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Abstract  

 

The earliest pots in the world are from East Asia and date to the Late Pleistocene. However, 

ceramic vessels were only produced in large numbers during the warmer and more stable 

climatic conditions of the Holocene. It has long been assumed that the expansion of pottery was 

linked with increased sedentism and exploitation of new resources that became available with 

the ameliorated climate, but this hypothesis has never been tested. Through chemical analysis of 

their contents, here we investigate the use of pottery across an exceptionally long, 9,000 year sequence from the Jōmon site of Torihama in Western Japan, intermittently occupied from the 
Late Pleistocene to the mid-Holocene. Molecular and isotopic analyses of lipids from 143 vessels 

provides clear evidence that pottery across this sequence was predominantly used for cooking 

marine and freshwater resources, with evidence for diversification in the range of aquatic 

products processed during the Holocene. Conversely, there is little indication that ruminant 

animals or plants were processed in pottery, although it is evident from the faunal and 

macrobotanical remains that these foods were heavily exploited. Supported by other residue 

analysis data from Japan, our results show that the link between pottery and fishing was 

established in the Late Palaeolithic and lasted well into the Holocene despite environmental and 

socio-economic change. Cooking aquatic products in pottery represents an enduring social 

aspect of East Asian hunter-gatherers; a tradition based on a dependable technology for 

exploiting a sustainable resource in an uncertain and changing world. 

Significance statement  

 

Pottery has had a central role in human society for many millennia but the reasons for the 

emergence and spread of this technology are poorly understood. First invented by groups of 

hunter-gatherers living in East Asia during the last glacial period, production only began to 

flourish with rising global temperatures in the Holocene but the reasons for its uptake and 

spread are unknown. Through chemical analysis of their contents, here we provide the first 

direct evidence of pottery use across this climatic transition. Contrary to expectations, ceramic 

vessels had a remarkably consistent use, predominantly for processing aquatic resources, 

indicating that cultural rather than environmental factors were most important for their 

widespread uptake. 
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\body 

The emergence and development of pottery remains one of the most important research 

questions in archaeology. Once linked exclusively to the development of farming and settled 

village life, it is now known that the origins of pottery are instead bound-up in a complex 

process of innovation that ultimately extends back as far as 20,000 years to groups of East Asian 

hunter-gatherers living during the Late Pleistocene (1–3). One of the earliest and best studied 

centres for the innovation and development of ceramic containers is the Japanese archipelago. 

Pottery was invented here around 16,000 years ago and remained an important part of hunter-gatherer life (Jōmon culture) until the transition to rice cultivation ca. 2,800 years ago. The earliest pots in Japan, produced during the ‘Incipient’ Jōmon phase (16-11,500 cal BP), were 

small and found only in low numbers per site. It is thought they had a very limited range of uses, 

possibly for the occasional small scale and highly labour-intensive preparation of ‘exotic’ or ‘prestige’ foods (4). Pottery only began to flourish, however, with the steady warming of global 

temperatures from around 11,500 years ago, and production increased exponentially 

throughout the early Holocene (11,500-7,000 cal BP), with the ameliorated climate (5). These 

changing climate conditions resulted in ecological shifts in forest vegetation (6) and salt-water 

inundation of the rich coastal plains that surround the Japanese archipelago. Produced in much 

greater quantities during the Holocene, it has been hypothesised that pottery may have 

facilitated new strategies for the processing, storage and serving of a wider array of increasingly 

abundant foodstuffs such as plant foods and shellfish (7). The enhanced production of ceramics 

has also been linked to increased sedentism, population growth and perhaps also to the 

dispersal of pottery technology westwards across Northern Eurasia and northwards towards 

Alaska (8). 

 

Despite such speculation, it is not known how East Asian hunter-gatherers adapted their pottery 

to accommodate changing environmental conditions and resource availability, or indeed 

whether other non-economic drivers for the uptake of pottery were also in play. Since animal 

and plant remains are generally very poorly preserved in this region, particularly during the late 

glacial period, direct determination of the use of pottery is critical to answering this question. 

We have recently shown that lipids can be reliably characterised in Late Pleistocene ceramic 

vessels to reveal their original contents (9). We suggested that the primary use of pottery during 

this period was for processing aquatic resources, albeit based on a limited number of samples from two Incipient Jōmon sites. Beyond this study, little is known about how hunter-gatherer 

pottery use may have changed or diversified in the Holocene.  

 

Here, we report molecular and isotopic analyses of the contents of pottery vessels from the 

archaeological site of Torihama, located in Wakasa Bay, Fukui prefecture, Japan (Fig. 1). The earliest Jōmon pots (Incipient Jōmon) available from this site date from ca. 14,000 BP, but 
crucially the pottery sequence continues through the Younger Dryas chronozone into the Holocene (Initial Jōmon, 11,500 BP) and Early Jōmon period (ca. 7,000 BP), when a shell mound 

was formed at the site. Exceptionally for East Asia, organic artefacts and ecofacts are preserved 

https://paperpile.com/c/QnRvch/IHBwB+ECSI6+BP6ef
https://paperpile.com/c/QnRvch/jXSFW
https://paperpile.com/c/QnRvch/nZvVH
https://paperpile.com/c/QnRvch/EfA0p
https://paperpile.com/c/QnRvch/6ja4c
https://paperpile.com/c/QnRvch/aANkj
https://paperpile.com/c/QnRvch/MP3F9
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in the waterlogged deposits of Torihama providing a rare opportunity to examine pottery use 

against changes in the fauna and flora that were exploited, as well as other material culture 

associated with their procurement and processing. It has been tentatively proposed that the site 

was initially a seasonal (summer/autumn) hunting and fishing station in the Late Pleistocene 

but became occupied for longer periods of time during the Early Holocene, with greater 

emphasis on plant and freshwater shellfish collection (10–13). Despite sea-level rise at the 

Pleistocene/Holocene transition, marine foods were most likely available throughout the 

sequence as the distance the open sea remained reachable due to the steep coastal morphology 

(Fig 1). 

 

To investigate changes in the pottery use at this site, three complementary methods were 

deployed using well-established protocols (see Methods) to 143 vessels from all 9 stratigraphic 

phases at Torihama (Table S1). First, lipids were extracted from ceramics and adhering charred 

surface deposits (foodcrusts) and their structural and carbon isotope characteristics determined 

using gas chromatography-mass spectrometry (GC-MS) and GC-combustion-isotope ratio MS 

(GC-c-IRMS) respectively. Second, carbonised deposits were directly analysed by elemental 

analysis - isotope ratio mass spectrometry (EA-IRMS) to determine their bulk carbon (δ13C) and nitrogen (δ15N) stable isotope values. Finally, plant microfossils (starch and phytoliths) were 

extracted and counted in carbonised deposits adhering to interior and where possible exterior 

surfaces.  

Results  Diagnostic compounds (“biomarkers”) for aquatic foods were identified by GC-MS in a large 

proportion of samples analysed (Table 1, Fig. 2A), regardless of period (Incipient, Initial or 

Early) or sub-phase (Fig 2D, Table S1). In total over 50% of the samples analysed that produced 

an interpretable residue contained isoprenoid alkanoic acids and long-chain (C18-C22) ω-(o-

alkylphenyl) alkanoic acids (APAAs, Fig. 2A), satisfying the full molecular criteria for aquatic 

products in archaeological pottery (15). Such APAAs are only formed from protracted or 

repeated heating of polyunsaturated fatty acids in aquatic oils and therefore must be derived 

from primary use of the pot (16). The high proportion of APAAs recovered is remarkable given 

the antiquity of the vessels and must represent only a minimum estimate for the presence of 

aquatic products, given that APPAs are not easily formed and are susceptible to degradation and 

loss due to their low abundance. A greater number of samples had partial sets of biomarkers 

consisting of C18 APAAs and at least one isoprenoid (Table 1, Fig. 2A), and many more had lipid 

profiles consisting of medium- and long-chain saturated (C14-C24), monounsaturated (C16:1-C22:1) 

and dicarboxylic (C7-C13) fatty acids which are typical of degraded fish and aquatic mammal oils 

(Table S1). In addition, the relative frequencies of two naturally occurring diastereomers of 

phytanic acid were assessed (3S,7R,11R,15-phytanic and 3R,7R,11R,15-phytanic acid). Phytanic 

acid is an isoprenoid acid only present in high abundance in the tissues of ruminant, freshwater 

and marine animals with a predominance (i.e. >60%) of the SRR-isomer in aquatic species (17, 

18). Phytanic acid was observed in 89% of the archaeological samples analysed, and in the 

majority of cases (ca. 90%) the SRR-isomer was most abundant, consistent with an aquatic 

https://paperpile.com/c/QnRvch/zf9Hi+doaA4+QEPip+BJhOf
https://paperpile.com/c/QnRvch/raBy4
https://paperpile.com/c/QnRvch/PCvqR
https://paperpile.com/c/QnRvch/vUm0J+JXk8
https://paperpile.com/c/QnRvch/vUm0J+JXk8
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rather than ruminant source (Fig 2B). However. a slight decrease in the contribution of SRR was 

observed through time (Fig. 2B), which may indicate a broadening of pottery use. 

 Bulk carbon (δ13C), nitrogen (δ15N) stable isotopes and atomic carbon to nitrogen ratios (C:N) 

were obtained from the charred deposits adhering to 70 vessel interiors to assess the origin of 

the bulk organic matter in these residues. Whilst this approach has been widely applied to study 

the use of East Asian pottery (19, 20), it offers only crude resolution of contents due to 

uncertainties in the isotope end-points of different foodstuffs and due to diagenetic alteration 

(21). The δ15N values of 75% of charred deposits analysed ranged between 8.8 and 13.4‰ (Fig 

2C), regardless of period. A similar range has been previously observed in charred ceramic 

deposits from different coastal archaeological sites associated with the exploitation of fish and 

marine mammals (22, 23) and is more consistent with reference tissues from aquatic organisms 

than terrestrial animals or plants (24), although mixing of the latter cannot be ruled out or 

accurately quantified using this approach. We note however that over 90% of the samples have 

atomic C:N ratios less than 12 (median = 9.7; Table S1) which characterise protein rich foods 

rather than starchy plants (20). Carbonised deposits more depleted in 15N (ie. below 6‰) and 
consistent with terrestrial plant and animal foods, were only observed in the minority of cases (ca. 8% of observations). In one charred deposit (T309), associated with an Early Jōmon vessel, 
we observed a bulk 15N value of -0.3‰ and a C:N ratio of 21.5. Coupled with the absence of 
aquatic lipid biomarkers, this result provides the only convincing example of plant processing in 

pottery from Torihama (19). 

 Carbon isotope ratios (δ13C) of charred deposits showed a greater difference between periods, with Early Jōmon pots much more variable (Fig. 2C). This parameter is mainly controlled by the 
carbon source. Marine carbon is more enriched in 13C compared to terrestrial and freshwater 

sources. In this case, the samples most depleted 13C were some of the most enriched in 15N (Fig 

2C) and also had relatively low atomic C:N ratios (Table S1). These values are consistent with 

freshwater fish and may indicate therefore a change from marine species in the Incipient period to a mixture of freshwater, brackish and marine by the Early Jōmon. This shift corresponds to 
the establishment of the shell midden and may indicate a broadening of the aquatic species 

targeted at this juncture. However, the remnant macronutrient composition of the residue also influences δ13C values, with lipids depleted in 13C compared to proteins and carbohydrates (21), 

hence our interpretation may be confounded by preferential loss of these different compound 

classes. To circumvent this problem, the stable carbon isotope ratio of two medium chain-length 

saturated alkanoic acids (C16:0 and C18:0) were determined individually using GC-c-IRMS in 52 

charred deposits and 58 sherds (Fig. 3). These values were compared with references from 

authentic modern reference fats and extracted lipids from skeletal tissues of known species 

from the site (Table S2, Fig. 3).  

 

The GC-c-IRMS data confirm a predominant marine aquatic source in the Incipient Jōmon period 
pottery, which could be either open marine species, salmonids or a mixture of these (Fig. 3A). 

The n-alkanoic acids extracted from the Holocene age samples (Fig. 3B-C) are more variable and 

are consistent with reference values from freshwater fish/molluscs and non-ruminants such as 

https://paperpile.com/c/QnRvch/NMmRm+kKuto
https://paperpile.com/c/QnRvch/zdvm
https://paperpile.com/c/QnRvch/VP8Y+IafO
https://paperpile.com/c/QnRvch/p5nE7
https://paperpile.com/c/QnRvch/kKuto
https://paperpile.com/c/QnRvch/NMmRm
https://paperpile.com/c/QnRvch/zdvm
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wild boar (Fig. 3, Table S2) although marine derived residues are also represented. The correspondence between relatively low lipid δ13C values and aquatic biomarkers strongly 

supports evidence for the processing of freshwater products. Interestingly, this freshwater signal is only observed in the Early Jōmon pottery (Fig. 3C), despite the fact that freshwater fish, 
particularly carp (Cyprinidae) are found throughout the sequence and the site is situated near 

freshwater and brackish lakes (Fig. 1). It is hard to determine whether freshwater fish or 

freshwater molluscs were processed in pottery at this time. The nitrogen isotope values of 

carbonised residues from Early Jōmon pottery with aquatic biomarkers are more consistent 
with reference values from higher trophic level fish than the freshwater molluscs (24, 32) that 

mainly comprise the midden, although a contribution from the latter cannot be completely ruled 

out or easily distinguished using lipid residue analysis. 

 A small number of vessels without aquatic biomarkers and with alkanoic acid δ13C values 

consistent with both ruminant and non-ruminant terrestrial animals are observed in all periods. Of the Initial Jōmon vessels analysed, those without charred deposit showed an absence of 
aquatic biomarkers whereas all charred surface deposits from this period produced the full 

range of these (Table S1). Moreover, this difference is supported by the stable carbon isotope 

signature of n-alkanoic acids which are more enriched in the samples with charred surface 

deposits. These data may point to deliberate separation of terrestrial and aquatic resources and more dedicated pottery use during the Initial Jōmon period. There was no such correspondence 
between vessel use and the presence or absence of charred deposits during the other periods; 

here aquatic biomarkers were readily formed in both surface deposits and within the vessel 

wall, although vessels without foodcrusts were rare in our sample. Nevertheless, despite some 

variation and possible ambiguity due to mixing, we conclude that aquatic foods were a dominant 

feature of pottery use in all periods; in only the minority of cases (<10%) can we rule out vessels 

used for this purpose. 

 

None of the samples had very depleted 13C n-alkanoic acids values consistent with reference 

values from acorns obtained from Japanese forests (Fig. 3), despite the abundance of acorn 

macro-remains in the Torihama deposits. Similarly, the atomic C:N values are not linearly correlated with δ13C (Pearson R = -0.21, P = 0.0754), as would be expected if 13C depleted 

starchy plant foods were making a significant contribution. The distributions of lipids observed 

in the pottery are also inconsistent with plant oils or waxes, although plant sterols and terpenes 

were occasionally observed at low abundance (Table S1). It is possible that low amounts of plant 

derived lipids may have been masked by lipid rich animal products. To investigate further, plant 

starch granules and phytoliths (silica bodies) were extracted from interior and exterior charred 

deposits from 15 Incipient and 6 Early Jōmon vessels using established protocols optimized for 
pottery residues (33, 34). In each case the number of starch granules (<1 count mg-1) and 

phytoliths (<10 count mg-1) were very low and significantly indistinguishable from exterior 

surface deposits (Kruskal-Wallis, χ2(phytoliths)=0.0385, p=0.8444; χ2(starch)=1.6662, 

p=0.1968) (Table S4). Although starch granules deteriorate during cooking, low counts of more 

thermally-durable phytoliths were recorded in the same samples, supporting the proposition 

that an absence of plant remains was not a result of poor preservation. Although plant 

https://paperpile.com/c/QnRvch/p5nE7+mXuQ
https://paperpile.com/c/QnRvch/da6db+Bo8qg
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processing remains a possibility, as lack of evidence is always difficult to interpret, we argue 

that given i) the optimal organic conditions for preservation at Torihama, ii) the fact that plant 

microfossils have been readily extracted from other examples of hunter-gatherer pottery (33, 

34), iii) the elevated bulk δ15N values, iv) the low atomic C:N ratios, and v) the overwhelming 

molecular evidence for lipids derived from aquatic animals, the absence of significant plant 

processing in pottery from Torihama can be reasonably concluded.  

Discussion  

The close and continued use of pottery for processing aquatic resources contrasts with shifts in 

artefact assemblages and faunal remains at Torihama. The exceptional preservation of organic 

materials in the waterlogged deposits at this site shows that a range of terrestrial plant and 

animal species were exploited in all periods, in addition to freshwater and marine species (12). 

Pollen from nearby Lake Suigetsu, indicates that deciduous broadleaf forest was already 

established in the Late Pleistocene and persisted even during the much cooler conditions that prevailed during the Younger Dryas, corresponding to the Incipient Jōmon phase at Torihama 
(35). Nevertheless, the resurgence of forests in the early Holocene (Initial Jōmon) must have 
greatly increased opportunities for hunting terrestrial animals and exploiting nut bearing trees. 

Grinding stones for preparing plant foods, projectiles for hunting as well as acorns, water-

chestnut, wild boar, and sika deer are found throughout the sequence. The relative importance 

of these terrestrial based activities compared to fishing and shellfish collection is hard to 

accurately assess. Storage pits filled with acorns and an increase in the number of grinding stones relative to other lithic artefacts characterise the Early Jōmon layers (36) and provide the 

clearest evidence for economic change driven by an increase in the exploitation of forest 

products. This change also corresponds to an increase in the abundance of pottery relative to 

lithic artefacts (Table 1) and the start of significant shellfish exploitation. Despite these changes, 

a broad subsistence strategy is observed throughout the sequence and clearly contrasts with 

our evidence for specialisation in the use of pottery.  

 

It has been argued that the sharp increase in the frequency of pottery across the Japanese 

archipelago at the start of the Holocene (37) was associated with new uses for pottery related to 

the exploitation of a wider range of food products that became available with climatic 

amelioration. Within this context, the lack of evidence for plant foods in the majority of vessels 

analysed throughout the sequence at Torihama is particularly interesting, since protracted 

boiling of nuts to remove toxic tannins and saponins is often cited as a major driver for the 

uptake of early ceramics (19, 37–39). The paucity of fat-rich ruminant products in pottery, 

which are easily distinguishable by GC-c-IRMS (25), is similarly intriguing. Given their size and 

abundance sika deer, in particular, made a substantial contribution to diet and are found in all 

phases at Torihama (12) but fat from this source could only be clearly identified in three 

samples (Fig. 3). Nor does it seem likely, given the relatively high 15N values observed in the 

charred deposits, that exploitation of molluscs was the main driver for increased pottery 

production as has been suggested (40), even though freshwater molluscs were heavily exploited 

at Torihama. Instead, the direct evidence of pottery use reported here supports the idea that 

pottery was invented in the late glacial period with the aim of processing a broader range of 

https://paperpile.com/c/QnRvch/da6db+Bo8qg
https://paperpile.com/c/QnRvch/da6db+Bo8qg
https://paperpile.com/c/QnRvch/QEPip
https://paperpile.com/c/QnRvch/B28JB
https://paperpile.com/c/QnRvch/3eUPk
https://paperpile.com/c/QnRvch/3o1S7
https://paperpile.com/c/QnRvch/ss4J9+3o1S7+NMmRm+mSRiL
https://paperpile.com/c/QnRvch/rWzCN
https://paperpile.com/c/QnRvch/QEPip
https://paperpile.com/c/QnRvch/HbcwJ
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aquatic products (9) and that it retained this primary function at least until the mid-Holocene. 

Such functional resilience in the use of pottery in the face of altered environmental conditions, 

dramatic changes in the scale of manufacture as well as proliferation in form and design, is 

remarkable.  

 

The association between fishing and the hunting of aquatic mammals and pottery production 

may be a broader feature of pre-agricultural communities. Similarly high δ15N values have been found in carbonised deposits on Jōmon pots throughout the Japanese archipelago (9, 19, 20). 

Lipid residue analysis has shown that marine and freshwater products were frequently 

processed in pottery produced by Holocene hunter-gatherers from Northeastern North America 

(22) and the Baltic (23, 41), and in Japan as late as the Final Jōmon phase (1000–400 BC) (42) . As the earliest Incipient Jōmon were relatively small, typically 1-2L (43), and were only 

produced in low numbers, their effectiveness for substantially increasing aquatic resource 

production is questionable. Our findings are more consistent with the view that pottery was initially a ‘prestige technology’ with a limited range of uses for special foods for aggrandizing or 

in competitive feasting (4), particularly during periods of high resource abundance and social 

aggregation. Practically, pottery may have facilitated the rendering and storage of highly prized 

aquatic oils during seasonal gluts of fish that occur during short-lived episodes of spawning or 

migration, in concert with other larger perishable containers, as has been documented 

historically (44). However, it is interesting that this specialised function did not change 

substantially as new forms emerged and pottery became more abundant and easier to produce during the Holocene, unless the perceived ‘value’ of aquatic foods also changed through time. A 

broadening of the types of aquatic resources processed in pottery in the Holocene to encompass 

freshwater and brackish species provides the only evidence that the tight control governing 

pottery use was relaxed. Increases in the size and diversity of pottery in Early Jōmon may well 
reflect increased ability to obtain surplus fish, to control labor, and an increased demand for fish 

oil for more elaborate and diverse feasting contexts.  

 

Regardless of the significance or scale of the activity, our study shows that pottery retained its 

primary function despite substantial warming at the start of the Holocene, increased 

exploitation of the burgeoning forests, increased sedentism, and the proliferation of artefacts 

associated with plant processing and fishing. For this to happen, we suggest that pottery 

production, specifically for the exploitation of aquatic resources, must have been embedded in 

the social memory of these East Asian foragers for thousands of years, as a cultural norm. This 

dependable strategy was used by successive generations perhaps to mitigate against risks 

associated with environmental change, the adaptation to new forms of subsistence, social 

transformation and changes in territorial control. We hypothesise that this same functional 

driver was at least partly responsible for the long distance spread of pottery westwards across 

Eurasia through lacustrine and riverine ecological corridors in the early Holocene(45). But this 

needs formal testing.  

 

https://paperpile.com/c/QnRvch/MP3F9+kKuto+NMmRm
https://paperpile.com/c/QnRvch/VP8Y
https://paperpile.com/c/QnRvch/XXXsx+IafO
https://paperpile.com/c/QnRvch/4gXaT
https://paperpile.com/c/QnRvch/qEIJO
https://paperpile.com/c/QnRvch/jXSFW
https://paperpile.com/c/QnRvch/97WS
https://paperpile.com/c/QnRvch/tpJxR
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Methods 

One hundred and forty three ceramic vessels were obtained from different 9 stratigraphic 

phases at Torihama (Table S1). Each phase was dated by the associated pottery typology and 

independently through radiocarbon dating of associated organic artefacts (Table S3). 

 

Lipid analysis of ceramic samples 

Lipids were extracted and methylated in one-step with acidified methanol (46, 47). Briefly, 

methanol was added to 99 homogenized charred deposits (1mL to 10–30 mg) and 57 ceramic 
powders drilled (d. 2mm-5mm) from the sherd surface (4mL to 1g). The mixture was sonicated for 15 min, and then acidified with concentrated sulphuric acid (200 μl). The acidified 
suspension was heated in sealed tubes for 4 h at 70 °C and then allowed to cool. The lipids were 
then extracted with n-hexane (3 × 2 ml), and directly analysed by GC-MS and GC-C-IRMS using 

standard conditions and protocols (16, 25, 48). Alternatively, lipids from 4 homogenized 

charred deposits were extracted by alkali saponification (2 ml of sodium hydroxide (5% (w/v) 

in methanol) for 2 h at 70 °C). Saponified extracts were cooled, neutral lipids were removed (n-

hexane, 3 x 2ml), the extracts were acidified with HCl and the acid fraction was extracted (n-

hexane, 3 x 2ml) and methylated using BF3-methanol complex (14% w/v, 200μl, 1h, 70°C). For 
GC-C-IRMS, instrument precision on repeated measurements was ±0.3‰ (s.e.m.) and the 
accuracy determined from in-house FAME and n-alkane isotope standards was ±0.5‰ (s.e.m.). All δ13C values are expressed in per mil (‰) relative to the Vienna PeeDee Belemnite (VPDB) 
international standard. Where sufficient sample remained, solvent extraction was also carried 

out on drilled pottery sherds and crushed surface residues. Samples were sonicated three times 

with DCM:MeOH (2:1, v/v). The extracts were combined, and evaporated to dryness under a 

stream of N2. Solvent extracted and a selection of acid-methanol extracted samples were silylated with BSTFA at 70 °C for 1 h, and then evaporated to dryness under a gentle stream of 
N2. Derivatised samples were redissolved in n-hexane, and analysed directly by GC-MS as 

described previously (16, 25, 48).  

 

Lipid analysis of faunal remains 

Lipids were extracted and analysed by GC-c-IRMS from selected faunal remains at Torihama to 

provide additional comparative reference data (Fig. 3, Table S2) using previously described 

procedures (29). Exogenous lipids were first removed with dichloromethane/methanol (2/1 

vol/vol; 3 x 2 mL) from each bone sample (ca. 1g). After each solvent addition, samples were 

ultra-sonicated for 15 mins and then centrifuged at 867 x g for 10 mins. The supernatant was 

removed and the remaining bone powder was dried completely under gentle stream of N2 and 

then extracted, as a selection of modern animal tissues (ca. 30mg) and experimental cooking 

vessel (ca. 1g), using the acid-methanol procedure as outlined above for ceramics. The 

methylated fatty acids were analysed by GC-C-IRMS as described above. Modern reference 

samples were further corrected for the burning of fossil fuels (49) to allow comparison with 

archaeological data.  

 

Bulk isotope analysis 

https://paperpile.com/c/QnRvch/pXLic+hM4zV
https://paperpile.com/c/QnRvch/meloH+rWzCN+PCvqR
https://paperpile.com/c/QnRvch/meloH+rWzCN+PCvqR
https://paperpile.com/c/QnRvch/y3AcA
https://paperpile.com/c/QnRvch/RxtIo
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Crushed surface residues (~1 mg) were analysed by elemental analysis IRMS as previously 

reported (48). Samples yielding less than 1% N were discarded and instrument precision on repeated measurements was ±0.2‰ (s.e.m.). δ13C, δ15N = [(Rsample/Rstandard−1)] × 1,000, 
where R = 13C/12C and 15N/14N. All sample measurements are expressed in per mil relative to VPDB for δ13C values and air N2 for δ15N values.  

  

Plant microfossil analyses 

Surface residues (ca. 1.5 to 7 mg) were treated with H2O2; 3%, 10mL; 15-30 min and manually 

disaggregated. Samples were then centrifuged (1000 xg; 3 min) and the supernatant reduced to 

2ml. The remaining residues were washed three times with UltraPure water and made up to 

1mL suspensions. This supernatant, containing liberated phytoliths and starches was added to 

microscope slides and left to dry at room temperature. Samples were mounted in glycerol 

before viewing in rotated planes using an inverted polarising microscope fitted with a digital 

camera. All silica bodies and starches were counted by scanning the mounted specimen in a grid 

pattern at a magnification of x400. 
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Fig. 1. Location of the Torihama site. Dotted contours indicate the bathymetry relative to present mean sea level. 

The coastline corresponding to the Incipient period was between ca. 65-50m below present-day sea level (14). Topography is shaded by 50m increments. Map courtesy of Wakasa Mikata Jōmon Museum. 

 
Fig. 2. Correspondence between the phases of pottery at Torihama and their molecular and isotopic 

characteristics. (A) Proportion of pots with an interpretable lipid residue (> 5μg g-1) containing full (C18-C20 APAAs 

and at least on isoprenoid fatty acid) or partial sets (C18 APAAs and at least one isoprenoid fatty acid) of aquatic 

biomarkers. (B) Boxplot showing the range in the contribution of the SRR diastereomers of phytanic acid with 

number of observations indicated for each period. (C) Plot of bulk isotope values obtained from analysis of 

carbonised deposits. (D) Showing the pottery sequence at Torihama based on available radiocarbon dates (Table S3) 

against the Greenland ice-core oxygen isotope record, with lower δ18O values generally corresponding to lower 

temperatures.  

https://paperpile.com/c/QnRvch/v1D3H
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Fig. 3. δ13C values of C16:0 and C18:0 n-alkanoic acids extracted in three phases of Jōmon pottery from 
Torihama. a) Incipient Jōmon, b) Initial Jōmon, c) Early Jōmon. The data are compared with reference ranges for 
authentic reference lipids from modern tissues and archaeological bone (Table S2)(9, 22, 25–31) (66.7% confidence). 

Samples with the full range of aquatic biomarkers are shown by filled circles. 

 

Table 1: Table summarising organic residue analysis results by period in relation to the relative frequency of 

pottery and description of stone artefacts, plant and faunal remains 
 

Period 

Associates 

dates 

(x103 cal BP) 

Samples 

analysed 

Samples 

yielding 

lipids* 

Samples yielding 

aquatic biomarkers 

(with partial set) 

Relative 

pottery 

abundance to 

stone 

artefact† 

Stone artefact 

assemblage‡ 

Species representation‡ 

(aquatic to terrestrial)§ 

Incipient 

13.8-10.9 
64 94% 62% (84%) 0.7 

Projectiles, net sinkers, 

grinding stones 

Freshwater, marine, 

terrestrial (a/t = 1.8) 

Initial 

11.1-8.0 
15 80% 50% (67%) 0.4 

Projectiles, net sinkers 

and grinding stones 
(n/a) 

Early 

7.9-5.1 
80 84% 50% (82%) 2.0 

Net sinkers, grinding 

stones, projectiles 

Marine, freshwater, 

terrestrial (a/t = 3.6). 

*Greater than 0.2µg.mg-1 †Pottery weights for the area excavated were estimated from analysis of a partial sample (12m2) with layers S1 to Z1. It is expressed 

relative to the amount of stone artefact. ‡Order of frequency 

§a/t - Species representation for aquatic versus terrestrial animals in terms of minimum number of individuals (MNI). 
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