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Entropic manifestations of topological order in three dimensions

Alex Bullivant and Jiannis K. Pachos
School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom

(Dated: July 13, 2015)

We evaluate the entanglement entropy of exactly solvable Hamiltonians corresponding to general
families of three-dimensional topological models. We show that the modification to the entropic area
law due to three-dimensional topological order is richer than the two-dimensional case. In addition
to the reduction of the entropy caused by non-zero vacuum expectation value of contractible loop
operators a new topological invariant emerges that increases the entropy if the model consists of
non-trivially braiding anyons. Consequently, the topological entanglement entropy that is commonly
used as diagnostic tool of topological order in two dimensions provides only partial information about
the topological order of three dimensional models.

PACS numbers: 02.40.Pc, 03.65.Vf,65.40.Gr

Introduction:– The topological features of the entan-
glement entropy of two-dimensional systems is well un-
derstood [? ? ? ? ]. Tracing a large, smooth region A of
a gapped system prepared at its ground state gives the
entanglement entropy

SA = α|∂A| − b0γ0, (1)

where α and γ0 are non-negative constants, |∂A| is the
size of the boundary of A and the 0-th Betti number, b0,
counts the number of disjoint boundary components [?
]. A non-zero γ0 signals that the model is topological
in the sense that it supports large loop operators with
non-vanishing vacuum expectation value [? ]. As a con-
sequence it exhibits topological degeneracy and it sup-
ports anyonic excitations [? ]. Interestingly, γ0 can be
isolated by linear combinations of the entanglement en-
tropy corresponding to suitable partitions of the system
so that all the boundary terms from the entropy cancel
out [? ? ]. This entropic feature of the ground state,
known as the topological entanglement entropy, is one
of the main tools used to probe topological order in two
dimensions.
The entropic properties of three-dimensional topolog-

ical models have recently attracted considerable inter-
est [? ? ? ? ]. It has been shown that, even if three di-
mensions can support string-like topological excitations,
their contribution to the topological entanglement en-
tropy is equivalent to the one obtained by point-like ex-
citation [? ]. Furthermore, it has been demonstrated that
in three dimensions it is possible to have non-universal
contributions to the entropy due to a finite correlation
length that are constant with the size of the partition [?
]. Nevertheless, the constant contribution to the entropy
is always linear in b0 and b1, the 0-th and 1-st Betti
numbers [? ]. The latter counts how many topologi-
cally inequivalent non-contractible loops can exist on the
boundary ∂A, e.g. it is zero for the sphere and two for
the torus [? ]. Intriguingly, it has been observed that
excitations of some three-dimensional models are confin-
ing, significantly affecting the entropic behaviour of the

model [? ]. Nevertheless, explicit expressions of the en-
tropy have been found for the limited examples of the
toric code and the semion model [? ] as well as the
discrete gauge theories [? ].

Here we evaluate the entanglement entropy for a gen-
eral family of three-dimensional models that exhibit rich
topological behaviour. These models, that also de-
scribe the Walker-Wang lattices [? ], are analytically
tractable, they have zero correlation length and they
are fixed points of general families of three-dimensional
topological models. By evaluating explicitly the geo-
metric entanglement entropy we find the general form
SA = α|∂A| − b0γ0 + b1

2 γ1, where γ1 is a non-negative
number. As in two-dimensions the constant γ0 deter-
mines the total quantum dimensions of the underlying
anyonic model of the lattice. It also indicates if anyonic
excitations can emerge either in the bulk of the model
or at its boundary [? ]. If γ0 > 0 then the quantity
γ1 signals if the anyons of the model braid trivially or
not. Both γ0 and γ1 are entropic topological invariants

that provide information about the topological order of
the system. Surprisingly, we find that topological entan-
glement entropy does not fully identify the topological
properties of the model as it fails to distinguish between
the different types of entropic topological invariants. Our
work is a qualitative and quantitative investigation of
the universal topological characteristics witnessed by the
entanglement entropy of three-dimensional fixed point
models.

The model:– Consider an anyonic model with charges
{1, ..., n}, where 1 denotes the vacuum. These charges
satisfy the fusion rules a× b =

∑

c N
c
abc, where the inte-

gers N c
ab denote the multiplicity of the fusion channels.

To each anyon a we can assign a real number, the quan-
tum dimension da, that satisfies dadb =

∑

c N
c
abdc. More-

over, each anyon a has a specific spin, giving rise to a
complex phase factor θa when it is rotated counterclock-
wise around itself by 2π. The fusion and braiding prop-
erties of anyons are described by the F - and R-matrices,



2

respectively, with elements given pictorially by

c

a

d

b

e =
∑

f

F ab,e
cd,f

c

a

d

b

f ,

c

ab

= Rab
c

c

ba

. (2)

Two successive braidings give Rab
c Rba

c = θc
θaθb

also known
as the monodromy. With the monodromy matrix we can
introduce the modularity condition. For modular models
each anyon a 6= 1 has a monodromy operator Rab

c Rba
c

which is not equal to the identity for at least one charge
b. In other words a modular model has anyons that braid
non-trivially with each other. Otherwise the model is
called non-modular. If all pairs of anyons in a model
braid trivially with each other then the model is called
degenerate non-modular (or symmetric).
We next define Sc

ab [? ? ], in terms of the following
quantum mechanical amplitude

Sc
ab =

1

D a b

c
=

1

D
∑

j

N j
abF

ab,c
ab,j

θj
θaθb

√

dadbdj , (3)

where D =
√

∑

a d
2
a is the total quantum dimension of

the model. The amplitudes Sc
ab can be considered as the

elements of the S-tensor. This tensor is a generalisation
of the S-matrix that has elements Sab ≡ Sc=1

ab [? ]. The
modularity condition is ensured if the S-matrix is uni-
tary [? ? ]. This allows us to define the modularity
condition

1

D2

∑

a

da a
b

= δb1. (4)

In other words the non-trivial braiding of anyon b with
some other anyon a causes it to be projected when a
symmetrisation is applied.
We now introduce a family of topological models that

are the three-dimensional generalisation of the string-net
models [? ]. The Walker-Wang lattices provide a partic-
ular realisation of these models [? ]. We consider a three-
dimensional trivalent lattice and adopt a certain anyonic
model with n different types of charges. We assign an
n-dimensional Hilbert space at each link, each state cor-
responding to a Wilson line of a certain anyon charge.
It is possible to assign a Hamiltonian to this lattice that
gives rise to a specific, possibly degenerate, ground state
|Φ〉, separated from excited states by a non-zero energy
gap. The Hamiltonian energetically penalises the states
of the links surrounding a certain vertex that do not sat-
isfy the fusion rules. It also penalises any non-trivial flux
that goes through the plaquettes of the lattice [? ]. The
ground state of this Hamiltonian can be considered as
a superposition of arbitrary three-dimensional string-net
configurations that satisfy the anyonic fusion rules at its
vertices.
Consider the ground state |Φ〉 = ∑

L Φ(L) |L〉, where L
is a certain string-net configuration appearing with am-
plitude Φ(L). We can determine these amplitudes in

the following way [? ]. Apart from the conditions im-
posed in the two-dimensional string-net models that im-
plement topological invariance of string configurations,
scale invariance and change of basis by employing the F -
matrices [? ] we demand that the ground states satisfy
the additional condition

Φ(
a b

c
) = DSc

abΦ( ). (5)

The configuration is a possible string-net in three
dimensions, but not in two dimensions due to its cross-
ings. Condition (5) is identically satisfied by the Walker-
Wang models. It has been shown that the behaviour
of the point-like excitations of the Walker-Wang models
strongly depends on the modularity condition [? ]. The
modular models have all point-like excitations in the bulk
confined as their non-trivial braiding causes a non-zero
string tension to emerge. On the other hand, the non-
modular models have deconfined bulk excitations. Nev-
ertheless, both models have non-zero entropic topological
invariants as we shall see in the following.
Geometric entanglement entropy:– To determine

the geometric entanglement entropy we evaluate the von-
Neumann entropy SA = −tr(ρA ln ρA) of the reduced
density matrix ρA of a geometric region A. In two dimen-
sions the entropy SA is given by (1), where γ0 = lnD2.
Below we show that in three dimensions the entangle-
ment entropy depends on the topology of the boundary
∂A and on the modularity property of the anyonic model.
Consider first tracing a simply connected region A out

of the three-dimensional lattice, which is topologically
equivalent to a sphere. We take the boundary ∂A to cross
the links of the lattice. For convenience we double the
Hilbert space of the boundary links so they are present in
both A and its compliment B. We can write the Schmidt
decomposition of the ground state |Φ〉 of the system in
terms of the states of the corresponding regions

|Φ〉 =
∑

i

αi

∣

∣Φi

A

〉
∣

∣Φi

B

〉

, (6)

where i parametrises the states of all the links of the

boundary ∂A,
∑

i
|αi|2 = 1 and

〈

Φi

A/B

∣

∣

∣
Φi

′

A/B

〉

=

δi,i′ . The entropy of the reduced density matrix ρA =
trB(|Φ〉〈Φ|) corresponds to all possible anyonic configura-
tions of the boundary links. As the system is prepared in
its ground state these links are subject to the constraint
that they all fuse to the vacuum [? ]. The probability of
having a certain link configuration i of anyonic states at
the boundary ∂A is given by P (i) = |αi|2. To evaluate
P (i) we first note that the probability of measuring a
given charge a at a certain link is given by Pa = d2a/D2.
To impose the fusion constraint at the boundary we in-
troduce the conditional probability of fusing N anyons
to the vacuum is given by P (a1 × a2 × ... × aN → 1) =
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N 1
a
/(
∏

l dal
). HereN c

a
= N j1

a1a2
N j2

j1a3
...N c

jN−2aN
is the to-

tal multiplicity associated to the fusion of the N anyons.
Therefore the probability that the configuration i occurs
at the boundary with vacuum total charge is given by
P (i) = Pa1

...PaN
P (a1 × ... × aN → 1)/P1 [? ]. In the

case where there are several disjoint boundaries compris-
ing ∂A then each boundary component carries vacuum
total charge. Hence, the total probability P (i) is the
product of the individual probabilities giving finally

|αi|2 =
N 1

a

∏

l∈i
dal

D2(N−b0)
. (7)

The eigenvalues of the reduced density matrix ρA are
given by λσ = |αi|2/N 1

a
, where σ = (i,µ) with µ

parametrising the multiplicities of the fusion channels.
Hence, the entanglement entropy is given by

SA = −N
∑

k

d2k
D2

ln
dk
D2

− b0 lnD2. (8)

This is the same behaviour as in the two-dimensional
case (1), where |∂A| = N is the number of links on the
boundary of A [? ].
Consider now the case where the boundary ∂A is topo-

logically equivalent to a torus, as shown in Fig. 1 (Left).
Compared to the entropic behaviour of simply connected
regions the torus can get additional contributions emerg-
ing when loops that have support in A and loops that
have support in B are braided [? ]. To facilitate the
calculation of the entropy SA we bring the state of the
system to a suitable form by applications of loop opera-
tions that have support exclusively in A or in B. These
operations do not change the value of SA. We can thus
bring the braided loops that belong to different regions
in the form shown in Fig. 1 (Left). There, a/b is the
total anyonic charge of the non-contractible loops that
have support in A/B, respectively, and c is the exchanged
anyon, as dictated by the S-tensor. The charges of a, b
and c cannot be changed by non-boundary operations.
Thus, according to (5) the ground state of the system is
entropically equivalent to

|Φ〉 = 1

D
∑

ic,a,b,c

αic
Sc
ab

∣

∣

∣
Φic

A,a,c

〉 ∣

∣

∣
Φic

B,b,c

〉

, (9)

where ic denotes the boundary configuration with a

charge c crossing the boundary and
∣

∣

∣
Φic

A,a,c

〉

and
∣

∣

∣
Φic

B,b,c

〉

are basis states satisfying
〈

Φic

A/B,a/b,c

∣

∣

∣
Φ

i
′

c

A/B,a′/b′,c′

〉

=

δi
c
,i′

c
δa/b,a′/b′δc,c′ . Note that |Φ〉 is properly normalised

as
∑

a,b,c

(Sc
ab)

∗Sc
ab = D2 (10)

due to the unitarity of the F -matrix [? ]. We next
show that the entanglement entropy of a degenerate non-
modular model corresponding to a toroidal boundary is

FIG. 1: (Left) A toroidal region traced out of the lattice.
A possible string-net configuration is depicted with anyon a

threading through the inside of the torus and b threads around
it. Anyon c is a possible exchanged anyon between the two
loops according to the S-tensor. (Right) Example of a possi-
ble configuration of regions A, B, C and D that extract the
topological entanglement entropy in three dimensions.

the same as for the simply connected region before we
turn to the modular case.
To calculate the entanglement entropy of the degener-

ate non-modular case we first determine the S-tensor. As
these models have trivial monodromy between all anyons
Sc
ab = δc1dadb/D. Hence, the state (9) takes the form

|Φ〉 = 1

D2

∑

i1,a,b

αi1
dadb

∣

∣

∣
Φi1

A,a,1

〉 ∣

∣

∣
Φi1

B,b,1

〉

. (11)

By introducing the orthonormal states
∣

∣

∣
Φ̃i1

A

〉

=
∑

a
da

D

∣

∣

∣
Φi1

A,a,1

〉

and
∣

∣

∣
Φ̃i1

B

〉

=
∑

b
db

D

∣

∣

∣
Φi1

B,b,1

〉

we can

rewrite the ground state (11) in the same form as (6).
Hence, for a degenerate non-modular model the entropy
of a toroidal region is the same as the entropy of a simply
connected region given in (8).
We now consider the case of modular models. To write

the ground state (9) of the modular case in a more con-

venient form we introduce the following states
∣

∣

∣
Φ̃ic

A,bc

〉

=

1√
dc

∑

a Sc
ab

∣

∣

∣
Φic

A,ac

〉

. These states are orthonormal due

to the relation

∑

a

(Sc
ab)

∗Sc
ab′ = dcδbb′ , (12)

which can be shown by employing the modularity con-
dition (4) [? ? ]. Then the ground state of the system
becomes

|Φ〉 =
∑

ic,b,c

αic

√
dc
D

∣

∣

∣
Φ̃ic

A,bc

〉 ∣

∣

∣
Φic

B,bc

〉

. (13)

We can proceed in the evaluation of the entropy in a
similar fashion as we did for the simply connected case.
Note though that the condition of having the total any-
onic charge at the surface ∂A being the vacuum, 1, is
now replaced to c due to the braiding of the a and b
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anyons. The associated probability P (ic) = |αic
|2 for

the boundary configuration can be written as P (ic) =
Pa1

...PaN
P (a1 × ... × aN → c)/Pc. Combined with the

rest of the normalisation factors of state (13) we obtain
the eigenvalues of the reduced density matrix ρA to be

λσ =
|αic

|2
N c

a

dc
D2

=

∏

l∈ic
dal

D2N
. (14)

We can directly extend these probabilities to the case
of higher genus regions with boundary Betti numbers b0
and b1 by introducing the S-tensor in (9) multiple times,
giving finally the entropy

SA = −N
∑

k

d2k
D2

ln
dk
D2

− (b0 −
b1
2
) lnD2. (15)

To derive this result we have used the relation
∑

b,c dc/D2 = 1, which follows from (10) and (12). For
two-dimensional surfaces, such as the boundary ∂A, the
Betti numbers are related by χ = 2b0−b1, where χ is the
Euler characteristic. Hence, the topological dependence
of the entropy for modular models is proportional to the
Euler characteristic.
We now consider a family of models with entropic be-

haviour that ranges between the modular and the degen-
erate non-modular cases. Take two anyon models, a de-
generate non-modular one ADNM and a modular one AM

with quantum dimensions DDNM and DM, respectively.
We can construct a new anyon model as the direct prod-
uct A = ADNM × AM. The charges of such a model are
given by a = {a1, a2}, a1 ∈ ADNM, a2 ∈ AM, with Rab

c =

Ra1b1
c1 Ra2b2

c2 , F ab,e
cd,f = F a1b1,e1

c1d1,f1
F a2b2,e2
c2d2,f2

and total quantum
dimension D = DDNMDM. As such Sc

ab = Sc1
a1b1

Sc2
a2b2

. As
the two anyon models are non-interacting the entropy of
A can be written as the sum of the entropies of each
component, SA(A) = SA(ADNM) + SA(AM). Then the
entanglement entropy is given by

SA = −N
∑

k∈A

d2k
D2

ln
dk
D2

− b0 lnD2 +
b1
2
lnD2

M. (16)

In this way we can construct anyonic models with arbi-
trary entropic behaviours, ranging between the modular
(DDNM = 1) and the degenerate non-modular (DM = 1)
cases.
Entropic topological invariants:– The entangle-

ment entropy (16) gives information about the topologi-
cal order of the system by providing the general form of
the topological invariants, γ0 = lnD2 and γ1 = lnD2

M.
The first invariant, γ0, uniquely determines if the model
is topological, γ0 6= 0, or not, γ0 = 0. Similarly to the
two-dimensional case it indicates if loop operators, cor-
responding to arbitrarily large but contractible loops can
have a non-zero expectation value. In accordance to the
anyonic fusion rules it reduces the entanglement entropy
generated by the superposition of the string-net states.

The second invariant, γ1, is always less than or equal to
γ0. It quantifies the total quantum dimensions of anyons
in the model which braid non-trivially. If γ1 = 0 then
the model is degenerate non-modular, and all its anyons
braid trivially with each other. These anyons can exist
in the bulk of the model as deconfined excitations. If
γ0 > γ1 the model is non-modular supporting both con-
fined and deconfined excitations [? ]. If γ0 = γ1 > 0 then
all excitations of the model are confined and the model
is modular. Note that excitations that are confined in
the bulk can appear deconfined at the physical boundary
of the system [? ? ]. Topological degeneracy can be
manifested by imposing periodic conditions to the three-
dimensional bulk or its two-dimensional boundary [? ].
The natural question is what information is gained

from the three-dimensional generalisation of the topolog-
ical entanglement entropy. Similarly to two-dimensional
models it is possible to partition the lattice in four re-
gions, A, B, C and D, such that a combination of their
entanglement entropies gives rise to topological invariant
quantity. An example of such partition is shown in Fig. 1
(Right). To define a topological invariant of entropies we
first introduce the quantity [? ]

D[X(A,B,C)] = XA +XB +XC −XAB −XAC −XBC

+XABC , (17)

where X is some property of the model. For X = S
all surface contributions of (16) cancel out apart from
a possible intersection of the four regions [? ]. Hence,
D[S(A,B,C)] is a topological invariant for a choice of
regions that do not have such intersections. In this
case D[S(A,B,C)] is called the topological entangle-
ment entropy γ. If we now calculate the same quan-
tity for the Euler characteristic, χ, of the boundary
we find D[χ(∂(A,B,C))] = χ(A ∩ B ∩ C ∩ D) for any
choice of four regions [? ]. Demanding topological in-
variance of D[S(A,B,C)] gives D[χ(∂(A,B,C))] = 0.
From (16) we obtain the topological entanglement en-
tropy γ = D[b0(∂(A,B,C))] lnD2

DNM that can identify
the presence of deconfined excitations in the bulk. This
analysis also shows that in three dimensions it is not
always possible to isolate the topological invariant quan-
tities γ0 and γ1 by combining the entanglement entropies
of a fixed partition.

Conclusions:– We have seen that the entanglement
entropy of the three-dimensional models gives two dis-
tinct entropic topological invariants, γ0 and γ1. While
γ0 identifies if the model is topological, γ1 reveals infor-
mation about the braiding properties of its underlying
anyonic model. The latter corresponds to an increase in
the entropy as tracing the region around a torus erases
information about the anyonic charge of the threaded
loops that could affect non-trivially the state of the sys-
tem inside the torus. Hence, the geometric entangle-
ment entropy in three dimensions provides more infor-
mation about the topological order of the system than
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its two-dimensional counterpart. We can isolate γ0 by
comparing the entropy of two different partitions, with
different number of disjoint boundary components, b0,
but the same b1 and |∂A|. Similarly we can determine
γ1. Evaluating the entanglement entropy for the general
non-modular case is a complex problem due to the lack
of structure of these models. We leave this problem to
future investigation.
Acknowledgements:– We would like to thank Gavin

Brennen, Ben Brown, Curt von Keyserlingk, Paul Mar-
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Supplementary Material

A. Probability of boundary configurations:– There
are two equivalent ways to assign a probability to a given
boundary configuration on a region A of a string-net con-
figuration in Walker-Wang models. The first is to use
unitary operations with support on either A or the com-
pliment B. One can then form a canonical configura-
tion with string-nets restricted to the plaquettes crossing
the boundary ∂A. Then the diagram calculus can be
utilised to calculate the amplitude of each configuration
and hence the probability [? ]. The second approach
is to assign a conditional probability to the anyon con-
figuration making use of the quantum dimensions of the
model [? ]. This is the methodology we utilise here as it
is computationally easier .
In order to calculate the probability of finding an anyon

charge we make use of the S-matrix. The probability of
finding an anyon of charge a in a particular region is given
by Pa = |Sa1|2 = d2a/D

2 [? ]. This result can be under-
stood as the probability amplitude for the vacuum braid-
ing trivially with the charge a. Due to charge conserva-
tion across the boundary the probability of each anyon on
the boundary is not independent but we require that all
anyons fuse to a total charge c. For a boundary consist-
ing of N charges this constraint is applied by defining the
conditional probability P (a1 × ...× aN → c). This prob-
ability can be evaluated diagrammatically making use of

isotopy invariance [? ] and the identity F ab,1
ab,c =

√

dc

dadb

[?

]

P (a1a2 → j1) = P (a1a2 → j1)
1

da1
da2

a1a2

=
N j1

a1a2

da1
da2

√

dj1
da1

da2

a1a2 j1

=
N j1

a1a2
dj1

da1
da2

. (A1)

We now calculate P (a1 × ...× aN → c) as below

P (a1 × ...× aN → c)

= P (a1a2 → j1)P (a3j1 → j2)...P (aN jN−2 → c)

=
N c

a
dc

∏N
l=1 dal

, (A2)

where N c
a
= N j1

a1a2
N j2

a3j1
...N c

aN jN−2
. One can verify the

consistency equation

∑

a1,...,aN j1,...,jN−2

Pa...PbP (a1 × ...× pN → c) = Pc. (A3)

The normalised probability for the boundary configura-
tion with a given charge c across the boundary is given
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by

P (ic) =
Pa...PbP (a1 × ...× pN → c)

Pc
. (A4)

B. S-tensor Properties:– The S-matrix has been
extensively studied throughout the literature [? ? ].
Here we outline the generalisation to the S-tensor and we
demonstrate some of its properties. The S-tensor can be
defined diagrammatically or in terms of the parameters
of the model as follows [? ]

Sc
ab ≡

1

D a b

c
=

1

D
∑

j

N j
abF

ab,c
ab,j

θj
θaθb

√

dadbdj . (B1)

One useful property of the S-tensor is the following state-
ment

D2 =
∑

a,b,c

(Sc
ab)

∗Sc
ab. (B2)

This follows from Eqn. (B1) noting the unitarity of the

F -matrices
∑

c(F
ab,c
ab,j )

∗F ab,c
ab,j′ = δj,j′ [? ]. In the remain-

der of the section we make use of the diagram calculus
in order to derive properties of the S-tensor.

We begin our discussion by defining the fusion Hilbert
space and the relevant normalisation scheme [? ? ? ].
For the fusion process a × b → c we can define a fusion
Hilbert space V ab

c with dimension given by the fusion
multiplicities N c

ab =dimV ab
c . We define an orthonormal

basis for such a space with states |a, b; c, µ〉 ∈ V ab
c sat-

isfying 〈a′, b′; c′, µ′| a, b; c, µ〉 = δaa′δbb′δcc′δµµ′ . We can
represent these states and their duals in terms of the di-
agram calculus

|a, b; c, µ〉 =
a b

c
µ , 〈a, b; c, µ| =

a b

c
µ . (B3)

The inner product is defined diagrammatically by stack-
ing vertices vertically and connecting open edges. To
preserve isotopy invariance and normalise the inner prod-
ucts we introduce a constant depending on the quantum
dimensions of the edge charges

〈a′, b′; c′, µ′| a, b; c, µ〉 = δaa′δbb′δcc′δµµ′√
dadbdc

ba c

µ

µ

= δaa′δbb′δcc′δµµ′ . (B4)

We also introduce the identity operator

1 =
∑

a,b,c,µ

|a, b; c, µ〉 〈a, b; c, µ| =
∑

a,b,c,µ

√

dc
dadb

a b

c
µ

a b

µ
.

(B5)

We now represent the S-tensor as an operator Sc on the
fusion space V bc

c as defined in [? ]

Sc |b, c; b, µ〉 =
∑

x

dx
D

c

µ

b

b
x

x

. (B6)

Utilising the diagram calculus and normalisation conven-
tions defined above we can form the matrix elements of
the S-tensor operator

Sc
ab =

√

dc 〈a, c; a, µ| Sc |b, c; b, µ〉 . (B7)

The above discussion of the S-tensor holds true for any
anyon model. In the following we restrict our discussion
to modular anyon models to show that for such models

∑

a

(Sc
ab′)

∗Sc
ab = dcδb,b′ . (B8)

As discussed in the main text an anyon model is described
as being modular when for each non-vacuum charge a in
the model there exists a charge b such that the mon-
odromy Rc

baR
c
ab 6= 1ab. This statement can be equiva-

lently formulated in the diagram calculus as the modular
trap identity [? ? ]

1

D2

∑

a

da a
xy

=
δxy
dx

x x

x x

. (B9)

Using this identity it is possible to show that the operator
Sc is unitary for modular models

S†
cSc |b, c; b, µ〉 =

∑

x,y

dxdy
D2

c

µ

b

b
y

y
x

=
b c

b
µ = |b, c; b, µ〉 . (B10)

We then prove (B8) by invoking the unitary property of
Sc and (B7)

dcδbb′

=dc 〈b′, c; b′, µ| b, c; b, µ〉
=dc 〈b′, c; b′, µ| S†

cSc |b, c; b, µ〉
=

∑

a,c′,µ′

dc 〈b′, c; b′, µ| S†
c |a, c′; a, µ′〉 〈a, c′; a, µ′| Sc |b, c; b, µ〉

=
∑

a

dc 〈b′, c; b′, µ| S†
c |a, c; a, µ〉 〈a, c; a, µ| Sc |b, c; b, µ〉

=
∑

a

(Sc
ab′)

∗Sc
ab. (B11)

C. Isolating topological components of the entan-

glement entropy:– As for two-dimensional models [? ?

], it is possible to partition the Walker-Wang lattice into
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four regions A,B,C and D from which a combination of
entropies can be evaluated to formulate a topologically
invariant quantity [? ? ]. To define a topologically invari-
ant quantity we introduce the quantity D[X(A,B,C)] as
in [? ]

D[X(A,B,C)] = XA +XB +XC −XAB −XAC −XBC

+XABC , (C1)

where X is a property of the regions A,B,C and D.
Work by Grover et al. [? ] conjectured that forX = S all
surface contributions from the geometric entanglement
entropies cancel when the quantityD[χ(∂(A,B,C))] = 0,
where χ is the Euler characteristic. In the following we
show that under minimal constraints, surface contribu-
tions and terms proportional to the Euler characteristic
vanish identically in equation (C1). Nevertheless, our
workings show that the vanishing of the Euler character-
istic does not imply the vanishing of surface contributions
as claimed in [? ].
Consider the lattice in the continuum limit as a closed

subset of R3 partitioned into four finite regions A, B,
C and D with non-intersecting volumes where A, B, C
are embedded within D. We define the condition of non-
intersecting volumes by the statement, two volumes I
and J are non-intersecting if and only if I ∩ J = ∂I ∩ ∂J
where ∂I is the boundary of I. By convention we adopt
the following notation for composite regions IJ = I ∪ J .
We utilise the above construction to define the boundary

of the regions A, B, C and their composites with respect
to union and intersections of the other regions

∂(ABC) = (ABC) ∩D,

∂(AB) = (AB) ∩ (CD),

∂A = A ∩ (BCD). (C2)

The boundaries of the other regions can be formulated
likewise.
Measures of the surface area and Euler characteristic

both obey the so called inclusion-exclusion principle. A
property of a set X obeys the inclusion-exclusion princi-
ple when X(AB) = X(A) +X(B)−X(A ∩B). Making
use of this property one can easily verify

D[χ(∂(A,B,C))] = X(A ∩B ∩ C ∩D). (C3)

When X is taken to be the surface area or Euler charac-
teristic, Area(∅) = χ(∅) = 0, hence for A∩B∩C∩D = ∅,
D[X(∂(A,B,C))] = 0. This result demonstrates that
such a combination of boundary areas or Euler character-
istic will always vanish for the above construction when
there is no simultaneous intersection of all four regions.
Furthermore such a quantity is necessarily invariant un-
der smooth deformations of the regions complimentary
to the discussion in [? ].


