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FREE IDEMPOTENT GENERATED SEMIGROUPS OVER BANDS AND

BIORDERED SETS WITH TRIVIAL PRODUCTS

YANG DANDAN AND VICTORIA GOULD

Abstract. For any biordered set of idempotents E there is an initial object IG(E), the
free idempotent generated semigroup over E, in the category of semigroups generated by a
set of idempotents biorder-isomorphic to E. Recent research on IG(E) has focussed on the
behaviour of the maximal subgroups. Inspired by an example of Brittenham, Margolis and
Meakin, several proofs have been offered that any group occurs as a maximal subgroup of
some IG(E), the latest being that of Dolinka and Ruškuc, who show that E can be taken to
be a band. From a result of Easdown, Sapir and Volkov, periodic elements of any IG(E) lie in
subgroups. However, little else is known of the ‘global’ properties of IG(E), other than that
it need not be regular, even where E is a semilattice. The aim of this article is to deepen our
understanding of the overall structure of IG(E) in the case where E is a biordered set with
trivial products (for example, the biordered set of a poset) or where E is the biordered set of
a band B.

Since its introduction by Fountain in the late 1970s, the study of abundant and related
semigroups has given rise to a deep and fruitful research area. The class of abundant semi-
groups extends that of regular semigroups in a natural way and itself is contained in the class
of weakly abundant semigroups. Our main results show that (1) if E is a biordered set with
trivial products then IG(E) is abundant and (if E is finite) has solvable word problem, and
(2) for any band B, the semigroup IG(B) is weakly abundant and moreover satisfies a natural
condition called the congruence condition. Further, IG(B) is abundant for a normal band B

for which IG(B) satisfies a given technical condition, and we give examples of such B. On the
other hand, we give an example of a normal band B such that IG(B) is not abundant.

1. Introduction

Let S be a semigroup with set of idempotents E = E(S). It is easy to see that if idem-
potents of S commute, then E may be endowed with a partial order under which it becomes
a semilattice, that is, every pair of elements has a greatest lower bound, which is just their
product in S. For an arbitrary semigroup S, the set E, equipped with the restriction of the
quasi-orders ≤R and ≤L defined on S and the restriction of products to elements that are
related under ≤R,≤L and their converses, is a partial algebra called a biordered set [15]. On
the other hand, Easdown [7] shows every biordered set E occurs as E(S) for some semigroup
S.

Given a biordered set E, which we can without prejudice take as the set E of idempotents of
some semigroup S, there is a free object in the category of idempotent generated semigroups
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2 YANG DANDAN AND VICTORIA GOULD

that have biordered set of idempotents isomorphic to E. This is called the free idempotent
generated semigroup over E and is denoted by IG(E). We obtain IG(E) by the following
presentation:

IG(E) = 〈E : ēf̄ = ef, e, f ∈ E, {e, f} ∩ {ef, fe} 6= ∅〉,

where E = {ē : e ∈ E}.1 Note that {e, f} ∩ {ef, fe} 6= ∅ implies both ef and fe are
idempotents of E; in this case both (e, f) and (f, e) are referred to as basic pairs and ef and
fe as basic products. If E has the property that for any basic pair (e, f) we have ef, fe ∈ {e, f}
then we say E has trivial (basic) products. We note that if Y is a semilattice then the biordered
set of Y has trivial products. Clearly, for any biordered set E there is a natural morphism ϕ
from IG(E) to 〈E〉, the subsemigroup of S generated by E. In fact, E(IG(E)) = E, and the
restriction ϕ|E : E → E is an isomorphism of biordered sets [7], justifying the presentation
above. We refer our readers to [11] for other classical properties of IG(E).

Given the universal nature of free idempotent generated semigroups, it is natural to enquire
into their structure. Early investigations of Pastijn [18] showed that where B is a rectangular
band then the corresponding IG(B) is a completely simple semigroup with free maximal
subgroups. Pastijn’s result for rectangular bands was extended by McElwee in [17] to the
case where the principal ideals of a biordered set are singletons. For more general bands,
Pastijn focussed on what in modern terminology is called the free regular idempotent generated
semigroup. Following the first example of a non-free maximal subgroup of an IG(E) given by
Brittenham, Margolis and Meakin [2], it was proved, first by Gray and Ruškuc [11] and later
by the authors [10], that every group is a maximal subgroup of IG(E) for some biordered
set E. Dolinka and Ruškuc show that E may be taken to be a band (that is, a semigroup of
idempotents) [4], reinforcing the signficance of bands in the study of free idempotent generated
semigroups. Biordered sets of bands were first characterised by Nambooripad [15] with an
alternative description given by Easdown [6]. It is also worth remarking that Dolinka, Gray
and Ruškuc have recently shown that every group occurs as a Schützenberger group of a
non-regular D-class of some IG(E) [5].

Whereas a deal of energy has recently been put into the question of the maximal subgroups
of free idempotent generated semigroups IG(E), in contrast, very little is known of the overall
structure of semigroups of this form, even in the case where E is the biordered set of idempo-
tents of a band. What can be said is that periodic elements of IG(E) must lie in subgroups,
a result of Easdown, Sapir and Volkov [8], and that IG(E) need not be regular. Indeed, even
for a semilattice Y , the semigroup IG(Y ) need not be regular [2, Example 2]. Regularity is a
property of semigroups that can be phrased in terms of Green’s relations R and L and idem-
potents. Analogous but weaker conditions are those of being abundant and weakly abundant,

which are defined in the same way but with R and L replaced by R∗ and L∗, or R̃ and L̃,
respectively.

Our first main result, Theorem 3.2 is that for a biordered set E for which the basic products
are trivial the semigroup IG(E) is abundant. Semilattices, indeed posets, and rectangular
bands, provide examples of such biordered sets. We describe those bands which give rise
to biordered sets with trivial basic products. Our second main result, Theorem 4.13, shows
that for any band B, the semigroup IG(B) is weakly abundant and is such that R̃ and L̃ are,
respectively, left and right congruences, a property called the congruence condition. We remark

1It is more usual to identify elements of E with those of E, but it helps the clarity of our later arguments
to make this distinction.
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that regular, abundant and restriction semigroups always have the congruence condition. On
the other hand, we give an example of a band B such that IG(B) is not abundant. In the
positive direction we investigate a condition on a normal band B that guarantees abundancy
of IG(B).

We proceed as follows. To make this article as self-contained as possible, in Section 2 we
recall some basics of Green’s relations and regular semigroups, and of generalised Green’s
relations and (weakly) abundant semigroups. We briefly describe how the presentation of any
IG(E) naturally induces a reduction system. In Section 3 we begin our investigation of free
idempotent generated semigroups by considering a biordered set E with trivial products. We
show that every element of IG(E) has a unique normal form and consequently if E is finite
then IG(E) has solvable word problem (a result that is known in the case where E is a poset).
We then proceed to show that IG(E) is abundant. Finally in Section 3 we describe those
bands having trivial basic products.

In Section 4 we proceed to look at IG(B) where B is an arbitrary band. In this case,
we may lose uniqueness of normal forms in IG(B). To overcome this problem, we introduce
the concept of almost normal forms. We prove that for any band B the semigroup IG(B) is
weakly abundant with the congruence condition. We finish the section with an example of
a four element non-normal band B such that IG(B) is not abundant. Section 5 considers a
sufficient condition for a normal band to be abundant, and we give some examples where this
is satisfied. One would naturally ask here whether IG(B) is abundant for an arbitrary normal
band B. In Section 6 we construct a ten element normal band B with four D-classes for which
IG(B) is not abundant.

2. Preliminaries: (weakly) abundant semigroups and Reduction systems

We do not assume our readers have prior knowledge of all the various areas this article
draws together. The aim of this section is to draw together the necessary technicalities. In
addition, we recommend [13] for an excellent introduction to the requisite semigroup theory.

Throughout this paper, for n ∈ N we write [1, n] to denote {1, · · · , n} ⊆ N. The free
semigroup on a set A is denoted by A+; the elements of A+ are words in the letters of A and
the binary operation is juxtaposition. The free monoid on A is denoted by A∗; notice that
A∗ = A+ ∪ {ε} where ε is the empty word and the identity of A∗. The set of idempotents of
a semigroup S is always denoted by E(S) or more simply E.

We now recall an important tool for analysing ideals of a semigroup S and related notions
of structure, called Green’s relations. There are equivalence relations that characterise the
elements of S in terms of the principal ideals they generate. The two most basic of Green’s
relations are L and R, and are defined by

a L b⇔ S1a = S1b and a R b⇔ aS1 = bS1,

where S1 denotes S with an identity element adjoined (unless S already has one). Furthermore,
we denote the intersection L ∩ R by H and the join L ∨ R by D. One of the fundamental
facts of semigroup theory tells us that L ◦ R = R ◦ L, and hence D = L ◦ R = R ◦ L.

For our purposes we require two quasi-orders associated with R and L, respectively, re-
stricting ourselves to defining them on E(S) where S is a semigroup. For e, f ∈ E(S) we say
that

e≤Rf if and only if fe = e
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and
e≤Lf if and only if ef = e.

We leave the reader to check that e≤Rf if and only if eS1 ⊆ fS1 and in this case, fe ∈ E(S).
Dual remarks apply to ≤L. It is then clear that R and L (more precisely, their restrictions
to E × E) are indeed the equivalence relations associated with ≤R and ≤L, respectively. We
denote ≤R ∩ ≤L by ≤.

Much of this article is concerned with biordered sets that come from bands, where a band B
is a semigroup such that E(B) = B. A commutative band is a semilattice. This terminology
is used since, if Y is a semilattice, then the relation ≤= ≤R = ≤L is a partial order and is such
that the product of any pair of elements is their greatest lower bound. On the other hand, any
partially ordered set P having this property may be made into a commutative band by setting
uv = u∧v, for all u, v ∈ P . A band is rectangular if it satisfies the identity x = xyx. It is easy
to see that in a rectangular band B we have eR ef Lf for any e, f ∈ B so that eD f : in fact,
rectangular bands are precisely those bands that are a single D-class. More generally, a band
B is a semilattice Y of rectangular bands Bα, α ∈ Y [13, Theorem 4.4.1]. This means that
B =

⋃
α∈YBα where each Bα is a rectangular band, Bα ∩Bβ = ∅ for α 6= β, and BαBβ ⊆ Bαβ,

for all α, β ∈ Y . One can check that the subsemigroups Bα are the D-classes of B and B
is a semilattice if and only if each Bα is trivial. At times we will use the foregoing notation
without specific comment.

A band B is normal if it satisfies the identity xyzx = xzyx. Equivalently, B is a strong
semilattice Y of rectangular bands Bα, α ∈ Y , that is,

B = B(Y ;Bα, φα,β)

is a semilattice Y of rectangular bands Bα, α ∈ Y, such that for all α ≥ β in Y there exists a
morphism φα,β : Bα → Bβ such that

(B1) for all α ∈ Y , φα,α = 1Bα
;

(B2) for all α, β, γ ∈ Y such that α ≥ β ≥ γ, φα,βφβ,γ = φα,γ,

and for all α, β ∈ Y and x ∈ Bα, y ∈ Bβ,

xy = (xφα,αβ)(yφβ,αβ).

An element a of a semigroup S is called regular if there exists x ∈ S such that a = axa,
that is, it is regular in the sense of von Neumann. The semigroup S is regular if it consists
entirely of regular elements. It is well known that S is regular if and only if each L-class
(equivalently, each R-class,) contains an idempotent. Regular semigroups are particularly
amenable to analysis using Green’s relations.

For the purpose of analysing a semigroup S that might not be regular, the relations L∗ and
R∗ are defined on S by the rule that

a L∗ b ⇔ (∀x, y ∈ S1) (ax = ay ⇔ bx = by)

and
a R∗ b ⇔ (∀x, y ∈ S1) (xa = ya⇔ xb = yb).

As commented in [9], it is easy to see that L ⊆ L∗ and R ⊆ R∗, and if S is regular, then
L = L∗ and R = R∗. We denote by H∗ the intersection L∗ ∩ R∗, and by D∗ the join of
L∗ ∨ R∗. Note that unlike Green’s relations, generally L∗ ◦ R∗ 6= R∗ ◦ L∗ (see [9, Example
1.11]).
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A semigroup S is abundant if each L∗-class and each R∗-class contains an idempotent. In
the theory of abundant semigroups the relations L∗, R∗, H∗ and D∗ play a role which is
analogous to that of Green’s relations in the theory of regular semigroups.

As an easy but useful consequence of the definition of L∗, we have the following lemma (a
dual result holds for R∗).

Lemma 2.1. [9] Let S be a semigroup with a ∈ S and e ∈ E(S). Then the following
statements are equivalent:

(i) a L∗ e;
(ii) ae = a and for any x, y ∈ S1, ax = ay implies ex = ey.

A third set of relations, extending the starred versions of Green’s relations, and useful

for semigroups that are not abundant, was introduced in [14]. The relations L̃ and R̃ on a
semigroup S are defined by the rule

a L̃ b ⇔ (∀e ∈ E(S)) (ae = a⇔ be = b)

and

a R̃ b ⇔ (∀e ∈ E(S)) (ea = a⇔ eb = b)

for any a, b ∈ S.
Clearly L∗ ⊆ L̃ and R∗ ⊆ R̃. If S is abundant, then L∗ = L̃ and R∗ = R̃ (see, for

example, [14, Theorem 1.5]). Whereas L∗ and R∗ are always right and left congruences on

S, respectively, the same is not necessarily true for L̃ and R̃ [14, Example 3.6]. A semigroup

S is weakly abundant if each L̃-class and each R̃-class contains an idempotent. We say that

a weakly abundant semigroup S satisfies the congruence condition if L̃ is a right congruence
and R̃ is a left congruence. Clearly, an abundant semigroup is weakly abundant with the
congruence condition.

The following lemma is an analogue of Lemma 2.1. Of course, a dual result holds for R̃.

Lemma 2.2. [14] Let S be a semigroup with a ∈ S and e ∈ E(S). Then the following
statements are equivalent:

(i) a L̃ e;
(ii) ae = a and for any f ∈ E(S), af = a implies ef = e.

Easy observation yields the following useful lemmas.

Lemma 2.3. Let S be a semigroup with e, f ∈ E(S). Then e L f if and only if e L̃ f and

e R f if and only if e R̃ f.

Lemma 2.4. Let S be a semigroup, and let a ∈ S, f ∈ E(S) be such that a R̃ f but a is
not R∗-related to f . Then a is not R∗-related to any idempotent of S.

Proof. Suppose that a R∗ e for some idempotent e ∈ E(S). Then a R̃ e, as R∗ ⊆ R̃, so

that e R̃ f by assumption, and so e R f by Lemma 2.3. Hence a R∗ f as R ⊆ R∗, a
contradiction. �

Lemma 2.5. Let S be a semigroup with a ∈ S and e ∈ E(S) such that a R̃ e. Then a R∗ e
if and only if for any x, y ∈ S, xa = ya implies that xe = ye.
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Proof. Suppose that for all x, y ∈ S, if xa = ya then xe = ye. By the dual of Lemma 2.1, we
need only show that if x ∈ S and xa = a, then xe = e. Suppose therefore that x ∈ S and
xa = a. As a R̃ e, we have xa = a = ea, so that by assumption, xe = ee = e. �

We now recall the definition of reduction systems and their properties. As far as possible
we follow standard notation and terminology, as may be found in [1].

Let A be a set and→ a binary relation on A. We call the structure (A,→) a reduction system
and the relation → a reduction relation. The reflexive, transitive closure of → is denoted by
∗
→, while

∗
↔ denotes the smallest equivalence relation on A that contains → . We denote the

equivalence class of an element x ∈ A by [x]. An element x ∈ A is said to be irreducible if

there is no y ∈ A such that x→ y; otherwise, x is reducible. For any x, y ∈ A, if x
∗
→ y and y

is irreducible, then y is a normal form of x. A reduction system (A,→) is noetherian if there
is no infinite sequence x0, x1, · · · ∈ A such that for all i ≥ 0, xi → xi+1.

We say that a reduction system (A,→) is confluent if whenever w, x, y ∈ A are such that

w
∗
→ x and w

∗
→ y, then there is a z ∈ A such that x

∗
→ z and y

∗
→ z, as described by the

figure below on the left, and (A,→) is locally confluent if whenever w, x, y ∈ A, are such that

w → x and w → y, then there is a z ∈ A such that x
∗
→ z and y

∗
→ z, as described by the

figure below on the right.

w

x y

z

w

x y

z

* *

* * * *

Lemma 2.6. [1] Let (A,→) be a reduction system.
(i) If (A,→) is noetherian and confluent, then for each x ∈ A, [x] contains a unique normal

form.
(ii) If (A,→) is noetherian, then it is confluent if and only if it is locally confluent.

Let S be a semigroup with presentation 〈X : ui = vi, i ∈ I〉, where ui, vi ∈ X
+. We can

form a reduction system (X+,→) where

u→ v ⇔ (u = xuiy, v = xviy for some x, y ∈ X∗, i ∈ I).

It is clear that
∗
↔ is the congruence generated by R = {(ui, vi) : i ∈ I}. Thus if → is a

confluent noetherian rewriting system then every element of S has a unique normal form as
a word in X+. Consequently, if X and I are finite, the word problem for S is decidable, that
is, there is an effective procedure to determine when two elements of X+ represent the same
element of S.

Let E be a biordered set. Given that the reduction relations → corresponding to the
presentation for IG(E) are clearly length reducing, we immediately deduce the next result.

Lemma 2.7. Let E be a biordered set, and consider the presentation

IG(E) = 〈E : ēf̄ = ef, (e, f) is a basic pair〉.

Then (E
+
,→) forms a noetherian reduction system and IG(E) is E

+
/

∗
↔.
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3. Free idempotent generated semigroups over a biordered set with trivial
basic products

We start our investigation of free idempotent generated semigroups IG(E) over a biordered
set E in the case that the basic products are trivial, that is, if (e, f) is a basic pair, then
{ef, fe} ⊆ {e, f}. It is easy to see that in this case a pair (e, f) is basic if and only if e ≤ f ,
e ≥ f , e L f or e R f . Clearly, semilattices and rectangular bands provide us with examples of
biordered sets with trivial basic products; at the end of this section we consider exactly which
bands give biordered sets with trivial basic products. Further, any poset may be regarded as
a biordered set in which the quasi-orders coincide (see [15, Page 8]) and as such clearly has
trival basic products. We prove below that if E is a biordered set with trivial basic products,
then IG(E) is an abundant semigroup; however, it need not be regular.

This article is not concerned with maximal subgroups of IG(E); however, it is easy to see
that if E has trivial basic products then it has no non-trivial singular squares and hence from,
for example, [16, Theorem 3], [2, Theorems 3.6 and 4.2], the maximal subgroups of IG(E) are
all free groups. This result is known in some cases, for example, where E is the biordered set
of a rectangular band [18].

The next result is well-known in the case that E is a poset (regarded as a biordered set
in which the quasi-orders coincide with the partial order). Note that an element x1 · · · xn ∈
IG(E) is in normal form if and only if (xi, xi+1) is not basic, for all i ∈ [1, n− 1].

Lemma 3.1. Let E be a biordered set with trivial basic products. Then every element in
IG(E) has a unique normal form and consequently, if E is finite, then IG(E) has solvable
word problem.

Proof. In view of Lemmas 2.6 and 2.7, to show the required result we only need to argue that

(E
+
,→) is locally confluent. For this purpose, it is sufficient to consider an arbitrary word of

length 3, say e f g ∈ E
+
, where (e, f) and (f, g) are basic. There are sixteen cases, namely,

e ≤ f ≤ g, e ≥ f ≥ g, e ≤ f ≥ g, e ≥ f ≤ g, e L f L g, e L f R g, e R f L g, e R f R g,
e L f ≤ g, e L f ≥ g, e R f ≤ g, e R f ≥ g, e ≤ f L g, e ≤ f R g, e ≥ f L g and e ≥ f R g,
for which we have the following 16 diagrams:

e f g

e g e f

e

e f g

f g e g

g

e f g

e g e g

e g

e f g

f g e f

f

* *

e f g

e g e f

e

e f g

e g e g

e g

e f g

f g e f

f

e f g

f g e g

g

* *
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e f g

e g e f

e

e f g

e g e g

e g

e f g

f g e f

f

e f g

f g e g

g

* *

e f g

e g e f

e

e f g

e g e g

e g

e f g

f g e f

f

e f g

f g e g

g

* *

Thus (E
+
,→) is locally confluent, so that every element in IG(E) has a unique normal form.

�

For the result below it is convenient to use the relations < and > on a biordered set where
e < f if e ≤ f and e 6= f ; similarly for >.

Theorem 3.2. Let E be a biordered set with trivial basic products. The free idempotent
generated semigroup IG(E) is abundant.

Proof. We show that e R∗ e f for any e f ∈ IG(E) in normal form. Induction and duality
yield e1 R

∗ e1 · · · en L
∗ en, for any e1 · · · en ∈ IG(E) in normal form; hence IG(E) is abundant.

Clearly e e f = e f . In view of the dual of Lemma 2.1, we must show that for any X,Z ∈
IG(E)1, the equality Xe f = Ze f implies the equality Xe = Ze.

Let X = x1 · · · xn and Y = e f be elements of IG(E) in normal form. We begin by
considering the product XY . If (xn, e) is not a basic pair then clearly XY = x1 · · · xn e f
is in normal form. Otherwise, (xn, e) is basic and there are four cases to consider: xn > e,
xn < e, xn L e or xn R e.

Suppose that xn > e and hence XY = x1 · · · xn−1 e f . Either x1 · · · xn−1 e f is in normal
form, or (xn−1, e) is basic (in which case n ≥ 2). Notice that we cannot have xn−1 < e, xn−1 L e
or xn−1 R e, else (xn−1, xn), would be basic, contradicting the irreducibility of x1 · · · xn. Thus
xn−1 > e and continuing we obtain that XY has normal form x1 · · · xt−1 e f , where 1 ≤ t ≤ n,
xn, · · · , xt > e, and either t = 1 (in which case x1 · · · xt−1 is the empty product) or (xt−1, e)
is not basic. In this case we say that XY reduces by >. Similarly, if xn < e, then XY has
normal form x1 · · · xn f where (xn, f) is not basic; or x1 · · · xn where xn < e, f. In this case
we say that XY reduces by <.

If xn L e then XY reduces to x1 · · · xn f . The latter expression is in normal form if (xn, f)
is not basic; in the case it is in normal form we say that XY reduces by L. On the other hand,
if (xn, f) is basic, then as above we can rule out three cases and deduce that xn R f and so
XY has normal form x1 · · · xn−1 f with e L xn R f and (xn−1, f) not basic, or x1 · · · xn−1

with e L xn R f L xn−1. In the first case we say that XY reduces by LR and in the second
that XY reduces by LL.

Similarly, if xn R e, then the normal form of XY is x1 · · · xn−1 e f with (xn−1, e) not
basic; or x1 · · · xn−1 f with xn R e L xn−1 and (xn−1, f) not basic; or x1 · · · xn−2 f with
xn R e L xn−1 R f and (xn−2, f) not basic; or x1 · · · xn−2 with xn R e L xn−1 R f L xn−2,
We say that XY reduces by R, RL, RR and RL, respectively.
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Suppose now that X = x1 · · · xn, Z = z1 · · · zk and Y = e f ∈ IG(E)1 are in normal form
such that

XY = ZY

in IG(E). Here we assume n ≥ 1, k ≥ 0. We proceed to prove that Xe = Ze in IG(E). To
our end, we consider a number of cases, using symmetry to reduce the number of cases we
mention explicitly.

Case k = 0 : In this case XY = Y and by uniqueness of normal forms we must have that
(xn, e) is basic. If XY reduces by >, then it has normal form

XY = x1 · · ·xt−1 e f

where t = 1 or (xt−1, e) is not basic and xt, · · · , xn > e. To avoid contradiction, we must have
that t = 1 and then Xe = e. On the other hand, XY cannot reduce by <, for if it did, it
would have normal form

XY = x1 · · ·xn f or XY = x1 · · ·xn

where xn < e and (xn, f) is not basic, or xn < e, f . Since XY = Y , we must have xn = e or
f , a contradiction.

If XY reduces by R to x1 · · · xn−1 e f , then we must have that n = 1 and x1R e. On the
other hand, if XY reduces by a single step L to x1 · · · xn f , we again have n = 1 and x1 = e.
In each case, Xe = x1 e = e.

No other reduction is possible, for each case yields the contradiction that (xn, xn−1) or
(xn−2, xn−1) is basic.

From this point, we assume that k ≥ 1. By referring below to Case (A,B) the convention
is that XY reduces as per procedure A and ZY as per procedure B, or if A or B is N then
we mean that the original expression for XY or ZY is in normal form. Where it is easily seen
to be possible we call upon duality to reduce the number of cases under consideration. For
clarity we separate procedures KK′ where K,K′ are R or L from procedure K although in
some cases some awkward conflation is possible.

Case (N,N): Here it is clear that X = Z and so Xe = Ze.

Case (N,<): Here XY = ZY in normal form (that is, each side of the equation is expressed
in normal form) is

x1 · · ·xn e f = z1 · · · zk f or x1 · · ·xn e f = z1 · · · zk

where zk < e and (zk, f) is not basic, or zk < e, f. We deduce that zk = e or zk = f , a
contradiction.

Case (N,>): Here XY = ZY in normal form is

x1 · · ·xn e f = z1 · · · zt−1 e f

where 1 ≤ t ≤ k, zk, . . . , zt > e and t = 1 or (zt−1, e) is not basic. In this case x1 · · ·xn =
z1 · · · zt−1 and so

Xe = x1 · · ·xn e = z1 · · · zt−1 e = z1 · · · zt−1 zt · · · zk e = Ze

as required.

Case (>,<): If this case held, we would have XZ = Y Z expressed in normal form as

x1 · · ·xs−1 e f = z1 · · · zk f or x1 · · ·xs−1 e f = z1 · · · zk
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where 1 ≤ s ≤ n, xn, . . . , xs > e, s = 1 or (xs−1, e) is not basic, and zk < e, (zk, f) is not basic,
or zk < e, f. This would give zk = e or zk = f , a contradiction.

Case (>,>): Here we have XZ = Y Z expressed in normal form as

x1 · · ·xs−1 e f = z1 · · · zt−1 e f

where 1 ≤ s ≤ n, xn, . . . , xs > e, s = 1 or (xs−1, e) is not basic, and 1 ≤ t ≤ k, zk, . . . , zt > e
and t = 1 or (zt−1, e) is not basic. We deduce that t = s and xi = zi, for 1 ≤ i ≤ t− 1. Then

Xe = x1 · · ·xs−1 xs · · ·xn e = x1 · · ·xs−1 e = z1 · · · zt−1 e = z1 · · · zt−1 zt · · · zk e = Ze.

Case (<,<): In this case XY = ZY has normal form

x1 · · ·xn = z1 · · · zk or x1 · · ·xn f = z1 · · · zk f or x1 · · ·xn = z1 · · · zk f or x1 · · ·xn f = z1 · · · zk

where the respective constraints are: xn < e, f and zk < e, f, or xn < e, (xn, f) is not basic
and zk < e, (zk, f) is not basic, or xn < e, f and zk < e, (zk, f) is not basic, or xn < e, (xn, f)
is not basic and zk < e, f . In the first two cases we must have X = Z, and so Xe = Ze. In
the last two cases we have xn or zk = f < e, a contradiction.

Case (N,R): We obtain XY = ZY in normal form as

x1 · · ·xn e f = z1 · · · zk−1 e f

where zkR e. By uniqueness of normal forms we have x1 · · ·xn = z1 · · · zk−1 so that using the
fact that zkR e,

Xe = x1 · · ·xn e = z1 · · · zk−1 e = z1 · · · zk−1 zk e = Ze.

Case (N,L): We obtain XY = ZY in normal form as

x1 · · ·xn e f = z1 · · · zk f

where eL zk. We obtain that zk = e and x1 · · ·xn = z1 · · · zk−1, whence Xe = Ze as required.

Case (N,LL): We obtain XY = ZY in normal form as

x1 · · ·xn e f = z1 · · · zk−1

where eL zkR f L zk−1. But then zk−1 = f R zk, a contradiction.

Cases (N,LR), (N,RL), (N,RR): These all lead to a contradiction, in a similar fashion
to Case (N,LL).

We remark that, in view of symmetry, we have now dealt with all cases where A or B is N .

Case (<,L): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk f or x1 · · ·xn = z1 · · · zk f

where zk L e and xn < e. In the first case we have X = Z, and so Xe = Ze. In the second
case, we have xn = f < e, a contradiction.

Case (<,R): Here we would have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk−1 e f or x1 · · ·xn = z1 · · · zk−1 e f

where zk R e and xn < e with (xn, f) not basic, or xn < e, f . But our conditions force xn = e
in the first case or xn = f in the second, yielding a contradiction.

Case (<,LL): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk−1 or x1 · · ·xn = z1 · · · zk−1



FREE IDEMPOTENT GENERATED SEMIGROUPS 11

where eL zkR f L zk−1 and xn < e with (xn, f) not basic, or xn < e, f . In the first case
zk−1 = f R zk, a contradiction. In the second we have the contradiction xn = zk−1 L f .

Cases (<,LR), (<,RR), (<,RL) similarly do not occur.

We remark that, in view of symmetry, we have now dealt with all cases where A or B is N
or <.

Case (>,L): Here we have XY = ZY in normal form as

x1 · · ·xs−1 e f = z1 · · · zk f

where 1 ≤ s ≤ n, xn, . . . , xs > e, s = 1 or (xs−1, e) is not basic, and zk L e. Clearly we must
have that zk = e and x1 · · ·xs−1 = z1 · · · zk−1, whence familiar arguments give that Xe = Ze.

Case (>,R): Here we have XY = ZY in normal form as

x1 · · ·xs−1 e f = z1 · · · zk−1 e f

where 1 ≤ s ≤ n, xn, . . . , xs > e, s = 1 or (xs−1, e) is not basic, and zkR e. Now x1 · · ·xs−1 =
z1 · · · zk−1. Making use of the fact that zk e = e, we deduce that Xe = Ze.

Case (>,LL): Here we have XY = ZY in normal form as

x1 · · ·xs−1 e f = z1 · · · zk−1

where 1 ≤ s ≤ n, xn, . . . , xs > e, s = 1 or (xs−1, e) is not basic, and eL zkR f L zk−1. But this
gives that zk−1 = f R zk, a contradiction.

Cases (>,LR), (>,RR), (>,RL) similarly do not occur.

We remark that, in view of symmetry, we have now dealt with all cases where A or B is
N,< or >.

Case (R,R): Here the normal form XY = ZY is

x1 · · ·xn−1 e f = z1 · · · zk−1 e f,

where xnR eR zk. By the latter, and uniqueness of normal forms, we have

Xe = x1 · · ·xn e = x1 · · ·xn−1 e = z1 · · · zk−1 e = z1 · · · zk e = Ze.

Case (R,L): Here we have XY = ZY in normal form as

x1 · · ·xn−1 e f = z1 · · · zk f

where xnR eL zk. We obtain k = n and x1 · · ·xn−1 e = z1 · · · zk and then

Xe = x1 · · ·xn e = x1 · · ·xn−1 e = z1 · · · zk = z1 · · · zk e = Ze.

Case (L,L): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk f

where xn L eL zk. Immediately we obtain X = Z and Xe = Ze.

We remark that, in view of symmetry, we have now dealt with all cases where both A and
B are L or R.

Case (R,RR): Here we have XY = ZY in normal form as

x1 · · ·xn−1 e f = z1 · · · zk−2 f

where zk R e L zk−1 R f and (zk−2, f) is not basic. But this gives that zk−2 = e L zk−1, a
contradiction.
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Cases (R,LR), (R,RL), (R,LL) similarly do not occur.

We remark that, in view of symmetry, we have now dealt with all cases where one of A or
B is N,<,> or R.

Case (L,LR): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk−1 f

where eL xn and e L zk R f and (zk−1, f) is not basic. But this gives zk−1 = xn L e L zk, a
contradiction.

Case (L,LL): In normal form XY = ZY is

x1 · · ·xn f = z1 · · · zk−1

where eL xn and eL zkR f L zk−1. We must have zk−1 = f R zk, a contradiction.

Case (L,RL): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk−2 or x1 · · ·xn f = z1 · · · zk−1 f

where eL xn, and zk R e L zk−1 R f L zk−2 or zk R e L zk−1. The first case gives us
zk−2 = f R zk−1, a contradiction. The second case leads to x1 · · ·xn = z1 · · · zk−1, and so as
zk R e we have

Xe = x1 · · ·xn e = z1 · · · zk−1 e = z1 · · · zk e = Ze.

Case (L,RR): Here we have XY = ZY in normal form as

x1 · · ·xn f = z1 · · · zk−2 f

where e L xn and zk R e L zk−1 R f with (zk−2, f) not basic. But this gives zk−2 =
xn L e L zk−1, a contradiction.

We remark that, in view of symmetry, we have now dealt with all cases where A or B is
N,<,>,R or L.

Case (RR,RR): Here we have XY = ZY in normal form as

x1 · · · xn−2 f = z1 · · · zk−2 f

where xn R e L xn−1 R f and zk R e L zk−1 R f with (xn−2, f) and (zk−2, f) not ba-
sic. Since E = E(S) for a semigroup S, and idempotents of (group) H-classes are unique,
xn−1 L e L zk−1, xn−1 R f R zk−1 gives us xn−1 = zk−1. Uniqueness of normal forms gives
x1 · · · xn−2 = z1 · · · zk−2, so x1 · · ·xn−1 = z1 · · · zk−1, and

Xe = x1 · · ·xn−1 e = z1 · · · zk−1 e = Ze.

Case (RR,LR): Here we have XY = ZY in normal form as

x1 · · · xn−2 f = z1 · · · zk−1 f

where xn R e L xn−1 R f and e L zk R f with (zk−1, f) not basic. Similarly to Case (RR,RR)
we deduce that xn−1 = zk. Also, note that x1 · · · xn−2 = z1 · · · zk−1, so x1 · · · xn−1 = z1 · · · zk,
giving Xe = x1 · · ·xn−1 e = z1 · · · zk e = Ze.

Case (RR,LL): Here we have XY = ZY in normal form as

x1 · · · xn−2 f = z1 · · · zk−1

where xn R e L xn−1 R f and eL zkR f L zk−1. But this implies that zk−1 = f R zk, a
contradiction.
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Cases (KR,K′L) for K,K′ = L or R: These cases are entirely similar to Case (RR,LL).

We remark that, in view of the duality, we have now dealt with all cases where A or B is
N,<,>,R,L or RR.

Case (LR,LR): Here we have XY = ZY in normal form as

x1 · · · xn−1 f = z1 · · · zk−1 f

where e L xn R f and e L zk R f. Again, this implies xn = zk. As x1 · · · xn−1 = z1 · · · zk−1

by uniqueness, we have x1 · · · xn = z1 · · · zk, and so Xe = Ze.

We remark that, in view of symmetry and earlier remarks, we have now dealt with all cases
where A or B is N,<,>,R,L,RR or LR.

Case (LL,LL): Here we have XY = ZY in normal form as

x1 · · ·xn−1 = z1 · · · zk−1

where eL xnR f L xn−1 and eL zkR f L zk−1. This implies xn = zk, so X = Z and the case is
done.

Case (LL,RL): Here we have XY = ZY in normal form as

x1 · · ·xn−1 = z1 · · · zk−1 f or x1 · · ·xn−1 = z1 · · · zk−2

where eL xnR f L xn−1, and zk R e L zk−1 with (zk−1, f) not basic, or zk R e L zk−1 R f L zk−2.
In the first case, we have xn−1 = f R xn, a contradiction. In the second case xn = zk−1, so
x1 · · ·xn−1 xn = z1 · · · zk−2 zk−1 and

Xe = z1 · · · zk−2 zk−1 e = Ze.

We are left with one case remaining.
Case (RL,RL): Here we have XY = ZY in normal form as

x1 · · · xn−2 = z1 · · · zk−2 or x1 · · · xn−1 f = z1 · · · zk−1 f

or

x1 · · · xn−2 = z1 · · · zk−1 f or x1 · · · xn−1 f = z1 · · · zk−2

where xn R e L xn−1 R f L xn−2 and zk R e L zk−1 R f L zk−2, or xn R e L xn−1 and
zk R e L zk−1, or xn R e L xn−1 R f L xn−2 and zk R e L zk−1, or xn R e L xn−1 and
zk R e L zk−1 R f L zk−2. Familiar arguments give that in the first two cases x1 · · · xn−1 =
z1 · · · zk−1 and then Xe = Ze, and the second two cases lead to contradictions. �

We remark that if E is a biordered set with trivial basic products, then Theorem 3.2
immediately tells us what are the R∗- and L∗-classes in IG(E). For e ∈ E the R∗-class of e is

{e e1 · · · em : m ≥ 0, ei ∈ E, 1 ≤ i ≤ m, e e1 · · · em is in normal form}

with L∗-class of e being defined dually.

Example 3.3. [2, Example 2] Let Y = {e, f, g} be the semilattice with e, f ≥ g and e, f
incomparable. Then IG(Y ) is not regular.
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Proof. First, we observe that

IG(Y ) = {e, f, g, (e f)n, (f e)n, (e f)n e, (f e)n f : n ∈ N}.

It is easy to check that for any n ∈ N, (e f)n ∈ IG(Y ) is not regular, as for any w ∈ IG(Y ),
(e f)nw(e f)n = g if w contains g as a letter; otherwise (e f)nw(e f)n = (e f)m for some
m ≥ 2n ∈ N. Therefore, IG(Y ) is not a regular semigroup. �

On the other hand, by Theorem 3.2 we have that IG(Y ) is an abundant semigroup. Fur-
thermore, the R∗-classes are

{e, (e f)n, (e f)n e : n ∈ N}, {f, (f e)n, (f e)n f : n ∈ N}, {g}

and the L∗-classes are

{e, (f e)n, (e f)n e : n ∈ N}, {f, (e f)n, (f e)n f : n ∈ N}, {g}.

Note that we have

D∗ = L∗ ◦ R∗ = R∗ ◦ L∗

in IG(Y ), and there are two D∗-classes of IG(Y ), namely, {g} and IG(Y ) \ {g}, the latter of
which can be depicted by the following ∗-analogue of a traditional egg-box picture:

e, (e f)ne (e f)n

(f e)n f, (f e)nf

We commented earlier that if B is a rectangular band then it has trivial basic products, and
so IG(B) is abundant by Theorem 3.2. In fact it is well known [18, Theorem 6.4] that IG(B)
is what is known as a completely simple semigroup, which immediately tells us it is regular
and further, that for any element e1 e2 · · · en ∈ IG(B) we have that e1R e1 e2 · · · en L en. In
addition, Pastijn shows that the maximal subgroups of IG(B) in this case are free groups and
determines their rank.

Corollary 3.4. Let B be a semilattice Y of rectangular bands Bα, α ∈ Y. Then for any
x1, · · · , xn ∈ Bα, we have x1Rx1 · · · xn L xn in IG(B). Consequently, x1 · · · xn is a regular
element of IG(B).

Proof. It is clear from the presentations of IG(Bα) and IG(B) that there is a well defined
morphism

ψ : IG(Bα)→ IG(B), such that e ψ = e

for each e ∈ Bα. It suffices to recall that ψ preserves Green’s relations and use the remark
preceding the corollary. �

We now characterise those bands such that the corresponding biordered sets have trivial
basic products.

Proposition 3.5. The following conditions are equivalent for a band B =
⋃

α∈Y Bα:

(1) the biordered set B has trivial basic products;
(2) for all α, β ∈ Y with β > α, u ∈ Bα and v ∈ Bβ, we have uv = vu = u;
(3) for all α ∈ Y and e ∈ Bα, the subsemigroup eBe = {e} ∪

⋃
β<αBβ.
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Proof. Suppose that (1) holds. Let u ∈ Bα and v ∈ Bβ where β > α. It is clear that uL vu≤Rv
so that (vu, v) is a basic pair, but vu is not D-related to v. From a comment at the beginning
of the section, we deduce that vu < v, so that vuv = vu. Dually we obtain vuv = uvRu, so
that u = uv = vu and (2) holds.

The implication from (2) to (1) is clear from the structure ofB as a semilattice of rectangular
bands. The equivalence of (2) and (3) is immediate. �

In view of Proposition 3.5, a zero-direct union of bands with trivial basic products has
the same property. Subsemigroups of the form eBe in Proposition 3.5 are known as local
subsemigroups; thus if B has trivial basic products then the local subsemigroups are as large
as possible. Such bands form a rather restricted class, since if α = βγ where β 6= α 6= γ, then
we must have that Bα is trivial. To see this, choose any e ∈ Bβ, f ∈ Bγ and g ∈ Bα. Then
efg = g = gef so that g = ef . If B is normal, then to have trivial basic products is equivalent
to Bα being trivial for all non-maximal α ∈ Y . We also note that any band B with trivial basic
products lies in the variety of regular bands, that is, it satisfies the identity xyxzx = xyzx. To
see this, let x ∈ Bα, y ∈ Bβ and z ∈ Bγ. If α = αβγ, clearly xyxzx = x = xyzx. Otherwise,
α > αβγ and

xyxzx = x(yxz)(yxz)x = xyx(zyx)zx = xy(zyx)zx = (xyzy)xzx = xyzyzx = xyzx.

4. Free idempotent generated semigroups over bands

Our aim here is to investigate the general structure of IG(B) for an arbitrary band B. As
is our convention, we may assume without comment that B =

⋃
α∈Y

Bα is a semilattice Y of

rectangular bands Bα, α ∈ Y . We prove that for any such B, the semigroup IG(B) is weakly
abundant with the congruence condition. However, we demonstrate a band B for which IG(B)
is not abundant.

Lemma 4.1. Let S and T be semigroups with biordered sets of idempotents U = E(S) and
V = E(T ), respectively, and let θ : S → T be a morphism. Then the map from U to V defined
by e 7→ eθ, for all e ∈ U , lifts to a well defined morphism θ : IG(U)→ IG(V ).

Proof. Since θ is a morphism by assumption, we have that (e, f) is a basic pair in U implies
(eθ, fθ) is a basic pair in V , so that there exists a morphism θ : IG(U) → IG(V ) defined by
e θ = eθ, for all e ∈ U . �

Let B be a band. The mapping θ defined by

θ : B → Y, x 7→ α

where x ∈ Bα, is a morphism with kernel D. Applying Lemma 4.1 to this θ, we have the
following corollary.

Corollary 4.2. The map θ : IG(B)→ IG(Y ) defined by

(x1 · · · xn) θ = α1 · · · αn

is a morphism, where xi ∈ Bαi
, for all i ∈ [1, n].

To proceed further we need the following definition of left to right significant indices of
elements in IG(B).
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Let x1 · · · xn ∈ B
+
with xi ∈ Bαi

, for all 1 ≤ i ≤ n. Then a set of numbers

{i1, · · · , ir} ⊆ [1, n] with i1 < · · · < ir

is called the left to right significant indices of x1 · · · xn, if these numbers are picked out in the
following manner:
i1 : the largest number such that α1, · · · , αi1 ≥ αi1 ;
k1 : the largest number such that αi1 ≤ αi1 , αi1+1, · · · , αk1.

We pause here to remark that αi1 , αk1+1 are incomparable. This is because, if αi1 ≤ αk1+1, then
we add 1 to k1, contradicting the choice of k1; and if αi1 > αk1+1, then α1, · · · , αi1 , · · · , αk1 ≥
αk1+1, contradicting the choice of i1. Now we continue our process:

i2 : the largest number such that αk1+1, · · · , αi2 ≥ αi2 ;
k2 : the largest number such that αi2 ≤ αi2 , αi2+1, · · · , αk2.
...
ir : the largest number such that αkr−1+1, · · · , αir ≥ αir ;
kr = n: here we have αir ≤ αir , αir+1, · · · , αn. Of course, we may have ir = kr = n.

Corresponding to the so called left to right significant indices i1, · · · , ir, we have

αi1, · · · , αir ∈ Y.

We claim that for all 1 ≤ s ≤ r−1, αis and αis+1
are incomparable. If not, suppose that there

exists some 1 ≤ s ≤ r − 1 such that αis and αis+1
are comparable. If αis ≤ αis+1

then αis ≤
αks+1 as αis+1

≤ αks+1, a contradiction; if αis ≥ αis+1
, then αis+1

≤ αis+1
, αis+1−1, · · · , αks−1+1

with k0 = 0, contradicting our choice of is. Therefore, we deduce that αi1 · · · αir is the unique
normal form of α1 · · · αn in IG(Y ).

We can use the following Hasse diagram to depict the relationship among α1, · · · , αir :

α1 · · ·αi1−1

αi1

αi1+1· · · αk1 αk1+1· · ·αi2−1

αi2 · · · αir

· · · αir+1· · · αn

Dually, we can define the right to left significant indices {l1, · · · , ls} ⊆ [1, n] of the element

x1 · · · xn ∈ B
+
, where l1 < · · · < ls. Note that as αi1 · · · αir must equal αl1 · · · αls in B

+
,

we have r = s.

Lemma 4.3. Let x1 · · · xn ∈ B
+
with xi ∈ Bαi

, for all i ∈ [1, n], and left to right significant

indices i1, · · · , ir. Suppose also that y1 · · · ym ∈ B
+
with yi ∈ βi, for all i ∈ [1, m], and left to

right significant indices l1, · · · , ls. Then

x1 · · · xn = y1 · · · ym

in IG(B) implies s = r and αi1 = βl1 , · · · , αir = βlr .

Proof. It follows from Corollary 4.2 and the discussion above that

αi1 · · · αir = α1 · · · αn = β1 · · · βm = βl1 · · · βls

in IG(Y ). By uniqueness of normal forms, we have that s = r and αi1 = βl1 , · · · , αir = βlr . �
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In view of the above observations, we introduce the following notions.

Let w = x1 · · ·xn be a word in B
+
with xi ∈ Bαi

, for all i ∈ [1, n]. Suppose that w has
left to right significant indices i1, · · · , ir. Then we call the natural number r the Y -length, and
αi1 , · · · , αir the ordered Y -components of the equivalence class of w in IG(B).

In what follows whenever we write w ∼ w′ for w,w′ ∈ B
+
, we mean that the word w′ can

be obtained from the word w from a single step → or its reverse ← as in Lemma 2.7. We
interpret ε and ε as added identities.

Lemma 4.4. Let x1 · · · xn ∈ B
+

with left to right significant indices i1, · · · , ir, where

xi ∈ Bαi
, for all i ∈ [1, n]. Let y1 · · · ym ∈ B

+
be such that y1 · · · ym ∼ x1 · · · xn, and suppose

that the left to right significant indices of y1 · · · ym are j1, · · · , jr. Then for all l ∈ [1, r], we
have

y1 · · · yjl = x1 · · · xil u

in IG(B) where yjl = u′xilu and one of the following holds: (i) u′ = u = ε; (ii) u = ε and
u′ ∈ Bσ for some σ ≥ αil ; (iii) u

′ = ε and u ∈ Bδ for some δ > αil; or (iv) u′ = ε, u = yjl
and there exists v ∈ Bθ for some θ > αil such that vu = u and uv = xil .

Proof. Suppose that we split xk = ef for some k ∈ [1, n], where ef is a basic product with
e ∈ Bµ and f ∈ Bτ , so that αk = µτ. Then

x1 · · · xn ∼ x1 · · · xk−1 e f xk+1 · · · xn = y1 · · · ym.

If k < il, then clearly yjl = xil and

y1 · · · yjl = x1 · · · xk−1 e f xk+1 · · · xil = x1 · · · xil ,

so we may take u = u′ = ε.
Suppose that k = il and so µτ = αil. If µ ≥ τ , then yjl = f and again

y1 · · · yjl = x1 · · ·xil−1 e f = x1 · · · xil.

As xil = ef L f , we have yjl = f = fxil. Put u
′ = yjl and u = ε. Note also that xil = ef = eyjl.

On the other hand, if µ < τ , then yjl = e. As ef is a basic product, ef = e = xil or fe = e.
We first consider the case where ef = e = xil . Here

y1 · · · yjl = x1 · · ·xil−1 e = x1 · · ·xil,

and yjl = e = xil so that we may take u = u′ = ε. The other situation is where fe = e. Here,
as xk = ef R e and e = efe,

y1 · · · yjl = x1 · · · xil−1 e = x1 · · · xk−1 ef e = x1 · · · xil e

and yjl = xile where fe = e; we put u′ = ε, u = e and v = f to satisfy the conditions of the
Lemma. We also note that

x1 · · · xil = x1 · · · xk−1 ef = x1 · · · xil e f = y1 · · · yjl f

and xil = yjlf.

Finally, suppose that k > il. Then it is obvious that jl = il, xil = yjl and

y1 · · · yjl = x1 · · · xil

so again we take u = u′ = ε.
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We now remark that at each stage of the argument we have shown that, not only is x1 · · · xil
a left factor of y1 · · · yjl, but also the dual conditions hold for y1 · · · yjl to be a left factor of
x1 · · · xil . Thus the lemma is proven. �

It follows immediately from Lemma 4.4 that

Corollary 4.5. Suppose that y1 · · · ym = x1 · · · xn ∈ IG(B) with left to right significant
indices j1, · · · , jr and i1, · · · , ir, respectively, and suppose xi ∈ Bαi

for all i ∈ [1, n]. Then for
all l ∈ [1, r], we have

y1 · · · yjl = x1 · · · xil u1 u2 · · · usl
in IG(B) where yjl = u′sl · · ·u

′
1xilu1 · · ·usl, and for all t ∈ [1, sl], one of the following holds:

(i) u′t = ut = ε; (ii) ut = ε and u′t ∈ Bσt
for some σt ≥ αil; (iii) u′t = ε and ut ∈ Bδ for

some δ > αil; or (iv) u′t = ε, ut ∈ Bαil
and there exists vt ∈ Bθt for some θt > αil such that

vtut = ut.
Consequently, y1 · · · yjl R x1 · · · xil in IG(B) and hence y1 · · · yjl R x1 · · · xil in B.

Proof. The proof follows from Lemma 4.4 by finite induction. �

Note that the duals of Lemma 4.4 and Corollary 4.5 hold for right to left significant indices.

From Lemma 3.1, we know that if B is a semilattice or a rectangular band, then every
element in IG(B) has a unique normal form. However, it may not be true for an arbitrary
band B, even if B is normal.

Example 4.6. Let B = B(Y ;Bµ, φµ,κ) be a strong semilattice Y = {α, β, γ, δ} of rectan-
gular bands Bµ, µ ∈ Y (see the figure below), such that φα,β is defined by aφα,β = b, the
remaining morphisms being defined in the obvious unique manner. It is easy to see that a
pair (u, v) is basic if and only if u ∈ Bη, v ∈ Bν where η, ν are comparable in Y .

Bα a

Bβ b c d Bγ

e
Bδ

By an easy calculation, we have ca = c(aφαβ) = cb = b and so

c d = c ad = c a d = ca d = b d

in IG(B), showing that not every element in IG(B) has a unique normal form.

Lemma 4.7. Let x1 · · · xn ∈ IG(B) with xi ∈ Bαi
, for all i ∈ [1, n], and let y ∈ Bβ with

β ≤ αi, for all i ∈ [1, n]. Then in IG(B) we have

x1 · · · xn y = x1 · · ·xnyxn · · ·x1 · · · xn−1xnyxnxn−1 xnyxn y

and
y x1 · · · xn = y x1yx1 x2x1yx1x2 · · · xn · · ·x1yx1 · · ·xn.

Proof. First, we notice that for any x ∈ Bα, y ∈ Bβ such that α ≥ β, we have yx R y, so that
(y, yx) is a basic pair and (yx)y = y. On the other hand, as (yx)x = yx, we have that (x, yx)
is a basic pair, so that

x y = x (yx)y = x yx y = xyx y.
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The first required equality follows from the above observation by finite induction. The second
is dual. �

Corollary 4.8. Let B = B(Y ;Bα, φα,β) be a normal band and let x1 · · · xn ∈ IG(B) be
such that xi ∈ Bαi

, for all i ∈ [1, n]. Let y ∈ Bβ with β ≤ αi, for all i ∈ [1, n]. Then in IG(B)
we have

x1 · · · xn y = x1φα1,β · · · xnφαn,β y

and

y x1 · · · xn = y x1φα1,β · · · xnφαn,β.

Corollary 4.9. Let B =
⋃

α∈Y Bα be a chain Y of rectangular bands Bα, α ∈ Y . Then
IG(B) is a regular semigroup, and hence a chain of completely simple semigroups.

Proof. Let u1 · · · un be an element in IG(B). From Lemma 4.7 it follows that u1 · · · un can
be written as an element of IG(B) in which all letters come from Bγ , where γ is the minimum
of the ordered Y -components {α1, · · · , αn}, so that u1 · · · un is regular by Lemma 3.4. �

Notice from [3] that if B is left or right seminormal the subgroups of IG(B) in Corollary 4.9
are certainly free (see Section 6).

Given the above observations, we now introduce the idea of almost normal form for elements
in IG(B).

Definition 4.10. An element x1 · · · xn ∈ B
+
is said to be in almost normal form if there

exists a sequence

1 ≤ i1 < i2 < · · · < ir−1 ≤ n

with

{x1, · · · , xi1} ⊆ Bα1
, {xi1+1, · · · , xi2} ∈ Bα2

, · · · , {xir−1+1, · · ·xn} ⊆ Bαr

where αi, αi+1 are incomparable for all i ∈ [1, r − 1].

The reader should note that a word being in almost normal form does not imply that it
is in normal form, for we do not insist in the above expression that the pair (xj , xj+1) is not
basic for xj , xj+1 ∈ Bαi

, 1 ≤ i ≤ r. On the other hand, an element in normal form need not
be in almost normal form. For example, if x ∈ Bα, y ∈ Bβ with α > β and (x, y) not a basic
pair, then x y is in normal form but not almost normal form.

It is obvious that the element x1 · · · xn ∈ B
+
above has Y -length r, ordered Y -components

α1, · · · , αr, left to right significant indices i1, i2, · · · , ir−1, ir = n and right to left significant
indices 1, i1 + 1, · · · , ir−2 + 1, ir−1 + 1. Note that, in general, the almost normal forms of
elements of IG(B) are not unique. Further, if x1 · · · xn = y1 · · · ym are in almost normal
form, then they have the same Y -length and ordered Y -components, but the significant indices
of the expressions on each side can differ.

The next result is immediate from the definition of significant indices and Lemma 4.7.

Lemma 4.11. Let B be a band. Then every element of IG(B) can be written in almost
normal form.

We have the following lemma regarding the almost normal form of the product of two almost
normal forms.
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Lemma 4.12. Let x1 · · · xn ∈ IG(B) be in almost normal form with Y -length r, left to right
significant indices i1, · · · , ir = n and ordered Y -components α1, · · · , αr, let y1 · · · ym ∈ IG(B)
be in almost normal form with Y -length s, left to right significant indices l1, · · · , ls = m and
ordered Y -components β1, · · · , βs. Then (with i0 = 0)

(i) αr and β1 incomparable implies that x1 · · · xir y1 · · · yls is in almost normal form;

(ii) αr ≥ β1 implies

x1 · · ·xit xit+1 · · ·xiry1xir · · ·xit+1 · · · xiry1xir y1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls, for some t ∈ [0, r− 1] such that
αr, · · · , αt+1 ≥ β1 and t = 0 or αt, β1 are incomparable;

(iii) αr ≤ β1 implies

x1 · · · xir y1xiry1 · · · ylv · · · y1xiry1 · · · ylv ylv+1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls for some v ∈ [1, s] such that
αr ≤ β1, · · · , βv and v = s or βv+1, αr are incomparable.

Proof. Clearly, the statement (i) is true. We now aim to show (ii). Since αr ≥ β1, we have

xir−1+1 · · · xir y1 = xir−1+1 · · ·xiry1xir · · ·xir−1+1 · · · xiry1xir y1

by Corollary 4.7. Consider αr−1 and β1, then we either have αr−1 ≥ β1 or they are incom-
parable, as αr−1 < β1 would imply αr > αr−1, which contradicts the almost normal form of
x1 · · · xir . By finite induction we have that

x1 · · ·xit xit+1 · · ·xiry1xir · · ·xit+1 · · · xiry1xir y1 · · · yls

is an almost normal form of the product x1 · · · xir y1 · · · yls, for some t ∈ [0, r − 1], such
that αr, · · · , αt+1 ≥ β1 and t = 0 or αt, β1 are incomparable. Similarly, we can show (iii). �

Theorem 4.13. Let B be band. Then IG(B) is a weakly abundant semigroup with the
congruence condition.

Proof. As usual, we let B be a semilattice Y of rectangular bands Bα, α ∈ Y. Let x1 · · · xn ∈
IG(B) be in almost normal form with Y -length r, left to right significant indices i1, · · · , ir = n,
and ordered Y -components α1, · · · , αr. Clearly x1 x1 · · · xn = x1 · · · xn. Let e ∈ Bδ be such
that e x1 · · · xn = x1 · · · xn. By Corollary 4.2, applying θ, we have that δ α1 · · · αr =
α1 · · · αr. It follows from Lemma 3.1 that δ ≥ α1, so that by Corollary 4.5 we have

ex1 · · ·xi1 R x1 · · ·xi1 .

On the other hand, x1 · · ·xi1 R x1 so that ex1 R x1, and we have x1 ≤R e. Thus e x1 = ex1 =

x1. Therefore x1 · · · xn R̃ x1. Dually, x1 · · · xn L̃ xn, so that IG(B) is a weakly abundant
semigroup as required.

Next we show that IG(B) satisfies the congruence condition.

Let x1 · · · xn ∈ IG(B) be defined as above and let y1 · · · ym ∈ IG(B) be in almost normal
form with Y -length u, left to right significant indices l1, · · · , lu = m and ordered Y -components

β1, · · · , βu. From above and Lemma 2.3, we have x1 · · · xn R̃ y1 · · · ym if and only if x1 R y1.
Since the biorders in IG(B) and B are isomorphic, the latter is equivalent to x1R y1 in B.
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Suppose now that x1 R y1, so that α1 = β1. Let z1 · · · zs ∈ IG(B), where, without loss of
generality, we can assume it is in almost normal form with Y -length t, left to right significant
indices j1, · · · , jt = s, and ordered Y -components γ1, · · · , γt. We aim to show that

z1 · · · zs x1 · · · xn R̃ z1 · · · zs y1 · · · ym.

We consider the following three cases.

(i) If α1 = β1, γt are incomparable, then it is clear that

z1 · · · zs x1 · · · xn and z1 · · · zs y1 · · · ym

are in almost normal form, so clearly we have

z1 · · · zs x1 · · · xn R̃ z1 R̃ z1 · · · zs y1 · · · ym.

(ii) Let β1 = α1 ≤ γ1. By Lemma 4.12

z1 · · · zs x1 · · · xn = z1 · · · zjv zjv+1 · · · zsx1zs · · · zjv+1 · · · zsx1zs x1 · · · xn

and

z1 · · · zs y1 · · · ym = z1 · · · zjv zjv+1 · · · zsy1zs · · · zjv+1 · · · zsy1zs y1 · · · ym

where v ∈ [0, t− 1], γv+1, · · · , γt ≥ α1 = β1 and γv, β1 are incomparable or v = 0. Note that
the right hand sides are in almost normal form.

If v ≥ 1, then clearly the required result is true, as the above two almost normal forms
begin with the same idempotent. If v = 0, then we need to show that

z1 · · · zsx1zs · · · z1 R z1 · · · zsy1zs · · · z1.

Since x1 R y1, it follows from the structure of B that

z1 · · · zsx1zs · · · z1 R z1 · · · zsx1 R z1 · · · zsy1 R z1 · · · zsy1zs · · · z1

as required.
(iii) Let β = α1 ≥ γ1. By Lemma 4.12

z1 · · · zs x1 · · · xn = z1 · · · zs x1zsx1 · · · xik · · ·x1zsx1 · · ·xik xik+1 · · · xn

and

z1 · · · zs y1 · · · ym = z1 · · · zs y1zsy1 · · · ylp · · · y1zsy1 · · · ylp ylp+1 · · · ym,

where k ∈ [1, r], α1, · · · , αk ≥ γ1, and αk+1, γ1 are incomparable or k = r, and p ∈ [1, u],
β1, · · · , βp ≥ γ1, and βp+1, γ1 are incomparable or p = u. Clearly, the right hand sides are in
almost normal form, so that

z1 · · · zs x1 · · · xn R̃ z1 R̃ z1 · · · zs y1 · · · ym.

Similarly, we can show that L̃ is a right congruence, so that IG(B) is a weakly abundant
semigroup satisfying the congruence condition. This completes the proof. �

We finish this section by constructing a band B for which IG(B) is not an abundant semi-
group.
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Example 4.14. Let B = Bα∪Bβ ∪Bγ be a band with semilattice decomposition structure
and multiplication table defined by

a b x y
a a y x y
b y b x y
x x y x y
y y y x y

Bα a b Bβ

x y
Bγ

First, it is easy to check that B is indeed a semigroup. We now show that IG(B) is not
abundant by arguing that the element a b ∈ IG(B) is not R∗-related to any idempotent of

IG(B). It follows from the proof of Theorem 4.13 that a b R̃ a. However, a b is not R∗-related
to a, because

x a b = y = y a b but x a = x 6= y = y a.

From Lemma 2.4, a b is not R∗-related to any idempotent of B, and hence IG(B) is not an
abundant semigroup.

5. Condition (P)

We have shown that for any band B, the semigroup IG(B) is always weakly abundant with
the congruence condition, but not necessarily abundant. We know from Theorem 3.2 that if
B has trivial basic products, then IG(B) is abundant. This section is devoted to finding some
further special kinds of bands B for which IG(B) is abundant. As a means to this end we
introduce a technical condition.

Definition 5.1. We say that the semigroup IG(B) satisfies Condition (P ) if for any two
almost normal forms u1 · · · un = v1 · · · vm ∈ IG(B) with Y -length r, left to right significant
indices i1, · · · , ir = n and l1, · · · , lr = m, respectively, the following statements (with i0 = l0 =
0) hold:

(i) uis L vls implies u1 · · ·uis = v1 · · · vls, for all s ∈ [1, r].
(ii) uit+1 R vlt+1 implies uit+1 · · ·un = vlt+1 · · · vm, for all t ∈ [0, r − 1].

We immediately show one case where Condition (P ) is guaranteed to hold.

Lemma 5.2. Let B be a band with trivial basic products, and let x1 · · · xn, y1 · · · ym ∈
IG(B) have left to right significant indices i1, · · · , ir and j1, · · · , jr, respectively. If x1 · · · xn =
y1 · · · ym, then for any l ∈ [1, r], x1 · · · xil = y1 · · · yjl. Of course, B satisfies Condition
(P).

Proof. It follows from Proposition 3.5 that a band with trivial basic products is just a band
B =

⋃
α∈Y Bα such that for all α, β ∈ Y with β > α, u ∈ Bα and v ∈ Bβ, we have uv = vu = u.

Suppose that xi ∈ Bαi
for all i ∈ [1, r]. It is enough to consider a single step, so suppose that

x1 · · · xn ∼ y1 · · · ym.

By Lemma 4.4, for any l ∈ [1, r], we have

y1 · · · yjl = x1 · · · xil u
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and yjl = u′xilu, where u and u′ are defined by various cases as exhibited in Lemma 4.4. In
each case xil u = xil , either trivially, if u = ε, or because xilu = xil is a basic product in B,
and so y1 · · · yjl = x1 · · · xil . �

More examples of bands satisfying Condition (P) will be given later in this section. However,
it is a consequence of our results and Example 6.5 that not every band has Condition (P), in
particular, not every normal band has Condition (P).

Proposition 5.3. Let B be a normal band for which IG(B) satisfies Condition (P ). Then
IG(B) is an abundant semigroup.

Proof. Let x1 · · · xn ∈ IG(B) be in almost normal form with Y -length r, left to right sig-
nificant indices i1, · · · , ir = n, and ordered Y -components α1, · · · , αr. By Theorem 4.13,
x1 · · · xir R̃ x1. We aim to show that x1 · · · xir R

∗ x1. From Lemma 2.5, we only need
to show that for any two almost normal forms y1 · · · ym, z1 · · · zh ∈ IG(B) we have

z1 · · · zh x1 · · · xn = y1 · · · ym x1 · · · xn ⇒ z1 · · · zh x1 = y1 · · · ym x1.

Suppose that y1 · · · ym has Y -length m, left to right significant indices l1, · · · , ls = m,
and ordered Y -components β1, · · · , βs, and z1 · · · zh ∈ IG(B) has Y -length t, left to right
significant indices j1, · · · , jt = h, and ordered Y -components γ1, · · · , γt.

Assume now that
z1 · · · zjt x1 · · · xir = y1 · · · yls x1 · · · xir

(it will be convenient to use the indices ir, ls, jt). We consider the following cases, the remainder
following by considerations of duality.

(i) If γt, α1 and βs, α1 are incomparable, then both sides of the above equality are in almost
normal form, so that by Condition (P )

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1 .

Since x1 · · · xi1 R x1 by Corollary 3.4, we have z1 · · · zjt x1 = y1 · · · yls x1.

(ii) Suppose now that γt ≤ α1 and βs, α1 are incomparable. By Lemma 4.12, z1 · · · zjt x1 · · · xir
has an almost normal form

z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv xiv+1 · · · xir ,

for some v ∈ [1, r], where γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable. Hence we
have

z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv xiv+1 · · · xir = y1 · · · yls x1 · · · xir .

Note that both sides of the above equality are in almost normal form. It follows from Corollary
4.2 that

(z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv xiv+1 · · · xir) θ = (y1 · · · yls x1 · · · xir) θ

and so
γ1 · · · γt αv+1 · · · αr = β1 · · · βs α1 · · · αr.

Since v ≥ 1, we have γt = αv. To avoid contradiction, v = 1, and hence by Condition (P )

z1 · · · zjt x1zjtx1 · · · xi1 · · ·x1zjtx1 · · ·xi1 = y1 · · · yls x1 · · · xi1 .

As γt = αv,
z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1
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so that z1 · · · zjt x1 = y1 · · · yls x1.

(iii) Suppose that γt ≤ α1 and βs ≤ α1. By Lemma 4.12 we have the following two almost
normal forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv xiv+1 · · · xir

where v ∈ [1, r] such that γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable, and

y1 · · · yls x1ylsx1 · · · xiu · · ·x1ylsx1 · · ·xiu xiu+1 · · · xir

where u ∈ [1, r] with βs ≤ α1, · · · , αu and u = r or βs, αu+1 are incomparable. Hence by
Corollary 4.2,

γ1 · · · γt αv+1 · · · αr = β1 · · · βs αu+1 · · · αr

If v > u, then γt = αv, so to avoid contradiction v = 1. But then u < 1, again contradiction.
Similarly, v < u is impossible. We deduce that v = u, and so t = s and βs = γt.

We have
x1zjtx1 = x1φα1,γt = x1φα1,βs

= x1ylsx1
...

xiv · · ·x1zjtx1 · · ·xiv = xivφαv,γt = xiuφαu,βs
= xiu · · ·x1ylsx1 · · ·xiu .

By Condition (P ) we deduce

z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv = y1 · · · yls x1ylsx1 · · · xiu · · ·x1ylsx1 · · ·xiu .

On the other hand, we have

x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv = x1ylsx1 · · · xiu · · ·x1ylsx1 · · ·xiu

which by Lemma 3.4 is R-related to x1zjtx1 in IG(Bγt) and hence in IG(B). It follows that

z1 · · · zjt x1zjtx1 = y1 · · · yls x1ylsx1,

and so
z1 · · · zjt x1 = y1 · · · yls x1.

(iv) Suppose that γt ≤ α1 and βs ≥ α1. By Lemma 4.12 we have the following two almost
normal forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjt x1zjtx1 · · · xiv · · ·x1zjtx1 · · ·xiv xiv+1 · · · xir

for some v ∈ [1, r] with γt ≤ α1, · · · , αv and v = r or γt, αv+1 are incomparable, and

y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xir

for some u ∈ [0, s− 1] with βu+1, · · · , βs ≥ α1 and βu, α1 are incomparable or u = 0. It follows
from Corollary 4.2 that

γ1 · · · γt αv+1 · · · αr = β1 · · · βu α1 · · · αr.

Note that both sides of the above equality are normal forms of IG(Y ). As v ≥ 1, we have
γt = αv, so that to avoid contradiction we have v = 1 and then xi1 · · ·x1zjtx1 · · ·xi1 = xi1 .
Hence by Condition (P)

z1 · · · zjt x1zjtx1 · · · xi1 · · ·x1zjtx1 · · ·xi1

= y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1
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and so

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1 ,

which implies z1 · · · zjt x1 = y1 · · · yls x1.

(v) Suppose that γt ≥ α1 and βs ≥ α1. By Lemma 4.12 we have the following two almost
normal forms for z1 · · · zjt x1 · · · xir and y1 · · · yls x1 · · · xir , namely,

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 · · · xir

for some v ∈ [0, t− 1] such that γv+1, · · · , γt ≥ α1 and γv, α1 are incomparable or v = 0, and

y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1 · · · xir

for some u ∈ [0, s − 1] such that βu+1, · · · , βs ≥ α1 and βu, α1 are incomparable or u = 0.
Hence by Condition (P ),

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1

= y1 · · · ylu ylu+1 · · · ylsx1yls · · · ylu+1 · · · ylsx1yls x1 · · · xi1 ,

so that

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

and hence z1 · · · zjt x1 = y1 · · · yls x1.

(vi) Suppose that γt ≥ α1 and βs, α1 are incomparable. By Lemma 4.12

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 · · · xir = y1 · · · yls x1 · · · xi1 · · · xir

for some v ∈ [0, t− 1] with γv+1, · · · , γt ≥ α1 and γv, α1 are incomparable or v = 0. Note that
both sides of the above equality are in almost normal form. Again by Condition (P)

z1 · · · zjv zjv+1 · · · zjtx1zjt · · · zjv+1 · · · zjtx1zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

so that

z1 · · · zjt x1 · · · xi1 = y1 · · · yls x1 · · · xi1

and hence z1 · · · zjt x1 = y1 · · · yls x1.

From the above case-by-case analysis, we deduce that x1 · · · xir R
∗ x1, and similarly we

can show that x1 · · · xir L
∗ xir , so that IG(B) is an abundant semigroup. �

We now aim to find examples of normal bands B for which IG(B) satisfies Condition (P),
so that by Proposition 5.3, IG(B) is abundant.

A band B =
⋃

α∈Y Bα is called Y -basic if it is a semilattice Y of rectangular bands Bα,
α ∈ Y , where Bα is either a left zero band or a right zero band. Any left or right regular
band (that is, where every Bα is left zero, or every Bα is right zero) is Y -basic, but the class
of Y -basic bands is easily seen to be larger. We now justify the terminology.

Lemma 5.4. Let B =
⋃

α∈Y Bα be a band. Then B is Y -basic if and only if it has the
property that for any e ∈ Bα and f ∈ Bβ the pair (e, f) being basic in B is equivalent to the
pair (α, β) being basic in Y , that is, to α and β being comparable.
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Proof. Suppose that B has the given property on basic pairs. For any α ∈ Y fix e ∈ Bα; since
(e, f) must be basic in B for any f ∈ Bα, clearly Bα is a left or a right zero semigroup.

Conversely, suppose that B is Y -basic. Let e ∈ Bα and f ∈ Bβ. If (e, f) is basic, certainly so
is (α, β). For the converse, without loss of generality, suppose that α ≤ β. Then ef, fe ∈ Bα.
As B is a Y -basic band, we have Bα is either a left zero band or a right zero band. If Bα is a
left zero band, then e(ef) = e, i.e. ef = e, so (e, f) is a basic pair. If Bα is a right zero band,
then (fe)e = e, i.e. fe = e, which again implies that (e, f) is a basic pair. �

It follows from Lemma 5.4 that for a Y -basic band B, every element of IG(B) has a normal
form, say, x1 · · · xn with xi ∈ Bαi

and αi and αi+1 incomparable, for all i ∈ [1, n− 1]. Notice
that in this case any normal form must also be an almost normal form. Of course, as Example
4.6 demonstrates, the normal forms need not be unique.

Lemma 5.5. Let B be a Y -basic band. Then IG(B) satisfies Condition (P ).

Proof. Let x1 · · · xn = y1 · · · ym ∈ IG(B) be in almost normal form with Y -length r, left to
right significant indices i1, · · · , ir = n, j1, · · · , jr = m, respectively, and ordered Y -components
α1, · · · , αr. It then follows from Corollary 4.5 that for any s ∈ [1, r], either

y1 · · · yjs = x1 · · · xis

and we are done, or
y1 · · · yjs = x1 · · · xis e1 · · · em

where for all k ∈ [1, m], ek ∈ Bδk with δk ≥ αs. In this case by Lemma 5.4, we have

xis e1 · · · em = xise1 · · · em,

so that if we assume xis L yjs, then

y1 · · · yjs = y1 · · · yjs xis = x1 · · · xise1 · · · em xis = x1 · · · xise1 · · · emxis = x1 · · · xis .

Together with the dual, we have shown that IG(B) satisfies Condition (P). �

Let B = B(Y ;Bα, φα,β) be a normal band. Clearly B is locally small in the sense that
the local submonoids eBe are as small as they can be, that is, for e ∈ Bα, we have eBe =
{e} ∪ {eφα,β : α > β} = {eφα,β : α ≥ β}. We say that B is pliant if for every α ∈ Y , there
exists an aα ∈ Bα such that for all β > α and u ∈ Bβ , we have uφβ,α = aα.

Lemma 5.6. Let B = B(Y ;Bα, φα,β) be a pliant normal band. Then IG(B) satisfies Con-
dition (P ).

Proof. First note that since B is a pliant normal band, there exists aα ∈ Bα such that for any
β > α and u ∈ Bβ, uφβ,α = aα.

Let x1 · · · xn = y1 · · · ym ∈ IG(B) be in almost normal form with Y -length r, left to right
significant indices i1, · · · , ir = n, j1, · · · , jr = m, respectively, and ordered Y -components
α1, · · · , αr.Without loss of generality (excluding the trivial empty case), we may assume from
Corollary 4.5 that

y1 · · · yjl = x1 · · · xil u1 · · · us
such that for all k ∈ [1, s] we have uk ∈ Bδk with δk > αl, so that ukφδk,αl

= aαl
; or uk ∈ Bαl

with vkuk = uk for some vk ∈ Bηk such that ηk > αl, and in this case we have aαl
uk = uk,

so that aαl
R uk. Thus the idempotents u1φδ1,αl

, · · · , usφδs,αl
are all R-related, and so calling

upon Corollary 4.8 we have

xil u1 · · · us = xil u1φδ1,αl
· · · usφδs,αl

= xil u1φδ1,αl
· · ·usφδs,αl

= xil usφδs,αl
= xil us.
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On the other hand, again using Corollary 4.5 we have yjl = wxilu1 · · ·us, for some w, where
w = ε or w ∈ Bαl

. Hence, for the purposes of verifying Condition (P ), if we assume that
xil L yjl, then xil = xilus, so that

xil us = xilus = xil .

Hence y1 · · · yjl = x1 · · · xil as required. �

As an immediate consequence of Proposition 5.3 and Lemmas 5.5 and 5.6 we have the
following result.

Theorem 5.7. Let B be a normal band that is Y -basic or pliant. Then IG(B) is abundant.

6. A normal band B for which IG(B) is not abundant

From Section 5, we know that the free idempotent idempotent generated semigroup IG(B)
over a normal band B satisfying Condition (P) is an abundant semigroup. Therefore, one
would like to ask whether IG(B) is abundant for any normal band B. In this section we
answer the question in the negative by constructing a 10-element normal band B such that
IG(B) is not abundant.

Throughout this section, we will use B(Y ;Bα, φα,β) as standard notation for a normal band.

Lemma 6.1. Let B be a normal band, and let x ∈ Bβ, y ∈ Bγ with β, γ ≥ α. Then (x, y)
is a basic pair implies (xφβ,α, yφγ,α) is a basic pair and

(xφβ,α)(yφγ,α) = (xy)φδ,α,

where δ is the minimum of β and γ.

Proof. Let (x, y) be a basic pair with x ∈ Bβ, y ∈ Bγ . Then β, γ are comparable. If β ≥ γ,
then we either have xy = y or yx = y. If xy = y, then (xφβ,γ)y = y, so

yφγ,α = ((xφβ,γ)y)φγ,α = (xφβ,α)(yφγ,α),

so (xφβ,α, yφγ,α) is a basic pair. If yx = y, then y(xφβ,γ) = y, so

yφγ,α = (y(xφβ,γ))φγ,α = (yφγ,α)(xφβ,α),

so that (xφβ,α, yφγ,α) is a basic pair.
A similar argument holds if γ ≥ β. The final part of the lemma is clear. �

Lemma 6.2. Let B be a normal band and let u1 · · · un ∈ IG(B) with ui ∈ Bαi
and αi ≥ α

for all i ∈ [1, n]. Suppose that v1 · · · vm ∈ IG(B) with vi ∈ Bβi
for all i ∈ [1, m] and

u1 · · · un ∼ v1 · · · vm. Note that βi ≥ α, for all i ∈ [1, m]. Then in IG(Bα) we have

u1φα1,α · · · unφαn,α = v1φβ1,α · · · vmφβm,α.

Proof. Suppose that ui = xy is a basic product with x ∈ Bδ, y ∈ Bη, for some i ∈ [1, n]. Note
that the minimum of δ and η is αi. Then

u1 · · · un ∼ u1 · · · ui−1 x y ui+1 · · · un.

If follows from Lemma 6.1 that in IG(Bα)

u1φα1,α · · · unφαn,α = u1φα1,α · · · ui−1φαi−1,α uiφαi,α ui+1φαi+1,α · · · unφαn,α

= u1φα1,α · · · ui−1φαi−1,α xφδ,αyφη,α ui+1φαi+1,α · · · unφαn,α

= u1φα1,α · · · ui−1φαi−1,α xφδ,α yφη,α ui+1φαi+1,α · · · unφαn,α
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as required. Note that the case where the elementary transition is a contraction is similar by
symmetry of the underlying conditions. �

The final part of the next corollary is well known [18, Theorem 6.5] and was extended to
left (right) seminormal bands by Dolinka in [3, Theorem 1].

Corollary 6.3. Let B be a normal band and let x1, · · · , xn, y1, · · · , ym ∈ Bα. Then x1 · · · xn =
y1 · · · ym in IG(Bα) if and only if the equality holds in IG(B). Consequently, every maximal
subgroup of IG(B) is free.

Proof. The necessity is obvious, as any basic pair in Bα must also be basic in B. Suppose now
that we have

x1 · · · xn = y1 · · · ym

in IG(B). Then there exists a sequence

x1 · · · xn ∼ u1 · · · us ∼ v1 · · · vt ∼ · · · ∼ w1 · · · wl ∼ y1 · · · ym.

Note that all idempotents involved in the above sequence lie in components Bβ where β ≥ α,
so that successive applications of Lemma 6.2 give x1 · · · xn = y1 · · · ym in IG(Bα).

To see that the maximal subgroups of IG(B) are free, we recall from [12, Lemma 1] that
every element in the D-class of e is a product of idempotents that are D-related to e in IG(B)
and hence in B. Thus, if e ∈ Bα, then every element of the D-class of e is a product e1 · · · en
where ei ∈ Bα, 1 ≤ i ≤ n. But two elements of this form are equal in IG(B) if and only if they
are equal in IG(Bα). Since the latter is known to have maximal subgroups that are free [18],
it follows that the maximal subgroups of IG(B) are also free. �

We remark here that for an arbitrary band B, Corollary 6.3 need not be true.

Example 6.4. Let B = Bα ∪ Bβ be a band with semilattice structure and multiplication
table defined by

l u w u′ w′

l l u′ w′ u′ w′

u u u w u w
w w u w u w
u′ u′ u′ w′ u′ w′

w′ w′ u′ w′ u′ w′

Bα l

Bβ
u′ w′

u w

It is easy to check that B forms a band. By the uniqueness of normal forms in IG(Bβ), we
have u′ w 6= w′ in IG(Bβ). However in IG(B) we have

u′ w = u′l w

= u′ l w (as (u′, l) is a basic pair)

= u′ lw (as (l, w) is a basic pair)

= u′ w′

= w′
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With the above preparations, we now construct a 10-element normal band B for which
IG(B) is not abundant.

Example 6.5. Let B = B(Y ;Bα, φα,β) be a strong semilattice Y = {α, β, γ, δ} of rectan-
gular bands (see the figure below), where φα,β : Bα → Bβ is defined by

aφα,β = e, bφα,β = f, cφα,β = g, dφα,β = h

the remaining morphisms being defined in the obvious unique manner.

Bα

a b
c d

Bβ
e f
g h

v Bγ

u
Bδ

Considering the element e v ∈ IG(B), we have

e v = e dv

= e d v (as (d, v) is a basic pair)

= e h v (as e d = e dφα,β = e h by Corollary 4.8)

= e h av

= e h a v (as (a, v) is a basic pair)

= e h e v (as h a = h aφα,β = h e by Corollary 4.8)

However, e h e 6= e in IG(Bβ) by the uniqueness of normal forms, so by Corollary 6.3, we have

e h e 6= e in IG(B), which implies e v is not R∗-related to e. On the other hand, we have

known from Theorem 4.13 that e v R̃ e, so that by Lemma 2.4 that e v is not R∗-related any
idempotent of B, so that IG(B) is not an abundant semigroup.
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