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A Dual Algorithm for Stochastic Control Problems: Applications to Uncertain
Volatility Models and CVA∗

Pierre Henry-Labordère† , Christian Litterer‡ , and Zhenjie Ren‡

Abstract. We derive an algorithm in the spirit of Rogers [SIAM J. Control Optim., 46 (2007), pp. 1116–1132]
and Davis and Burstein [Stochastics Stochastics Rep., 40 (1992), pp. 203–256] that leads to upper
bounds for stochastic control problems. Our bounds complement lower biased estimates recently
obtained in Guyon and Henry-Labordère [J. Comput. Finance, 14 (2011), pp. 37–71]. We evaluate
our estimates in numerical examples motivated by mathematical finance.
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1. Introduction. Solving stochastic control problems, for example, by approximating the
Hamilton–Jacobi–Bellman (HJB) equation, is an important problem in applied mathemat-
ics. Classical PDE methods are effective tools for solving such equations in low-dimensional
settings, but quickly become computationally intractable as the dimension of the problem
increases: a phenomenon commonly referred to as “the curse of dimensionality.” Probabilistic
methods on the other hand such as Monte Carlo simulation are less sensitive to the dimen-
sion of the problem. It was demonstrated in Pardoux and Peng [16] and Cheridito et al. [3]
that first and second backward stochastic differential equations (in short BSDE) can provide
stochastic representations that may be regarded as a nonlinear generalization of the classical
Feynman–Kac formula for semilinear and fully nonlinear second order parabolic PDEs.

The numerical implementation of such a BSDE-based scheme associated with a stochastic
control problem was first proposed in Bouchard and Touzi [2], also independently in Zhang
[19]. Further generalization was provided in Fahim, Touzi, and Warin [8] and in Guyon and
Henry-Labordère [10]. The algorithm in [10] requires evaluating high-dimensional conditional
expectations, which are typically computed using parametric regression techniques. Solving
the BSDE yields a suboptimal estimation of the stochastic control. Performing an additional,
independent (forward) Monte Carlo simulation using this suboptimal control, one obtains a
biased estimation: a lower bound for the value of the underlying stochastic control problem.
Choosing the right basis for the regression step is in practice a difficult task, particularly in
high-dimensional settings. In fact, a similar situation arises for the familiar Longstaff–Schwarz
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algorithm, which also requires the computation of conditional expectations with parametric
regressions and produces a low-biased estimate.

As the algorithm in [10] provides a biased estimate, i.e., a lower bound, it is of limited
use in practice, unless it can be combined with a dual method that leads to a corresponding
upper bound. Such a dual expression was obtained by Rogers [17], building on earlier work
by Davis and Burstein [4]. While the work of Rogers is in the discrete time setting, it applies
to a general class of Markov processes. Previous work by Davis and Burstein [4] linking
deterministic and stochastic control using flow decomposition techniques (see also Diehl, Friz,
and Gassiat [5] for a rough path approach to this problem) is restricted to the control of
a diffusion in its drift term. In the present paper we are also concerned with the control
of diffusion processes, but allow the control to act on both the drift and the volatility term
in the diffusion equation. The basic idea underlying the dual algorithm in all these works
is to replace the stochastic control by a pathwise deterministic family of control problems
that are not necessarily adapted. The resulting “gain” of information is compensated for by
introducing a penalization analogous to a Lagrange multiplier. In contrast to [4] and [5], we
do not consider continuous pathwise, i.e., deterministic, optimal control problems. Instead,
we rely on a discretization result for the HJB equation due to Krylov [12] and recover the
solution of the stochastic control problem as the limit of deterministic control problems over
a finite set of discretized controls.

Our paper is structured as follows. In section 2 we introduce the stochastic control prob-
lem and derive the dual bounds in the Markovian setting for European-type payoffs. In
section 3.1 we generalize our estimates to a non-Markovian setting, i.e., where the payoff has
a path dependence. Finally, in section 3.2 we consider a setting suitable for pricing American
style options in a Markov setting. We evaluate the quality of the upper bounds obtained
in two numerical examples. First, we consider the pricing of a variety of options in the un-
certain volatility model (UVM). Based on our earlier estimates we transform the stochastic
optimization problem into a family of suitably discretized deterministic optimizations, which
we can in turn approximate, for example, using local optimization algorithms. Second, we
consider a problem arising in credit valuation adjustment. In this example, the deterministic
optimization can particularly efficiently be solved by deriving a recursive ODE solution to
the corresponding Hamilton–Jacobi equations. Our algorithm complements the lower bounds
derived in [10] by effectively reusing some of the quantities already computed when obtaining
the lower bounds (cf. Remark 2.8).

2. Duality result for European options.

2.1. Notations. We begin by introducing some basic notations. For any k ∈ N let

Ωk := {ω : ω ∈ C([0, T ],Rk), ω0 = 0}.

Let d,m ∈ N and T > 0. Define Ω := Ωd, Θ := [0, T ] × Ω, and let B denote the canonical
process on Ωm with F = {Ft}0≤t≤T the filtration generated by B. Finally, denote by P0 the
Wiener measure.
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For h > 0, consider a finite partition {thi }i of [0, T ] with mesh less than h, i.e., such that
thi+1 − thi ≤ h for all i. For some M > 0, let A be a compact subset of

OM := {x ∈ R
k : |x| ≤ M} for some k ∈ N,

and Nh be a finite h-net of A, i.e., for all a, b ∈ Nh ⊂ A, we have |a− b| ≤ h. We define sets
• A := {ϕ : Θ → R

k : ϕ is F-adapted, and takes values in A};
• Ah := {ϕ ∈ A : ϕ is constant on [thi , t

h
i+1) for i, and takes values in Nh};

• U := {ϕ : Θ → R
d : ϕ is bounded and F-adapted};

• Dh := {f : [0, T ] → R
k : f is constant on [thi , t

h
i+1) for i, and takes values in Nh}.

For the following it is important to note that Dh is a finite set of piecewise constant functions.
We would like to emphasize that, throughout this paper, C denotes a generic constant,

which may change from line to line. For example the reader may find 2C ≤ C, without any
contradiction as the left-hand side C is different from the right-hand side C.

2.2. The Markovian case. We consider stochastic control problems of the form

(2.1) u0 = sup
α∈A

E
P0

[∫ T

0
Rα

t f(t, αt,X
α
t )dt+Rα

T g(X
α
T )

]
,

where Rα
t := e−

∫ t

0 r(s,αs,X
α
s )ds, Xα is a d-dimensional controlled diffusion defined by

Xα :=

∫ ·

0
µ(t, αt,X

α
t )dt+

∫ ·

0
σ(t, αt,X

α
t )dBt,

and the functions µ, σ, f, r satisfy the following assumption.

Assumption 2.1. The functions µ, σ, f, r defined on R
+×A×R

d take values in R
d, Rd×m,

R, R, respectively. Assume that
• µ, σ, f, r are uniformly bounded, and continuous in α;
• µ, σ, f, r are uniformly δ0-Hölder continuous in t for some fixed constant δ0 ∈ (0, 1];
• µ, σ are uniformly Lipschitz in x, and f, r are uniformly δ0-Hölder continuous in x;
• g : Rd → R is continuous.

Remark 2.2. Our assumptions match the assumptions on the continuity of the coefficients
in Krylov [12, 13], and allow us to apply his results.

Our main result is a duality in the spirit of [4] that allows us to replace the stochastic
control problem by a family of suitably discretized deterministic control problems. We first
discretize the control problem through the following lemma which is a direct consequence of
Theorem 2.3 in Krylov [12].

Define the function

uh0 := sup
α∈Ah

E
P0

[∫ T

0
Rα

t f(t, αt,X
α
t )dt+Rα

T g(X
α
T )

]
.

Lemma 2.3. Suppose Assumption 2.1 holds and g is bounded. We have for any family of

partition of [0, T ] with mesh tending to zero that

(2.2) u0 = lim
h→0

uh0 .
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Remark 2.4. Theorem 2.3 in [12] also gives a rate of convergence for the discretization in
Lemma 2.3, i.e., there exists a constant C > 0 such that

∣∣∣u0 − uh0

∣∣∣ ≤ Ch
1
3 for all 0 < h ≤ 1.

For the following statement, we introduce

(2.3)

vh := inf
ϕ∈U

E
P0

[
max
a∈Dh

Φa,ϕ

]
with

Φa,ϕ := Ra
T g(X

a
T ) +

∫ T

0
Ra

t f(t, at,X
a
t )dt−

∫ T

0
Ra

tϕt(X
a)⊺σ(t, at,X

a
t )dBt.

Remark 2.5. It is noteworthy that stochastic integrals are defined in L2-space, so it is
in general meaningless to take the pathwise supremum of a family of stochastic integrals.
However, as we mentioned before, the set Dh is of finite elements. So there is a unique random
variable in L2 equal to the maximum value of the finite number of stochastic integrals, P0-a.s.

The next theorem allows us to recover the stochastic optimal control problem as a limit
of discretized deterministic control problems.

Theorem 2.6. Suppose Assumption 2.1 holds and g is bounded. Then we have

u0 = lim
h→0

vh.

Proof. We first prove that u0 ≤ limh→0 v
h. Recall uh0 defined in (2.2). Since Rα, σ are

bounded, for all ϕ ∈ U the process
∫ ·
0 R

α
t ϕt(X

α)⊺σ(t, αt,X
α
t )dBt is a martingale. So we have

uh0 = sup
α∈Ah

E
P0
[
Φα,ϕ

]
.

Since Φα,ϕ ≤ maxa∈Dh
Φa,ϕ for all α ∈ Ah, we have

uh0 ≤ E
P0

[
max
a∈Dh

Φa,ϕ

]
.

The required result follows.
To show u0 ≥ limh→0 v

h we construct an explicit minimizer ϕ∗. First note that under
Assumption 2.1, it is easy to verify that ut defined as

u(t, x) := sup
α∈A

E
P0

[∫ T

t

Rα
s

Rα
t

f(s, αs,X
α
s )ds+

Rα
T

Rα
t

g(Xα
T )
∣∣∣Xα

t = x

]

is a viscosity solution to the Dirichlet problem of the HJB equation:

(2.4)

− ∂tu− sup
b∈A

{
Lbu+ f(t, b, x)

}
= 0, uT = g,

where Lbu := µ(t, b, x) · ∂xu+
1

2
Tr
(
(σσ⊺)(t, b, x)∂2

xxu
)
− r(t, b, x)u.

We next define the mollification u(ε) := u ∗K(ε) of u, where K is a smooth function with
compact support in (−1, 0)×O1 (O1 is the unit ball in R

d), and K(ε)(x) := ε−n−2K(t/ε2, x/ε).
Clearly, u(ε) ∈ C∞

b and u(ε) converges uniformly to u. As mentioned in Remark 2.2, Assump-
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tion 2.1 matches the assumptions in [13], where the author proved in his Theorem 2.1 that
u(ε) is a classical supersolution to the HJB equation (2.4). Denote

(2.5) ϕε
t (ω) := ∂xu

(ε)(t, ωt).

Since u(ε) ∈ C∞
b , it follows from Ito’s formula that

Ra
Tu

(ε)(T,Xa
T )− u

(ε)
0 =

∫ T

0
Ra

t

(
∂tu

(ε) + Latu(ε)(t,Xa
t )
)
dt

+

∫ T

0
Ra

tϕ
ε
t (X

a)⊺σ(t, at,X
a
t )dBt for all a ∈ Dh, P0-a.s.

Then, by the definition of Φa,ϕε

in (2.3), we obtain

Φa,ϕε

= Ra
T g(X

a
T ) +

∫ T

0
Ra

t

(
f(t, at,X

a
t ) +

(
∂tu

(ε) + Latu(ε)
)
(t,Xa

t )
)
dt

− Ra
Tu

(ε)(T,Xa
T ) + u

(ε)
0 for all a ∈ Dh, P0-a.s.

Since u(ε) is a supersolution to the HJB equation (2.4), it follows that

(2.6) Φa,ϕε

≤ Ra
T

(
g(Xα

T )− u(ε)(T,Xα
T )
)
+ u

(ε)
0 for all a ∈ Dh, P0-a.s.

By Assumption 2.1 and the fact that g is bounded,

(2.7) Φa,ϕε

is uniformly bounded from above.

Also, it is easy to verify that the function u is continuous and therefore uniformly continuous
on SL := [0, T ] × {|x| ≤ L} for any L > 0 and that u(ε) converges uniformly to u on SL. In
particular,

(2.8)
u
(ε)
0 → u0,

ρL (ε) := max|x|≤L

∣∣g (x)− u(ε) (T, x)
∣∣→ 0,

as ε → 0.

It follows from (2.6), (2.7), and (2.8) that

E
P0

[
max
a∈Dh

Φa,ϕε
]
= E

P0

[
max
a∈Dh

Φa,ϕε

; max
a∈Dh

|Xa
T | ≤ L

]
+ E

P0

[
max
a∈Dh

Φa,ϕε

; max
a∈Dh

|Xa
T | > L

]

≤ CρL(ε) + u
(ε)
0 + CP0

[
max
a∈Dh

|Xa
T | > L

]
,

where C is a constant independent of L and ε. Therefore

vh ≤ lim
ε→0

E
P0

[
max
a∈Dh

Φa,ϕε
]
≤ u0 + CP0

[
max
a∈Dh

|Xa
T | > L

]
for any L > 0.

Further, since

P0

[
max
a∈Dh

|Xa
T | > L

]
≤
∑

a∈Dh

P0

[
|Xa

T | > L
]
→ 0, as L → ∞,

we conclude that vh ≤ u0. So the required inequality follows.
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The boundedness assumption on g may be relaxed by means of a simple cutoff argument.

Corollary 2.7. Assume that g is of polynomial growth, i.e.,

|g(x)| ≤ C
(
1 + |x|p

)
for some C, p ≥ 0.

Let M > 0, gM a continuous compactly supported function that agrees with g on OM ⊆ R
d

and satisfies |gM | ≤ |g|. Let vh,M denote the approximations defined in (2.3) with respect to

gM in place of g. Then we have

lim
M→0

∣∣∣∣u0 − lim
h→0

vh,M
∣∣∣∣ = 0.

Proof. Define uM0 as in (2.1) by using the approximation gM , i.e.,

uM0 := sup
α∈A

E
P0

[∫ T

0
Rα

t f(t, αt,X
α
t )dt+Rα

T g
M (Xα

T )

]
.

By Theorem 2.6, we know that uM0 = limh→0 v
h,M .

Further, we have

|u0 − uM0 | ≤ C sup
α∈A

E
P0

[
g(Xα

T )− gM (Xα
T )
]

≤ C sup
α∈A

E
P0

[
|Xα

T |
p + 1; |Xα

T | ≥ M
]
.

Assume M ≥ 1. Then we obtain

(2.9) |u0 − uM0 | ≤ C sup
α∈A

E
P0

[
|Xα

T |
p; |Xα

T | ≥ M
]
≤ C sup

α∈A
E
P0

[
|Xα

T |
p+1

M

]
.

Since µ, σ are both bounded, we have

(2.10) E
P0

[
|Xα

T |
p+1

]
≤ CE

P0

[∣∣∣∣
∫ T

0
µ(t, αt,X

α
t )dt

∣∣∣∣
p+1

+

∣∣∣∣
∫ T

0
σ(t, αt,X

α
t )dBt

∣∣∣∣
p+1

]
≤ CT.

It follows from (2.9) and (2.10) that

lim
M→∞

|u0 − uM0 | = 0.

The proof is completed.

We conclude the section with two remarks, both relevant to the numerical simulation of
the approximation derived in Theorem 2.6.

Remark 2.8. To approximate vh in our numerical examples we will as in the proof of
Theorem 2.6 use fixed functions ϕ∗ for the minimization. The definition (2.5) makes it clear
that the natural choice for these minimizers are (the numerical approximations of) the function
∂xu. Note that these approximations are readily available from the numerical scheme in [10]
that is used to compute the complementary lower bounds.
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Remark 2.9. In the proof of Theorem 2.6 we showed that uh0 ≤ vh ≤ u0. It therefore
follows from Remark 2.4 that there exists a constant C > 0 such that

∣∣∣u0 − vh
∣∣∣ ≤ Ch

1
3

for all 0 < h ≤ 1 ∧ T.

3. Some extensions.

3.1. The non-Markovian case. In our first extension we consider stochastic control prob-
lems of the form

u0 = sup
α∈A

E
P0

[
g(Xα

T∧·)
]
,

whereXα is a d-dimensional diffusion defined byXα :=
∫ ·
0 µ(t, αt)dt+

∫ ·
0 σ(t, αt)dBt. Note that

in this setting µ and σ only depend on α and t, but the payoff function g is path dependent.

Remark 3.1. The arguments in this subsection are based on the “frozen-path” approach
developed in Ekren, Touzi, and Zhang [6]. In order to apply their approach, we have restricted
the class of diffusions Xα we consider, compared to the Markovian control problem.

Writing Pα := P0 ◦ (X
α)−1, we have

u0 = sup
α∈A

E
Pα

[
g(BT∧·)

]
.

Throughout this subsection we will impose the following regularity assumptions.

Assumption 3.2. The functions µ, σ : R+ ×A → E (E is the respective metric space) and
g : Ωd → R are uniformly bounded such that

• µ, σ are continuous in α;
• µ, σ are δ0-Hölder continuous in t, for some constant δ0 ∈ (0, 1];
• g is uniformly continuous.

Example 3.3. Arguing as in Corollary 2.7 we may also consider unbounded payoffs. Hence,
possible path-dependent payoffs that fit our framework include, e.g., the maximummaxs∈[0,T ] ωs

and Asian options 1
T

∫ T

0 ωsds.

Let
Λε :=

{
t0 = 0, t1, t2, . . . , tn = T

}

be a partition of [0, T ] with mesh bounded above by ε. For k≤ n and πk = (x1 =0, x2, . . . , xk) ∈

R
d×k, denote by ΓΛε,k

ε (πk) the path generated by the linear interpolation of the points
{(ti, xi)}0≤i≤k. Where no confusion arises with regards to the underlying partition we will in

the following drop the superscript Λε and write Γk
ε(πk) in place of ΓΛε,k

ε (πk), but it must be
emphasized that the entire analysis in this subsection is carried out with a fixed but arbitrary
partition Λε in mind. Define the interpolation approximation of g by

gε(πn) := g
(
Γn
ε (πn)

)
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and define an approximation of the value function by letting

θε0 := sup
α∈A

E
Pα

[
gε
(
(Bti)0≤i≤n

)]
.

The following lemma justifies the use of linear interpolation for approximating dependent
payoff.

Lemma 3.4. Under Assumption 3.2, we have

lim
ε→0

θε0 = u0.

Proof. Recall that g is uniformly continuous. Let ρ be a modulus of continuity of g. If
necessary, we may choose ρ to be concave (by taking the concave envelope). Further, we define

wB(ε, T ) := sup
s,t≤T ;|s−t|≤ε

|Bs −Bt|.

Clearly, we have

|θε0 − u0| =

∣∣∣∣sup
α∈A

E
Pα
[
gε
(
(Bti)0≤i≤n

)]
− sup

α∈A
E
Pα
[
g(BT∧·)

]∣∣∣∣

≤ sup
α∈A

E
Pα
[
ρ
(
wB(ε, T )

)]
≤ ρ

(
sup
α∈A

E
Pα
[
wB(ε, T )

])
.

It is proved in Theorem 1 in Fisher and Nappo [9] that

E
Pα
[
wB(ε, T )

]
≤ C

(
ε ln

2T

ε

) 1
2

,

where C is a constant only dependent on the bound of µ and σ. Thus,

lim
ε→0

sup
α∈A

E
Pα
[
wB(ε, T )

]
= 0.

The proof is completed.

We next define the controlled diffusion with time-shifted coefficients by setting

Xα,t :=

∫ s

0
µ(t+ r, αr)dr +

∫ s

0
σ(t+ r, αr)dBr, s ∈ [0, T − t], P0-a.s.,

and the corresponding law

P
t
α := P0 ◦ (X

α,t)−1.

Further, for 1 ≤ k ≤ n− 2 let

ηk := tk+1 − tk,
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and define recursively a family of stochastic control problems:

θε(πn−1; t, x) := sup
α∈A

E
P
tn−1+t
α

[
gε
(
(πn−1, xn−1 + x+Bηn−1−t)

)]
, t ∈ [0, ηn−1), x ∈ R

d,

θε(πk; t, x) := sup
α∈A

E
P
tk+t
α

[
θε
(
(πk, xk + x+Bηk−t), 0, 0

)]
, t ∈ [0, ηk), x ∈ R

d.(3.1)

Clearly, θε(0; 0, 0) = θε0.

Remark 3.5. By freezing the path πk, we get the value function θε(πk; ·, ·) of a Markovian

stochastic control problem on the small interval [0, ηk). This will allow us to apply the PDE
tools which played a key role in proving the dual form in the previous section.

Lemma 3.6. Fix ε > 0. The function θε(π; t, x) is Borel measurable in all the arguments

and uniformly continuous in (t, x) uniformly in π.

Proof. It follows from the uniform continuity of g and the fact that interpolation with
respect to a partition Λε is a Lipschitz function (in this case from R

n×d into the continuous
functions), that gε is also uniformly continuous. Denote by ρε a modulus of continuity of
gε, chosen to be increasing and concave if necessary. For any πn−1, π

′
n−1 ∈ R

(n−1)×d, given
t ∈ [0, ηn−1], x, x

′ ∈ R
d, we have

|θε(πn−1; t, x)− θε(π′
n−1; t, x

′)|

≤ sup
α∈A

E
P
tn−1+t
α

[∣∣∣gε
(
(πn−1, xn−1 + x+Bηn−1−t)

)
− gε

(
(π′

n−1, xn−1 + x′ +Bηn−1−t)
)∣∣∣
]

≤ ρε(|(πn−1, x)− (π′
n−1, x

′)|).

Similarly, for any k < n− 1 and πk, π
′
k ∈ R

k×d, given t ∈ [0, ηk], x, x
′ ∈ R

d, we have

|θε(πk; t, x)− θε(π′
k; t, x

′)|

≤ sup
α∈A

E
P
tk+t
α

[∣∣∣θε
(
(πk, xk + x+Bηk−t), 0, 0

)
− θε

(
(π′

k, xk + x′ +Bηk−t), 0, 0
)∣∣∣
]

≤ ρε(|(πk, x)− (π′
k, x

′)|).(3.2)

For 0 ≤ t0 < t1 ≤ ηk, it follows from the dynamic programming principle (for a general theory
on the dynamic programming principle for sublinear expectations, we refer to Nutz and Van
Handel [15]) that

(3.3) θε(πk; t
0, x) = sup

α∈A
E
P
tk+t0

α

[
θε(πk; t

1, x+Bt1−t0))
]

and from (3.3) and (3.2) we deduce that

|θε(πk; t
0, x)− θε(πk; t

1, x)| ≤ sup
α∈A

E
P
tk+t0

α

[∣∣∣θε(πk; t1, x+Bt1−t0)− θε(πk; t
1, x)

∣∣∣
]

≤ sup
α∈A

E
P
tk+t0

α
[
ρε(|Bt1−t0 |)

]

≤ ρε
(
sup
α∈A

E
P
tk+t0

α
[
|Bt1−t0 |

])
.(3.4)
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Similarly to (2.10), we have the estimate

(3.5) sup
α∈A

E
P
tk+t0

α

[
|Bt1−t0 |

]
= sup

α∈A
E
P0

[
|Xα,tk+t0

t1−t0
|
]
≤ C

(
t1 − t0

)
,

where C is a constant only dependent on the bound of µ and σ. It follows from (3.4) and
(3.5) that

|θε(πk; t
0, x)− θε(πk; t

1, x)| ≤ ρε
(
C(t1 − t0)

)
.

Hence, combining (3.2) and (3.5) we conclude that θε(πk; t, x) is uniformly continuous in (t, x)
uniformly in πk.

The functions θε(πk; ·, ·) are defined as the value functions of stochastic control problems,
and one can easily check that they are viscosity solutions to the corresponding HJB equations.
For k = 1, . . . , n− 1, we define a family of PDEs by letting

(3.6)

−L
kθ = 0 on [0, ηk)⊗ R

d, where

L
kθ := ∂tθ + sup

b∈A

{
µ
(
tk + ·, b

)
· ∂xθ +

1

2
Tr
(
(σσ⊺)(tk + ·, b)∂2

xxθ
)}

.

The following proposition links the stochastic control problems with the PDE and applies,
analogously to the Markovian case, a mollification argument.

Proposition 3.7. There exists a function u(ε) : (π, t, x) 
→ R such that u(ε)(0, 0, 0) = θε0 + ε
and for all πk, u(ε)(πk; ·, ·) is a classical supersolution to the PDE (3.6) and the boundary

condition

u(ε)(πk; ηk, x) = u(ε)
(
(πk, x); 0, 0

)
if k < n− 1,

u(ε)(πk; ηk, x) ≥ gε
(
(πk, x)

)
if k = n− 1.

Proof. Define θε,δ(πk; ·, ·) := θε(πk; ·, ·)∗K
δ for all πk ∈ R

k×d, k ≤ n, where K is a smooth
function with compact support in (−1, 0) × O1 (O1 is the unit ball in R

d), and Kδ(t, x) :=
δ−d−2K(t/δ2, x/δ). By Lemma 3.6, θε,δ(πk; ·, ·) converges uniformly to θε(πk; ·, ·) uniformly in
πk, as δ → 0. Take δ small enough so that ‖θε,δ − θε‖ ≤ ε

2n . Further, Assumption 3.2 implies
that all the shifted coefficients µ(tk+ ·, ·), σ(tk + ·, ·) satisfy the assumptions on the continuity
of the coefficients in [13], where the author proved that

θε,δ(πk; ·, ·) is a classical supersolution for (3.6) .

Note that θε,δ(πk; ·, ·) + C is still a supersolution for any constant C. So we may define a
smooth function vε(0; ·, ·) := θε,δ(0; ·, ·) + C0 on [0, t1]× R

d with some constant C0 such that

vε(0; 0, 0) = θε(0; 0, 0) +
ε

n
, vε(0; ·, ·) ≥ θε(0; ·, ·).

Similarly, we define smooth functions vε(πk; ·, ·) := θε,δ(πk; ·, ·) + Cπk
on [0, ηk] × R

d for 1 ≤
k ≤ n− 1 with some constants Cπk

such that

vε(πk; 0, 0) = vε(πk−1; ηk−1, xk − xk−1) +
ε

n
, vε(πk; ·, ·) ≥ θε(πk; ·, ·) .
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Finally, we define for πk ∈ R
k×d and (t, x) ∈ [0, ηk)× R

d

u(ε)(πk; t, x) := vε(πk; t, x) +
n− k + 1

n
ε.

It is now straightfoward to check that u(ε) satisfies the requirements.

The discrete framework we just developed may be linked to path space by means of linear
interpolation along the partition Λε. Recall that Θ was defined to be [0, T ]× Ω.

Corollary 3.8. Define ū(ε) : Θ → R by

ū(ε)(t, ω) := u(ε)
(
(ωti)0≤i≤k; t− tk, ωt − ωtk

)
for t ∈ [tk, tk+1).

There exist adapted processes λt(ω), ϕt(ω), ηt(ω) such that for all α ∈ A

ū(ε)(T,Xα) = ū
(ε)
0 +

∫ T

0

(
λt + µ(t, αt)ϕt +

1

2
Tr
(
(σσ⊺)(t, αt)ηt

)) (
Xα

)
dt

+

∫ T

0
ϕt(X

α)⊺σ(t, αt)dBt,

P0-a.s., and

(
λt + µ(t, αt)ϕt +

1

2
Tr
(
(σσ⊺)(t, αt)ηt

)
(ω) ≤ 0 for all α ∈ A, (t, ω) ∈ Θ.

Proof. By Itô’s formula, we have

ū(ε)(t,Xα) = ū(ε)(tk,X
α) +

∫ t

tk

(
λs + µ(s, αs)ϕs +

1

2
Tr
(
(σσ⊺)(s, αs)ηs

)) (
Xα

)
ds

+

∫ t

tk

ϕs(X
α)⊺σ(s, αs)dBs for t ∈ [tk, tk+1), P0-a.s.,

with

λt(ω) := ∂tu
(ε)
(
(ωti)0≤i≤k; t− tk, ωt − ωtk

)
,

ϕt(ω) := ∂xu
(ε)
(
(ωti)0≤i≤k; t− tk, ωt − ωtk

)
,

ηs(ω) := ∂2
xxu

(ε)
(
(ωti)0≤i≤k; t− tk, ωt − ωtk

) for t ∈ [tk, tk+1).

By the supersolution property of u(ε) proved in Proposition 3.7, we have

(
λt + µ(t, αt)ϕt +

1

2
Tr
(
(σσ⊺)(t, αt)ηt

))
(ω)

≤ L
ku(ε)

(
(ωti)0≤i≤k; ·, ·

)
(t− tk, ωt − ωtk) ≤ 0.

The proof is completed.

Finally, we prove an approximation analogous to Theorem 2.6 in our non-Markovian set-
ting.
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Theorem 3.9. Suppose Assumption 3.2 holds. Then we have

u0 = lim
h→0

vh, where vh := inf
ϕ∈U

E
P0

[
sup
a∈Dh

{
g(Xa

T∧·)−

∫ T

0
ϕt(X

a)⊺σ(t, at)dBt

}]
.

Proof. Arguing as in the proof of Theorem 2.6, one can easily deduce using the Ito formula
that u0 ≤ limh→0 v

h.
Consider the function ū(ε) and let ϕ be the process defined in Corollary 3.8. We have

vh ≤ E
P0

[
sup
a∈Dh

{
g(Xa

T∧·)−

∫ T

0
ϕt(X

a)⊺σ(t, at)dBt

}]

≤ E
P0

[
sup
a∈Dh

{
g(Xa

T∧·)− ū
(ε)
T (Xa) + ū

(ε)
0

}]

≤ E
P0

[
sup
a∈Dh

{
g(Xa

T∧·)− gε
(
(Xa

ti
)0≤i≤n

)}
]
+ θε0 + ε.

For the last inequality, we use the fact that ū
(ε)
0 = u(ε)(0; 0, 0) = θε0 + ε. Note that there are

only finite elements in the set Dh. Therefore, by Lemma 3.4

lim
ε→0

(
E
P0

[
sup
a∈Dh

{
g(Xa

T∧·)− gε
(
(Xa

ti
)0≤i≤n

)}
]
+ θε0 + ε

)

≤ lim
ε→0

⎛
⎝∑

a∈Dh

E
P0
[∣∣g(Xa

T∧·)− gε
(
(Xa

ti
)0≤i≤n

)∣∣]+ θε0 + ε

⎞
⎠

= u0.

We conclude that vh ≤ u0 for all h ∈ (0, 1 ∧ T ].

3.2. Example of a duality result for an American option. In this subsection we give
an indication how our approach may be extended to American options. To this end we
consider a toy model, in which the d-dimensional controlled diffusion Xα takes the particular
form Xα :=

∫ ·
0 α

0
t dt +

∫ ·
0 α

1
t dBt and carry out the analysis in this elementary setting. The

stochastic control problem is now

u0 = sup
α∈A,τ∈TT

E
P0
[
g(Xα

τ )
]
,

where TT is the set of all stopping times smaller than T . Throughout this subsection we will
make the following assumption.

Assumption 3.10. Suppose g : Rd → R to be bounded and uniformly continuous.

For α ∈ A define probability measures Pα := P0 ◦ (Xα)−1, let P := {Pα : α ∈ A},
and define the nonlinear expectation E [·] := supP∈P E

P[·]. It will be convenient to use the
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shorthand α1 · B for the stochastic integral
∫ ·
0 α

1
sdBs. We have

u0 = sup
τ∈TT

E
[
g(Bτ )

]
.

Further, we define the dynamic version of the control problem

u(t, x) := sup
τ∈TT−t

E
[
g(x+Bτ )

]
for (t, x) ∈ [−1, T ]× R

d.

The following lemma shows that the function u satisfies a dynamic programming principle
(see, for example, Lemma 4.1 of [7] for a proof).

Lemma 3.11. The value function u is continuous in both arguments, and we have

u(t1, x) = sup
τ∈TT−t1

E
[
g(x+Bτ )1{τ<t2} + u(t2, x+Bt2)1{τ≥t2}

]
.

In particular, {u(t, Bt)}t∈[0,T ] is a P-supermartingale for all P ∈ P.

Next we apply the familiar mollification technique already employed in section 2.2. Define
u(ε) := u ∗K(ε).

Lemma 3.12. {u(ε)(t, Bt)}t is a P-supermartingale for all P ∈ P, and u(ε) ≥ g(ε) := g∗K(ε).

Proof. For any s ≤ t ≤ T and x ∈ R, we have by Lemma 3.11

E
[
u(ε)(t, x+Bt−s)

]
= E

[∫
u(t− r, x− y +Bt−s)K

(ε)(r, y)dydr

]

≤

∫
E
[
u(t− r, x− y +Bt−s)

]
K(ε)(r, y)dydr

≤

∫
u(t− r − (t− s), x− y)K(ε)(r, y)dydr

=

∫
u(s− r, x− y)K(ε)(r, y)dydr = u(ε)(s, x),

where for the second inequality, we used the P-supermartingale property of {u(t, Bt)}t∈[0,T ]

for all P ∈ P. This implies that for all P ∈ P we have

E
P
[
u(ε)(t, x+Bt−s)

]
≤ u(ε)(s, x).

Therefore, {u(ε)(t, Bt)}t is a P-supermartingale for all P ∈ P. On the other hand, it is clear
from the definition of u that u ≥ g and, hence, u(ε) ≥ g(ε).

Again, the stochastic control problem can be discretized. For technical reasons, we assume
here that the partitions of time satisfy the order

(3.7) {thi }i≤nh
⊂ {th

′

i }i≤nh′
for h > h′,

where nh is the number of time grids of the partition.
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Lemma 3.13. Under Assumption 3.10, it holds

(3.8) u0 = lim
h→0

uh0 , where uh0 := sup
α∈Ah,τ∈TT

E
P0

[
g(Xα

τ )
]
.

Proof. We only prove the case α0 = 0 and α = α1 ∈ A1, a compact set in R, in particular,
Xα = (α · B). The general case follows by a straightfoward generalization of the same argu-
ments. Note that it is sufficient to show that u0 ≤ limh→0 u

h
0 . Fix ǫ > 0. There exists αε ∈ A

such that

(3.9) u0 < sup
τ∈TT

E
P0
[
g
(
(αε ·B)τ

)]
+ ε.

For any h sufficiently small define a process α̃h by letting

α̃h
t :=

∑

i

1

thi+1 − thi

∫ thi+1

thi

E
P0

[
αε
s

∣∣Fthi

]
ds1[thi ,thi+1)

(t).

Clearly, α̃h is piecewise constant on each interval [thi , t
h
i+1). We introduce the filtration F̂ :=

{F̂h}h, with

F̂h := σ
({

[thi , t
h
i+1)×A : i ≤ nh − 1, A ∈ Fthi

})
.

In particular, it follows from (3.7) that F̂h ⊂ F̂h′ for h > h′. Also, denote the probability P̂

on the product space Θ:

P̂(dt, dω) :=
1

T
dt× P0(dω).

Note that for all i ≤ nh − 1, A ∈ F̂thi
, and h′ < h we have

E
P̂0

[
α̃h′

1{[thi ,thi+1)×A}

]
= E

P0

⎡
⎢⎣ 1

T

∑

j:thi ≤th
′

j ,th
′

j+1≤thi+1

∫ th
′

j+1

th
′

j

E
P0

[
αε
s

∣∣F
th

′

j

]
ds 1A

⎤
⎥⎦

= E
P0

[
1

T

∫ thi+1

thi

E
P0

[
αε
s

∣∣Fthi

]
ds 1A

]

= E
P̂0

[
α̃h 1{[thi ,thi+1)×A}

]
.

So {α̃h}h is a martingale in the filtrated probability space (Θ, P̂, F̂). Note that αε and α̃h are
bounded, so it follows from the martingale convergence theorem that

(3.10) lim
h→0

E
P0

∫ T

0
(αε

s − α̃h
s )

2ds = 0.
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Further, define α̂h := h⌊ α̃
h

h
⌋ and note that we have α̂h ∈ Ah. It follows from (3.10) that

lim
h→0

E
P0

∫ T

0
(αε

s − α̂h
s )

2ds = 0.

With ρ an increasing and concave modulus of continuity of g we have

sup
τ∈TT

E
P0
[
g
(
(αε ·B)τ

)]
− sup

τ∈TT

E
P0
[
g
(
(α̂h ·B)τ

)]

≤ sup
τ∈TT

E
P0

[
ρ
(
|(αε · B)τ − (α̂h ·B)τ |

)]

≤ E
P0

[
ρ
(
‖(αε ·B)− (α̂h ·B)‖∞

]

= ρ

⎛
⎝E

P0

[∫ T

0
(αε

s − α̂h
s )

2ds

] 1
2

⎞
⎠ .(3.11)

Combining (3.9), (3.11) we have

u0 < sup
τ∈TT

E
P0

[
g
(
(α̂h ·B)τ

)]
+ ρ

⎛
⎝E

P0

[∫ T

0
(αε

s − α̂h
s )

2ds

] 1
2

⎞
⎠+ ε

≤ uh0 + ρ

⎛
⎝E

P0

[∫ T

0
(αε

s − α̂h
s )

2ds

] 1
2

⎞
⎠+ ε.

Letting h → 0 we deduce

u0 ≤ limh→0u
h
0 + ε

for all ε > 0.

We conclude the section by proving the analogous approximation result for American
options.

Theorem 3.14. Suppose Assumption 3.10 holds. Then we have

u0 = lim
h→0

vh, where vh := inf
ϕ∈U

E
P0

[
sup

α∈Dh,t∈[0,T ]

{
g(Xα

t )−

∫ t

0
ϕs(X

α)⊺αsdBs

}]
.

Proof. We first prove that the left-hand side is smaller. Recall uh0 defined in (3.8). For all
ϕ ∈ U , the process

∫ ·
0 ϕt(X

α)⊺α1
t dBt is a martingale, and we have

uh0 ≤ sup
α∈Ah,τ∈TT

E
P0

[
g(Xα

τ )−

∫ τ

0
ϕt(X

α)⊺α1
t dBt

]
for all ϕ ∈ U .

Since for any α ∈ Ah and τ ∈ TT we have

g(Xα
τ )−

∫ τ

0
ϕt(X

α)⊺α1
t dBt ≤ sup

a∈Dh,t∈[0,T ]
{g(Xa

t )−

∫ t

0
ϕs(X

a)⊺a1sdBs},
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we obtain

uh0 ≤ E
P0

[
sup

a∈Dh,t∈[0,T ]

{
g(Xa

t )−

∫ t

0
ϕs(X

a)⊺a1sdBs

}]
for all ϕ ∈ U .

The required result follows by Lemma 3.13.
For the converse, recall that u(ε)(t, Bt) is a P-supermartingale for all P ∈ P (Lemma 3.12).

Further, since u(ε) ∈ C1,2, we have

∂tu
(ε) + sup

(b0,b1)∈A

{
b0∂xu

(ε) +
1

2
Tr
(
b1(b1)⊺∂2

xxu
(ε)
)}

≤ 0.

Hence, for all h > 0

vh ≤ E
P0

[
sup

a∈Dh,t∈[0,T ]

{
g(Xa

t )−

∫ t

0
∂xu

(ε)
s (Xa)⊺a1sdBs

}]

≤ E
P0

[
sup

a∈Dh,t∈[0,T ]

{
g(Xa

t )− u
(ε)
t (Xa

t ) + u
(ε)
0

+

∫ t

0

(
∂tu

(ε)
s (Xa

s ) + a0s · ∂xu
(ε)
s (Xa

s ) +
1

2
Tr
(
a1s(a

1
s)

⊺∂2
xxu

(ε)
s (Xa

s )
))

ds

}]

≤ E
P0

[
sup

a∈Dh,t∈[0,T ]

{
g(Xa

t )− g(ε)(Xa
t )
}
]
+ u

(ε)
0 ,

where we have used Ito’s formula and the inequality u(ε) ≥ g(ε) proved in Lemma 3.12. It is
straightforward to check that

lim
ε→0

(
E
P0

[
sup

a∈Dh,t∈[0,T ]

{
g(Xa

t )− g(ε)(Xa
t )
}
]
+ u

(ε)
0

)
= u0.

4. Examples.

4.1. UVM. As a first example, we consider a UVM, first considered in [1] and [14]. Let
A ⊆ R

d × R
d×d be a compact domain such that for all

(
σi , ρij

)
1≤i,j≤d

∈ A, the matrix

(
ρijσiσj

)
1≤i,j≤d

is positive semidefinite, ρij = ρji ∈ [−1, 1], and ρii = 1. If d = 2 an example of such a domain
is obtained by setting

A =

(
2∏

i=1

[σi, σi]

)
×

{(
1 ρ
ρ 1

)
: ρ ∈

[
ρ, ρ

]}
,
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where 0 ≤ σi ≤ σi and −1 ≤ ρ ≤ ρ ≤ 1. Recall the definition of A, i.e., an adapted process
(σ, ρ) = (σt, ρt)0≤t≤T ∈ A if it takes values in A. In the UVM the stock prices follow the
dynamics

d(Xσ,ρ
t )i = σi

t(X
σ,ρ
t )idW i

t , d〈W i,W j〉t = ρijdt, 1 ≤ i < j ≤ d,

where W i is a one-dimensional Brownian motion for all i ≤ d, and (σ, ρ) ∈ A is the unknown
volatility process and correlation. The value of the option at time t in the UVM, interpreted
as a superreplication price under uncertain volatilities, is given by

(4.1) ut = sup
(σ,ρ)∈A

E
[
ξT (X

σ,ρ)|Ft

]
.

For European payoffs, ξT (ω) = g(ωT ), the value u(t, x) is then the unique viscosity solution
(under suitable conditions on g) of the nonlinear PDE:

(4.2) ∂tu(t, x) +H(x,D2
xu(t, x)) = 0, u(T, x) = g(x),

with the Hamiltonian

H(x, γ) =
1

2
max

(σi,ρij)1≤i,j≤d∈A

d∑

i,j=1

ρijσiσjxixjγij for all x ∈ R
d, γ ∈ R

d×d.

Second order BSDE (2BSDE). Fix constants σ̂ = (σ̂i)1≤i≤d and ρ̂ = (ρ̂i,j)1≤i,j≤d. Denote

a new diffusion process X̂ ,

dX̂i
t = σ̂iX̂i

tdŴ
i
t , d〈Ŵ i, Ŵ j〉t = ρ̂ijdt, 1 ≤ i ≤ j ≤ d,

where Ŵ i is one-dimensional Brownian motion for all 1 ≤ i ≤ d. Consider the dynamics

(4.3)
dZt = Ξtdt+ ΓtdX̂t,

dYt = −H
(
X̂t,Γt

)
dt+ ZtdX̂t +

1

2

(
σ̂X̂t

)
⊺
Γt

(
σ̂X̂t

)
dt,

where (Y,Z,Γ,Ξ) is a quadruple taking values in R, Rd, Sd (the space of symmetric d × d
matrices) and R

d, respectively. In particular, if the HJB equation (4.2) has a smooth solution,
it follows from Itô’s formula that

(4.4) Yt := u(t, X̂t), Zt := ∂xu(t, X̂t), Γt := ∂2
xxu(t, X̂t)

satisfy the dynamics (4.3) with a certain process Ξ. In Cheridito et al. [3], the authors studied
the existence and uniqueness of the quadruple (Y,Z,Γ,Ξ) satisfying the dynamics (4.3) with
the terminal condition YT = g(X̂T ), without assuming the existence of a smooth solution to
the HJB equation (4.2), and they gave the name 2BSDE to this problem. For the readers
interested in the theory of 2BSDE, we refer to [3] and Soner, Touzi, and Zhang [18] for more
details.
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Numerical scheme for 2BSDE. We are interested in solving the 2BSDE numerically. In
the existing literature, one may find several different numerical schemes for this problem (see,
for example, [3, 8, 10]). Here we recall the one proposed in Guyon and Henry-Labordère [10].
Introduce the partition {ti}i≤n on the interval [0, T ], and denote ∆ti = ti − ti−1, ∆Wti =

Wti −Wti−1 . First, the diffusion X̂ can be written explicitly:

X̂j
ti
= X̂j

0e
−(σ̂j )2

ti
2
+σ̂jW

j
ti with ∆W j

ti
∆W k

ti
= ρ̂jk∆ti.

Denote by Ŷ , Γ̂ the numerical approximations of Y,Γ. In the backward scheme in [10], we set
Ŷtn = g

(
X̂tn

)
, and then compute

σ̂j σ̂kX̂j
0X̂

k
0 Γ̂jk

ti−1
= Ei−1

[
Ŷti

(
U j
ti
U j
ti
− (∆ti)

−1ρ̂−1
jk − σ̂jU j

ti
δjk
)]

with U j
ti

:=

d∑

k=1

ρ̂−1
jk ∆W k

ti
/∆ti, and

Ŷti−1 = Ei−1

[
Ŷti

]
+

⎛
⎝H(X̂ti−1 , Γ̂ti−1)−

1

2

n∑

j,k=1

X̂j
ti−1

X̂k
ti−1

Γjk
ti−1

ρ̂pkσ̂
j σ̂k

⎞
⎠∆ti,

where Ei denotes the conditional expectation with respect to the filtration Fti . Below, we
denote uBSDE

0 := Ŷ0.

Lower and upper bound for the value function. Once Γ̂ is computed, one gets a (sub-
optimal) estimation of the controls (σ̂∗, ρ̂∗):

(
σ̂∗
ti
, ρ̂∗ti

)
:= argmax(σj ,ρjk)1≤j,k≤d∈A

d∑

j,k=1

ρjkσjσkX̂j
ti
X̂k

ti
Γ̂jk
ti

for 0 ≤ i ≤ n.

Performing a second independent (forward) Monte Carlo simulation using this suboptimal
control, we obtain a lower bound for the value function (4.1):

uLS0 := E
[
g(X σ̂∗ ,ρ̂∗

T )
]
≤ u0.

We next calculate the dual bound derived in the current paper. As mentioned in Re-
mark 2.8, we will use the numerical approximation of ∂xu to serve as the minimizer ϕ∗ in
the dual form. Also, we observe from (4.4) that the process Z in the 2BSDE plays the
corresponding role of ∂xu, and we can compute the numerical approximation Ẑ of Z:

σ̂jX̂j
ti
Ẑj
ti
= Ei−1

[
ŶtiU

j
ti

]
.

Then we define

ϕ∗
t =

n∑

i=1

Ẑti−11[ti−1,ti)(t).
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Using our candidate ϕ∗ in the minimization, we get an upper bound

uLS0 ≤ u0 ≤ udual0 := lim
h→0

E

[
max

(σ,ρ)∈Dh

{
g(Xσ,ρ

tn
)−

n∑

i=1

ϕ∗
ti−1

(Xσ,ρ)(Xσ,ρ
ti

−Xσ,ρ
ti−1

)

}]
.

The algorithm. Our whole algorithm can be summarized by the following four steps:
1. Simulate N1 replications of X̂ with a lognormal diffusion (we choose σ̂ = (σ + σ)/2).
2. Apply the backward algorithm using a regression approximation. Compute Y0 =

uBSDE
0 .

3. Simulate N2 independent replication of X σ̂∗,ρ̂∗ using the suboptimal control (σ̂∗, ρ̂∗).
Give a low-biased estimate uLS0 .

4. Simulate independent increment ∆Wti and maximize

g(Xσ,ρ
tn

)−
n∑

i=1

ϕ∗
ti−1

(Xσ,ρ)(Xσ,ρ
ti

−Xσ,ρ
ti−1

)

over (σ, ρ) ∈ Dh. In our numerical experiments, as the payoff may be non-smooth, we
have used a direct search polytope algorithm. Then compute the average.

Numerical experiments. In our experiments, we take T = 1 year and for the ith asset,
Xi

0 = 100, σi = 0.1, σi = 0.2, and we use the constant midvolatility σ̂i = 0.15 to generate

the first N1 = 215 replications of X̂. For the second independent Monte Carlo using our
suboptimal control, we take N2 = 215 replications of X and a time step ∆LS = 1/400. In
the backward and dual algorithms, we choose the time step ∆ among {1/2, 1/4, 1/8, 1/12},
which gives the biggest uLS0 and the smallest udual0 . The conditional expectations at ti are
computed using parametric regressions. The regression basis consists in some polynomial
basis. The exact price is obtained by solving the (one- or two-dimensional) HJB equation
with a finite-difference scheme.

1. 90–110 call spread (XT − 90)+ − (XT − 110)+, basis = 5-order polynomial:

uLS0 = 11.07 < uPDE
0 = 11.20 < udual0 = 11.70, uBSDE

0 = 10.30.

2. Digital option 1XT≥100, basis = 5-order polynomial:

uLS0 = 62.75 < uPDE
0 = 63.33 < udual0 = 66.54, uBSDE

0 = 52.03.

3. Outperformer option (X2
T −X1

T )
+ with 2 uncorrelated assets:

uLS0 = 11.15 < uPDE
0 = 11.25 < udual0 = 11.84, uBSDE

0 = 11.48.

4. Outperformer option with 2 correlated assets ρ = −0.5:

uLS0 = 13.66 < uPDE
0 = 13.75 < udual0 = 14.05, uBSDE

0 = 14.14.

5. Outperformer spread option (X2
T −0.9X1

T )
+− (X2

T −1.1X1
T )

+ with 2 correlated assets
ρ = −0.5:

uLS0 = 11.11 < uPDE
0 = 11.41 < udual0 = 12.35, uBSDE

0 = 9.94.
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In examples 3–5 the regression basis we used consisted of

{1,X1,X2, (X1)2, (X2)2,X1X2}.

Remark 4.1. The dual bounds we have derived complement the lower bounds derived in
[10]. They allow us to access the quality of the regressors used in computing the conditional
expectations.

4.2. Credit value adjustment. Our second example arises in credit valuation adjustment.
We will show that for this particular example, we can solve the deterministic optimization
problems arising in the dual algorithm efficiently by recursively solving ODEs.

CVA interpretation. Let us recall the problem of the unilateral counterparty value ad-
justment (see [11] for more details). We have one counterparty, denoted by C, that may
default and another, B, that cannot. We assume that B is allowed to trade dynamically in
the underlying X—that is described by a local martingale

dXt = σ(t,Xt)dWt with W a Brownian motion,

under a risk-neutral measure. The default time of C is modeled by an exponential variable τ
with an intensity c, independent of W . We denote by u0 the value at time 0 of B’s long
position in a single derivative contracted by C, given that C has not defaulted so far. For
simplicity, we assume zero rate. Assume that g(XT ) is the payoff of the derivative at maturity
T , and that ũ is the derivative value just after the counterparty has defaulted. Then, we have

u0 = E

[
g(XT )1{τ>T} + ũ(τ,Xτ )1{τ≤T}

]

= E

[
e−cT g(XT ) +

∫ T

0
ũ(t,Xt)ce

−ctdt

]
.

Write down the dynamic version:

u(t, x) = E

[
e−c(T−t)g(XT ) +

∫ T

t

e−c(s−t)cũ(s,Xs)ds
∣∣∣Xt = x

]
.

The function u can be characterized by the equation

∂tu+
1

2
σ2(t, x)∂2

xxu+ c (ũ− u) = 0, u(T, x) = g(x).

At the default event, in the case of zero recovery, we assume that ũ is given by

ũ = u−,

where x− := max(0,−x). Indeed, if the value of u is positive, meaning that u should be
paid by the counterparty, nothing will be received by B after the default. If the value of u is
negative, meaning that u should be received by the counterparty, B will pay u in the case of
default of C.
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Remark 4.2. The funding value adjustment corresponds to a similar nonlinear equation.

By the following change of variable

u(t, x)HJB = ec(T−t)u(t, x),

the function uHJB satisfies the HJB equation

(4.5) ∂tu
HJB +

1

2
σ2(t, x)∂2

xxu
HJB + c(uHJB)− = 0, uHJB(T, x) = g(x).

The stochastic representation is

uHJB(t, x) = sup
α∈A

E

[
e−

∫ T

t
αsdsg(XT )

∣∣Xt = x
]

with A := [0, c].

Dual bound. We are interested in deriving an efficient upper bound for uHJB(0,X0).

Denoting Ra
t = e

∫ t

0 asds, our dual expression is

uHJB(0,X0) = lim
h→0

inf
ϕ∈U

E

[
sup
a∈Dh

{Ra
T g(XT )−

∫ T

0
Ra

tϕ(t,Xt)dXt}

]

≤ lim
h→0

E

[
sup
a∈Dh

{Ra
T g(XT )−

∫ T

0
Ra

tϕ
∗(t,Xt)dXt}

]
,

where ϕ∗ is a fixed strategy. Rewriting the integral in Stratonovich form, we have
∫ T

0
Ra

tϕ
∗(t,Xt)dXt

=

∫ T

0
Ra

tϕ
∗(t,Xt) ◦ dXt −

1

2

∫ T

0
Ra

t ∂xϕ
∗(t,Xt)σ

2(t,Xt)dt.

Therefore, using the classical Zakai approximation of the Stratonovich integral, it follows that

E

[
sup
a∈Dh

{
Ra

T g(XT )−

∫ T

0
Ra

tϕ
∗(t,Xt)dXt

}]

= lim
n→∞

E

[
sup
a∈Dh

{
Ra

T g(X
n
T )−

∫ T

0
Ra

tϕ
∗(t,Xn

t ) ◦ dX
n
t +

1

2

∫ T

0
Ra

t ∂xϕ
∗(t,Xn

t )σ
2(t,Xn

t )dt

}]

= lim
n→∞

E

[
sup
a∈Dh

{
Ra

T g(X
n
T )−

∫ T

0
Ra

t

(
ϕ∗(t,Xn

t )σ(t,X
n
t )Ẇ

n
t −

1

2
∂xϕ

∗(t,Xn
t )σ

2(t,Xn
t )

)
dt

]

≤ lim
n→∞

E

[
sup
a∈D̃

{
Ra

T g(X
n
T )−

∫ T

0
Ra

t

(
ϕ∗(t,Xn

t )σ(t,X
n
t )Ẇ

n
t −

1

2
∂xϕ

∗(t,Xn
t )σ

2(t,Xn
t )

)
dt

]
,

where D̃ :=
{
a : [0, T ] → R

∣∣ a is measurable, and 0 ≤ at ≤ c for all t ∈ [0, T ]
}
. For almost

every ω we may consider for all n the following deterministic optimization problem. Set

gω,n = g(Xn
T (ω)), αω,n(t) = −ϕ∗(t,Xn

t (ω))σ(t,Xn
t (ω))Ẇ

n
t (ω) ,

βω,n (t) =
1

2
∂xϕ

∗(t,Xn
t (ω))σ2(t,Xn

t (ω)),



180 P. HENRY-LABORDÈRE, C. LITTERER, AND Z. REN

and consider the function

uHJ
ω,n(t) = sup

a∈D̃

{
Ra

T

Ra
t

gω,n +

∫ T

t

Ra
s

Ra
t

(
αω,n(s) + βω,n (s)

)
ds

}
.

Note that uHJ is the solution of the (pathwise) Hamilton–Jacobi equation

(uHJ
ω,n)

′ (t) + c
(
uHJ
ω,n (t)

)−
+ αω,n(t) + βω,n (t) = 0, uHJ

ω,n(T ) = gω,n.

The ODE for uHJ
ω,n can be solved analytically. Fix a t0 ∈ [0, T ], and let

t∗ = sup
{
s < t0 : uHJ

ω,n(t
0)uHJ

ω,n(s) < 0
}
∨ 0.

For all t ∈ [t∗, t0] we get the following recurrence equation:

uHJ
ω,n(t) =

⎧
⎪⎪⎨
⎪⎪⎩

−

∫ t0

t

e−c(s−t)
(
αω,n(s) + βω,n(s)

)
ds+ uHJ

ω,n(t
0)ec(t

0−t), uHJ
ω,n(t

0) < 0,

−

∫ t0

t

(
αω,n(s) + βω,n(s)

)
ds + uHJ

ω,n(t
0), uHJ

ω,n(t
0) > 0,

uHJ
ω,n(T ) = gω,n.

Finally, we observe that

uHJB(0,X0) ≤ lim
n→∞

E
[
uHJ
ω,n(0)

]
.

We illustrate the quality of our bounds by the following numerical example.

Remark 4.3. This example falls into the framework of [4] and [5]. By virtue of their
(continuous) pathwise analysis the upper bounds derived above could in the limit be replaced
with equalities. Only the error introduced by the choice of ϕ∗ remains.

Numerical example. We take σ(t, x) = 1, T = 1 year, X0 = 0, g(x) = x. We use two
choices: ϕ∗(t, x) = e−c(T−t) (which corresponds to ∂xu

HJB at the first order near c = 0)
and ϕ∗(t, x) = 0. We have computed E[uHJ

ω,n(0)] as a function of the time discretization (see
Tables 1 and 2). The exact value has been computed using a one-dimensional PDE solver (see

Table 1
The numerical results of E[uHJ

ω,n(0)] with the different time steps when ϕ∗(t, x) = e−c(T−t). The numbers
in the brackets indicate the CPU times (Intel Core 2.60 GHz) in seconds for the case c = 0.7 with N = 8192
Monte Carlo paths.

c , (1− e−cT ) PDE 1/2 1/4 1/8 1/12 1/24 1/50 1/100 1/200

0.01 (1%) 0.26 0.23 0.25 0.26 0.26 0.26 0.26 0.26 0.26

0.05 (4.9%) 1.29 1.14 1.22 1.26 1.27 1.28 1.29 1.29 1.29

0.1 (9.5%) 2.52 2.24 2.39 2.46 2.48 2.51 2.52 2.52 2.52

0.7 (50.3%) 13.60(0) 12.63(1) 13.25(2) 13.53(5) 13.61(7) 13.71(18) 13.75(44) 13.77(112) 13.77
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Table 2
The numerical results of E[uHJ

ω,n(0)] when ϕ∗(t, x) = 0.

c , (1− e−cT ) PDE E
[

uHJ
ω,n(0)

]

0.01 (1%) 0.26 0.40

0.05 (4.9%) 1.30 1.95

0.1 (9.5%) 2.53 3.80

0.7 (50.3%) 13.60 20.08

column PDE). We have used different values of c corresponding to a probability of default at
T equal to (1− e−cT ).

The approximation has two separate sources of error. First, there is the suboptimal choice
of the minimizer ϕ∗ for the discretized optimization implying an upper bias. The second
error arises from the discretization of the deterministic optimization problems, which could
underestimate the true value of the optimization. The choice ϕ∗ = e−c(T−t) in our example—
as expected—is close to being optimal, so the errors arising from the discretization dominate.
To the contrary, the choice ϕ∗ = 0 is far from being optimal, so the numerical results are
much bigger than the value function.
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