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THE INVERSE DEFORMATION PROBLEM

TIMOTHY EARDLEY AND JAYANTA MANOHARMAYUM

Abstract. Given a commutative complete local noetherian ring A with finite
residue field kkk, we show that there is a topologically finitely generated profi-

nite group Γ and an absolutely irreducible continuous representation ρ : Γ →

GLn(kkk) such that A is a universal deformation ring for Γ, ρ.

1. Introduction

Let Λ be a commutative complete noetherian local ring with residue field kkk of
positive characteristic p. We write CCCΛ for the category of commutative complete
noetherian local Λ-algebras with residue field kkk; morphisms in CCCΛ are continuous
Λ-algebra homomorphisms inducing the identity on the residue field kkk. The aim
of this paper is to give characterisations of objects in CCCΛ which can be realised as
a universal deformation ring of some residual representation. The problem, often
referred to as the inverse deformation problem, originated from a question of Flach;
the above formulation is due to Bleher, Chinburg and De Smit. (See [5], [6],[7].)

To describe the main results of this paper, fix Λ, kkk and CCCΛ as above. We refer
the reader to [12], [13] for details on deformations of representations. Suppose we
are given a profinite group Γ together with a continuous representation ρ : Γ −→
GLn(kkk). The representation ρ will be referred to as the residual representation.
Given a Λ-algebra A in CCCΛ with maximal ideal mA, recall that

• a continuous homomorphism ρ : Γ −→ GLn(A) is said to be a lifting of ρ
if ρ = ρ (mod mA); and,
• two liftings ρ1, ρ2 : Γ −→ GLn(A) of ρ are strictly equivalent if there exists
a matrixX ∈ GLn(A) such thatX ≡ I (mod mA) andXρ1(g)X

−1 = ρ2(g)
for all g ∈ Γ.

Strict equivalence is an equivalence relation; a deformation of ρ is a strict equiv-
alence class of liftings. Note that if f : A → B is a morphism in CCCΛ and ρ :
Γ −→ GLn(A) is a lifting of ρ, then f ◦ ρ : Γ −→ GLn(B) is also a lifting of ρ.
Furthermore, the association

A→ Defρ,Λ(A) := the set of deformations of ρ to A

is a functor from CCCΛ to Sets.
Now assume that the profinite group Γ and the residual representation ρ satisfy

the following two hypotheses:

(H1) (p-finiteness condition.) Each open subgroup U of Γ admits only finitely
many continuous homomorphisms to Z/pZ.
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2 TIMOTHY EARDLEY AND JAYANTA MANOHARMAYUM

(H2) The residual representation ρ : Γ −→ GLn(kkk) admits no non-scalar cen-
traliser i.e. if X ∈ GLn(kkk) satisfies Xρ(g) = ρ(g)X for all g ∈ Γ then
X = λI for some λ ∈ kkk.

The functor Defρ,Λ : CCCΛ → Sets is then representable under these assumptions
(see [9, Proposition 7.1], [12, Proposition 1]). We recall that this means we can
find an object R of CCCΛ and a continuous representation ρ : Γ → GLn(R) lifting
ρ with the following universal property: if A ∈ Ob(CCCΛ) and ρA : Γ → GLn(A) is
a lifting of ρ then there is a unique morphism f : R → A in CCCΛ such that ρA is
strictly equivalent to f ◦ ρ. We shall refer to the pair (R, ρ)—which is unique up to
a canonical isomorphism and strict equivalence—as the universal deformation for
ρ in CCCΛ.

Definition. A Λ-algebra A ∈ Ob(CCCΛ) is said to be a universal deformation ring in
CCCΛ if we can find a profinite group Γ and a residual representation ρ : Γ→ GLn(kkk)
satisfying (H1) and (H2) with universal deformation (R, ρ) in CCCΛ such that R and
A are isomorphic objects in CCCΛ.

We can now state the main result of this paper.

Theorem 1.1. Let kkk be a finite field of characteristic p and let W (kkk) be its Witt
ring. Then every object of CCCW (kkk) is a universal deformation ring.

More precisely, let A be an object of CCCW (kkk) and let Γ := SLn(A) where n is a
positive integer subject to the following restrictions.

• If kkk has at least 7 elements or kkk is F4, then n ≥ 2.
• If kkk is F2, then n ≥ 5.
• If kkk is either F3 or F5, then n ≥ 3.

Let ρ : Γ → GLn(kkk) be the reduction of the standard representation ρA : Γ →
SLn(A) modulo the maximal ideal of A. Then the pair (A, ρA) is the universal
deformation for ρ in CCCW (kkk).

The restrictions on n in Theorem 1.1 are in place because our method relies on a
structure result for subgroups of SLn over commutative complete noetherian local
rings (see Proposition 4.1). The said result is used, in the first instance, to construct
an isomorphism of local rings, and then to show that the isomorphism constructed
is a morphism in CCCW (kkk). Unfortunately Proposition 4.1 fails in the excluded cases.
In fact, Theorem 1.1 fails in all but one of the excluded cases (see Remark 4.6).

We now give an overview of the developments concerning the inverse deformation
problem; for a more detailed account see [6]. As indicated at the start of this
section, the inverse deformation problem originated from a question by Flach in [7]
which asked if it is possible for a universal deformation ring to not be a complete
intersection ring. The motivation behind this question was that up to that point,
although there had been many explicit calculations, all known universal deformation
rings were complete intersection rings.

The first example of a universal deformation ring which was not a complete inter-
section was given by Bleher and Chinburg in [3], where they showedW (kkk)[[t]]/(t2, 2t)
is a universal deformation ring when p = 2. (See also [4]). This example was greatly
generalised by Bleher, Chinburg and de Smit in [5] to provide a positive answer to
the inverse deformation problem for all rings of the form W (kkk)[[t]]/(pnt, t2). Ble-
her, Chinburg and de Smit further gave a categorisation of all possible pairs (Γ, ρ)
which haveW (kkk)[[t]]/(pnt, t2) as its universal deformation ring in [6]. Another class
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of non complete intersection rings which are universal deformation rings is given
by Zp[[t]]/(p

n, pmt) where p > 3 and n > m are positive integers. This is due to
Rainone (see [16]).

We note that Krzysztof Dorobisz has independently proved results similar to
Theorem 1.1 in [10]. His methods are more linear algebraic (in that skillful use of
matrix identities are employed) while we rely on cohomological arguments.

This article is organised as follows. In Section 2 we present preparatory material
concerning the structure of SLn which will be essential to the proof of Theorem
1.1. The results here are either well known or elementary. We then prove Theorem
1.1 in Section 3, assuming a key result on subgroups of SLn holds (Assumption
3.2). Section 4 then discusses verification of Assumption 3.2 following a simplified
form of the argument used in [11].

Notation and conventions. Throughout this paper, all rings are assumed to have
a multiplicative identity. Moreover, all local rings are assumed to be commutative.
The maximal ideal of a local ring A will be denoted by mA.

If kkk is a perfect field of positive characteristic then W (kkk) denotes its ring of
Witt vectors. We will often write W instead of W (kkk) when it is clear what the
residue field kkk is. If A is a complete noetherian local ring with residue field kkk then
A is canonically a W -algebra. We write ιA :W → A for the corresponding natural
homomorphism and setWA := ιA(W ). Note thatWA is the smallest closed subring
of A which is local with residue field kkk.

Acknowledgements. The authors would like to thank the referee for detailed and
helpful comments. The referee’s suggestions have led us to include stronger results
and improved exposition.

2. Preliminaries: Some properties of SLn.

In this section, we describe certain aspects of the structure of special linear
groups which play a key role in the proof of Theorem 1.1. Throughout this section,
A denotes a commutative ring. Recall that if x ∈ A, and 1 ≤ i, j ≤ n with i 6= j,
the elementary matrix Eij(x) ∈ SLn(A) is the n by n matrix whose (i, j)-th entry
is x, whose diagonal entries are all 1, and whose remaining entries are all 0.

Lemma 2.1.

(i) The n by n elementary matrices in SLn(A) satisfy the following Steinberg
relations.
(a) Eij(x)Eij(y) = Eij(x+ y),
(b) [Eij(x), Ejk(y)] = Eik(xy) if i 6= k
(c) [Eij(x), Ekl(y)] = 1 if i 6= l, j 6= k

(ii) Let a, b, c, d ∈ A. Then the relation

(2.1)

(
1 −a
0 1

)(
1 0
b 1

)(
0 1
−1 0

)(
1 0
a 1

)
=

(
c 0
0 d

)

holds if and only if a = c, b = d and ab = cd = 1.
(iii) If A is a local ring and n ≥ 2, then SLn(A) is generated by the elementary

matrices Eij(x), x ∈ A.
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The first part is well known (see [17] or [21], for instance). For the second part
of the lemma, multiplying out the left hand side transforms relation (2.1) into

(
2a− a2b 1− ab
ab− 1 b

)
=

(
c 0
0 d

)

and the conclusion follows. The third part of Lemma 2.1 is essentially covered by
the discussion following Example 1.6 in [21].

Lemma 2.1 implies the following proposition (which will be used in determining
the image of liftings of residual representations in deformation problems).

Proposition 2.2. Let A be a local ring and let n ≥ 2 be an integer. In addition,
assume that the residue field of A has at least 4 elements when n = 2. Then the
following holds: For any commutative ring B and positive integer m, the image of
a group homomorphism ρ : SLn(A)→ GLm(B) is in fact a subgroup of SLm(B).

Proof. By Lemma 2.1 the image of ρ is generated by the images of elementary
matrices and so we need to verify that the image of an elementary matrix has
determinant 1.

First suppose n ≥ 3. Given an elementary matrix Eij(x) in SLn(A), pick an
integer k between 1 and n distinct from i, j. The relation [Eik(x), Ekj(1)] = Eij(x)
then implies that the determinant of ρ(Eij(x)) must be 1.

Suppose now that n = 2. Our assumption on the size of the residue field allows
us to fix a unit u ∈ A such that u2 6≡ 1 (mod mA). Thus 1−u

2 is a unit in A. The
desired conclusion then follows from the commutator relation

(2.2)

(
1 x
0 1

)(
u 0
0 u−1

)(
1 −x
0 1

)(
u−1 0
0 u

)
=

(
1 x(1− u2)
0 1

)
,

and a similar one for lower triangular matrices, valid for all x ∈ A. �

We now highlight a class of signed permutation matrices which can be used to
conjugate the elementary matrix E1n(x) to another elementary matrix Eij(x).

Definition 2.3. Let n be a positive integer. The diagonal matrix in GLn(Z)
obtained by replacing the (i, i)-th entry of the identity matrix by −1 is denoted by
Di. For 1 ≤ i, j ≤ n with i 6= j, the permutation matrix in GLn(Z) obtained by
interchanging the i-th and j-th rows of the identity matrix will be denoted by P(ij).
The matrices Di and P(ij) have determinant −1.

Finally, given 1 ≤ i, j ≤ n with i 6= j, define the signed permutation matrix
Tij ∈ SLn(Z) by

(2.3) Tij :=





I if (i, j) = (1, n),

D2P(1n) if (i, j) = (n, 1),

DnP(jn) if i = 1 and j 6= n,

D1P(1i) if i 6= 1 and j = n,

P(1i)P(nj) if i 6= 1 and j 6= n and (i, j) 6= (n, 1).

If X ∈ GLn(Z) then its image in GLn(A) under the unique ring homomorphism
Z→ A will also be denoted by X. We then have the following lemma.

Lemma 2.4. Let n ≥ 2 be an integer.
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(i) Suppose X ∈ GLn(A). Then XEij(1) = Eij(1)X for all elementary matri-
ces Eij(1) with 1 ≤ i < j ≤ n if and only if X = λE1n(x) for some λ ∈ A×,
x ∈ A.

(ii) TijE1n(x)T
−1
ij = Eij(x) for all 1 ≤ i 6= j ≤ n and x ∈ A.

We give a brief sketch of the proof. That λE1n(x) commutes with Eij(1) when
1 ≤ i < j ≤ n is clear from the Steinberg relations (Lemma 2.1, part i(c)). For
the other direction, let est denote the n by n matrix whose (s, t)-th entry is 1 and
whose all other entries are 0. If xlk denotes the (l, k)-th entry ofX, then the relation
Eij(1)X = XEij(1) implies

n∑

m=1

xjmeim =

n∑

m=1

xmiemj

and the desired conclusion follows. The second part is a straightforward calculation
which we skip.

3. Proof of Theorem 1.1

We shall now show that every complete local noetherian ring with finite residue
field is a universal deformation ring.

Throughout this section, kkk is a finite field of characteristic p > 0 and W denotes
its Witt ring. Recall that CCCW is the category of complete noetherian local W -
algebras with residue field kkk. If A is a W -algebra in CCCW , we define WA := ιA(W )
where ιA :W → A is the canonical structure map.

We now turn to the proof of Theorem 1.1. Fix a W -algebra A in CCCW . Fix also
an integer n subject to the following conditions.

Assumption 3.1.

• If the cardinality of kkk is at least 7 or kkk = F4, then n ≥ 2.
• If kkk is F2, then n ≥ 5.
• If kkk is either F3 or F5, then n ≥ 3.

Set Γ := SLn(A). We write ρA : Γ → SLn(A) for the standard representation
of Γ, and define the residual representation ρ := ρA (mod mA). Thus

ρ : Γ→ SLn(kkk) →֒ GLn(kkk).

Note that Γ is topologically finitely generated and ρ is clearly surjective. Thus Γ
and ρ satisfy hypotheses (H1) and (H2) from Section 1, and hence ρ has a universal
deformation in CCCW .

We will show that the pair (A, ρA) is in fact the universal deformation for ρ in
CCCW . For clarity the argument is split into four steps.

Step 1. We begin by observing some characteristics of the universal deformation.
Let R together with ρR : Γ→ GLn(R) be the universal deformation for

ρ : Γ→ SLn(kkk) →֒ GLn(kkk).

By Proposition 2.2, the restrictions imposed on n imply that ρR takes values in
SLn(R).

We now make the following critical assumption which will only be justified in
Section 4.
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Assumption 3.2. There exists an X ∈ GLn(R) with X ≡ I (mod mR) such that
XρR(Γ)X

−1 ⊇ SLn(WR).

We continue with the proof of Theorem 1.1. Assumption 3.2 allows us to derive
the following consequence: Replacing ρR with a strictly equivalent representation
if necessary, we may assume that ρR(Γ) contains a copy of SLn(WR).

Step 2. Let π : R→ A be the unique W -algebra homomorphism in CCCW associated
with ρA by the universality of (R, ρR). Thus π ◦ ρR is strictly equivalent to ρA
and π is compatible with the W -algebra structure morphisms ιA and ιR i.e. the
diagram

(3.1)

W W
yιR

yιA

R
π

−−−−→ A

commutes. We now make the following observations.

Proposition 3.3.

(i) ρR : Γ→ SLn(R) is injective and π : ρR(Γ)→ SLn(A) is an isomorphism.
(ii) The map π : R→ A is surjective.
(iii) The restriction π|WR

:WR →WA is an isomorphism.

Proof. Part (i) follows from the observations that π ◦ ρR is strictly equivalent to
ρA, and that ρA is an isomorphism. Part (ii) is then immediate.

We now consider part (iii). By Assumption 3.2, we can pick a γ in Γ with
ρR(γ) = E12(1). Now ρA(γ) and E12(π(1)) have the same order (as they are
conjugates), and so we may conclude that the restriction π|WR

: WR → WA must
be an isomorphism. �

The above assertion allows us to identify WR and WA. Henceforth, we will not
differentiate between ιR(x) and ιA(x) for x ∈W .

Step 3. We shall now show that under the group isomorphism π : ρR(Γ)→ SLn(A),
the preimage of an elementary matrix in SLn(A) is an elementary matrix in SLn(R).
This allows us to construct a local W -algebra homomorphism A → R which is a
section for π : R→ A.

We first observe the following lemma.

Lemma 3.4. For each x ∈ A there exist a unique λx in R× and a unique s(x) in R
such that the following holds: λxE1n(s(x)) ∈ ρR(Γ) and π(λxE1n(s(x))) = E1n(x).

The above association has the following additional properties.

(i) Let x ∈ A and let 1 ≤ i, j ≤ n with i 6= j. Then the preimage of Eij(x)
under the isomorphism π : ρR(Γ)→ SLn(A) is the matrix λxEij(s(x)).

(ii) If x ∈WA then λx = 1 and s(x) = x.

Proof. Uniqueness is immediate from Proposition 3.3(i). For existence, let X ∈
ρR(Γ) satisfy π(X) = E1n(x). Now E1n(x) commutes with the elementary matrices
Eij(1) where 1 ≤ i < j ≤ n. Then by Proposition 3.3 and our identification of WR

with WA, the elementary matrices Eij(1) with 1 ≤ i < j ≤ n are in ρR(Γ) and
commute with X. Hence by Lemma 2.4 we must have X = λxE1n(s(x)) for some
s(x) in R and λx in R×.
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Now for the first part of the two properties. Let x ∈ A and let 1 ≤ i, j ≤ n
with i 6= j. From the preceding two steps, the signed permutation matrix Tij , as

defined by the relations (2.3), is in ρR(Γ). Since λxEij(s(x)) = TijλxE1n(s(x))T
−1
ij

by Lemma 2.4, we see that λxEij(s(x)) is in ρR(Γ) and is the unique preimage of
Eij(x). The second property is immediate as we are identifying WA and WR. �

Keep the notation of Lemma 3.4. We will now show that λx is in fact 1 for all
x ∈ A. This can be derived from the Steinberg relations when n ≥ 3 as follows. Let
i, j, k be three distinct integers in {1, 2, . . . , n}. By considering their preimages in
ρR(Γ), the relation Eij(x) = Eik(x)Ekj(1)Eik(x)

−1Ekj(1)
−1 then implies that

λxEij(s(x)) = λxEik(s(x))Ekj(1)λ
−1
x Eik(s(x))

−1Ekj(1)
−1

= Eij(s(x)),

and hence λx = 1.
We now consider the case when n = 2. Note the following claim.

Claim 3.5. Under the isomorphism π : ρR(Γ)→ SL2(A), the preimage of a diag-
onal matrix in SL2(A) is also a diagonal matrix.

To see the claim, let X ∈ ρR(Γ) ⊆ SL2(R) be the preimage of the diagonal
matrix D ∈ SL2(A). Then DE12(1)D

−1 = E12(u) for some u ∈ A×, and so
XE12(1)X

−1 = λuE12(s(u)). Similarly X conjugates E21(1) to a lower triangular
matrix (in fact XE21(1)X

−1 = λu−1E21(s(u
−1))). We can therefore conclude that

the preimage X is a diagonal matrix in ρR(Γ).
Now let x ∈ A. As kkk has at least 4 elements, we can find y ∈ A, u ∈ A× so that

(
1 y
0 1

)(
u 0
0 u−1

)(
1 y
0 1

)
−1 (

u 0
0 u−1

)
−1

=

(
1 x
0 1

)
.

(Use the commutator relation (2.2).) Using Lemma 3.4, Claim 3.5 and taking
preimages, we get

λy

(
1 s(y)
0 1

)(
v 0
0 v−1

)(
λy

(
1 s(y)
0 1

))
−1

(
v 0
0 v−1

)
−1

= λx

(
1 s(x)
0 1

)
,

for some v ∈ R×, and we obtain λx = 1.
We can now define the desired section of π : R→ A.

Proposition 3.6. The function s : A→ R characterised by the following property
is well defined:

If x ∈ A then s(x) is the unique element in R such that π(s(x)) = x
and the elementary matrix Eij(s(x)) is a matrix in ρR(Γ) for all
1 ≤ i, j ≤ n, i 6= j.

Moreover, the map s : A→ R is in fact a morphism in CCCW .

Proof. The characterising property that defines s : A → R has been covered in
Lemma 3.4 and the discussion following it.

We shall now show that the map s : A → R is a morphism in CCCW . It follows
immediately from the construction and Lemma 2.1, part i(a), that s(x + y) =
s(x) + s(y) for all x, y ∈ A. Moreover, s|WA

is the inverse to π|WR
, and π ◦ s

is the identity on A. By construction s(mA) ⊆ mR and s induces the identity on
A/mA = R/mR = kkk. Thus if we can show that s(xy) = s(x)s(y) for all x, y ∈ A then
s : A → R will be a morphism in CCCW . This follows from the Steinberg relations
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when n ≥ 3: if 1 ≤ i, j, k ≤ n are three distinct integers, then the commutator
relation [Eij(s(x)), Ejk(s(y))] = Eik(s(x)s(y)) shows that s(xy) = s(x)s(y).

We now consider the multiplicativity of s when n = 2. If u ∈ A× then, using
relation (2.1), we have

(
1 −u
0 1

)(
1 0
u−1 1

)(
0 1
−1 0

)(
1 0
u 1

)
=

(
u 0
0 u−1

)
.

Since the preimage of a diagonal matrix is also diagonal by Claim 3.5, the above
relation implies that

(
1 −s(u)
0 1

)(
1 0

s(u−1) 1

)(
0 1
−1 0

)(
1 0

s(u) 1

)
=

(
v 0
0 v−1

)

for some v ∈ R×. By part (b) of Lemma 2.1, we must have v = s(u) i.e. the

preimage of

(
u 0
0 u−1

)
under π : ρR(Γ)→ SL2(A) is

(
s(u) 0
0 s(u)−1

)
.

It now follows s(xy) = s(x)s(y) if both x, y are units in A. If x ∈ A× and
y 6∈ A× then, as 1+ y is a unit, we get s(x(1+ y)) = s(x)s(1+ y). Using additivity
of s : A → R and s(1) = 1, we obtain s(xy) = s(x)s(y). The other two remaining
cases are treated similarly. �

Step 4. To complete the proof of the theorem, we have to verify that the pair
(A, ρA : Γ→ SLn(A)) is the universal deformation. Since the elementary matrices
Eij(x) generate SLn(A) by Lemma 2.1, the elementary matrices Eij(s(x)) must
generate ρR(Γ). As π ◦s is the identity on A, we can now conclude that s◦π ◦ρR =
ρR. By universality, the homomorphism s ◦ π : R → R must be the identity on R.
Thus π : R→ A is an isomorphism with inverse s : A→ R and π ◦ ρR, respectively
s ◦ ρA, is strictly equivalent to ρA, respectively ρR. This concludes the proof of
Theorem 1.1.

4. Subgroups of SLn over complete noetherian local rings and

Assumption 3.2

In this section, we justify that Assumption 3.2, which we made in step (1) of
the proof of Theorem 1.1, is valid. We retain the notation and assumptions made
at the start of Section 3. Thus W is the Witt ring of the finite field kkk and n is
a positive integer satisfying the restrictions made in Assumption 3.1. Assumption
3.2 is then a consequence of the following proposition.

Proposition 4.1. Let the finite field kkk and positive integer n be as above. Thus
n ≥ 2 and the pair (n, |kkk|) is not one of the following: (2, 2), (2, 3), (2, 5), (3, 2),
or (4, 2). Suppose we are given a W -algebra A in CCCW and a closed subgroup G of
SLn(A) with full residual image i.e. G (mod mA) = SLn(kkk). Then there exists an
X ∈ GLn(A) with X ≡ I (mod mA) such that XGX−1 ⊇ SLn(WA).

When kkk is not equal to either F2 or F3, or when kkk = F4 and n 6= 3, Proposition
4.1 is covered by the main theorem of [11]. The argument in loc. cit. required
certain cohomological properties of SLn(kkk) which followed from results of Cline,
Parshall and Scott in [8], and Quillen in [15]. In this paper we shall indicate how
the same argument may be recovered in the excluded cases by using results of Sah
in [18] and [19]. To this end, we begin by setting out the following assumptions
and notations.
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Assumption 4.2. Throughout this section:

• The finite field kkk is either F2 or F3 or F4, p denotes its characteristic, and
Wm :=W/pm.
• n is a fixed integer subject to the following conditions.

– If kkk = F2 then n ≥ 5.
– If kkk = F3 then n ≥ 3.
– If kkk = F4 then n = 3.

• M, resp. M0, denotes the space of n by n matrices over kkk, resp. the space
of n by n matrices over kkk with trace 0. When p|n, we set S := kkkI and
V = M0/S.

We remark that if A is a W -algebra in CCCW , then GLn(A) acts on M and M0

by conjugation. We make free use of standard results on group extensions and
cohomology (see [2], [14]); what will be needed here is covered by [11, Section 2].

The following proposition gathers various properties of SLn(Wm) that will be
needed in the proof of Proposition 4.1.

Proposition 4.3. Let kkk and n be as in Assumption 4.2.

(i) If p ∤ n then M0 is an irreducible SLn(kkk)-module. If p|n then S is the unique
non-trivial SLn(kkk)-submodule of M0. Moreover,

HomSLn(kkk)(M0,M0) ∼= kkk ∼= HomSLn(kkk)(V,V).

(ii) Let Γm := ker(SLn(Wm+1)
mod pm

−−−−−−→ SLn(Wm)). Then the extension

I → Γm → SLn(Wm+1)→ SLn(Wm)→ I

does not split.
(iii) Suppose p|n. Then H1(SLn(kkk), kkk) and H

2(SLn(kkk), kkk) are both (0). Further-
more H1(SLn(Wm), kkk) = (0) for all m ≥ 1.

(iv) The inflation map H1(SLn(Wm),M0)→ H1(SLn(Wm+1),M0) is an isomor-
phism. Consequently

H1(SLn(Wm),M0) ∼= H1(SLn(kkk),M0) =

{
(0) if p ∤ n,

kkk if p|n.

(v) Suppose p|n.
(a) If Zm denotes the subgroup of scalar matrices in Γm, then the extension

(4.1) I −→ Γm/Zm −→ SLn(Wm+1)/Zm
mod pm

−−−−−−→ SLn(Wm) −→ I.

does not split.
(b) The inflation map H1(SLn(Wm),V) → H1(SLn(Wm+1),V) is an iso-

morphism.
(c) The map H2(SLn(Wm), S) → H2(SLn(Wm),M0) induced by the inclu-

sion S ⊂M0 is an injection.
(d) H1(SLn(Wm),M) = (0) for all m ≥ 1.

Proof. Part (i): See [11, Lemma 3.3].

Part (ii): When m ≥ 2, the non-splitting is covered by the argument in [11,
Proposition 3.7]. (See the paragraphs above and around the displayed relation
(3.5) there, loc. cit.) We give an indication of the proof.
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For a contradiction, assume the sequence splits. Then the image in SLn(Wm+1)
of the elementary matrix E12(1) ∈ SLn(Wm) under the section splitting the se-
quence can be written in the form (I + pmX)E12(1), and this must have order pm.
By induction, it follows that

((I + pmX)E12(1))
k =

(
I + pm

k−1∑

j=0

E12(j)XE12(−j)
)
E12(k)

for all integers k ≥ 1. If we write E12(1) as I +N (so E12(j) = I + jN), the above
relation then becomes

((I + pmX)E12(1))
k =

(
I + pm(kX + ak(NX −XN)− bkNXN)

)
E12(k)

where ak = 1 + . . . + (k − 1) and bk = 12 + . . . + (k − 1)2. If k = pm and m ≥ 2
then p divides ak and bk, and we get

((I + pmX)E12(1))
pm

= E12(p
m).

Since this equality does not hold in SLn(Wm+1), we obtain the desired contradic-
tion.

So now assume m = 1. When kkk = F2 or F3, the sequence is non-split by [18,
Theorem II.7]. Thus, by Assumption 4.2, we only need to show that the sequence
does not split when kkk = F4 and n = 3. Now if Γ denotes the kernel of the reduction
map GL3(W2)→ GL3(kkk), then the sequence

(4.2) I → Γ→ GL3(W2)→ GL3(kkk)→ I

is non-split by [19, Proposition 0.3]. Let G̃ be the subgroup of GL3(W2) consisting
of matrices with determinant 1 modulo p. Since H1(SL3(kkk),M) = (0) (see [19,
Proposition 3.4]), the restriction map

H2(GL3(kkk),M)→ H2(SL3(kkk),M)

is injective. Therefore the non-splitting of (4.2) implies that

I → Γ→ G̃→ SL3(kkk)→ I

is non-split. Consequently I → Γ1 → SL3(W2)→ SL3(kkk)→ I can not be split.

Part (iii): Assumption 4.2 and the hypothesis p|n imply that kkk is either F2 or F3.
The first part is then covered by [18, Theorem III.5] and [18, Proposition III.7].

For the second part, first identify Γm and M0 using the isomorphism φ : Γm →
M0 given by φ(I + pmM) :=M (mod p). Then

H1(Γm, kkk)
SLn(Wm) ∼= HomSLn(kkk)(M0, kkk) = (0)

by part (i) above. An induction argument using inflation–restriction then implies
that H1(SLn(Wm), kkk) = (0) for all m ≥ 1.

Part (iv): As in the proof of part (iii), we use the identification φ : Γm →M0 given
by φ(I + pmM) :=M (mod p). The transgression map

δ : H1(Γm,M0)
SLn(Wm) → H2(SLn(Wm),M0)

sends −φ to the class of the extension

0→M0
φ−1

−−→ SLn(Wm+1)→ SLn(Wm)→ 1

in H2(SLn(Wm),M0) (see [11, Proposition 2.1]). Since H1(Γm,M0)
SLn(Wm) has

dimension 1 as a kkk-vector space by part (i), and δ(−φ) 6= 0 as the above extension
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is non-split by part (ii), the transgression map δ is injective. Hence the inflation
map H1(SLn(Wm),M0)→ H1(SLn(Wm+1),M0) is an isomorphism. Consequently
H1(SLn(Wm),M0) ∼= H1(SLn(kkk),M0).

We now turn to calculation of the cohomology group H1(SLn(kkk),M0) under our
assumptions on kkk and n. SinceH1(SL3(F4),M0) = (0) by [8, Theorem 4.2], we shall
assume that kkk is either F2 or F3. By [18, Theorem III.5], we have H1(SLn(kkk),M) =
(0). When p ∤ n the direct sum decomposition M = M0 ⊕ kkkI then implies that
H1(SLn(kkk),M0) = (0). If p|n the exact sequence 0 → M0 → M → kkk → 0 along
with part (iii) implies that the connecting map H0(SLn(kkk), kkk)→ H1(SLn(kkk),M0)
is an isomorphism, and so H1(SLn(kkk),M0) ∼= kkk.

Part (v): We give a brief sketch; see [11, Section 3.3] for details.
We first claim that for a fixed positive integer m, the non-splitting of extension

(4.1) is equivalent to the inflation map H1(SLn(Wm),V) → H1(SLn(Wm+1),V)
being an isomorphism. This is done by an argument similar to part (iv) as follows.
The identification φ : Γm →M0 induces an isomorphism ψ : Γm/Zm → V, and the
image of −ψ under the transgression map

δ : H1(Γm/Zm,V)
SLn(Wm) → H2(SLn(Wm),V)

is the cohomology class of extension (4.1). Since

H1(Γm/Zm,V)
SLn(Wm) ∼= HomSLn(kkk)(V,V)

∼= kkk,

it follows that δ is injective if and only if δ(−ψ) 6= 0 i.e. the extension (4.1) is
non-split. But δ is injective if and only if the inflation map

H1(SLn(Wm),V)→ H1(SLn(Wm+1)/Zm,V)

is an isomorphism. Now, the third term in the inflation–restriction exact sequence

0→ H1(SLn(Wm+1)/Zm,V)→ H1(SLn(Wm+1),V)→ H1(Zm,V)
SLn(Wm+1)

is isomorphic to HomSLn(kkk)(S,V), which vanishes. Hence the inflation map

H1(SLn(Wm+1)/Zm,V)→ H1(SLn(Wm+1),V)

is an isomorphism, and the desired equivalence follows.
The non-splitting of extension (4.1) when m ≥ 2 is covered by [11, Lemma 3.9].

(The proof is similar to the one we sketched in part (ii) above, except that we need
to work modulo the central subgroup Zm.) By the claim above, the inflation map
H1(SLn(Wm),V)→ H1(SLn(Wm+1),V) is an isomorphism whenever m ≥ 2.

To see that the extension (4.1) does not split when m = 1, consider the commu-
tative diagram

H1(Γ1,M0)
SLn(kkk) δ

−−−−→ H2(SLn(kkk),M0)y
y

H1(Γ1,V)
SLn(kkk) δ

−−−−→ H2(SLn(kkk),V)

where the vertical maps come from 0→ S→M0 → V→ 0 and the horizontal maps
are transgressions. The left hand arrow is an isomorphism by part (i), the right
hand arrow is an injection by part (iii), and the top arrow is an injection by part
(iv). The bottom arrow is therefore an injection and consequently the inflation map
H1(SLn(kkk),V)→ H1(SLn(W2),V) is an isomorphism. Hence, by our claim above,
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extension (4.1) is non-split when m = 1 as well, and this completes the proofs of
parts (a) and (b).

We now verify the injectivity of H2(SLn(Wm), S) → H2(SLn(Wm),M0). Ob-
serve that we have isomorphisms

H1(SLn(Wm),V) ∼= H1(SLn(kkk),V) ∼= H1(SLn(kkk),M0) ∼= kkk

for allm ≥ 1. (The first isomorphism is by part (b) above. The second isomorphism
follows from the short exact sequence 0→ S→ M0 → V→ 0 using part (iii). The
third isomorphism holds by part (iv).) Writing Hi(−) for the cohomology group
Hi(SLn(Wm),−), we obtain the following long exact sequence

H1(S)→ H1(M0)→ H1(V)→ H2(S)→ H2(M0)

from 0 → S → M0 → V → 0. Now H1(S) = (0) by part (iii). Also, H1(M0) and
H1(V) are both isomorphic to kkk (by part (iv) and from the observation above).
Hence the map H1(M0)→ H1(V) is an isomorphism, and part (c) follows.

For the final part, consider the long exact sequence

0→ S→ S→ kkk → H1(M0)→ H1(M)→ H1(kkk)

obtained from 0 → M0 → M → kkk → 0. Since the map M → kkk is the trace map,
the sequence 0→ kkk → H1(M0)→ H1(M)→ H1(kkk) is exact. Part (d) now follows
because dimkkkH

1(M0) = 1 by part (iv) and H1(kkk) = 0 by part (iii). �

We now return to the proof of Proposition 4.1. We begin by indicating how the
result for general complete noetherian local rings can be deduced from the artinian
case.

Suppose we are given a complete local noetherian W -algebra A in CCCW and a
closed subgroup G ⊆ SLn(A) with full residual image. Note that the filtration
mA ⊇ m

2
A ⊇ . . . can be refined to a filtration J1 ⊇ J2 ⊇ . . . by closed ideals

satisfying the following conditions.

• For all i, the quotient A/Ji is artinian, and J1 = mA.
• For all i the surjection A/Ji+1 → A/Ji is small.

Recall that a surjective morphism f : B → C of local artinian rings is small if
ker(f) is a principal ideal killed by mB .

Now suppose we can find, for each positive integer i, an invertible matrix Xi ∈
GLn(A/Ji) such that

• XiG(i)X
−1
i ⊇ SLn(WA/Ji

) where G(i) = G (mod Ji), and
• X1 ∈ SLn(kkk) is the identity and Xi+1 (mod Ji) = Xi for all i.

Then, since A ∼= lim
←−

A/Ji, we can find X ∈ GLn(A) such that X ≡ Xi (mod Ji)

and XGX−1 ⊇ SLn(WA). Thus Proposition 4.1 will follow from the result below.

Proposition 4.4. Keep the hypotheses and notations of Assumption 4.2. Let A
be an artinian W -algebra in CCCW and let t be a non-zero element of A killed by its
maximal ideal i.e. tmA = (0).

Suppose G is a subgroup of SLn(A) such that G (mod tA) = SLn(WA/tA). Then

there is an X ∈ GLn(A) with X ≡ I (mod tA) such that SLn(WA) ⊆ XGX
−1.

Proof. We set B := A/tA and π : A → B to be reduction modulo tA. Then we
have an exact sequence

(4.3) 0→M0
ε
−→ SLn(A)

π
−→ SLn(B)→ I
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where the map ε : M0 → SLn(A) is constructed as follows: lift x ∈ M0 to an n by

n matrix x̃ over A and take ε(x) := I+ tx̃. Denote by G̃ the preimage of SLn(WB)
in SLn(A). Thus

(4.4) 0→M0
ε
−→ G̃

π
−→ SLn(WB)→ I

is exact and G, SLn(WA) are subgroups of G̃. There are then the following three
possibilities to consider:

• G = G̃, in which case there is nothing to prove;
• π : G→ SLn(WB) is an isomorphism; or,
• G fits into an exact sequence 0→ S→ G→ SLn(WB)→ I.

Suppose π : G → SLn(WB) is an isomorphism. Then the sequence (4.4) splits.
Consequently π : SLn(WA) → SLn(WB) must also be an isomorphism (otherwise

G̃ = SLn(WA) and the splitting of sequence (4.4) contradicts Proposition 4.3(ii)).
It follows that G is a twist of SLn(WA) by an element of H1(SLn(WB),M0).

If p and n are coprime then H1(SLn(WB),M0) = (0) by Proposition 4.3(iv),
and we can find X ∈ SLn(A) with π(X) = I such that XGX−1 = SLn(WA). If p
divides n then H1(SLn(WB),M) = (0) by Proposition 4.3(v)(d). In this case, we
can find X ∈ GLn(A) with X ≡ I (mod tA) such that XGX−1 = SLn(WA).

We now consider the case when

(4.5) 0→ S→ G→ SLn(WB)→ I

is exact. Assumption 4.2 then implies that kkk is either F2 or F3 and that p|n. Since
H2(SLn(WB), S) → H2(SLn(WB),M0) is injective by Proposition 4.3(v)(c), the
sequence (4.5) splits if and only if the sequence (4.4) splits. Now, if WA = WB

then the sequence (4.4) splits. Consequently, the sequence (4.5) also splits. Hence
G contains a subgroup which is isomorphic to SLn(WB) under the reduction map
π, and we are in the set up covered by the second case, which was discussed in the
previous paragraph.

We are now left with the possibility that WA = Wm+1 and WB = Wm. In this

case, we must have G̃ = SLn(WA). The image of M0, resp. S, under the map
ε is precisely the subgroup Γm, resp. Zm, defined in Proposition 4.3, parts (ii)
and (v) respectively. Now sequence (4.5) implies that G/Zm → SLn(Wm) is an
isomorphism splitting the sequence

I −→ Γm/Zm −→ SLn(Wm+1)/Zm −→ SLn(Wm) −→ I.

This contradicts Proposition 4.3(v)(a), completing the proof. �

Remark 4.5. The results of Sah ([18], [19]) used in the proof of Proposition 4.3 are
precisely the cohomological results needed to make the main argument of [11] carry
over when kkk and n satisfy the conditions set out in Assumption (4.2). We leave
the precise verification to the interested reader, and state the following extension
of Proposition 4.1 (and the main theorem of [11]).

Let A be a complete local noetherian ring with maximal ideal mA and finite residue
field A/mA of characteristic p. Suppose we are given a subfield kkk of A/mA and a
closed subgroup G of GLn(A) such that

• n ≥ 2 and the pair (n, |kkk|) is not one of the following: (2, 2), (2, 3), (2, 5),
(3, 2), or (4, 2);

• G (mod mA) ⊇ SLn(kkk).
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Then G contains a conjugate of SLn(WA).

Remark 4.6. We now discuss the necessity of the restrictions on (n, |kkk|) in Propo-
sition 4.1, and also in Theorem 1.1.

The standard representation of S3 shows that SL2(F2) lifts to GL2(Z2). Since
there is no ring homomorphism from F2 to Z2, Theorem 1.1 fails for (A, ρA) when
A = F2 and Γ = SL2(F2) (with ρ̄ and ρA as in the statement of Theorem 1.1).
Also, SL2(Z2) contains a double cover of SL2(F2) (see the exercises at the end
of [20, Chapter IV(3)]), and this double cover shows Proposition 4.1 fails when
(n, |kkk|) = (2, 2).

Similarly, the following two observations imply the necessity of excluding the
cases when (n, |kkk|) is one of (2, 3), (3, 2) or (2, 5) from Proposition 4.1 and Theorem
1.1.

• The reduction map SLn(Z/p
2Z) → SLn(Z/pZ) has a section when (n, p)

is either (2, 3) or (3, 2). (See [18, Theorem II.7].)
• SL2(F5) has a lift to SL2(Z5[ζ]) where ζ

5 = 1, ζ 6= 1. (See Section 11.3.3,
particularly Proposition 11.3.6 and the paragraph preceding it, of [1].)

Finally, it is known (see [22]) that SL4(F2) has a double cover inside SL4(Z/4Z)
and, from their orders, we see that this double cover cannot contain a conjugate of
SL4(Z/4Z). The restriction (n, |kkk|) 6= (4, 2) is therefore necessary in Proposition
4.1. However, although our proof breaks down, Dorobisz (see [10]) has shown that
the conclusion of Theorem 1.1 still holds in this case.
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