
This is a repository copy of Dynamic panel data estimation of an integrated Grossman and
Becker-Murphy model of health and addiction.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/126431/

Version: Accepted Version

Article:

Jones, Andrew Michael orcid.org/0000-0003-4114-1785, Laporte, Audrey, Zucchelli, 
Eugenio et al. (1 more author) (2019) Dynamic panel data estimation of an integrated 
Grossman and Becker-Murphy model of health and addiction. Empirical Economics. pp. 
703-733. ISSN 0377-7332 

https://doi.org/10.1007/s00181-017-1367-6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Dynamic panel data estimation of an integrated

Grossman and Becker-Murphy model of health and

addiction

Andrew M. Jones a,∗ Audrey Laporte b,c Nigel Rice a,d

Eugenio Zucchelli e

a Department of Economics and Related Studies, University of York, YO10 5DD, UK
b Institute for Health Policy, Management and Evaluation, University of Toronto, ON

M5T 3MS, Canada
c Canadian Centre for Health Economics, University of Toronto, Canada

d Centre for Health Economics, University of York, YO10 5DD, UK

e Division of Health Research, Lancaster University, LA1 4YG, UK

September 26, 2017

Abstract

We propose a dynamic panel data approach to estimate a model that integrates
the Becker-Murphy theory of rational addiction with the Grossman model of
health investment. We define an individual’s lifetime smoking consumption
and investments in health capital as simultaneous choices within a single op-
timisation problem. We show that this can be estimated using GMM system
estimation of two stand-alone single fourth-order difference equations of health
capital and smoking. These preserve roots and fundamental dynamics of the
original system of four interrelated first-order equations. Monte Carlo simu-
lations confirm that this reduced-form dynamic estimation also produces very
similar estimates to the ones of the initial system of equations. We argue that,
in the presence of long panel data, this approach may provide a feasible alter-
native for the estimation of a complex life-cycle model of human capital.
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1 Introduction

The dominant theoretical model in the economics of health, broadly speaking,

is the Grossman model (Grossman, 1972). The model extends the theory of

human capital to the demand for health and medical care over the life-cycle

and provides the foundation for a large body of empirical research. Similarly,

the leading theoretical model in the economic analysis of the consumption

of addictive commodities is the Becker-Murphy model of rational addiction

(Becker and Murphy, 1988; henceforth B-M). Although each model is a subset

of the general model of investment in human capital (Becker, 1965; Becker

and Woytinsky, 1967; Mincer, 1974), up until very recently the two models

have been considered as separate entities for both theoretical and empirical

analyses (Adda and Lechene, 2013; Darden, 2012). In addition, the empirical

testing of the Grossman model has often been hampered by data constraints,

particularly by the shortage of long panel data required to reflect appropriately

its dynamic nature (Grossman, 2000; Zweifel, 2012).

We develop and estimate a model that explicitly integrates the dynamics of

addiction and the human capital model of health investment. This enables the

modelling of smoking behaviour and positive investments in health capital as

simultaneous choices of a single optimization problem, allowing for the presence

of an addiction stock together with a stock of health capital and investments

in preventive medical care. We derive a reduced-form that can be estimated

using high-order linear dynamic panel data models while preserving the roots

of the original system. This integrated model is consistent with insights from

both the medical literature on the health effects of smoking (e.g. Doll et al.

(2004)) and the recent developments in the economics literature (e.g. Adda and

Lechene (2013)). Those studies suggest that smoking has a cumulative effect in
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the sense that its impact on an individual’s health capital depends not on how

much is smoked today but on the amount of smoking damage accumulated over

their lifetime. Consistent with the B-M framework we model smoking damage

as a state variable in an optimal control framework allowing it to have its own

intrinsic dynamics. Following Grossman we also model health capital as a

state variable with its own intrinsic dynamics, but enter the stock of smoking

damage as an explanatory variable in the equation explaining health damage.

This allows smoking to have its own dynamics but also to have a different time

profile of effect on health than other health related activities.

The resulting inter-temporal optimisation leads to a system of interrelated

first-order difference equations. Empirical implementation of this system is

complicated by the fact, not uncommon in health datasets, that we lack data

on certain key choice variables - most obviously on levels of addiction. We

therefore reduce the system from four inter-related first-order difference equa-

tions to a pair of stand alone fourth-order difference equations, one in health

and one in cigarette consumption. This derivation allows the roots of each of

the single fourth-order difference equations to be the same as the four roots of

the original system of four first-order difference equations and accordingly can

be used to investigate the dynamics of the system. Monte Carlo simulations

confirm that this derived reduced-form dynamic estimation approach produces

very similar estimates to those of the initial system.

Our approach requires the estimation of dynamic panel data models involv-

ing fourth-order lags of the dependent variable. We do this using a generalised

method of moments (GMM) systems estimator deriving instruments for the

lags of the dependent variable from past period observations. This necessi-

tates the use of rich and mature panel data and we make use of 18 waves of

the British Household Panel Survey (BHPS). Our estimates confirm the strong
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persistence of both smoking consumption and health capital with direct effects

on current health and smoking observed for up to three and four lagged pe-

riods for men and women respectively. The dominant real roots which drive

the long-term behaviour of health and smoking consumption are both positive

and less than one in absolute value, and are numerically similar across the

equations and generally also for men and women. Conditional on the intrinsic

dynamics in the health and smoking equations, we also find a limited role for

socio-economic status.

Our paper offers several contributions to the literature. First, we build on

recent advancements and propose a model that treats the theories of Grossman

and B-M as complementary and integrates these into a single framework. Sec-

ondly, we show how this integrated model can be estimated empirically using

dynamic panel data models for both health and smoking. Thirdly, we employ

Monte Carlo simulations to illustrate the validity of our reduction strategy.

We argue that the approach provides a feasible alternative for the estimation

of a complex life-cycle model of human capital.

The paper is organised as follows. Section 2 provides a background to the

rational addiction model and the Grossman model of health capital investment

and maps out the way in which these theories can be integrated. Section 3

presents our theoretical approach that nests the Grossman model within the

B-M framework. Sections 4 and 5 present our empirical approach and data

respectively. Results follow in section 6 and section 7 presents a discussion of

the findings.
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2 Background

Early applications of the rational addiction model were focused on the analy-

sis of cigarette consumption based on aggregate level data (Becker, Grossman,

Murphy, 1994; Keeler et al., 1993). In this framework, rationality involves

forward-looking behaviour or a plan to maximise utility over time and, accord-

ingly, individuals anticipate the future (harmful) consequences of their current

choices. These studies appear to broadly support the main implications of

rational addictive behaviour, and reject myopic behaviour.1 In standard B-M

models addiction is often considered the only factor that affects an individ-

ual’s health while health capital and its evolution over the life-cycle are not

explicitly modelled.

More recent applications on tobacco consumption employ dynamic panel

data specifications and focus on issues such as errors-in-variables, data cen-

soring and individual-level unobserved heterogeneity (e.g. Jones and Labeaga,

2003; Labeaga, 1999). In general, these models also reject myopic behaviour

and support B-M. The dynamic framework of addiction has also been applied

to the analysis of consumption of other addictive goods such as alcohol (Bal-

tagi and Griffin, 2002; Grossman, 1993; Grossman, Chaloupka, and Sirtalan,

1998; Waters and Sloan, 1995) and illicit drugs such as cocaine, heroin and

marijuana (e.g. Grossman and Chalopka, 1998; Saffer and Chaloupka, 1999).

The seminal work of Grossman (Grossman, 1972) draws from the literature

on human capital theory (Becker, 1965; Becker and Woytinsky, 1967; Mincer,

1974) and applies it to the demand for health and medical care over the life-

cycle. In this framework, individuals inherit an initial health capital stock that,

1Note, however, that most studies are not conclusive in this respect and often produce
implausible estimates of discount rates. However, see Gruber and Koszegi (2001) for a
discussion of potential dynamic inconsistencies in preferences with respect to smoking. Note
that our paper is concerned with embedding the Grossman model within the B-M framework
and is not explicitly concerned with estimating discount rates.
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while depreciating with age, can be increased through investments in health

(for example, via medical care). Extensions to the model tend to focus on its

underlying assumptions and implications concerning optimal investments (e.g.

Ehrlich and Chuma, 1990), specific aspects of labour supply (such as illness-

related work absence as in Gilleskie (1998)) and education (Galama and van

Kippersluis, 2015).

There are few economic studies that model aspects of health and smoking

jointly. Balia and Jones (2008) estimate a recursive system of equations for

lifestyles, morbidity and mortality and explore health inequalities in mortality

using decomposition techniques on data from the British Health and Lifestyle

Survey. They find that lifestyles appear to contribute strongly to inequality

in mortality, reducing the direct role of socio-economic status. Darden (2012)

proposes a B-M model of smoking augmented by a Bayesian learning process

through which individuals acquire information about their own health and use

it to make decisions about smoking. Adda and Lechene (2013) employ hazard

models on data drawn from the Swedish Survey of Living Conditions merged

with death records to analyse the effect of smoking on mortality. They find

evidence of selection into smoking such that individuals with poorer health

are more likely to smoke and that the effect of smoking on mortality appears

to be larger for individuals with a potentially longer life expectancy as mea-

sured by a series of proxies for health status. More recently, Hai and Heck-

man (2014) build a dynamic model of health, wealth and education that also

allows individuals to make rational forward-looking decisions on (generic) un-

healthy behaviours. Overall, these studies have focused on specific aspects of

the interactions between health (longevity and individual health information),

education and lifestyles but do not attempt to formally set out a model of the

dynamic interrelations between smoking and health capital.
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3 Theoretical model

3.1 The standard model of rational addiction

The B-M model analyses smoking choices in an inter-temporal optimization

framework where the quantity of cigarettes smoked is the control variable and

the stock of addiction capital is the state variable. In discrete time terms, the

elements of the standard B-M model can be written as:2

max
∞
∑

t=0

βtU (Ct, St, At) , (1)

with UC > 0, UCC ≤ 0;US > 0, USS ≤ 0;UA < 0, UAA ≤ 0;USA > 0;

At = f (St) + (1− δA)At−1, fS > 0, fSS ≤ 0; (2)

Yt = Ct + pSSt, (3)

where St is the quantity of cigarettes consumed in period t, At is the stock

of addiction, Ct refers to other commodities and Yt is income. The relative

price of S is pS with the price of C normalized to 1; δA is the rate at which

the stock of addiction decays and β is the discount factor. The marginal

utilities of Ct and St are positive and decreasing while that of At is negative

and decreasing. The intertemporal utility function (1) is maximized by choice

of Ct and St.
3 The equation of motion for the addiction stock is given by

(2). Here smoking is assumed to have a positive effect on At, although due

to the difficulty in measuring At, it is usually assumed that f(St) is linear for

2B-M models often include a wealth equation (e.g. Becker and Murphy, 1988). This is
omitted here as it is not essential to our narrative.

3In this version of the model, where borrowing is not permitted, Ct and St are tied
together by the budget constraint (3) which allows us to substitute Ct out of the problem.
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At.
4 This problem is solved as an optimal control problem, yielding necessary

conditions which include the equation of motion of At, a terminal transversality

condition and an Euler equation for St. The resulting first-order difference

equation in St interacts with the first-order difference equation for At. This is a

straightforward optimal control problem, which could be analysed qualitatively

using a phase diagram in St and At.

A standard problem in the empirical literature is the difficulty of measur-

ing At.
5 In the majority of applications this is handled by the reduction of

the system of two first-order difference equations, one in St and one in At,

to a single second-order difference equation in St, where St (consumption of

cigarettes) is the observable variable (see Becker, Grossman, Murphy, 1994).

This reduction is standard in the dynamics literature (see Ferguson and Lim,

2003), and preserves the characteristic roots of the system, which drive the

dynamics of both At and St. In what follows we will employ a similar strat-

egy and reduce a system of four first-order difference equations resulting from

optimization into two fourth-order difference equations; one in health and one

in smoking, while preserving the characteristic roots of the initial system.

3.2 Integrating the Grossman model

A limitation of the standard B-M model is that the only factor which represents

or affects an individual’s health is the stock of addiction capital, At. We aug-

ment the model with a Grossman model of investment in health capital, where

the investment goods include harmful health ‘bads’ (cigarette consumption)

as well as the usual investment ‘goods’. To extend the B-M model to include

4This assumption of linearity does not impact on the qualitative solution to the problem.
5Some studies have used biological markers which are used to reflect the addictive stock

(Adda and Cornaglia, 2006, 2010).
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the demand for health, we write the individual’s lifetime utility function as:

∞
∑

t=0

βtU (Ct, St, Ht, At) ,

with UC > 0, UCC < 0;US > 0, USS < 0;UA < 0, UAA < 0;USA > 0;UH >

0, UHH < 0. Ht, is the stock of health capital at time t. Addiction capital,

At, remains as an argument in the utility function since an individual derives

disutility from being addicted, even though the health effects of smoking, which

rises with the cumulative amount smoked over time, could be absorbed into

Ht. Ht cannot be purchased directly, but rather must be produced using an

input Mt, which can be purchased. Accordingly, the budget constraint is now:

Yt = Ct + pSSt + pMMt,

where the price of cigarettes, pS, and medical care, pM , are relative to the price

of other consumption goods, C. We retain the equation of motion for A, given

by (2), and specify the following equation of motion for H:

Ht+1 = [1− δH ]Ht + h (Mt) + l (At) , hM > 0, hMM < 0; lA < 0, lAA ≤ 0.

At appears in the equation of motion for H to represent the cumulative

effects of smoking on cumulated health capital. Even if an individual quits

smoking, such that S = 0, the accumulated addiction stock will continue

to harm their health (reduce health capital) until it has decayed away. We

assume that investing in health via the purchase of medical care, Mt, does not

produce utility per se.6 After substituting C out of the utility function, using

6More generally M can represent any good which is beneficial for health but yields no
direct utility. We follow the standard approach in the literature and denote this as medical
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the budget constraint, the problem, written in Chow’s Lagrange multiplier

format (see Ferguson and Lim, 2003) is:

Max

∞
∑

t=0

βtU (Yt − pSSt − pMMt, St, At, Ht)− βt+1λt+1 [Ht+1 − [1− δH ]Ht

−h (Mt)− l (At)]− βt+1µt+1 [At+1 − [1− δA]At − f (St)] ,

where λ and µ represent the shadow price of health and addiction capital

respectively. Since addiction is a ‘bad’, µ is negative while λ is positive because

health capital is a ‘good’.

The corresponding first-order conditions are7:

βµt+1 = pSUC (t)− US (t) , (4)

βλt+1h (Mt) = pMUC (t) ,

β [1− δH ]λt+1 = λt − UH (t) ,

βt+1 [1− δA]µt+1 = µt − UA (t)− βt+1λt+1l (At) . (5)

The equation of motion for the shadow price of addiction capital (5) now

contains the shadow price of health capital, λ, reflecting the fact that the stock

of addiction capital is a determinant of the stock of health capital. The first-

order conditions can be rearranged to eliminate the Lagrange multipliers. In so

care.
7The arguments of utility, for example, UC (t), denote the time period to which utility

refers.

10



doing, we assume that these conditions always hold, meaning that individuals

are in fact optimizing. Rearranging yields the following system of four first-

order nonlinear difference equations in Mt, St, At and Ht:

[1− δH ]
(pMUC (t))

h (Mt)
=
pMUC (t− 1)

βh (Mt−1)
− UH (Ht) , (6)

[1− δA] pSUC (t)− [1− δA]US (t) = pSUC (t− 1)−
US (t− 1)

β

−UA (t)−
pMUc (t)

h (Mt) l (At)
,

At+1 = [1− δA]At + f (St) ,

Ht+1 = [1− δH ]Ht + h (Mt) + l (At) .

This system of first-order difference equations can be expressed as four

linearized first-order difference equations in Ht, St, At and Mt which, in turn,

can be reduced into a single fourth-order equation in St or Ht. These form the

basis of our empirical model.

4 Empirical models

4.1 Derivation of estimating equations

The starting point for our estimation strategy follows the original B-M model

as described by equations (1) to (3). The first-order conditions for this model

can be rearranged as a pair of first-order difference equations in St and At.

However, the B-M model is typically estimated as the following linear second-
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order difference equation in S:

St = α0 + α1St+1 + α2St−1 + ǫt. (7)

Typically this is referred to as a forward looking second-order difference

equation, since it contains St+1 on the right-hand side and it is often said

that the forward looking nature of this equation reflects the rationality of

the consumption decision. In fact, rationality is a consequence of this equa-

tion having emerged from an inter-temporal optimization problem and is in

many ways inherent in the first-order condition (4) which we can rewrite as:

−βµt+1 = US(t) − pSUC(t). In this expression, µt+1 is the shadow price of

another unit of addiction capital (negative since addiction capital yields disu-

tility). The right-hand side of this expression is the net benefit in utility terms

that the consumer derives from consuming another unit of St net of the utility

given up because consuming more S requires consuming less C. The fact that

the benefit is derived in period t and the cost in t + 1 is the essence of the

forward looking nature of the decision.

The standard empirical specification of the B-M model (7) is written with

one lead and one lag of the dependent variable on the right-hand side. This

specification, is however, not necessary and could be rearranged and written

with two lags on the right-hand side. The process of reducing the two interre-

lated first-order difference equations which fall out of the necessary conditions

of the usual version of the B-M model to a single second-order difference equa-

tion does not affect the fact that the necessary conditions are forward looking,

regardless of how we happen to write the second-order equation. 8

8This is because the B-M problem is, as noted above, an inter-temporal optimization
problem which is typically set up as an optimal control problem. The solution equations to
an optimal control problem are necessary conditions for optimizing the present value of the
stream of future utilities which will arise from future consumption decisions, taking account
of how current consumption affects future addiction.
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Our estimation strategy set out below is based on an extension of the

standard B-M approach, where we reduce our set of four interrelated first-

order difference equations (6) to a single fourth-order difference equation. For

tractability, we follow a practice which is common in the literature on analytical

dynamics, when expressions for characteristic roots are being found for a model

which is intrinsically nonlinear, and assume that we are working with a linear

approximation to the original non-linear system. These assumptions about

functional form lead to four linearised first-order difference equations which

can be reduced further into single fourth-order linear equations for estimation

(see Appendix A for an illustration of how the reduction procedure works). We

do this separately for smoking and health which yields the following general

forms:

Sit = φs0 + φs1Sit−1 + φs2Sit−2 + φs3Sit−3 + φs4Sit−4 + θs1X
s
it + θs2X

s
it−1

+θs3X
s
it−2 + θs4X

s
it−3 + ψsW

s
i + µis + (ǫit + ρǫ1ǫit−1 + ρǫ2ǫit−2 + ρǫ3ǫit−3) (8)

Hit = φh0 + φh1Hit−1 + φh2Hit−2 + φh3Hit−3 + φh4Hit−4 + θh1X
h
it + θh2X

h
it−1

+θh3X
h
it−2 + θh4X

h
it−3 + ψhW

h
i + µih + (εit + ρǫ1εit−1 + ρǫ2εit−2 + ρǫ3εit−3) (9)

for i = 1, . . . , N, and t = 1, . . . , T .

Here Sit represents smoking consumption for individual i at time t; Hit is

the stock of health; Xs
it and X

h
it are sets of exogenous time-varying predictors

of smoking consumption and health respectively. W s
i and W h

i , and µis and

µih are respectively time-invariant predictors and time-invariant individual-
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specific unobserved effects for smoking and health.9 We assume that ǫit ∼

i.i.d. (0, σ2
ǫ ) with E (ǫit) = 0 and, similarly, εit ∼ i.i.d. (0, σ2

ε) with E (εit) = 0.

Also, we assume that E (Xs
ir, ǫit) = 0, E

(

Xh
ir, εit

)

= 0 for ∀r, t. That is, Xs and

Xh include strictly exogenous regressors uncorrelated with ǫ and ε respectively.

Both sets of time-varying predictors may, however, be correlated with their

respective unobserved effects, µis and µih. We assume that the time-invariant

regressorsW s
i andW h

i are orthogonal to the unobserved time-varying effects.10

Note that the equations contain third-order moving average processes in the

error (MA(3)).11

4.2 Monte Carlo Simulations

To illustrate the validity of our reduced-form estimation approach, we imple-

ment a series of Monte Carlo (MC) simulations. For tractability and com-

putational ease, we consider a reduction of a simple system of two first-order

difference equations into a single second-order difference equation. Parameter

estimates across the MC replicates confirm that the reduction process main-

tains the characteristic roots of the original system. The result readily extends

to the four first-order difference equations and the corresponding reduction to

single fourth-order equations outlined above.

9See the Appendix for an illustration of which exogenous variables from the original
system end up in each equation.

10It might be argued that this assumption is unrealistic. However, relaxing the assumption
requires either the identification of external instruments for Wi, or relying on instruments
internal to the model. The latter might consist of transformations of Xit, . . . , Xit−3 where
a subset of these are assumed to be uncorrelated with the unobserved individual specific
effect in the spirit of Hausman and Taylor type estimators (Hausman and Taylor, 1981).
Alternatively, differences in the lags of the dependent variable can be used as instruments.
It is not surprising, however, that such instruments are weak when used in this context.
Estimates of the lagged dependent variables, Sit−1, . . . , Sit−4 and Hit−1, . . . , Hit−4 do not
change dramatically for models estimated without the vector of time-invariant regressors.

11In addition to the MA(3) structure, the error terms will also include cross-error ele-
ments. Note also that the equation-specific disturbance terms in (8) and (9) may contain
the disturbance terms from the original system of four equations. See the Appendix for an
illustration of these issues.
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The system can be written as:

Y1t = φ10 + φ11Y1t−1 + φ12Y2t−1 + θ11X1t + θ12X2t + ε1t

Y2t = φ20 + φ21Y1t−1 + φ22Y2t−1 + θ21X1t + θ22X2t + ε2t (10)

X1t = γ12X1t−1 + ǫ1t

X2t = γ22X2t−1 + ǫ2t (11)

This is a system of two-interrelated first-order difference equations with

a single exogenous variable in each equation, no cross-equation elements in

the variance-covariance matrix, and normally distributed error terms. The

characteristic roots of the matrix of coefficients in equation (10) are:12

λ1,2 = 0.925± 0.198i (12)

The roots are complex and accordingly the data should display cycles. The

modulus of the roots is 0.946, so the cycles are stable. That is, the Y values will

tend to converge to their equilibrium, although the fact that the X variables

are themselves driven by stable first order difference equations (with no cross

12The corresponding matrix of coefficients defining the data-generating process (DGP) for
the MC exercise is:

[

Y1t

Y2t

]

=

[

100
300

]

+

[

0.9 −0.4
.10 .95

] [

Y1t−1

Y2t−1

]

+

[

0.4 0
0 0.6

] [

X1t

X2t

]

+

[

ε1t
ε2t

]

[

X1t

X2t

]

=

[

0.6 0
0 0.4

] [

X1t−1

X2t−1

]

+

[

ǫ1t
ǫ2t

]

The matrix multiplying the vector of lagged Y ’s contains the φ’s while the matrix multi-
plying the vector of X’s includes the θ’s. For simplicity, we made this matrix of Y ’s diagonal
such that θ12 = θ21= 0.
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equation terms in the X ′s) means that we are in fact dealing with a moving

equilibrium.

We run the MC experiments on the system in time series form to avoid

having to deal with issues relating to panel data estimation (given that our

focus is the validity of the reduction procedure).13 Each replicate contains a

sample size of T = 500 (N = 1), and we run M = 1000 replications. Column

(1) of Table 1 provides true parameter values used to simulate the data for

the system of equations described in (10) and (11). The table also shows the

MC estimated coefficients (means for each estimated parameter over the set of

MC replications) and corresponding standard errors. As can be seen the MC

estimates are very close to the true values under the data generating process.

The calculated roots generated from the estimated coefficients from the MC

exercise are:

λ1,2 = 0.924± 0.197i (13)

Note that we are running these MC experiments on the premise that one of

the variables, in our case Y2t, is in fact unobservable. The theoretical argument

as set out in the paper suggests that we should be able to extract estimates

of many of the structural coefficients of the true system from a suitable dy-

namic reduction, going from a system of two interrelated first-order difference

equations to a single second-order difference equation. The single second-order

difference equation could be written as follows (note we use ˜ to differentiate

13To run the experiment, we use the MC routine within the PcNaive module of the PcGive

econometrics package. For the first equation the initial values for the lagged Y ′s were 10,000
for Yt-1 and 9,000 for Yt-2. For the second equation the initial values for the lagged Y ′s

were also 10,000 for Yt-1 and 9,000 for Yt-2. The X ′s were drawn from a normal distribution
with mean 0 and variance 100 for both equations. Since we have a dynamically stable and
unique equilibrium, regardless of what initial values we chose, the system would converge
on that equilibrium. We simply chose these values to be sure we were starting the process
a long way away from the equilibrium.
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the parameters to those of equation (10)):

Y1t = φ̃10 + φ̃11Y1t−1 + φ̃12Y1t−2 + θ̃11X1t + θ̃12X1t−1 + θ̃13X2t−1 + ε̃1t (14)

MC estimation of equation (14) produces estimates reported in column (2)

of Table 1. The reduction has given us a second-order difference equation in

Y1t, with X1t, X1t−1 and X2t−1 as exogenous explanatory variables. In terms of

evaluating whether equation (14) contains at least a significant subset of the

information in system (10), we compute the roots of the second order difference

equation in Y (that is of Y1t = −115.35+ 1.847Y1t−1 − 0.892Y1t−2). These are:

λ1,2 = 0.9236± 0.198i (15)

The roots are essentially identical to the true values (0.925 ± 0.198i). In

terms of the coefficients, the reduction suggests that the coefficient, θ̃11 on

X1t should equal the true DGP value of θ11 = 0.40, which it does. 14 These

results support the approach to the reduction of complex systems of first-order

difference equations to a single higher order difference equation.

4.3 Estimation

It is well known that OLS estimation of dynamic panel data models with

fixed T is biased such that the parameters φs1 , φs2, φs3 and φs4 in (8) and

φh1 , φh2, φh3 and φh4 in (9) will be overestimated (Nickell, 1981). Stan-

dard fixed effects estimation is downwardly biased. Instead estimation by

the generalized method of moments (GMM) is favoured, constructing in-

14We have also explored extending the simulation exercise to a system of four first-order
difference equations, results are available upon request.
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struments for the lagged dependent variables, (Sit−1, Sit−2, Sit−3, Sit−4) and

(Hit−1, Hit−2, Hit−3, Hit−4) from past values of the regressors (Arellano and

Bond, 1991). The standard approach to dealing with the individual fixed

effect (µih and µis) is to first-difference the model. The additional serial corre-

lation induced in the first-differenced error term informs the moment restric-

tion imposed on the model and the choice of instruments. In the standard

autoregressive dynamic panel data model with a single lag of the dependent

variable, no exogenous regressors and no serial correlation in the error term

in levels form, values of the dependent variable lagged two periods or more

are valid instruments in the equation in first differences. For T ≥ 3, there are

m = (T − 2) (T − 1) /2 moment restrictions of the form E [Z ′

iη̄i] = 0 where

η̄i = (η̄i3 · · · η̄iT )
′ and η̄it = ηit−ηit−1. These ideas naturally extend to the case

of additional lags of the dependent variable and where serial correlation in the

error exists in levels.

After first-differencing (8), the moment restrictions can be written in vector

form as E
(

Z ′D
i ∆ǫi

)

= 0, where ∆ǫi = (∆ǫ3i, . . . ,∆ǫiT )
′. ∆ǫi = ǫit − ǫit−1 and

ZD
i is a block diagonal matrix whose jth block is given as (see Appendix B for

details):

ZD
i =

[

diag (Si1, . . . , Sis)
... (∆Xi6, . . . ,∆XiT )

′ (∆Xi5, . . . ,∆XiT−1)
′

(∆Xi4, . . . ,∆XiT−2)
′ (∆Xi3, . . . ,∆XiT−3)

′

]

for s = 1, . . . , T − 5;T ≥ 6 (16)

Accordingly, lags of the levels of the dependent variable form instruments

for the difference model whilst the exogenous regressors act as instruments for

themselves.
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Due to weak instruments, the GMM estimation in first difference form can

perform poorly where there exists higher-order autoregressive terms (persis-

tence). Blundell and Bond (1998) suggest the use of a systems estimator that

exploits additional moment conditions based on lagged differences of the de-

pendent variable as instruments for a model in levels (also see Blundell, Bond

and Windmeijer, 2001). These additional moment conditions are valid under

mean stationarity of the initial condition: E (µis∆yi2) = 0, ∀i. Estimation in

levels form also allows the identification of the coefficients on the time-invariant

regressors, W s
i and W h

i . As these are assumed to the uncorrelated with the

individual unobserved effects they act as their own instruments for a model

in levels. We follow this approach and estimate the fourth-order difference

equations using system GMM. This approach effectively augments the above

instrument set with a set of moment conditions E
[

Z ′L
i ǫi

]

= 0 where

ZL
i =

[

diag (∆Sit−4)
... (W s

i )
′

]

T ≥ 6 (17)

Blundell and Bond (1998) show that these additional moment conditions

are informative where data are persistent and instruments for the differenced

equation are potentially weak, resulting in smaller finite sample bias and in-

creased efficiency.15

We begin by estimating the fourth-order difference equations set out in (8)

and (9) using a systems GMM estimator with instruments defined in (16) and

(17). Due to the length of panel observations available in the BHPS the set

of instruments is large which can result in poor performance. Accordingly, we

place restrictions on the instrument set to reduce its dimensionality by remov-

ing instruments further away from the observation period, t. Efficient two-step

15Note that further lagged differences of the dependent variable are redundant when com-
bined with instruments for the first-differenced equation (see Blundell and Bond, 1998).
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estimation applying Windmeijer’s finite sample correction to the estimated

variance is used (Windmeijer, 2005). Specification tests of autocorrelation and

the Sargan test of over-identifying restrictions are computed (see Arellano and

Bond, 1991). In addition we compare GMM systems estimation to the within

estimator (biased downwards) and OLS (biased upwards).16

5 The British Household Panel Survey

(BHPS)

5.1 Data and sample

We estimate models on data drawn from 18 waves (1991 - 2009) of the

British Household Panel Survey (BHPS). The BHPS is one of the longest

and most comprehensive panel surveys currently available. The survey in-

cludes individual-level information on demographic and household character-

istics; lifestyles including smoking habits; physical and mental health, well-

being and the use of health care; education; job histories and interactions with

the labour market as well as income and wealth. Its design and main content

closely resemble those of other major panel data surveys such as the U.S. Panel

Study of Income Dynamics (PSID) and the German Socio-Economic Panel

(GSOEP). The BHPS initial sample (wave 1; 1991) consists of 5,500 private

households and 10,264 individuals from England, Scotland and Wales.17 Orig-

inal sample members are followed as they transit to different households and

16We have explored specifications where lags of smoking and health enter the same equa-
tion as well as the joint estimation of a system of two second-order difference equations, each
including lags of health and smoking. The former were estimated by employing a similar
GMM approach and overall did not appear to produce reliable estimates if compared to their
OLS-within fixed effects counterparts (estimates are available upon request). The latter was
estimated via GMM three-stage least squares (3SLS) and failed to achieve convergence.

17Before 1999 (wave 9), Scottish individuals were only sampled if they resided South of
the Caledonian Canal.
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interviews are conducted annually to all adult individuals (aged 16 years or

over), including new members of the households. Extension samples of around

1,500 households in each of Scotland and Wales and of 2,000 household from

Northern Ireland were added in 1999 and 2001 respectively, making the BHPS

representative of the whole UK.18

Our samples of interest consist of unbalanced panels of individuals who

reported the consumption of cigarettes in at least one of the 18 waves of the

survey. Never-smokers are excluded as such individuals tell us little about

addictive behaviours. Within this sample, individuals for whom we observe

sufficient data to estimate the model are included. Given the lag structure of

the empirical model and the need to construct instruments from prior waves

of data, this requires individuals to be observed for at least six consecutive

waves.19 Clearly, responses on individuals for whom we observe non-missing

values on the set of variables of interest are included in the model. Accordingly,

models for health are estimated on an unbalanced sample of 14,635 observa-

tions on 2,315 individuals for men and 17,674 observations on 2,701 individuals

for women. Similarly, for smoking the respective samples are 18,407 observa-

tions on 2,864 individuals for men and 21,915 observations on 3,340 individuals

for women.

5.2 Smoking

The BHPS contains two main self-reported indicators on smoking for adult

individuals: smoking status and the daily number of cigarettes smoked. Infor-

mation on smoking status is based on the question: “Do you smoke cigarettes?”

from which we create a dummy variable taking value 1 if the individual is a

18For further details on the BHPS sample structure, see Lynn (2006).
19The lag structure imposed by serial correlation in the error-term determines the exact

number of lags required to construct valid instruments.
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smoker and 0 otherwise. Since the focus of our analysis is on addiction, our

empirical models employ data on individuals who self-report being a smoker

at least once during the period of the survey (potential smokers). Accordingly,

we exclude individuals who reported not smoking throughout the 18 waves of

the BHPS (see Table 2 for basic descriptive statistics for samples of interest).

Information on the number of cigarettes smoked is derived from the following

question “Approximately how many cigarettes a day do you usually smoke?”.

While this question is only asked to smokers, 0 is a possible answer that identi-

fies occasional or social smokers (that is, individuals who defined themselves as

smokers but report an average daily consumption of 0 cigarettes). Due to the

heaping of responses that is typical of self-reported information on the quantity

of cigarettes smoked (i.e. large number of responses concentrated at partic-

ular levels of smoking consumption), we recode consumption by considering

multiples of five cigarettes (we refer to these as ‘half packs’).

5.3 Health

The BHPS contains a wide range of self-reported categorical variables of in-

dividual health status including the General Health Questionnaire (GHQ) on

subjective well-being (Goldberg and Williams, 1988) and, in waves 9 and 14,

the Short Form 36 (SF-36) health survey. The SF-36 is a standardised health

questionnaire including 35 psychometric-validated questions about 8 differ-

ent dimensions of both physical and mental health (physical functioning; role

physical limitations; bodily pain; general health; mental health; vitality; social

functioning; role emotional limitations) (Ware et al., 1993). Each dimension

contains a set of items which present respondents with a series of choices about

the perception of their own health. Information from all these health questions
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is used to build a summary measure of health, the SF-36 general index.20

We follow Brazier, Roberts and Deverill (2002) and use selected questions

from six of the original eight dimensions of the SF-36 (physical functioning; role

limitations; social functioning; bodily pain; mental health; vitality) to build a

preference-based index measure of health called the SF-6D that is defined on

a continuous scale ranging between 0 (an health state equivalent to death) to

1 (full health).21 More specifically, Brazier et al. employed health information

from selected items of these six dimensions and combine it with health state

utility values to define a utility-based measure of health. Health utility values

were retrieved through a preference-based valuation survey of the UK general

population. We apply these weights on the items from the six dimensions of the

SF-36 to generate SF-6D values for individuals in waves 9 and 14 of the BHPS.

In order to recover SF-6D values for all individuals in each wave, we regress

SF-6D values onto the BHPS specific health conditions dummy variables22

present in all waves of data together with dummy variables derived from the

general SAH measure (excellent, fair, poor/very poor health leaving good/very

good health as baseline)23 using pooled Ordinary Least Square (OLS). We

estimate separate models for men and women and use the predicted SF-6D

20Additional and updated information on the SF-36 and its related literature are available
on the SF-36 community web page (http://www.sf-36.org).

21As specified in Brazier, Roberts and Deverill (2002), to build the SF-6D (where 6D
stands for six dimensions) they have excluded general health items and collapsed the two
dimensions of role limitations due to physical and emotional problems into a single role
limitations dimension.

22These cover problems related to arms, legs or hands, sight, hearing, skin conditions,
chest/breathing, heart/blood pressure, stomach or digestion, diabetes, anxiety/depression,
alcohol or drug use, epilepsy, migraine.

23Due to a change in wording and response categories in the SAH question at wave 9, we
collapse the original five category self-assessed variable (SAH) to a four category measure.
In waves 1-8 and 10-18, respondents are asked: Compared to people of your own age, would
you say your health over the last 12 months on the whole has been: excellent, good, fair, poor
or very poor?, whereas in wave 9, the question and possible answers are: In general, would
you say your health is: excellent, very good, good, fair, poor?. Creating a SAH variable with
four health categories (excellent, good or very good, fair, poor or very poor) allows common
support over the two versions of the question.
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scores from these regressions as our measure of health in our main empirical

specifications.24 In this way, we obtain a cardinal measure of health for all

individuals in our survey, defined on a continuous scale from 0 to 1 which is

used as our empirical proxy of health capital. As the measure draws from a

wide range of health domains we feel that it better approximates the notion

of health capital as originally defined in the Grossman model.

5.4 Socio-economic and demographic variables

5.4.1 Time-varying regressors

Our dynamic models of health and smoking are estimated separately for men

and women and are conditioned on age and age squared; household characteris-

tics (being married or cohabiting, household size and the number of cohabiting

children); labour status (employed, self-employed, unemployed, retired, long-

term sick/disability status and other employment25) with employed as an em-

ployee as the baseline and household income (equivalised annual log-household

income). In order to account for the effects of health shocks on both smok-

ing preferences and health status, we include a dummy variable defining the

presence of health shocks/accidents that led to hospitalisation in the previous

year.

24We have also employed alternative specifications to compute predicted SF-6D values
for all individuals in the sample such as linear fixed effects models. We have also estimated
versions of these models (pooled OLS and linear fixed effects models) with lagged values of all
regressors (health variables) to ease potential problems related to endogeneity. As predicted
SF-6D scores and results from the main dynamic empirical models of health capital and
smoking do not appear to differ across these specifications; we use results from the simple
pooled OLS models to maximise the number of observations.

25Other employment consists of looking after the family, maternity leave, government
training, student or other jobs.
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5.4.2 Time-invariant regressors

In addition to the set of regressors outlined above, we include a set of time-

invariant variables for highest attained educational qualification (in descending

order: degree or higher degree, HND or A-level, O-level or CSE, versus no

qualification), ethnicity (categorised as white versus non-white) and a set of

region of residence dummy variables.26

In addition, a vector of year dummies is included in all models to account

for aggregate health shocks, time-varying reporting changes, trends in smoking

incidence and prevalence and any effects of ageing not captured by the age

variables.

Descriptive statistics for the set of explanatory variables are presented in

Table 2 separately for men and women. To save space these are presented for

the sub-sample of individuals used in the estimation of the smoking models.

These models contain a larger number of respondents than the corresponding

health equation. On average men smoke more cigarettes per day than women

(2.234 versus 2.123 half-packs respectively) and report better health status

(0.810 versus 0.785). The two samples are of similar mean age. Men are more

likely to be married or cohabiting, and more likely to be employed or self-

employed than women. Women are more likely to be catergorised as other

employed or retired than men. A larger proportion of men have a degree or

higher degree, or HND/A-level qualification compared to the sample of women.

Men report a higher household income than women and more health shocks

and/or accidents resulting in hospitalisation. A larger proportion of women in

the sample report being white or other ethnic origin.

26The set of regional dummy variables contains little variation across the waves and ac-
cordingly these are categorised as the region in which a respondent was observed to reside
the longest. The regions cover England (South East, South West, London, Midlands, York-
shire, North West, North East), Scotland, Wales and Northern Ireland. The South East is
taken as the baseline.
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6 Results

6.1 Regression models

Table 3 for men and Table 4 for women summarise our estimation results sep-

arately for models for health and smoking. The first column presents OLS

estimates of models (8) and (9) above, applying robust standard errors to

capture general forms of heteroscedasticity. OLS estimation of dynamic panel

data models are biased upwards ((Nickell, 1981)), however, the estimated coef-

ficients on the lags of the dependent variable exhibit clear and strong gradients

for both health and smoking. While our estimates represent composite param-

eters, it is worth noting that state dependence in smoking and health outcomes

have been observed elsewhere (for example, Baltagi and Levin (1986); Chris-

telis and Sanz-de-Galdeano (2009); Contoyannis et al. (2004)). The second

column presents corresponding estimates from within (fixed effects) estima-

tion. These are biased downwards and while showing a gradient across the

lagged terms, the effects are smaller than corresponding OLS estimates and

are less significant statistically.

The third column presents results of system GMM estimation of models

(8) and (9). Given the moving-average of order 3 in the errors, instruments

are constructed from observations of the dependent variable from period t− 5

and before for the model in first-differenced form. Estimated coefficients are

expected to fall between OLS and within estimation. Estimation was per-

formed by varying the maximum number of lags of the dependent variable

from which to define instruments, and results reported for the specification

that produced the most credible estimates. This decision was based on the

Sargan test for over-identification, tests for serial correlation and judgement

on the resulting estimates. For example, coefficients closer to within than OLS
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estimation may be indicative of weak instruments. For men, instruments were

constructed from observations between 5 and 6 lagged periods for health and

5 and 7 lagged periods for smoking. For women these were between 5 and 8

lagged periods for both health and smoking models. Given the long lag period

required to construct instruments, it is not surprising that the resulting instru-

ments are weak leading to estimated coefficients on the lags of the dependent

variable lying outside the range of OLS and within estimation. This holds for

the majority of estimates across both health and smoking models, for both

men and women. These estimates are not reliable.

Tests for serial correlation in first-differenced form reveal, in general, cor-

relation of order 1 (reported in Tables 3 and 4). This corresponds to a lack of

moving average terms in the levels error structure of (8) and (9).27Imposing

the restriction that ρǫ1, ρǫ2, ρǫ3 = 0 in (8), and ρε1, ρε2, ρε3 = 0 in (9) the

respective error terms can simply be represented as ǫit and εit. These re-

strictions free up instruments from periods closer to lags of the dependent

variable, Sit−1, . . . , Sit−4, and Hit−1, . . . , Hit−4. More recent lags are likely

to have greater predictive power and hence greater relevance as instruments

than those constructed from periods further away from the lagged terms.28

Column 4 presents GMM system results assuming a lack of a moving av-

erage process (MA(0)) in the level’s error. For models of both health and

smoking, and for men and women, this specification is supported by tests for

first-order serial correlation in first-differenced form and Sargan tests for over-

identification.Parameter estimates on the lags of the dependent variable lie

between OLS and within estimates and generally are closer to the former. For

women, all lagged terms are significant at conventional (5%) levels; for men,

27It is plausible that the inclusion of higher order dynamics via four lags in our models
may absorb any remaining serial correlation in the disturbances.

28Sit−2, . . . , Sit1 are potential instruments for ∆Sit−1, . . . ,∆Sit−4. Similarly, for
∆Hit−1, . . . ,∆Hit−4.
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the first three lags are significant. These results indicate strong and enduring

persistence in the evolution of both health capital and smoking consumption

with direct effects on current health and smoking observed for up to three and

four lagged periods for men and women respectively.

All models contain contemporaneous values of the set of exogenous regres-

sors Xit and their corresponding lags: Xit−1, Xit−2, Xit−3, together with the set

of time-invariant regressors, Wi, and a vector of year dummy variables. Many

of the regressors, Xit, display little variation over time (for example, marital

status, employment status) and accordingly suffer from collinearity. Few of the

lagged terms are significant in the model presented in column 4.29 To simplify

the interpretation of the effects of these regressors, we restrict the coefficients

on the lagged terms to be zero. This results in estimates presented in column

5. Again, the models pass relevant specification tests and the coefficients on

the lagged dependent terms do not change substantively from those of column

4.

Table 5 presents estimated coefficients for the set of covariatesXit andWi.
30

For men, larger household income is associated with increased health and other

employment is associated with decreased health (at the 6% significance level).

Interestingly individuals who reported an accident leading to a hospitalization

report better health than those not reporting an accident. Living in the South

West (compared to the South East) is associated with decreased health status

(at the 10% level). For women, lower health status is reported for those living

in Yorkshire (at 10%), the North West, the North East, Scotland, Wales and

Northern Ireland (at the 6% significance level) compared to the South East.

Again an accident in the previous twelve months is associated with reporting

29These results are available on request.
30The year dummies, which are not reported, indicate a decreasing trend in smoking across

the waves for men but not for women and no discernible trends for health.
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higher health status. For male ever smokers, being unemployed (at the 5%

level) or other employment is associated with lower consumption of cigarettes

(at the 10% level) as is being married or cohabiting (at the 10% level). Men

living in Scotland, Wales and Northern Ireland report higher consumption

than men living in the South East (all at 5% significance). Being married or

cohabiting is also associated with lower levels of smoking for women, while

a greater number of children is associated with higher smoking prevalence.

Being self-employed is also associated with a higher consumption of cigarettes

(at the 10% level). For women there is a clear educational gradient with higher

educated individuals smoking less than lower educated individuals (baseline is

no qualifications). These effects are highly significant. Women belonging to

non-white ethnic groups smoke less than their white couterparts. There are

also clear regional effects, with women living in the North West, North East,

Scotland, and Wales all reporting higher levels of cigarette consumption than

those living in the South East of England.

6.2 Characteristic roots

The observed evolution of an individual’s stock of health (or smoking) will

depend in part on changes in exogenous variables and in part on the intrinsic

dynamics inherent in their optimal lifetime trajectory. That trajectory is char-

acterized by what is sometimes referred to as path dependence, conditional on

the values of the exogenous variables. Whether any series of observations on

H (or S) are on the same trajectory depends on the frequency with which

the exogenous variables cause the trajectory to shift. The trend along this

trajectory is in most cases non-linear. The presence of the exogenous explana-

tory variables in the equation means that we do a better job of estimating the

characteristics of the lifetime trajectory, since they will control for shifts in the
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trajectory which are due to changes in the value of the exogenous variables.

At the same time controlling for the natural tendency of the variable in ques-

tion to evolve over time means that our estimation of the coefficients on the

exogenous variables will be more efficient.

The intrinsic dynamics of H and S are characterised by four roots. For men

the health equation has roots: 0.787,−0.363, and −0.026 ± 0.417. For men

smoking the roots are: 0.809,−0.225, and −0.04 ± 0.294. Since the roots are

highly non-linear combinations of the coefficients we cannot test the hypothesis

that the corresponding roots match across the equations, as should be the case

given our theoretical structure. Instead we comment on the general pattern of

the results.

Both equations have two real and two complex roots. The dominant real

roots which drive the long term behaviour of the variables for health and smok-

ing are both positive and less than one in absolute value, and are, numerically

very similar. The second real roots are both negative, both less than 1 in

absolute value and of similar magnitude across the equations. While negative

roots are unusual in economic models, they can arise in empirical applications

simply as a consequence of the evolution of the variable in question between

observation points. The final two roots are, in each equation, complex con-

jugate pairs, implying a cyclical element to the trajectory. The modulus of

the complex roots in the health equation is 0.418 and in the smoking equation

0.297. The general pattern of the trajectories across the two equations are,

therefore, fairly similar, particularly with respect to the dominant root.

For the health equation for women, the roots are: 0.791,−0.409, and

−0.014 ± 0.412, and for smoking: 0.812,−0.349, and −0.002 ± 0.356. Again

the dominant roots are very similar across the pair of equations (and very

similar to the dominant roots in the male equations, which is not required by
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the model). The second real root is negative in each equation, less than 1 in

absolute value and reasonably similar across the equations, and the final pairs

are complex conjugates. In the health equation for women the modulus of the

complex roots is 0.412 and in the smoking equation; 0.356.

7 Conclusions and Discussion

This paper presents a dynamic panel data estimation of an integrated

Grossman-B-M model of health and smoking. We employ mature British panel

data containing up to eighteen waves of data on any given survey respondent.

This allows us to robustly estimate an empirical specification containing struc-

tural dynamic elements derived directly from a theoretical model that combines

Grossman’s concept of health investment with the B-M model. In turn, this

allows greater understanding of the inherent dynamics of the model, but also

the impact of exogenous variables assumed to shift an individual’s optimal

trajectory.

It is important to note here that we are not dealing with macro data,

or even market level data, in which variables are likely to be trended, either

exogenously or through the presence of a unit root. While our dominant roots

are reasonably large, and although lack of standard errors means that we

cannot formally test them against unity, there does not appear to be a non-

stationarity problem in our data. The lagged dependent variables in this type

of equation are representations of intrinsic features of an individual’s optimal

trajectory.

Conditional on the intrinsic dynamics in the health and smoking equations,

few of the coefficients on the exogenous explanatory variables are statistically

significant. For men higher household income is associated with being healthier
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while for women health appears independent of income. These small impacts of

income on health appear to corroborate findings elsewhere on the relationship

between income and health. For instance, using the fall of the Berlin Wall as a

natural experiment to study the impact of rapid increases in income for East

Germans following reunification, Frijters et al. (2005), found a similarly small

impact on men and reported no effect for women. Contoyannis et al. (2004)

and Meer (2003) also report small gradients in the income-health relationship.

Interestingly, highest educational qualifications while generally displaying

the expected gradients for health (positive) for women, is not statistically sig-

nificant. While this is contrary to theoretical predictions from the pure Gross-

man model (Grossman, 1972), this finding is supported by those of Adams

et al. (2003) who also conclude that education, conditional on socio-economic

status (wealth), is not systematically associated with health. Education does,

however, display a more pronounced gradient for smoking with effects greater

(and statistically significant) for women compared to men. Being married or

cohabiting is associated with smoking less for both men and women; a results

observed elsewhere (Linström, 2010). Non-white ethnicity is significantly as-

sociated with reduced daily smoking for women. In general, for both men and

women non-white ethnic groups have a lower prevalence of smoking than white

ethnic groups, although this masks important variation across minority groups

which is more pronounced for women than for men. 31

One result that may appear surprising is the general lack of significance of

the terms for age. We typically expect age to play a significant role, at least in

an equation for health. In other empirical work, especially studies relying on

31For example, it has been reported elsewhere that Black-Caribbean and Other South
Asian women have a far greater prevalence of regular smoking (at levels slightly lower than
white ethnic groups) compared to Bangladeshi, Indian, Pakistani , Chinese and other Black
minority ethnic groups (Mellward and Karlson, 2011). There is evidence of geographical
variation, particularly for women where areas associated with decreased health (compared
to the baseline of South East of England) are also associated with increased smoking.
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cross-section data and to a slightly lesser extent very short panel data studies,

age has acted as a proxy for the stage of an individual along her lifetime

trajectory. Given the tendency of that trajectory to non-linearity, age works

best as a proxy when entered as a polynomial. In Grossman’s theoretical

model, the rate of depreciation of health capital increases with age. This

increase will tend to cause the individual’s stock of health capital to decline

faster in later years than in earlier years, but the individual may respond by

increasing her investment in health to slow the rate of decline of H. This is

part of the process by which the optimizing individual contrives to follow the

optimal lifetime trajectory for health capital. Given that we have incorporated

the shape of the trajectory directly into the estimation by running fourth order

difference equations, there remains little role for age to play. 32

A more accurate inference of the integrated life-cycle model proposed here

would imply the use of a structural approach. Although this would have the

advantage of identifying more precisely the different structural components,

it would require a substantially more complex and computationally intensive

estimation strategy. We believe that our reduced-form estimation may provide

a viable alternative in the presence of long panel data, especially if the main

interest of the researcher is to explore the dynamics of this type of life-cycle

models.

32Of the remaining variables, the lack of significance may well be a consequence of a lack
of within-individual variation. Alternatively it may indicate that these variables do not have
a role in shifting the optimal trajectory for an individual. If these are variables which do
not change often and which have relatively small impacts on the position of the individual’s
optimal trajectory, it is not surprising that, conditional on the intrinsic dynamics, they do
not appear important.
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Monte Carlo experiments
(1) (2)

Y1t True MC MC Y1t MC MC
Parameter Value Coef SE Parameter Coef SE

φ10 100 99.99 1.15 φ̃10 -115.35 0.612

φ11 0.9 0.899 0.000 φ̃11 1.847 0.001

φ12 -0.4 -0.400 0.001 φ̃12 -0.892 0.001

θ11 0.4 0.401 0.022 θ̃11 0.399 0.040

θ12 0.0 −0.47e−005 0.026 θ̃12 -0.379 0.040

Y2t θ̃13 -0.241 0.030
Parameter
φ20 300 300.02 1.192
φ21 0.1 0.099 0.000
φ22 0.95 0.949 0.000
θ21 0.0 0.000 0.022
θ22 0.4 0.599 0.025

Table 1: Summary Monte Carlo results. Based on M = 1000 MC repetitions,
with N = 500 random draws with replacement. Simulations in column (1)
based on the system of equations (10) and (11) with parameters set at ‘True
value’; Simulations in column (2) based on MC estimation of equation (14).
MC estimated coefficients and standard errors reported.
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Men Women
NT = 18407 NT = 21915

Variables Mean SD Min Max Mean SD Min Max

Cigarettes (1/2 packs) 2.234 2.096 0 9 2.123 1.862 0 9
Health 0.810 0.070 0.462 0.908 0.785 0.080 0.467 0.899
Age 45.25 15.96 19 98 45.26 15.98 19 96
Married/Co-habiting 0.710 0.454 0 1 0.632 0.482 0 1
Household Size 2.866 1.398 1 16 2.806 1.333 1 16
Number of Children 0.565 0.978 0 7 0.655 0.995 0 8
Employed 0.568 0.495 0 1 0.517 0.500 0 1
Unemployed 0.058 0.223 0 1 0.030 0.171 0 1
Self Employed 0.115 0.319 0 1 0.036 0.187 0 1
Retired 0.156 0.363 0 1 0.173 0.378 0 1
Employment other 0.089 0.284 0 1 0.227 0.419 0 1
Long-term sick 0.014 0.119 0 1 0.016 0.127 0 1
Log Household Income 9.636 0.646 -0.350 12.914 9.552 0.637 -0.174 13.505
Accidents 0.119 0.284 0 1 0.087 0.283 0 1
Degree/Higher degree 0.104 0.443 0 1 0.095 0.293 0 1
HND/A-Level 0.268 0.443 0 1 0.191 0.393 0 1
O-Level/ CSE 0.304 0.460 0 1 0.344 0.475 0 1
No Qualifications 0.324 0.468 0 1 0.371 0.483 0 1
White 0.970 0.170 0 1 0.987 0.111 0 1
Non-White 0.030 0.170 0 1 0.013 0.111 0 1
South East 0.149 0.356 0 1 0.148 0.355 0 1
South West 0.068 0.253 0 1 0.062 0.240 0 1
London 0.074 0.261 0 1 0.067 0.250 0 1
Midlands 0.193 0.395 0 1 0.169 0.375 0 1
Yorkshire 0.082 0.275 0 1 0.081 0.273 0 1
North West 0.091 0.288 0 1 0.094 0.292 0 1
North East 0.045 0.207 0 1 0.054 0.225 0 1
Scotland 0.133 0.340 0 1 0.149 0.356 0 1
Wales 0.110 0.313 0 1 0.111 0.314 0 1
Northern Ireland 0.054 0.227 0 1 0.066 0.248 0 1

Table 2: Descriptive statistics. Sample based on Smoking equations (NT = 18407 for men and NT
= 21915 for women, except for the health variable (NT = 17918 for men and NT = 21429 for women
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Health OLS Within System GMM
MA(3) MA(0) MA(0)

(1) (2) (3) (4) (5)

Hit−1 0.412 (0.000) 0.122 (0.000) 0.510 (0.014) 0.367 (0.000) 0.372 (0.000)
Hit−2 0.177 (0.000) -0.001 (0.918) 0.340 (0.093) 0.133 (0.000) 0.132 (0.000)
Hit−3 0.140 (0.000) -0.007 (0.573) 0.226 (0.178) 0.087 (0.002) 0.088 (0.001)
Hit−4 0.104 (0.000) -0.040 (0.000) -0.062 (0.104) 0.043 (0.220) 0.051 (0.128)
Xit Y Y Y Y Y
Xit−1 Y Y Y Y N
Xit−2 Y Y Y Y N
Xit−3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 14635 (2315) 14635 (2315) 14635 (2315) 14635 (2315) 14635 (2315)
Sargan test 22.7[31] (0.858) 52.0[45] (0.220) 51.4[45] (0.238)
Serial Corr:
Order (1) -2.22 (0.026) -20.2 (0.000) -20.42 (0.000)
Order (2) -0.29 (0.771) 0.30 (0.763) 0.32 (0.749)
Order (3) -0.67 (0.502)
Order (4) 1.25 (0.210)
Order (5) 1.20 (0.229)
Lags: (5 6) (2 4) (2 4)

Smoking OLS Within System GMM
MA(3) MA(0) MA(0)

Sit−1 0.540 (0.000) 0.296 (0.000) 0.360 (0.087) 0.509 (0.000) 0.504 (0.000)
Sit−2 0.181 (0.000) 0.063 (0.000) 0.461 (0.003) 0.143 (0.000) 0.142 (0.000)
Sit−3 0.093 (0.000) 0.011 (0.327) -0.046 (0.775) 0.067 (0.000) 0.066 (0.000)
Sit−4 0.066 (0.000) -0.023 (0.024) 0.034 (0.405) 0.016 (0.231) 0.016 (0.250)
Xit Y Y Y Y Y
Xit−1 Y Y Y Y N
Xit−2 Y Y Y Y N
Xit−3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 18407 (2864) 18407 (2864) 18407 (2864) 18407 (2864) 18407 (2864)
Sargan test 34.7[45] (0.867) 76.7[62] (0.099) 74.7[62] (0.130)
Serial Corr:
Order (1) -2.18 (0.029) -20.78 (0.000) -20.74 (0.000)
Order (2) -2.94 (0.003) 1.07 (0.283) 0.92 (0.359)
Order (3) 1.29 (0.198)
Order (4) -0.29 (0.771)
Order (5) 0.64 (0.519)
Lags: (5 7) (2 5) (2 5)

Table 3: Men: Fourth-order single equation estimates. Coefficient estimates and p-values in paren-
theses. The Sargan test reports the statistic, degrees of freedom [ ] and associated p-value ( ). Tests
for serial correlation in first-differenced errors report the test statistic and p-value ( ). Lags reports
the lag structure used to construct instruments for the model in first-differened form. Two-step
robust standard errors are used (Windmeijer, 2005).
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Health OLS Within System GMM
MA(3) MA(0) MA(0)

(1) (2) (3) (4) (5)

Hit−1 0.407 (0.000) 0.119 (0.000) 0.403 (0.009) 0.341 (0.000) 0.355 (0.000)
Hit−2 0.200 (0.000) 0.015 (0.144) 0.205 (0.160) 0.158 (0.000) 0.164 (0.000)
Hit−3 0.131 (0.000) -0.015 (0.124) 0.131 (0.335) 0.070 (0.000) 0.074 (0.000)
Hit−4 0.125 (0.000) -0.021 (0.034) 0.023 (0.358) 0.051 (0.001) 0.055 (0.000)
Xit Y Y Y Y Y
Xit−1 Y Y Y Y N
Xit−2 Y Y Y Y N
Xit−3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 17674 (2701) 17674 (2701) 17674 (2701) 17674 (2701) 17674 (2701)
Sargan test 48.3[50] (0.543) 80.2[68] (0.149) 79.0[68] (0.170)
Serial Corr:
Order (1) -4.11 (0.000) -25.03 (0.000) -25.01 (0.000)
Order (2) 0.10 (0.920) 0.16 (0.873) 0.05 (0.961)
Order (3) -0.41 (0.684)
Order (4) 0.60 (0.552)
Order (5) -0.40 (0.687)
Lags: (5 8) (2 6) (2 6)

Smoking OLS Within System GMM
MA(3) MA(0) MA(0)

Sit−1 0.520 (0.000) 0.265 (0.000) 0.171 (0.412) 0.457 (0.000) 0.458 (0.000)
Sit−2 0.198 (0.000) 0.075 (0.000) 0.488 (0.024) 0.159 (0.000) 0.159 (0.000)
Sit−3 0.098 (0.000) 0.012 (0.219) 0.077 (0.624) 0.060 (0.000) 0.060 (0.000)
Sit−4 0.078 (0.000) -0.010 (0.292) 0.003 (0.931) 0.034 (0.004) 0.037 (0.001)
Xit Y Y Y Y Y
Xit−1 Y Y Y Y N
Xit−2 Y Y Y Y N
Xit−3 Y Y Y Y N
Wi Y N Y Y Y
Years Y Y Y Y Y
NT (N) 21915 (3340) 21915 (3340) 21915 (3340) 21915 (3340) 21915 (3340)
Sargan test 24.4[34] (0.887) 63.4[74] (0.804) 62.0[74] (0.838)
Serial Corr:
Order (1) -1.95 (0.052) -21.98 (0.000) -22.13 (0.000)
Order (2) -2.42 (0.016) -0.95 (0.344) -0.96 (0.339)
Order (3) 0.46 (0.644)
Order (4) 0.38 (0.707)
Order (5) 1.17 (0.240)
Lags: (5 8) (2 6) (2 6)

Table 4: Women: Fourth-order single equation estimates. Coefficient estimates and p-values in
parentheses. The Sargan test reports the statistic, degrees of freedom [ ] and associated p-value
( ). Tests for serial correlation in first-differenced errors report the test statistic and p-value ( ).
Lags reports the lag structure used to construct instruments for the model in first-differened form.
Two-step robust standard errors are used (Windmeijer, 2005).
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Men Women
Health Smoking Health Smoking

NT = 14635 NT = 18407 NT = 17674 NT = 21915

Yit−1 0.372 (0.000) 0.504 (0.000) 0.355 (0.000) 0.458 (0.000)
Yit−2 0.132 (0.000) 0.142 (0.000) 0.164 (0.000) 0.159 (0.000)
Yit−3 0.088 (0.001) 0.066 (0.000) 0.074 (0.000) 0.060 (0.000)
Yit−4 0.051 (0.128) 0.016 (0.250) 0.055 (0.000) 0.037 (0.001)
Age -0.0005 (0.607) -0.015 (0.518) 0.001 (0.445) -0.033 (0.085)
Age squared -0.00005 (0.959) 0.014 (0.494) -0.001 (0.086) 0.005 (0.757)
Married/Co-habiting 0.004 (0.127) -0.137 (0.078) 0.003 (0.204) -0.121 (0.021)
Household Size 0.002 (0.126) -0.016 (0.567) -0.0002 (0.833) 0.014 (0.485)
Number of Children 0.0002 (0.911) 0.031 (0.532) -0.0004 (0.843) 0.158 (0.000)
Unemployed -0.00008 (0.981) -0.189 (0.022) -0.002 (0.531) -0.032 (0.629)
Self Employed -0.003 (0.389) 0.001 (0.986) -0.004 (0.387) 0.162 (0.077)
Retired -0.003 (0.499) -0.078 (0.481) -0.0008 (0.788) -0.032 (0.629)
Employment other -0.009 (0.055) -0.161 (0.100) 0.001 (0.647) -0.068 (0.107)
Long-term sick -0.002 (0.739) 0.094 (0.482) 0.005 (0.340) -0.050 (0.537)
Household Income 0.005 (0.001) 0.028 (0.337) 0.002 (0.146) -0.002 (0.915)
Accidents 0.003 (0.027) -0.023 (0.537) 0.004 (0.035) 0.040 (0.218)
Degree/Higher degree 0.0002 (0.984) -0.328 (0.297) 0.011 (0.518) -0.913 (0.006)
HND/A-Level -0.00007 (0.994) -0.091 (0.711) 0.010 (0.507) -0.707 (0.016)
O-Level/ CSE -0.002 (0.846) -0.070 (0.778) 0.009 (0.516) -0.650 (0.014)
Non-White -0.006 (0.177) -0.042 (0.727) -0.003 (0.660) -0.325 (0.011)
South West 0.005 (0.093) -0.022 (0.772) 0.002 (0.406) -0.014 (0.825)
London 0.002 (0.414) 0.067 (0.362) 0.0004 (0.904) 0.082 (0.276)
Midlands 0.0005 (0.823) -0.031 (0.630) -0.005 (0.117) 0.0003 (0.996)
Yorkshire -0.002 (0.432) -0.033 (0.610) -0.006 (0.091) 0.073 (0.238)
North West -0.0005 (0.817) -0.003 (0.956) -0.003 (0.238) 0.162 (0.014)
North East -0.004 (0.196) 0.048 (0.549) -0.011 (0.005) 0.168 (0.017)
Scotland -0.002 (0.406) 0.217 (0.000) -0.007 (0.009) 0.242 (0.000)
Wales -0.001 (0.589) 0.179 (0.003) -0.011 (0.004) 0.146 (0.017)
Northern Ireland -0.003 (0.614) 0.236 (0.018) -0.006 (0.342) 0.051 (0.630)

Table 5: Fourth-order single equation estimates. Coefficient estimates and p-values in parenthe-
ses. Yit−1, . . . , Yit−4 = Hit−1, . . . , Hit−4 for the health equation and Sit−1, . . . , Sit−4 for the smoking
equation. All regressions include year dummies.
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8 Appendix A

Consider the system of two second-order difference equations (10) for Y1 and
Y2 as follows:

Y1t = φ10 + φ11Y1t−1 + φ12Y2t−1 + θ11X1t + θ12X2t + ε1t

Y2t = φ20 + φ21Y1t−1 + φ22Y2t−1 + θ21X1t + θ22X2t + ε2t

Abstracting from the constant terms without loss of generality, the above
can be written in matrix form as,
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(18)

where L is the lag operator. Since L is multiplicative, equation (18) can
be expressed as,
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



θ11 θ12

θ21 θ22













X1t

X2t






+







ǫ1t

ǫ2t







Combining the vectors for Yt gives,







1− Lφ11 −Lφ12

−Lφ21 1− Lφ22













Y1t

Y2t






=







θ11 θ12

θ21 θ22













X1t

X2t






+







ǫ1t

ǫ2t







This can be rearranged such that,







Y1t

Y2t






=







1− Lφ11 −Lφ12

−Lφ21 1− Lφ22







−1 





θ11 θ12

θ21 θ22













X1t

X2t






+







1− Lφ11 −Lφ12

−Lφ21 1− Lφ22







−1 





ǫ1t

ǫ2t







(19)
The inverse matrix which appears twice on the RHS of equation (19) can

be written:







1− Lφ11 −Lφ12

−Lφ21 1− Lφ22







−1

=
1

DetA







1− Lφ22 Lφ12

Lφ21 1− Lφ11






(20)
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where DetA is the determinant of the matrix being inverted:

DetA = [1−Lφ11][1−Lφ22]−L
2φ12φ21 = 1− [φ11+φ22]L+[φ11φ22−φ12φ21]L

2

(21)
Using equation (20) allows us to write,

DetA







Y1t

Y2t






=







1− Lφ22 Lφ12

Lφ21 1− Lφ11













θ11 θ12

θ21 θ22













X1t

X2t






+







1− Lφ22 Lφ12

Lφ21 1− Lφ11













ǫ1t

ǫ2t







(22)
recalling that DetA is a scalar - the determinant of the matrix to be in-

verted.
Multiplying out the first two matrices on the RHS, such that







1− Lφ22 Lφ12

Lφ21 1− Lφ11













θ11 θ12

θ21 θ22






=







[1− Lφ22]θ11 + Lφ12θ21 [1− Lφ22]θ12 + Lφ12θ22

θ11Lφ21 + [1− Lφ11]θ21 Lφ21θ12 + [1− Lφ11]θ22







(23)
Substituting equation (23) into equation (22) gives,

DetA







Y1t

Y2t






=







[1− Lφ22]θ11 + Lφ12θ21 [1− Lφ22]θ12 + Lφ12θ22

θ11Lφ21 + [1− Lφ11]θ21 Lφ21θ12 + [1− Lφ11]θ22













X1t

X2t







+







1− Lφ22 Lφ12

Lφ21 1− Lφ11













ǫ1t

ǫ2t







(24)

Now take the top row of equation (24), which is the expression for Y1t where
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we are assuming that Y1 is the observable variable. That will be

DetAY1t = θ11X1t + [φ12θ21 − φ22θ11]LX1t + θ12X2t + [φ12θ22 − φ22θ12]LX2t

+[ǫ1t − φ22Lǫ1t + φ12Lǫ2t]

Substituting for DetA from equation (21),

[

1− [φ11 + φ22]L+ [φ11φ22 − φ12φ21]L
2
]

Y1t = φ11X1t + [φ12θ21 − φ22θ11]LX1t

+θ12X2t + [φ12θ22 − φ22θ12]LX2t + [ǫ1t − φ22Lǫ1t + φ12Lǫ2t]

(25)

Applying the Lag operator gives,

Y1t − [φ11 + φ22]Y1t−1 + [φ11φ22 − φ12φ21]Y1t−2 = φ11X1t + [φ12θ21 − φ22θ11]X1t−1

+θ12X2t + [φ12θ22 − φ22θ12]X2t−1 + [ǫ1t − φ22ǫ1t−1 + φ12ǫ2t−1]

Isolating Y1t on the left hand side gives,

Y1t = [φ11 + φ22]Y1t−1 − [φ11φ22 − φ12φ21]Y1t−2 + φ11X1t + [φ12θ21 − φ22θ11]X1t−1

+θ12X2t + [φ12θ22 − φ22θ12]X2t−1 + [ǫ1t − φ22ǫ1t−1 + φ12ǫ2t−1]

(26)

The purpose of the transformation using the lag operators is to leave us
with, on the RHS, lagged values of the observable Y , values of the exogenous
variables, and a disturbance term which involves (in the 2 equation case) both
ǫ1 and ǫ2 values and, by its involvement of both current and lagged ǫ’s, requiring
us to use an estimating method which allows for a serially correlated residual
term.

The structure in equation (26) also has the appeal that we can see how
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the roots of the system are derived from the coefficients on the two lags of Y1
and, by comparing it with the original matrix form, we can see that the roots
of equation (26) will be the same as the roots of the original system of two
FODEs, justifying our argument that the dynamics of the system are retained
by the transformation.

47



9 Appendix B

Instrument set for single fourth-order equation in first-differenced form

























Si1 0 0 . . . . . . 0 . . . . . . 0 ∆Xi6 ∆Xi5 ∆Xi4 ∆Xi3

0 Si1 Si2 . . . . . . 0 . . . . . . 0 ∆Xi7 ∆Xi6 ∆Xi5 ∆Xi4

...
...

...
. . .

...
. . .

...
...

...
...

...

...
...

...
. . .

...
. . .

...
...

...
...

...

0 0 0 . . . . . . Si1 . . . . . . SiT−5 ∆XiT ∆XiT−1 ∆XiT−2 ∆XiT−3
























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