) ·

(t
(0)
g )theory. The quantity tg does not appear to be

stochastic; fluctuations in the value of tg as a function
of PRNG seed are typically about 2 or 3 orders of mag-

nitude lower than the mean value t
(0)
g . One finds that the

accuracy improves at low αj ; we find that this is in accor-

dance with theory, as our value for (t
(0)
g )theory assumes

slow damping (small αj∆t).
At high αj , the expected growth time grows logarith-

mically until γj,L dominates:

lim
αj→∞

(t(0)g )theory =
2

γj

(

log

[

γj,L
2Dj

]

+ logαj

)

Interestingly, one finds that even if the linear growth
rate is non-zero, the seed electric field can prevent the
mode from growing. This can be shown by setting the
growth time to zero and solving for γj,L:

(γj)min ≈ 2Dj

αj
− αj

2

If the linear growth rate is below this minimum, the
seed electric field quenches the mode before it has a
chance to burst; in order to preserve the true meaning
of the linear growth rate, one should impose a limit on
Dj when using high αj :

Dj ≤
α2
j

4

This hard limit on the noise level allows one to prop-
erly investigate simulations close to the linear stability
boundary.
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(a) Low effective collisionality: the
mode amplitude |Ej | undergoes a
single bursting event at t ≈ 0,

corresponding to mode chirping. Top
plot shows ν = 10−6, Rj = 0; bottom

plot shows ν = 10−5, Rj = 10−2.

(b) Medium effective collisionality:
|Ej | undergoes repeated bursting
events (t ≈ {0, 22000, 24500, . . . }),

each corresponding to mode chirping.
Top plot shows ν = 10−5, Rj = 0;

bottom plot shows ν = 10−5,
Rj = 10−4.

(c) High effective collisionality: the
system does not undergo mode

chirping. Top plot shows ν = 10−2,
Rj = 0; bottom plot shows ν = 10−5,

Rj = 10−1.

FIG. 7: Plots of log |Ej |(t) from linearly unstable simulations in Section V. Asymptotic behaviours for a single mode
are shown for deterministic cases with varying collisionality ν (top plots), and stochastic cases with fixed

collisionality ν = 10−5 (bottom plots).

C. Non-linear phase

Once the mode reaches the non-linear saturation point,
resonance broadening occurs, flattening the background
distribution function fion,0 in the close vicinity of the res-

onant phase velocity ω
(0)
j /kj . If the mode is marginally

unstable, to the extent that: [6]

αj

2
> 0.2γj,L (23)

a phase-space bifurcation in the form of a hole and
clump form on fion,0.
For diffusive Fokker-Planck collisions, the time

spent in the plateau and decay regions has previ-
ously been shown to be a function of the timescale[6]

tNL = (γj,L)
2/[(ω

(0)
j )2ν].

We take first order Taylor expansions in tNL as follows:

t
(0)
X = aX + bXtNL +O(t2NL) =

1

50

∑

seed

tX (24)

where we sum over 50 PRNG seeds. From the simu-
lations, t

(0)
l appears to be a non-linear function of tNL

while t
(0)
d appears to be linear.

The mean plateau time t
(0)
p appears to be constant at

low tNL; however at high tNL, large error in the linear fit
reduces our ability to determine the mean time.
We find that ad = (2.56 ± 2.01) × 102, bd = (3.62 ±

0.35)× 10−2), and ap = (1.41± 0.04)× 104. One should
note that the errors here are errors in the linear fit to
mean values; they represent confidence in the functional
dependence on tNL, not the stochasticity. We find that

O(bp) = 10−3, allowing us to state t
(0)
p ≈ ap for tNL <<

106.
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(a) Rj = 10−4: noise in ftur produces
an electric field, but repeated

bursting still occurs.

(b) Rj = 10−2: noise in ftur produces
an electric field which prevents

repeated bursts from occuring, but
does not prevent the mode from

initially chirping.

(c) Rj = 10−1: noise in ftur produces
an electric field which prevents a hole
and clump from forming; the system

is non-linearly stable.

FIG. 8: Plots of ωj(t) and f0(v) = f̄ion(x, v, t = 1200) (top plots and bottom plots respectively) from simulations in
Section V with ν = 10−5; the relative stochasticity Rj is varied between simulations. Black dotted lines in the

bottom plots show the existence (or lack of) hole and clump at t = 1200.

D. Burst stochasticity

We once again take first order Taylor expansions in
tNL, but now examining the standard deviations in {tX}:

σX = cX + dXtNL +O(t2NL) =
1

50

∑

seed

δt2X (25)

where we once again sum over 50 PRNG seeds. We
find that generally, σX does not appear to be a func-
tion of tNL. The lag time tl is strongly stochastic, with

σl/t
(0)
l ∼ 100. This is in accordance with theory, as at

very low amplitude, ∂t|Ej | is strongly dependent on the
noise term, which is stochastic.
The plateau exists while the hole and clump have a

static population of particles, and therefore, once the
phase-space structures dissipate, the mode drops signif-
icantly in amplitude. The time spent in this region, tp,
is stochastic; as is shown in FIG. 6a, the relative fluc-

tuation σp/t
(0)
p ∼ 10−2. We conclude that the point at

which this occurs is stochastic, leading to a stochastic life
time of the hole and clump.
The growth and decay times tg and td are defined by

the minimum and maximum mode amplitude. There-
fore, any stochastic behaviour reflects fluctuation in the
growth rate and decay rate of the mode. We find that
σg/tg is negligible, implying that mode growth is not
stochastic, as one might expect. However, we find that

σd/t
(0)
d ∼ 10−1, implying a large fluctuation in the decay

rate of the mode (see FIG. 6b).

V. STOCHASTIC SUPPRESSION OF HOLE AND

CLUMP

Here, we consider a case with a wholly non-stochastic
electric field (ǫE = 0), and examined the effect of a
stochastic distribution function ftur on mode chirping.
One finds that in cases of high collisionality, we must

enforce ν / ∆v2/∆t to avoid numerical inaccuracies
where collisions dissipate structures much faster than the
timestep. We fix the linear growth rate to γj = αj/2 =
0.0534, to reduce the parameter space while still allowing
hole and clump formation (see (23)). We fix D at 10−7

and 1/(1 + ǫf,j) = 98% to investigate a small electric
field drive and a small turbulent population. We define

the relative stochasticity as Rj ≡ log10(σf,j/σ
(max)
f,j ).
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In theory, ftur can affect δE via (8d). As (W ·ftur) ∈ I,
one can see that real stochastic noise will produce an
imaginary stochastic term in (8d), which will lead to
a scrambling of the phase of coherent structures with
wavenumber kj . Consequently, the coherence of hole and
clump structures can be destroyed, allowing for shear dis-
sipation via dispersion.
In contrast with EN , as ftur exchanges no energy on

pseudorandom time average with E, it can instanta-
neously create perturbations in E which cannot be in-
duced by finite EN .
First, we show 3 simulations with varying collisional-

ity log10 ν = {−2,−5,−6}, and no noise (Rj = 0). A
timestep of ∆t = 0.01 to allow us safe exploration of
ν ∼ 10−2. As is shown in FIG. 7, high collisionality
(ν = 10−2) suppresses mode chirping, medium collision-
ality (ν = 10−5) allows for repeated bursting, and low
collisionality (ν = 10−6) allows for only a single event.
Next, we highlight the effect of σf,j on the asymptotic

behaviour of the mode in FIG. 7 and FIG. 8; we show
results from 3 simulations with ν = 10−5 using a coarser
timestep of ∆t = 0.1, and Rj = {−1,−2,−4}. For low
stochasticity (Rj = 10−4), the effective collisionality in-
creases; we still observe repeated bursting, however the
period between repeated bursts is characteristic of sim-
ulations with ν ∼ 10−4. Here, ftur affects the stability
of fion, but does not make the fast-ion population sta-
ble; as is shown in FIG. 8a, the initial hole and clump is
undisturbed, and repeated bursts still occur.
For medium stochasticity (Rj = 10−2), we find that

the repeated bursts are suppressed. We give two equiva-
lent explanations: the electric field produced by ftur ap-
proaches the maximum amplitude of the repeated bursts,
saturating them. As is shown in FIG. 8b, the initial hole
and clump still exists, but repeated bursts do not occur.
As we increase to high stochasticity (Rj = 10−1), we

find that the initial burst is suppressed. We find that
this is when the electric field produced by ftur has an
amplitude close to the non-linear saturation point; at
this point, the mode does not resonate, even though it
is unstable. Alternatively, ftur prevents the mode from
bursting by increasing the effective collisionality; as is
shown in FIG. 8c, the electric field produced by ftur
creates features on the spatially averaged distribution
f0(v) = f̄ion(x, v, t = 1200) which affect the hole and
clump.

VI. CONCLUSIONS AND FUTURE WORK

In the case of weak stochasticity, we conclude that
mode chirping is not wholly deterministic; the shape of
the burst in mode amplitude can be determined on aver-
age analytically, but varies depending on the noise seed
employed. We hope that this theory will lead to further
analytical work, allowing one to freely predict the shape
of a burst as a function of the whole parameter space:
it is reasonable to assume that the empirical coefficients

{aX} and {bX} are dependent on the shape of F0.
Further work expanding this theory to include the time

between bursts could lead to predictions of the burst
frequency between Alfvén mode chirping events in toka-
maks, which would allow for a greater understanding of
fast ion loss. We plan to couple predictions about the
shape of a given burst to analytic theory by Berk, Breiz-
man and Petviashvili [6] to create an analytical theory of
hole-and-clump destabilisation in future work.
We conclude that the lifetime of a hole and clump is

stochastic, and that the decay rate of the mode is also
stochastic. Again, we hope that the accuracy of analysis
for tp and td improves with further work; in reality, the
plateau region has a slight negative slope. It is our be-
lief that an upgraded model with a negative gradient for
tp would yield greater accuracy on the non-linear depen-
dence of tp on tNL.
We find that increasing the stochasticity in the system

is initially equivalent to increasing the effective diffusive
collisionality. This is as one might expect from theory;
stochasticity in the turbulent distribution function or
electric field affects the damping term αE, which is anal-
ogous to the energetic particle drive df/dpϕ. Accord-
ingly, simulations with increased stochasticity produce
similar overall results to theory based on stochastic per-
turbations to momentum scattering via microturbulence-
induced radial diffusion.[1] However, an important nu-
ance appears when considering repeated bursting; low
amplitude repeated bursts are saturated by the elec-
tric field produced by ftur, leading to an asymptotic be-
haviour characteristic of a decrease in the effective colli-
sionality.
As a result, we posit that in a given regime, an increase

in micro-turbulence leads to an anomalous decrease in the
effective collisionality; it is implied that in this regime,
microturbulence reduces the ability for the distribution
function to reconstitute via pitch-angle scattering.
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Appendix A: Resonant damping

The classical Lagrangian and Hamiltonian densities of the
electromagnetic field are given by [31]:

L = −
FαβFαβ

4µ0
−AαJ

α ; H0 = Πβα∂βAα − L0 (A1)

where Fαβ is the electromagnetic force tensor, µ0 is the
permeability of free space, Jα is the four-current. Aα and
Πβα are the four-potential and conjugate Π-tensor:

Aα = (φ/c,A) ; Πβα =
∂L

∂(∂βAα)
(A2)

where φ is the electric scalar potential, and A is the mag-
netic vector potential.

1. Augmentation tensor, Gβα

Let us define L(Aα, ∂βAα) = L0 + δL. Then, H(Aα,Π
βα)

is given by the appropriate Legendre transformation:

H = Πβα∂βAα − L

=

[
∂L0

∂(∂βAα)
∂βAα − L0

]

︸ ︷︷ ︸

H0

+

[
∂(δL)

∂(∂βAα)
∂βAα − δL

]

︸ ︷︷ ︸

δH

where we define H0 : δL = 0. We seek the perturbation
δH = 0 so as to preserve the canonical form of the Hamilto-
nian. Therefore:

δL =
∂(δL)

∂(∂βAα)
∂βAα

This trivial partial differential equation solves to give:
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δL = Gβα(Aµ) · ∂βAα

where the augmentation tensor Gβα(Aµ) preserves the
Lorentz invariance of the Lagrangian density, but is only a
function of the four-potential.

2. Canonical form

From L = L0 + δL, the augmented Maxwell’s equations
for the system are given by the generalized Euler-Lagrange
equations:

∂β

[
∂L

∂(∂βAα)

]

−
∂L

∂Aα
= 0 (A3)

By examining a 1D Cartesian space with no B-field, we
seek an augmentation tensor that satisfies:

− αE =
1

ǫ0

[

Aµ
∂G0µ

∂Ax
+ ∂xAµ

∂G1µ

∂Ax
− (G01 +G11)

]

(A4)

Doing so allows the augmentation to the Gauss-Ampere law
a posteriori to manifest as a Berk-Breizman sink of energy via
a global dissipation channel. [6 and 14] This is non trivially
satisfied, but the simplest case is when ∂Gνµ/∂A = 0, and:

G01 +G11 = −αǫ0(∂xφ+ Ȧ) (A5)

One can also show that further constraints on the aug-
mentation tensor allow Gauss’ law to retain the exact same
form as before. Therefore, this family of augmentation ten-
sors produce the modified Maxwell-Ampere law and preserve
the canonical form of the energy density:

∂tE = −
J

ǫ0
− αE ; U =

1

ǫ0

∞∫

−∞

E2 dx (A6)

The Lorentz force on charged particles due to the electro-
magnetic field is given by the particle Lagrangian.[31] If we
examine a single particle:

Lp =

[
1

2
muµu

µ + quµAµ

]

(A7)

where m and q are the particle mass and charge, and uµ

is the four-velocity. One can show that if we constrain the
definition for the four-potential to be invariant under the aug-
mentation, then:

m
dvα
dt

= −qµ0Παβ
dxβ

dt
(A8)

The augmentation does perturb Παβ , however the force
does no work; it is in fact a fictious force, and therefore can
be omitted. Finally, we omit the spatially averaged current
to avoid a build up of loop voltage; one can show that if we
take the spatially averaged part of the Maxwell-Ampere law:

−

∫

v(fion,0 + ftur,0)dv = ∂tE0 + α0E0

We require that the mean current is very small, and is
dominated by exponential decay. In such a case, we find that
the spatially averaged electic field E0(t) must be temporally
evanescent:

E0(t) ≈ E0(t = 0)e−α0t

This in turn allows us to remove the spatially averaged elec-
tric field by setting E0(t = 0) = 0 as a boundary condition.

Appendix B: Seed electric field

If one chooses the following form for the seed contribution:

Sj ≡ −
1

2

∑

s

[

Ajse
−iωst + c.c.

]

where {Ajs} ∈ C, one finds the following partial differential
equation:

∂tES,j +
1

2
αjES,j =

1

2

∑

s

[

Ajse
−iωst + c.c.

]

We define Laplace forwards and backwards transforms by:

f̃(p) ≡

∞∫

0

f(t)e−pt dt ; f(t) ≡
1

2πi
lim

T→∞

σ+iT∫

σ−iT

f̃(p)ept dp

This allows one to find that under forward Laplace trans-
formations:

ẼS,j =
1

p+ αj/2

{

ES,j(t = 0) +
∑

s

[
Ajs

p+ iωs
+

A∗
js

p+ iωs

]}

Formally, for convergence of the forward transform:

∃σ < Re(p) : lim
t→∞

|f(t)| = eσt

Therefore, if the traditional Bromwich contour is shifted to
examine a line integral along Re(p) < σ, we can examine sin-

gularities in ẼS,j ; residues of these singularities allow us to re-
cover the solution for the electric field via the residue theorem.
By examining Re(p) → −∞, we find that the only remaining
contribution to the backwards transform is the residues, as
the rest of the integral becomes exponentially small:

ES,j = 2πi ·
∑

r

Res(ẼS,je
pt, pr)

where pr are the locations of the singularities for Re(p) < σ.
When calculated, this yields:

ES(x, t) = E
(ev)
S

(x)e−αjt/2 +
1

2

∑

s

[

ES,js(x)e
−iωst + c.c.

]

where E
(ev)
S

refers to non-propagating evanescent modes
given by the simple pole at p = −αj/2. We can deny these

modes from existing by setting E
(ev)
S

= 0 as a boundary con-
dition. ES,js(x) is given by:

ES,js =
Ajs

αj/2− iωs

If we select As ∈ R, we find that this reduces to the form:

ES(x, t) =
∑

s

As

α2
j/4 + ω2

s

cos(ωst)



13

If one solves the modified Maxwell-Ampere law when there
is very little change to the distribution function (negligible
instability drive) and no noise, we find the solution:

δE(t) = −ǫEES(x, t)

As can be seen, for these modes there is no net electric
field overall; the seed mode and the perturbation are counter-
propagating. Physically, this corresponds to a launched light
wave in the plasma being perfectly reflected; note that we
have discarded evanescent modes.

We then consider the addition of a noise term EN . By
similar analysis, one can show that the noise is representable
as a distinct set of frequencies, {ωn}. However, in the limit
that {ωn} form a continuum, we find that we can represent
the noise term contribution in the form:

lim
δωn→0

1

2

∑

n

[

Ane
−iωnt + c.c.

]

≡ −NE

where NE is a pseudorandom noise term that seeds in-
stabilities. We can once again ignore evanescent effects via
boundary conditions, leaving only the propagating contribu-
tion. Again, one finds from a similar analysis that the noise
term leads to no net perturbation of E, in accordance with
the conservation of energy.

However, one can show that by solving (8d) for negligible
current:

δEj(t+∆t) ≈
Dj

αj/2

[

1− exp

(

−
1

2
αj∆t

)]

+O(∆t2)

The numerical flaw associated with timestep size is what
gives the initial drive; clearly, the limit as ∆t → 0 yields
δEj = 0.

Appendix C: Computional method

1. Strang splitting

Formally, the system’s equations of motion are defined by
a rank two tensor of differential operators Ẑµ

ν , acting in the

phase-space (x,v) on the state vector Fµ:

∂tF
µ = Ẑµ

ν F
ν (C1)

The flow operator tensor Φµ
ν yields the trajectory of the

system:

Fµ(x,v, t+∆t) = Φµ
ν (∆t) ◦ F ν(x,v, t) (C2)

We then suppose that Ẑµ
ν is representable as a linear sum

of n operators. In such a case:

Zµ
ν =

n∑

j=1

(Zj)
µ
ν (C3)

Therefore, via the Baker-Campbell-Hausdorff formula [32],
one finds that as for two matrices A and B:

e(A+B)∆t = eA∆teB∆t +O(∆t) (C4)

the overall flow can be split into n partial flows via the
symmetric Strang splitting method [33 and 34]:

Fµ(x,v, t+∆t) =

[
n∏

j=1

(Φj)
µ
β(∆t/2)◦

]

[
n∏

j=1

(Φn−j)
β
ν (∆t/2)◦

]

F ν(x,v, t) +O(∆t2)

(C5)

Accordingly, we first split the problem by evolving one of
the functions in the state vector while keeping the rest con-
stant. Secondly, we split the flow for this state function into
partial flows. Then each partial flow is solved numerically in
forward flow order and then reverse flow order, for a half a
timestep each.

For example, in the x − v code, we utilise a state vector
of (f,E), keeping the electric field constant while the distri-
bution function is evolved, and vice versa. The partial flows
examine spatial advection, velocity advection, collisions, and
electric field evolution.
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