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Abstract 

We consider a irlodel of a Hopf bif~rcat~iorl intera~t~ing as a codiirlerlsiorl 2 bifurcation ~it~l .1 a 

saddle-node on a liirlit cycle, irl~t~ivat~ed by a low-order irlodel for magnet,ic act,ivit,y in a stellar 

dynamo. This irlodel corlsist,~ of coupled irlt,eract,iorls between a saddlenode arld t,wo Hopf bifur- 

cat>ions, where the saddlenode bif~rcat~iorl is assuirled t,o liave global reirljectiorl of t,raject,ories. 

The irlodel car1 produce cl.laot,ic beliaviour wit,liin each of a pair of invariant subspaces, and also 

it can show at,t,ract,ors t>klat are stuck-on to b0t~l.1 of t,he inrrariant, subspaces. We imest,igat,e t,he 

det>ailed intjerinitjtjentj dyrlairlics for such an at,t,ract,or, irlriest,igat,irlg t,he effect of breaking t,he 

~yirlirlet~ry bet>weerl t,he t,wo Hopf bifurcations, and observing t,l.lat it can appear via blowout, 

bif~rcat~iorls froirl t,he invariant subspaces. 

We give a siirlple llarkov chain irlodel for t,he t,west,at,e irlt,erinit,t,ent dyrlairlics t,l.iat, repro- 

duces t,he t,iirle spent close t,o t,he invariant subspaces and t,he swit,cl.ling bet,weerl t,he different, 

possible i11variant~ subspaces: t>klis clarifies t,he obser~rat~ion t>klat t,he prop~rt~iorl of t>iirle spent, near 

the different subspaces depends on the average residence t>iirle and also on the pr~babilit~ies of 

~wit~ching bet>weerl t,he possible subspaces. 

*P.Asl.lwinOex.ac.uk 
' ~A.b~.~uck l id~e~ leeds.ac .uk  
~rsturinan~inatl.~s.leeds.ac.uk 



1 Introduction 

Modelling chaotic and intermittent changes, for example in the intensity and polarity of magnetic 

fields caused by stellar dynamos, is a significant challenge, whether via minimal phenomenological 

models, mean-field models or detailed numerical simulations. Previous work of Tobias et al. [28] 

and Knobloch et al. [16] in this direction used the dynamics near an interaction of local bifurca- 

tions (saddle-node and Hopf) to suggest low-order phenomenological models for the stellar dynamo 

problem. The interaction of saddle-node and Hopf bifurcations is one of the simplest bifurcations 

that gives rise to chaotic attractors local to the bifurcation [12] and hence is useful in providing a 

model with chaotic behaviour in a truncated bifurcation normal form. 

One aim of the present paper is to combine and modify aspects of the models to overcome one of 

the main problems in [16, 281, namely the fact that the attractors there are only marginally stable 

and small changes to initial conditions or parameters lead to solutions that depart to infinity. We 

do this by assuming that the saddle-node bifurcation occurs on a limit cycle [l, 141, and so ensure 

that the dynamics will remain in a compact region in phase space; this allows much more robust 

simulation of the dynamics than was possible in [16, 281. We remark that the saddle-node/Hopf 

bifurcation with global reinjection has been subject of recent study by [17, 181 and shows very rich 

bifurcation and periodic orbit structure. We will be mostly concerned with the case in which there 

is a chaotic attractor for two such bifurcations, symmetrically coupled. 

The model (4) we derive in Section 2 consists of ordinary differential equations (ODES) in 

six (real) variables. Symmetries force the existence of two invariant subspaces of three dimensions; 

these correspond to pure dipole and pure quadrupole magnetic fields in the analogous model of [16]. 

The intersection of the two subspaces is of one dimension and this is the variable that undergoes 

the saddle-node bifurcation. The dynamics within each of the three-dimensional subspaces can be 

chaotic, and attractors may include points within (or be 'stuck on' to) these subspaces and hence 

typical trajectories show intermittency where they remain for arbitrarily long times in arbitrarily 

small neighbourhoods of the invariant subspace. This leads to the appearance of on-off and other 

types of intermittency; see for example [ll, 13, 19, 20, 261; for reviews, see for example [5, 241. 

This leads on to the second aim of the paper; to investigate in detail some examples of intermit- 

tent dynamics of some attractors for the model (4) where the dynamics is intermittent to more than 

one invariant subspace. Although intermittent dynamics has been found previously in examples of 

mean field dynamos, as far as we are aware this is the first example of twestate intermittency in 

such a model that involves chaotic saddles within the invariant subspaces. To this end, we look at 

numerical simulations typical for the system in Section 3 and consider their intermittent dynamics 

in detail. 

Previous examples of two-state intermittency include, for example, [3] and [lo, 291, where at- 

tractors are on-ff intermittent to more than one invariant subspace such that the same chaotic 

saddle governs approach towards and departure from the invariant subspace. Here we find in-out 



intermittency (scc [5]) wllcrc diffcrcrlt saddles arc responsible for approach towards m d  departure 

frorn tlic subspacc. This in-out iritcrrnittcrlcy has previously bccri found in PDE arid ODE dyriarno 

rnodcls [9] arld in otllcr situations [19] but rlot as a two-state intcrrnittcncy. 

In particular, the dyrlarnics of tlic irltcrrnittcrlt attractor explores a ncigllbourhood of the in- 

variant subspace that includes the attractor witliiri tlic irlvariarit subspacc, but wliicll also includes 

unstable dyrlarnics witllirl tllc subspacc. \Vc briefly investigate tllc appearance of two-state intcr- 

rnittcrlcy via blowout bif~~rcations frorn the invariant subspaccs (cf. for cxarnplc [2, 3, 11, 22, 231) 

and find cvidcrlcc tliat subcritical blowout bifurcations frorn tllc irlvariarit subspaccs is succeeded 

by a crisis that sets up twestatc in-out intcrrnittcncy. 

Scctiorl4 rnodcls twestatc irltcrrnittcrlcy in tllc rnodcl(4) via tllc probability dcrlsity of a LIarkov 

rnodcl for tllc distarlcc frorn each of the irlvariarit subspaccs. \aTe use this to obtain cstirnatcs for tllc 

proportior1 of tirnc spcrlt near cadi of the invariant subspaccs, arld fit tllc pararnctcrs in tllc rnodcl 

to the ri~~mcrical cxarnplcs in previous sections. Firlally in Scctiori 5 we discuss sornc generalities 

of tlic rnodcl arid its dynamics, and of the probabilistic model. 

2 Formulation of the model 

The main rnodcl we study in this papcr is a systcrn of six coupled ODES with two irlvarimt subsp,2c.cs 

cad1 of tllrcc dirncrisiorls: tllcsc rcprcscrit purc dipole and purc cluadrupolc rnagrlctic fields in tllc 

rnotivatirlg rnodcls [16, 281 for this work. Tlic irltcrscctiorl of tllcsc invariant subspaccs is a orlc 

dirncrlsiorial ODE corrcsporldirig to zcro rnagrlctic field. 

\Vc airn in this paper to irnprovc the models of [16] and [28] to (a) allow cllaotic bchaviour 

witliirl tllc syrnrnctric subspaccs, (b) rnakc the appcarancc of twestatc irltcrrnittcrlt attractors 

bctwccrl tllcsc subspaccs more robust arld (c) avoid problcrns with scrlsitivity to parameters arld 

initial coriditiori tliat may lead to blowing up in [16], by rnakirig tlic 'zero rnagrlctic field' variable 

compact. \Vc dcfcr a dcttdlcd discussion of tllc motivation of tllc rnodcl, arld the diffcrcrlccs frorn 

tllc rnodcls of [16] and [28] to scctiorl 2.6. 

2.1 Saddle-node/Hopf bifurcation 

\Vc consider a codirncnsion 2 bifurcation. Tlic interaction of a saddle-node bifurcation and a Hopf 

bifurcation is well understood [12]. This occurs wlicrl the Jacobiarl rnatrix of a flow has a purc 

irnagirlary pair arld a sirnplc zcro cigcnvaluc. Tliis car1 be writtcrl in normal form, truncated to 

quadratic order, as 

wlicrc z E (C, v E R, and p, w, c, K, el E R arc parameters. A rlorrnal forrn syrnrnctry is prcscrlt 
. , 

in tllc equations, rlarncly z + ze"', for m y  fixed mglc 4. (This includcs tllc symmetry z + -2.) 



Figure 1: Bifurcation diagram for tllc dcgcncratc case (1) of tllc irltcractiorl of a s,ddlcnodc 

bifurcation (marked SN, unfolding pararneter K) and a Hopf bifurcation (marked HI, unfolding 

pararneter p). Observe tliat tliere is also a licteroclirlic corlrlectiorl on tlie line rnarked H2, and this 

is dcgcncratc in that an opcrl set in tllc pllasc space is foliated with tori for tllcsc parameter values. 

See the text and [12] for rnore details. 

The pararneter el is frccl~~ently rescaled to el = -1 (the rlegative sign ensures the Hopf bif~~rcation 

is supcrcritical) [12] arld we will t& el = -1 throughout. A saddle-node bif~~rcation occurs in 

tllc v-direction as K passes through 0, giving fixed points, v+ arld v-, at (2, v) = (0, *&). The 

systcrn is axisymmctric because of tllc riorrnal forrn symmetry, and so car1 be trarlsforrncd into 

cylirldrical polars (r,  0, v) = (121, arg(z), v) with tlic angular variable dccouplcd. A lirnit cycle C at 

( r ,  a) = ( d m ,  -p/e) for p2 5 e2& is created as the complex variable z uridcrgocs a Hopf 

bifurcation on crossing the line K = p2/e2. A lleteroclirlic corirlectiorl 'Ft frorn a+ to a- exists at 

K = 0 (p  > 0). This indicates a dcgcrlcricity irl the model, sirlcc dso on this hdf-line tllcrc is a 

sccorldary Hopf bif~~rcation, in wllicll the lirnit cyclc bif~~rcatcs into a rlcstcd family of tori. Tllc 

beliaviour of the system is summarized in figure 1, for the case e > 0 (see [12] for details). 

This systcrn rnodcls a dynamo in wllicll llydrodyrlarnic bchmiour (with rnagrlctic field cclud 

to zero) is rcprcscritcd by tllc c-axis. Tllc properties of a dyriarno rccluirc tliat tliis axis rcrnairl 

irlvaiant. Two diffcrcrlt corlvcctirlg states (one Ilydrodynarnically stable but magnetically unstable, 



and one hydrodynamically unstable but magnetically stable) are represented by the two fixed points 

on the v-axis. The complex coordinate 2. represents the magnetic field. When separated into real 

and imaginary parts we have a natural correspondence of real part with the toroidal field, and 

imaginary part with the poloidal field [28]. The (primary) supercritical Hopf bifurcation represents 

the onset of magnetic instability. Also in the B equation is a term giving the contribution of the 

velocity field to the magnetic flux. (This is the only permissible quadratic term, since v2  would 

break the invariance of the v-axis, and 1zI2 would break the invariance z t -2, needed to allow 

a reversal of the field.) Finally, the v equation also contains a term modelling the Lorentz force 

(reaction of the magnetic field) on the flow. 

There is an open set of initial conditions for which trajectories escape to v = -m. In particular, 

trajectories that begin outside the heteroclinic connection 'FI escape in this way. This can be 

prevented by introducing another attracting fixed point on the v-axis, near -m [28]. This also 

results in the degeneracy of the secondary Hopf being broken. 

2.2 Breaking the degeneracy of the secondary Hopf 

Adding a cubic term cv3 to the 6 equation retains the axisymmetry, breaks the secondary Hopf 

degeneracy, and introduces a new fixed point at v E l/c. Thus the system becomes 

B = (p  + iw)z + czv 
2 3 2 6 = K - V  + C V  -12.1. 

The constant c is chosen to be negative to make the new fixed point v-- stable in the v-direction. 

The two original fixed points remain near v+ and v- for small c. The bifurcation diagram remains 

similar to the case above, but now the secondary Hopf bifurcation no longer occurs at the same 

parameter values as the existence of 'FI. We also have regions of parameter space created in which 

stable two-tori are possible (see [12, 151 for details). 

2.3 Breaking the axisymmetry 

The axisymmetry of the system, which is a normal form symmetry, allows the angular component 

to be decoupled, and so the system is two-dimensional in the remaining variables. Thus no chaotic 

dynamics is possible. Breaking the axisymrnetry allows more complicated trajectories to occur. 

The system as a dynamo model also demands that the axisymmetry is broken, as it implies the 

equivalence of the poloidal and toroidal fields, which is not true for the dynamo process. However, 

changing the sign of the magnetic field is a symmetry of the dynamo problem. We break this 

symmetry in a way that preserves the invariance of the v-axis and retains the symmetry x t -2, 

by adding a term proportional to z3. (The symmetry z t -z is erroneously absent from the model 



2 = (p  + iw)z + ezz! + da" 
6 = K - a2 + crc:3 - 1zI2 

Although this results in a systcrn with a degree of non-gcncricity (the invariance of tllc v-axis), this 

corlstrairit is rccluircd for the systcrn to be a viable rnodcl of a dyriarno - any purely llydrodyrlarnic 

states rnust rcrnairl purely liydrodyrlarnic for d l  tirnc. 

2.4 Preventing escape of trajectories to infinity 

In ordcr to prevent solutions frorn cscapirlg to v = -oc or being attracted to a fixed point rlcar 

-oc, we car1 rerider the system pcriodic in a. On tlie a-axis, instead of a saddlenode bifurcation on 

an irifirlite line, we liave a saddlerlode bifurcation on a lirnit cycle. Ariy trajectories threatening to 

cscapc closc to tllc lower unstable rnmifold of v- return closc to the upper stable rnmifold of v+: 

we call this process the global reinjection. This type of rcirljectiori of sol~~tions has been studied 

in many models, m d  its irltcractiorl with a Hopf bifurcation is studied in [17, 181, for rnodcls of 

optically driven lasers. 

\Ve clioosc to rnake v pcriodic on the interval [rL/2, rL/2], wllcrc L is a new parameter. In 

ordcr to ensure that the variable arld its powers rcrnairl continuous on this interval, we observe 

that we rleed trigorlornetric functions that are (a) periodic on [-7rLI2, 7rL/2], a11d (b) proportiorla1 

to a, a2, arid a3 for v close to 0. Set u l  = Lsin(a/L), so that for sufficiently srnall a, u l  z =:a. 

Sirnilarly, set u2 = $ sir1 9: for srnall .c, u2 % v as well. The rlcw variable u l  is rlot pcriodic or1 

[rL/2, rL/2], but u2 arld u: arc, as is u:u2. Tllc systcrn car1 thus be rnadc pcriodic arld contirluous 

by substituting 

arld corlfirlirlg v to the interval [-rL/2, rL/2]. Hcrlcc the f~d l  systcrn bccorncs 

with u l  = Lsirl(:/L) a r~d  u2 = $ sir1 2. 
This system car1 produce, for suitable parameter choices, all the behaviour discussed in [28], 

with tllc ,added advarltagc that 11cmly d l  trajcctorics rcmairl in a compact rcgiorl of ph,wc space. 

In particular, the sccoridary Hopf bifurcation creates cluasipcriodic bchaviour in the forrn of an 

attracting two-torus. Irlcrcasirlg the lirlcar growth tcrrn p triggers a breaking dowrl of the t w e  

torus arid a transition to chaos. During this transition, parameter values exist at wliicll typical 

trajectories are attracted to frecluency-locked lirnit cycle. In fact, pararnder values exist at wliicll 



Figure 2: Attractors for the systcrn (3) on irlcrcasirlg ,u, with otlicr parameters w = 10.0, c = 1.0, 

d = 4.9, K; = 1.0, c = -0.1, L = 2.0. In (a) ,u = 0.026, we have a stable pcriodic orbit, with 

the trajectory wiridirig twelve tirncs around the c-axis during one f111l period. In (b) ,u = 0.026 

again, but diffcrcrlt initial corlditiorls give a cllaotic attractor. This is a Poincmb scctiorl through 

Irn(z) = 0. Superimposed arc circles rcprcscritirig the pcriodic solution of (a). The ccluilibria 

(indicated by crosses) are located at (Re(z), v) = (0,0.966), (0, -1.114). In (c) ,u = 0.027, arld the 

chaotic attractor gets closer to the a-axis. Firially in (d), with ,u = 0.028, rcirijcctiorls are cornrnorl 

and the trajectory spcrlds a long tirnc with 121 very small. 



cllaotic rnotiorl is bistable with pcriodic attractors. Figure 2(a) sllows a pcriodic attractor for 

pararneter values p = 0.026, w = 10.0, e = 1.0, d = 4.9, K = 1.0, c = -0.1, L = 2.0. Tlle 

trajectory winds twelve tirncs around tllc v-axis during orlc full period. Sirnilar lirnit cycles appear 

at smaller values of p, appmcrltly for most initial conditions. At tlicsc pararnctcr values however, 

the basin of attraction for this lirnit cycle seems very small. hlost initial corlditioris lead to cliaotic 

rnotiorl illustrated in figurc 2(b). This is a Poincmb scctiorl forrncd by plotting (Re(z), v) wllcrl 

the trajectory hits tlie section Im(x) = 0. The pararneter values are as above, but for differcrlt 

initial conditions. It shows the lleterocliriic tangle caused by the unstable mariifold of v+ crossirlg 

tllc stable rnarlifold of v-. (The fixed points v+ arld v- arc giver1 by crosses on figures 2(b), (c) 

arld (d).) Superimposed on the chaotic solution arc circles plotted wllcrc tllc pcriodic orbit of 

figure 2(a) crosses tllc Poincarb section. Irlcrcasirig p further allows tllc cllaotic attractor to much 

srnallcr values of 121, close to tlic v-axis, owing to tllc llctcroclirlic corlrlcctiorl arld tllc rcirljcctiorl 

medianism. Figure 2(c) shows an attractor for p = 0.027. Here very occasional reirljectioris are 

recluired. \Vhen the trajectory readies v = -7rLI2 = -T it is reirljected at v = T. Figure 2(d) 

sllows an attractor for p = 0.028. At this pararnctcr tllc trajcctory makes a rcirljcctiorl roughly ,as 

ofterl as it travels up the v-axis. This is as close as the attractor will get to 1x1 = 0, as iricreasirig p 

furthcr results in a rnovc away frorn the c - ~ i s ,  as rcirljcctiorls bccornc rnorc cornrnorl ar1d cvcrlt~dly 

inevitable. 

2.5 Interaction of saddle-node bifurcation with two Hopf bifurcations 

\Ve riow introduce a sccorid transverse cornplcx direction arid assume there arc Hopf bifurcations 

in cad1 of tllc variables zl arld 22. \Ve include an equation reprcscrltirlg an arltisyrnrnctric velocity 

component, u! along the lirics of [16] giving the 6-dimensional system tliat we corlsidcr for the rest 

of tliis paper. 

wlicrc p, a, LL)~ ,J ,  e1,2, b1,2, ~1 ,2 ,  K, C, T ,  e E R ar1d E @. arc d l  pc2~amctcrs. This systcrn of 

ODES has syrnrnctrics 

and in the ccwe that o = 0 arid tlie parameters are irideperiderlt of tlieir subscripts, there is an 

additiorlal syrnrnctry a1 ti 22. In the gerieral case there are tliree dirnerisiorial invariant subspaces 



given by 

23 = {(2.1,0,~,0)} and Q = {(0,22,v,O)}, 

and the intersection of these D n Q corresponding to zl = z2 = w = 0. 

We have not attempted to include all possible parameters that will unfold the system to any 

particular order; merely we have included parameters such that the observed dynamics appears to 

be robust. Note that the presence of the symmetries imply that the global reinjection occurs within 

the invariant subspace 27 n Q and so is persistent as a global connection. 

2.6 Interpret at ion and motivation 

The physical motivation behind this model comes from stellar dynamo theory. Mean-field models 

of stellar dynamos often exhibit oscillatory instabilities to magnetic fields with dipole or quadrupole 

symmetry: fields that either change sign or that are left invariant by reflections in the equatorial 

plane of the star. In these models, the instabilities to dipole and quadrupole dynamos occur for 

similar parameter values and produce similar nonlinear behaviour (apart from symmetry type). 

The complex variables 2.1 and 2.2 represent dipole and quadrupole magnetic fields, with the real 

and imaginary parts representing toroidal and poloidal components of the field, and the near- 

equivalence of dipole and quadrupole modes is represented by having la1 << p, w l  = w2, dl = d2, 

bl = b2, Dl = ,B2 and yl = 72 .  The interaction of non-chaotic dipole and quadrupole dynamos was 

considered in [16] using a model similar to (4), but with dl = d2 = 0. 

Real stellar dynamos (and most obviously the Solar dynamo) show behaviour that is not simply 

oscillatory, but consists of oscillations that are modulated chaotically over a timescale many times 

longer than the basic period of the oscillation. The chaotic modulation of a dipole dynamo was 

considered in [28] using a model similar to (2). 

Effectively, we have extended the dipolequadrupole model of [16] to include the chaotic modu- 

lation of [28], by including cubic terms to break axisymmetry. We have also made the model more 

robust by making v periodic, preventing trajectories from escaping to infinity. 

3 Intermittent attractors for the model 

We now turn to an investigation of the properties of the model (4). In particular, we are interested 

in how the chaotic modulation of [28] influences the intermittent switching between dipole and 

quadrupole activity observed by [16]. In this section we show some numerical results and their 

interpretation in terms of forms of intermittency. Dynamics is possible which spends time close to 

each of the invariant subspaces D and Q in turn. Throughout this paper we fix some parameters 

as follows except where explicitly stated: 

wl=w2=10.0, q = ~ 2 = 1 ,  ~ = 1 ,  c=-0.1, e=1.0, 

T = 1.0, L = 2, p = 0.026, a = 0.0 and dl = d2 = 4.9. (6) 



Figure 3: Time series for symmetric parameters showing switching between invariant subspaces: 

p = 0.026, a = 0. The black line denotes lzll and grey 1221. The time intervals between intermittent 

visits close to D and Q are apparently random, with a preference for alternating, but have a well- 

defined mean. The symmetry in the parameters mean that on average an equal time is spent near 

each invariant subspace. 

Recall that L governs the distance between v+ and v- via the reinjection, and hence L = 2 means 

that the distance between the fixed points in either direction is comparable. We set the nonlinear 

coupling parameters as 

3.1 A numerical example of two-state in-out intermittency 

With these symmetric parameters (a = 0) we can find trajectories which alternate between visiting 

regions very close to D and Q, as shown in figure 3. The dynamics is interpreted as follows, using 

figure 4 as a schematic guide. As the trajectory nears D (resp. Q), the active variable 2.1 (resp. 2.2) 

approaches some invariant (periodic) dynamics D~"  (resp. Qin) within that subspace, whilst the 



Figure 4: A schematic diagram showing the twestate in*ut intermittency observed in Figure 3. 

The dynamics switches between laminar phases where it remains close to each of the subspaces Q 

and D. The approach to the subspace, say Q, is close to the stable manifold of a periodic orbit 

@ that is unstable within Q to a chaotic attractor QoUt with a positive transverse Lyapunov 

exponent; trajectories then move away from Q while remaining close the the unstable set of Qout. 

When reaching a state of approximately the same distance from Q and D, the nonlinear dynamics 

can send the trajectory either back towards Q or D in a seemingly random manner. 



quiescent variable 2.2 (resp. 2.1) is suppressed. The dynamics in Din (resp. Qin) within D (resp. 

Q) is unstable to another (chaotic) invariant set DOUt (resp. QoUt). When the system is in this 

state, the quiescent variable is allowed to grow. When the quiescent variable has grown to a similar 

magnitude to the active variable, a nonlinear switching mechanism sends the system back towards 

either 27 or Q in a seemingly random manner but with a preference for a switch between D and 

Q. The time intervals between switches appear random, but have a well-defined mean. Indeed, 

for these symmetric parameters, on average an equal amount of time is spent near each invariant 

subspace. Note that here the dynamics appear to flip almost every time quiescent variables grows 

to a comparable magnitude as the active variable, but there are occasions when the variables fail 

to switch and an active dipole (say) phase is followed by another (for example at t = 2500). 

3.2 Detailed description of the mechanisms of the intermittency 

The suppression or growth of the quiescent variable is mainly governed by the magnitude of the 

active variable. The larger the timeaverage of the active variable, the greater the suppression (or 

smaller the growth) of the quiescent variable (for this choice of parameters). This is because of 

(for instance) the - 1 ~ ~ 1 ~ 2 . ~  term in the 2.1 equation in (4). This suppression and growth, and the 

sets Din etc., can be seen explicitly in figures 5 and 6. Figure 5 shows a detail from the time series 

in figure 3. The five marked segments are displayed in figure 6 as plots of Re(zl) (in black) and 

Re(2.2) (in grey) against Im(zl) and Im(z2), and lzll and 12.21 against v. First in segment I we see 

the system heading into the nonlinear switching region. Here 2.1 spirals in and 2.2 spirals out to 

meet in a region in which the two variables are of similar magnitude. Since the parameters are 

symmetric it is a delicate issue which variable is favoured in the switching mechanism. Segment I1 

shows the system favouring the dipole xl variable, and the system leads into the region Dln. Note 

that the similar magnitude of 2.1 and 2.2 causes the damping of the variable v via the -(I21 l 2  + 1z2I2) 

term in the 6 equation. In segment I11 we have reached Dln, which is a periodic torus around the 

v-axis. This torus has a sufficiently large average (Ixll) to suppress x2 further. Din unstable within 

D and in segment IV we see both the torus and v growing, leading to DOUt. The set DOUt can be 

seen in segment V, and is equivalent to the chaotic attractor shown in figure 2(b). This allows the 

growth of the quiescent variable because although lzll reaches larger values, it also spends a long 

time much closer to the v-axis, and this results in a smaller average ( 1 ~ ~ 1 ) .  

3.3 Breaking the zl * z2 symmetry 

We can break the symmetry of the parameters in the linear growth term, for example, by setting 

a # 0 to the equations. One might suppose, setting a greater rate of linear growth in 2.1 leads 

to the 2.1 (dipole) subspace being preferred, as when a switch is possible, when 2.1 and 2.2 are of 

comparable size, the direction with the greatest eigenvalue should dominate. However, it appears 

that the opposite can be true, at least for the parameter values we have investigated. 



Figure 5: Closeup of the time series in figure 3 detailing the different episodes during a 'laminar 

phase' of the intermittency as the trajectory approaches the subspxe 23. 



Figure 6: Projections of phase portraits of different time segments of figure 5 showing the different 

3 0 

episodes of the in-out intermittency for the active variable 21, while the quiescent variable 22  decays 

and then grows. In the plots in the left column black lines represent zl and grey lines represent 22.  
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Figure 7: Time series as for figure 3, but with p = 0.026 and a = 0.001. Here the linear growth 

rate is greater in the dipole variable. However, the quadrupole subspace is on average favoured. 

Figure 7 shows a time series as in figure 3, but now with p = 0.026 and a = 0.001, so the 

growth rate for 2.1 is greater than that for 2.2. The dynamics for these parameters starting with 

initial conditions solely in Q are equivalent to those given in figure 2(b) (or figure 2(a) for a more 

specific, and very precise, choice of initial conditions), and for initial conditions solely in D we 

have the dynamics in figure 2(c). For initial conditions not in either invariant subspace, a typical 

trajectory switches between these behaviours. 

Despite the larger linear growth rate in 2.1, the trajectory favours the activity in 2.2. There are 

many factors involved in taking precedence over the linear growth rate. These include the transverse 

Lyapunov exponents at Din, DOUt, Qin and QoUt ; the tangential Lyapunov exponents at Din, DOUt, 

Qin and QoUt; the average suppression from the active variable on the quiescent variable; the length 

of the laminar phases between switches; nonlinear effects within the switching mechanism; the 

type of attracting dynamics within the invariant subspaces (periodic or chaotic); other invariant or 

nearly-stable sets within the invariant subspaces. These are all important, but we will concentrate 

in section 4 on two - the length of laminar phases and the switching mechanism. We give results 



to suggest that large bias towards dipole (rcsp. clu,drupolc) sterns frorn an increased tcrldcrlcy in 

the switcllirlg rnecllarlisrn to follow a dipole (resp. cluadrupole) active phase with another. 

3.4 Blowout bifurcation to intermittency 

Corlsidcr a farnily of dyrlarnical systcrns srnootllly pararnctrizcd by sornc X E R witli a proper 

irlvariarlt subspacc N for all values of A. If the dyrlarnics in N is ir~dcpcrldcrlt of X we say X is a 

riorrnal parameter relative to N. As discussed in [2, 51 for riorrnal pararneters one car1 expect to 

locate blowout bifurcations relatively easily: for rnore gerleral parameters this is not the case. An 

examination of tllc ccluations (4) reveals that for tllc invariant subspacc Q tllc followirlg arc rlorrnal 

pararnetcrs 

0, W1, €1, dl, b l ,  Pl, 71, 7, e 

while for V the followirig are riorrnal pararnetcrs 

In particular, only r and e are rlorrnal for botli subspaces. On varying tllese frorn tlie values (6) 

we car1 stabilise an attractor in tlie irlvariarlt subspace via a blowout bifurcation whilst leaving 

tllc dyrlarnics within tllc subspace unaffected. The blowout appears to be subcritical arld we find 

no cases where tllere are attractors tliat are for example stuck on to only one invariant subspace. 

Figure 8 illustrates the cllarlgcs in typical dyrlarnics on irlcrcasirlg r. For r < 1.5 we find stable 

two-state in-out irltcrrnittcrlcy for typical irlitial conditions, as in figurc 8(a). Irlcrcasirlg r bcyorld 

1.5 creates an attractor close to z2 = 0 but bounded away frorn it, as in figures 8(b), (c) arid (d) 

(here the irlitial corlditiorls are clioser~ close to V - sirnilar tirne series close to  Q car1 be easily found 

witli different initial conditions.) In figure 8(b) we liave r = 3.0 arid the resulting attractor has 

regular oscillations near V. In 8(c) we llave r = 7.0 arid an aperiodic attractor, and in 8(d) r = 8.0 

gives arlotlicr oscillatory attractor of very long period. Incrc,wing r further causes thcsc bounded 

attractors to give way to attracting dyrlarnics witllirl V (again for thcsc initial corlditiorls closc to 

V). Botli figures 8(e) and 8(f) llave r = 10.0 and the variable 2 2  decays to zero. Tlie differerit 
rates of decay is due to  tllc different dynamics witllirl 23 - in 8(c) tllc irlitial corlditiorls lcad to tllc 

cllaotic attractor of figure 2(b), wlicrcas in 8(f) the initial coriditiorls lcad to tlie periodic attractor 

of figure 2(a). As the pararnetcrs adrnit the permnutation syrnrnctry z l  t, z2 tliis rncarls that the 

irlterrnittericy will be the sarne to botli V arid Q subspaces. 

3.5 Influence of noise 

Including additive noise in tlie rnodcl effectively destroys the irivariarlcc of the subspaces V arid Q. 

\Ve introduce the rloisc by adding to each variable a rarldorn variable frorn a rlorrnal (Gaussian) 

distribution scaled witli sorne noise level c, arid witli the scluare root of tlie previous tirne step. 

The results of this, for < = lop6, < = lop4 arid < = lop3 are sliowri in figure 9. Srnall arnounts of 



Figure 8: Dynamics for the symmetric parameters (6) and (7) on increasing T. All figures plot lzl 1 
in black and 1221 in grey. Figure (a) has T = 1.0, and shows stable two-state intermittent dynamics. 

Increasing T beyond 1.5 creates an attractor close to 2.2 = 0 but bounded away from it, as in figure 

(b), with T = 3.0. Increasing T further causes this attractor to move closer to the invariant subspace 

D, but remain bounded away from it. Figure (c) has T = 7.0. In figure (d) we have long period 

oscillatory behaviour, with T = 8.0. In figures (e) and (f) we have T = 10.0 and D has become 

attracting. Different initial conditions in (e) and (f) lead to different dynamics within D. In (e) the 

initial conditions lead to the chaotic attractor of figure 2(b), whereas in (f) the initial conditions 

lead to the periodic attractor of figure 2(a). The larger average value of lzll in this periodic orbit 

causes a much quicker decay in 122 1 .  



Figure 9: Tlic effect of rloisc on the proportiori of tirnc spent near each irivariarit subspace. Tllc 

data are produced by running a typical irltcrrnittcrlt trajcctory and rccordirlg the proportior1 of 

tirnc that lzll > 1z21, up to t = 2 x lo6 for each a. Tllc rloisc lcvcls arc = 0.0 (empty circles), 

< = lop6 (solid hexagons), < = lop3 (scluarcs), < = lop3 (triangles). 

noise have, as expected, little effect on the proportiori of tirnc spent near cadi invariant subspace, 

but for larger < we firid the effect on tlic proportiori of tirnc spcrit near a specific subspace upon 

breaking tllc syrnrnctry of tllc pararnctcrs is cvcrl more pronounced. Tllc bchaviour of the larninm 

phcwcs arc not changed greatly by tllc addition of noise, but within tllc switcllirlg rnccllarlisrn we 

see a greater tcrldcricy for the trajectory to be pushed towards V (say) rnarly tirnc in succession, 

without visiting Q (scc scctiorl 4.1 m d  figurc 12). 

4 Modelling two-state intermittency as a Markov process 

In tlic scctiorl we construct a probabilistic hIarkov diain rnodcl for the two-state irltcrrnittcrlcy 

observed in the tlic dyrlarnics of tllc attractor (such as that in figure 3) where trajectories move 

bctwecri ncighbourhoods of pure dipole and pure cluadrupolc irivariarit subspaces. 



Switching mechanism 

Out 

In 

Pure Quadrupole Pure Dipole - h 

Figure 10: Tlle hlarkov cllairl used to rnodel the two-state irl-out irlterrnittericy observed in the 

saddle-nodc/Hopf model. Tllc states r, arid rcprcscrit trarlsversc distarlccs frorn an irlvariant 

subspacc rlcar the 'out' dyrlarnics wllilc s, rcprcscrlt trmsvcrsc distarlccs plnl frorn tllc 'in' dyrlarnics 

for sorne 0 < p < 1. The switching rnccllarlisrn is determined also by a rarldorn process witli 

probabilities ydlq arld is subject to an ,additional dclay of Tq,d - 2 stcps, so tllc rninirnurn tirnc spcrlt 

in tllc d, q d ldn  is Td,,. 

Exarnirlirig tlie dyrlarnics of the intermittcncy, we note for exarnple frorn figure 3 that tlie 

approach towards D ~ ~ ,  Qm is approxirnatcly uniform, as is tllc departure frorn DoUt,QoUt. \Vc 

tllerefore use a cllairl to  rnodcl these as sllowri in figure 10 arid assurne that the leakage frorn tlie 

'in' chain to tllc 'out' cllairl llappcrls at a uniform rate ed,,. \Vc dso  assume that tllc switcllirlg 

rnccllmisrn is sirnilmly govcrrlcd by a hlarkov process parametrized by constants yd,q arld that there 

is a delay of Tdlq steps during the switcllirlg mechanism. 

Tllc hlarkov rnodcl as sllowrl in figure 10 has states that corrcsporld to tlie irltcrrnittcrlt rnodcl 

as follows: \Ve rnodcl approach to  IIin by a cliairl of states {s,), Qin by a cllairi of states {s-,), 

DOUt by a cliairl of states {r,), and QoUt by a cllairl of states {r-,), wliere we approacli the relevant 

ir~vaiant set in tllc lirnit as n i cx. hlorc precisely, tllcrc is a p < 1 such that for cxarnplc p, 

gives tllc probability of bcirlg approxirnatcly distmcc pn frorn 23. If P(a,  b) is the probability of a 

trarisitiori frorn a to  b we assume that witlliri the cliains, for n > 1 

for corlstarits ~ d , ~  E (0, l).  All otller transitions witllirl the cllairis have zero probability, and all 

trarlsitiorls take orlc tirnc step, apart frorn the trarlsitiorl frorn s l  to  s2 whicli takes Td - 2 steps and 

frorn s-1 to S-2 wllicli t&s Tq - 2 steps. The trarlsitiorls in tlic switcllirlg rnccllarlisrn bctwccn the 

cllairls are assumed to llave probabilities 



for constants ~ d , ~  also in (0, l ) .  The corlstarlts ~ d , ~  car1 be irltcrprctcd as tllc probability per unit 

tirnc of leaking frorn tlic 'in' dyrlarnics to tlic 'out' dyrlarnics near tlic subspaccs 27, Q, and this 

gives rise to an cxporlcrltial distribution of the durations that a trajcctory is rlcar tlic invariant 

subspaccs after tllc corlstarlt delay Tdlq. Tllc corlstarlts ydlq corrcsporld to tllc probability that tllc 

dyrlarnics near tllc switching rcgiori scrld a trajectory tliat crltcrs frorn DOUt, QoUt back into Din, Qln 

respectively. 

One car1 easily calculate tllc irivariarit probability p of tlic cliairl as 

irnplyirlg that tllc rcsidcrlcc tirnc near cad1 of tllc irlvmiant subsp,2c.cs is exponentially distributed. 

\Vc have p(r,) = p(s,) since tllc trajcctorics passirlg through r, arc precisely tllosc that h m  

previously passed through s,. One car1 firid that average rcsidcrlcc tirncs A d , q  in tllc chains: 

and similarly Aq = Tq + 1. hlorcovcr, tllc trarlsitiorl bctwccri tlic q and d states at tllc crid of tlic 
Cq 

larnirlar pliascs is govcrricd by yd and 7,: observe that 

arld there is a sirnilar formnula for B. Tlic invariant probability dcrlsity car1 be used to find tlic 

probability of a laminar ph,wc in tllc 'dipole' arld 'cluadrupolc' d idns is 

giving tlic proportior1 of tirne spent in tllc 'dipole' arid 'cluadrupolc' chains: 

Note that, as discussed in Scctiorl 3.3, tllc relative proportiori of visits to say tllc dipole subspacc 

dcpcrld on both tllc average residence tirncs A d , q  and tllc probabilities of switching, rlarncly ~ d , ~ .  

One car1 verify the validity of the individual cornporicrlts of tllc hlarkov rnodcl for tlic original 

ODE problem. For example in figure 11 we sllow tllc distribution of tllc lengths of the larniriar pllascs 



Table 1: Numerical cstirnates for tlie hIarkov cliairl pararnetcrs. Observe tliat tlie greatest effect of 

the symmetry breaking tcrrn a = -0.003 is to cllarlgc the transition probabilities yd,q witliirl the 

switcliirlg medianism. 

for a lorig tirneserics with (a) corresponding to  figure 3 (p  = 0.026, a = 0) and (b) corresponding to 

p = 0.026, a = -0.003. Note that tllc switcllirlg rnccllarlisrn for tllc ODE takes a certain rninirnurn 

tirne after wllicli the frecluency of occurrence drops off exponentially. 

To cstirnatc tllc proportiorl of tirnc spcrlt in near V m d  Q we takc a tllrcsllold (lzll < to 

dctcrrnirlc wllcrl we arc close tllc irlvariarlt subspace and find tllc trarlsitiorl probabilities y,,d. Thcsc 

car1 be estirnatcd by classifyirig the tirncscrics into V and Q pliascs arid so associate tlie tirncscrics 

with a string {W~)?=~ with wi E (23, Q). \Vc car1 tllcrl cstirnatc 

that is, ~d is tllc frcclucncy of obscrvirlg V as tllc rlcxt larninar phcwc give that tllc previous orlc was 

V. 7, car1 be cstirnated sirnilarly. Table 1 gives estirnates of the pararnetcrs as cornputed frorn tlie 

tirncscrics (we takc Td,, to the nearest irltcgcr for tllc discrete tirnc AIarkov chain). Orlcc having 

fitted tllc pmarnctcrs ~ d , ~ ,  Td,q and ~ d , ,  orlc can use tllc rnodcl to predict for cxarnplc using (9), tllc 

proportiorl of tirnc spent ricar the dipole model. As an example, for a = 0 we cstirnatc AJd frorn 

the pararnctcrs arld ~2~ frorn a (different) tirncscrics and find 

for a = 0, wllilc 

Aid = 0.5724, = 0.5760 

for a = -0.003. 

4.1 Two-state in-out intermittency and noise 

The details of the dyriarnics near the irivariarit subspaces for instance in Figure 3 reveals that the 

'in' dynamics witllirl V is periodic wliile the 'out' dyrlarnics is chaotic, and so one could construct 

a rnodcl wllcrc tllc dctcrrnirlistic flow away frorn tlic irlvariarlt subspace is replaced by a bi,wcd 

rarldorn walk. This will rlot substantially incrc,wc the accuracy for this case, but in c~wcs wllcrc 

the variance of the 'out' cllairi propagation is rnucll larger it would be riecessary: this would give a 

more sophisticated rnodcl tllarl llcrc or in [4]. Sirnilmly, orlc could rnakc tllc hIarkov rnodcl a lot 
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Figure 11: Distributions of tllc lengths of larninm phase T (near citllcr V or Q) subspaccs for (a) 

tllc syrnrnctric casc sllowri in Figure 3 (p  = 0.026, a = 0) and (b) an asyrnrnctric casc p = 0.026, 

a = -0.003. Obscrvc that tllcrc is a good fit to a corlstarlt delay arld an cxporlcrltial probability 

distribution of phase length T in both cases wllcrc for (a) we have P - e-0.02127'1' for approaches 

to either, arld (b) we liavc P - e-0.0217'1' for approaches to D arld P - e-0.02107'1' for approaches 

to Q. Notc that tllc lcngths of laminar ph,wcs cllarlgc very little. 



Figure 12: Time series showing intermittency in the presence of noise. The parameter values are 

as in figure 3, but with a = -0.003 and J = The dipole subspace is greatly preferred because 

the transition probabilities in the switching mechanism now favour a dipole t dipole switch. 

more sophisticated by including a continuum of states and by including noise effects along the lines 

of [4, 8, 251. 

In fact, the introduction of noise to the system accentuates the findings of the above - that the 

greatest effect of the symmetry breaking term a is to change the transition probabilities yd,q within 

the switching mechanism. Figure 12 shows a time series showing the intermittency for a = -0.003 

and J = with the other parameters as before. Here it is clear that the dipole subspace is 

much favoured, and this bias is far more pronounced than with J = 0 (recall that for a = -0.003, 

J = 0 we had Md = 0.5760 - here Md = 0.8976). It is clear that the tendency within the switching 

mechanism is now to follow a dipole active phase with another dipole phase, and in fact we can 

estimate the transition probabilities as before as yd = 0.93467 and yq = 0.35801. 



5 Discussion and conclusions 

In summary, we have examined a system that displays intermittent switching between chaotic 

dynamics in two invariant subspaces. In detail, the intermittency mechanism involves four states, 

two in each of the invariant subspaces. Two of these states (Din and Qn) are transversely stable but 

unstable within the invariant subspaces. The other two ( DOUt and Qout) are transversely unstable 

but attractors within the invariant subspaces. Once the system moves away from the invariant 

subspaces, there is nonlinear switching and reinjection towards vin and Qn. We have developed 

a Markov model of this intermittency mechanism that is capable of capturing the exponential 

distribution of times spent near each invariant subspace. This switching mechanism is a new 

feature of twestate intermittency that is not present in previous examples of in-out intermittency. 

Our work also sheds light on the switching behaviour observed in other dynamo models, for example 

the mean-field dynamo model [16] and the model of geodynamo reversals in [21]. In the latter case 

the switching mechanism seems to be be comparable to the mechanism in the present paper. 

Although we have derived the model from perturbations near the codimension-two interaction of 

a saddle-node bifurcation with two symmetry-related Hopf bifurcations, and we have not included 

all possible interaction terms even up to cubic order, we presume (but cannot prove) that the 

dynamics we have described is robust or at least prevalent. We have used the degeneracy as an 

organizing centre to give dynamics that has two-state intermittency. The model we have considered 

is also physically motivated by consideration of hydrodynamic and magnetic instabilities - see for 

example [16]. In addition, the Hopf bifurcations to dipolar and quadrupolar dynamo activity 

often occur for similar (or even the same) parameter values in mean-field dynamo models, so it is 

reasonable to regard a notional symmetry between these Hopf bifurcations as being only weakly 

broken. 

One of the most surprising results of this investigation has been the recognition that linear 

growth rates (or average residence times) near the invariant subspaces V and Q do not determine 

the average proportion of time spent close to the two subspaces. There are are many other factors 

that determine which of the two subspaces is preferred. The most important, at least for the Markov 

model, is the "switching mechanism" operating in the fully nonlinear regime that determines a 

preference of one phase to the other, once the equivalence of the two invariant subspaces is broken. 

We observe that switching can be greatly affected by the addition of noise. 

As discussed in [6] and [7], numerical simulations of cycling chaos need to be carried out with 

great care. The simulations presented in this paper were performed to double precision accuracy 

using the Bulirsch-Stoer adaptive step integrator [27] with a relative tolerance of lo-' at each time 

step. Rounding errors may force the dynamics into invariant subspaces, and care was taken to 

interpret correctly when this occurred. The dynamics of (4) was also simulated with the inclusion 

of small amounts of additive isotropic noise, in which case the effects of rounding into an invariant 

subspace could be easily avoided. 
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