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Abstract: We study a stochastic Landau-Lifschitz-Gilbert Equations with non-zero anisotrophy energy and multidimensional noise. We

prove the existence and some regularities of weak solution proved. Our paper is motivated by finite-dimensional study of stochastic

LLGEs or general stochasric differential equations with constraints studied by Kohn et al [17] and Lelièvre et al [19].
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1 Introduction

The ferromagnetism theory was first studied by Weiß in 1907 and then further developed by Landau and Lifshitz

[18] and Gilbert [15]. According to their theory there is a characteristic of the material called the Curie’s temperature,

whence below this critical temperature, large ferromagnetic bodies would break up into small uniformly magnetized

regions separated by thin transition layers. The small uniformly magnetized regions are called Weiß domains and the

transition layers are called Bloch walls. This fact is taken into account by imposing the following constraint:

|u(t, x)|R3 = 1. (1.1)

Moreover the magnetization in a domain D ⊂ R3 at time t > 0 given by u(t, x) ∈ R3 satisfies the following Landau-

Lifschitz equation:

du(t, x)

dt
= λ1u(t, x) × ρ(t, x) − λ2u(t, x) × (u(t, x) × ρ(t, x)). (1.2)

The ρ in equation (1.2) is called the effective magnetic field and defined by

ρ = −∇uE, (1.3)
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where the E is the so called total electro-magnetic energy which composed by anisotropy energy, exchange energy and

electronic energy.

In order to describe phase transitions between different equilibrium states induced by thermal fluctuations of

the effective magnetic field ρ, Brzeźniak and Goldys and Jegaraj [9] introduced the Gaussian noise into the Landau-

Lifschitz-Gilbert (LLG) equation to perturb ρ and then the stochastic Landau-Lifschitz-Gilbert (SLLG) equation have

the following form:

du(t) = (λ1u(t) × ρ(t) − λ2u(t) × (u(t) × ρ(t))) dt + (u(t) × h) ◦ dW(t), (1.4)

where h ∈ L∞(D;R3). Their total energy contains only the exchange energy 1
2
‖∇u‖L2 , and hence their equation has the

following form:







































du(t) = (λ1u(t) × ∆u(t) − λ2u(t) × (u(t) × ∆u(t))) dt + (u(t) × h) ◦ dW(t),

∂u
∂n

(t, x) = 0, t > 0, x ∈ ∂D,

u(0, x) = u0(x), x ∈ D.

(1.5)

They concluded the existence of the weak solution of (1.5) and also proved some regularities of the solution.

There is also some research about the numerical schemes of equation (1.5), such as Baňas, Brzeźniak, and Prohl

[5], Baňas, Brzeźniak, Neklyudov, and Prohl [6], Baňas, Brzeźniak, Neklyudov, and Prohl [7], Goldys, Le, and Tran

[16] and Alouges, de Bouard and Hocquet [4]. The last paper differs from all previous papers as it deals with the LLGEs

in the so called Gilbert form, see [15] and [3] for some related deterministic results, and with an infinite dimensional

noise (correlated in space).

In the present paper we consider the SLLG equation with the total energy E consisting of the exchange and

anisotropy energies and hence it defined as:

E(u) = Ean(u) + Eex(u) =

∫

D

(

φ(u(x)) +
1

2
|∇u(x)|2

)

dx,

where Ean(u) :=
∫

D
φ(u(x)) dx stands for the anisotropy energy and Eex(u) := 1

2

∫

D
|∇u(x)|2 dx stands for the exchange

energy.

Our study is motivated by finite-dimensional study of stochastic LLGEs or general stochastic differential equations

with constraints studied by Kohn et al [17] and Lelièvre et al [19]. An essential feature of the model studies in [17] was

the presence of anisotropy energy (while the exchange energy was absent). So far none of the papers, apart from [10]

which treats only one-dimensional domains, on the stochastic LLGEs considered nonzero anisotropy energy. Therefore

there is a need to fill this literature gap and that is what we have achieved in the current work.

The main novelty of the current paper lies in being able to study of LLGEs with energy including the anisotropy

energy. As we have mentioned earlier, both the papers by the first named authour, Goldys and Jegaraj and by Alouges,
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De Bouard and Hocquet, treat purely exchange energy. Our success was possible because we have been able to find

uniform a priori estimates for the appropriately chosen finite dimensional approximations of the full problem. This in

turn was possible because our suitable approximations satisfy equalities (1.9) and (1.9) which lead to equation (1.11),

a similar one to equation (1.8) for the full Stochastic LLGEs equations. It turns out that the a priori estimates derived

from the latter equalities are exactly what is needed in order to prove the existence of a weak martingale solution to

the full Stochastic LLGEs equations.

So the SLLG equation we are going to study in this paper has the form:



































































du(t) =
[

λ1u(t) × (

∆u(t) − ∇φ(u(t)
))

−λ2u(t) ×
(

u(t) × (

∆u(t) − ∇φ(u(t)
))

)]

dt +

N
∑

j=1

(

u(t) × h j

) ◦ dW j(t),

∂u
∂n

∣

∣

∣

Γ
= 0,

u(0) = u0,

(1.6)

where h j ∈ L∞(D;R3) ∩W1,3, for j = 1, · · · ,N and some N ∈ N; see Assumption 2.2.

Let me describe on a heuristic level the idea of the proof. For this let us denote by M the set of all functions

u ∈ H = L2(D;R3) such that u(x) ∈ S2 for a.a. x ∈ D, where S2 is the unit sphere in R3. Since for u ∈ H2(D;R3) ∩ M

the H-orthogonal projection from H to TuM is equal to the map H ∋ z 7→ −u ×
(

u × (

z
)

)

∈ TuM, and ∆u − ∇φ(u) is

equal to −∇HE(u), the −H gradient of the total energy E, the second deterministic term on the RHS of (1.6) is

equal to −λ2∇ME(u), the -gradient of the total energy E with respect to the riemannian structure of M inherited

from H. Similarly, the first deterministic term on the RHS of (1.6) is equal to −λ1u × (−∇ME(u)
)

and in particular

is perpendicular to ∇ME(u). Note also that for each j, M ∋ u 7→ u × h j ∈ TuM, so that the function u × h j could be seen

as a (tangent!) vector field on M. Therefore, the the first equation of the system (1.6) could be written in the following

geometric form

du(t) =
[

λ1u × (∇ME(u)
) − λ2∇ME(u) +

1

2

N
∑

j=1

(

u × h j

) × h j

]

dt +

N
∑

j=1

(

u(t) × h j

)

dW j(t). (1.7)
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Thus, on a purely heuristics level, applying the Itô Lemma, which is a generalisation of a deterministic result from [20]

or [22], to the function E and a solution u to (1.6), or equivalently to (1.7), we get

dE(u(t)) = λ1〈∇ME(u), u × (∇ME(u)
)〉 dt − λ2〈∇ME(u),∇ME(u)〉 dt

+
1

2

N
∑

j=1

〈∇ME(u),
(

u × h j

) × h j〉 dt +

N
∑

j=1

〈∇ME(u), u × h j〉 dW j

+
1

2

N
∑

j=1

〈∇2
ME(u)

(

u × h j

)

, u × h j〉 dt

= −λ2|∇ME(u)|2 dt

+
1

2

N
∑

j=1

〈∇ME(u),
(

u × h j

) × h j〉 dt +

N
∑

j=1

〈∇ME(u), u × h j〉 dW j

+
1

2

N
∑

j=1

〈∇2
ME(u)

(

u × h j

)

, u × h j〉 dt (1.8)

The above equality could naturally lead to a priori estimates but two problems. Firstly, we do not have a solution

and secondly, even if we had it, it might not be strong or regular enough for the applicability of the Itô Lemma. A

standard procedure is to approximate the full equation by some simpler problems. In the paper [9] we used Galerkin

approximation, in a series of works with Banas, Prohl and Neklyudov culminating in a monograph [7], we used the

finite element approximation. Here We follow the same method as used in Brzeźniak, Goldys and Jegaraj’s paper

[9] but with one important addition. We introduce, as in [9], finite dimensional subspaces Hn of the Hilbert space H.

However, contrary to the finite element approximation used in [7], the set Mn = M ∩ H is usually empty and an analog

of equation (1.7) doesn’t make sense. However, if En is the energy function E restricted to Hn, the gradient ∇Hn
En(un)

makes sense and, by the properties of the vector product, if πn : H→ Hn is the orthogonal projection, then

〈

πn

[

un ×
(

un ×
(∇Hn
En(un)

))]

,∇Hn
En(un)

〉

Hn

=
〈

[

un ×
(

un ×
(∇Hn
En(un)

))]

,∇Hn
En(un)

〉

H
(1.9)

=

∫

D

〈

un(x) × [

un(x) × (∇Hn
En(un)(x)

)]

,∇Hn
En(un)(x)

〉

R3
dx

= −
∫

D

∣

∣

∣un(x) × (∇Hn
En(un)(x)

)

∣

∣

∣

2

R3 dx = −
∣

∣

∣un ×
(∇Hn
En(un)

)

∣

∣

∣

2

H

and

〈

πn

(

un ×
(∇Hn
En(un)

))

,∇Hn
En(un)

〉

Hn

=
〈

(

un ×
(∇Hn
En(un)

))

,∇Hn
En(un)

〉

H
(1.10)

=

∫

D

〈

un(x) × (∇Hn
En(un)(x)

)

,∇Hn
En(un)(x)

〉

R3
dx =

∫

D

0 dx = 0.
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The above two equalities suggest the the correct finite dimensional approximation of equation (1.6), or (1.7), is an

equation in the spirit of the former one, i.e.

dun(t) =
[

λ1πn

[

un ×
(

un ×
(∇Hn
En(un)

))] − λ2πn

(

un ×
(∇Hn
En(un)

)

(1.11)

+
1

2

N
∑

j=1

πn

(

(

πn(un × h j)
) × h j

)]

dt +

N
∑

j=1

πn

(

un(t) × h j

)

dW j.

Equation (1.11) is nothing else but equation (3.5) or (3.11). Now, the above problem is a Stochastic Differential

Equation in a finite dimensional space Hn and hence it has a unique local maximal solution un. Applying the, now

correct, Itô lemma to process un and the function En we get an analog of identity

dEn(un(t)) + λ2|∇Hn
En(un)|2 dt

=
1

2

N
∑

j=1

〈∇Hn
E(un), πn

(

(

πn(un × h j)
) × h j

)

〉 dt +

N
∑

j=1

〈∇Hn
En(un), πn

(

un × h j

)〉 dW j

+
1

2

N
∑

j=1

〈∇2
Hn
En(un)

(

πn

(

un × h j

))

, πn

(

un × h j

)〉 dt (1.12)

As a byproduct of out method, we prove that the solutions to the finite-dimensional stochastic Landau-Lifshitz-

Gilbert equations (1.11) converge, after taking a subsequence and modulo a change of probability space, to a solution

of the full (infinite-dimensional) stochastic Landau-Lifshitz-Gilbert equations (1.6).

In particular, our results give an alternative proof of the existence result from Brzeźniak, Goldys and Jegaraj’s

paper [10], where large deviations principle for stochastic LLG equation on a 1-dimensional domain has been studied.

Our method of using the tightness criteria, the Skorokhod Theorem and the construction of the Wiener process is

related but different from those applied to related problems in [11] and [12].

This paper is organized as follows. In Section 2 we introduce the notations and formulate the main result, i.e.

Theorem 2.6, on the existence of the weak solution of the Equation (1.6) as well as some regularities. In Section 3 we

introduce the finite dimensional approximation and prove the existence of the global solutions {un} of the approximate

equation of (1.6). In our main technical Section 4 we prove that our solutions to the approximate equations satisfy

some a priori estimates. In Section 5 we state that the a priori estimates from the previous section are sufficient to

prove that the laws of the solutions {un} are tight on a suitable path space. The proof of this claim is omitted since it

only a relatively simple modification of the proof of a corresponding result from [9].

In Section 6 we use the tightness results and the Skorohod’s Theorem to construct a new probability space and

some processes {u′n} with the same laws as {un} such that {u′n} converges a.s to a limit process u′. In Section 7 we show

that the path space from section Section 5 is small enough so that the process u′ is a weak solution to equation (1.6).

In Section 8 we prove u′ takes values in the sphere S2 and so conclude the proof of Theorem 2.6.

Let us finish the introduction by remarking that all our results are formulated for D ⊂ Rd, d = 3, but they are also

valid for d = 1 or d = 2.



6

Remark. This paper is from a part of the Ph.D. thesis at the University of York in UK of the second named author .
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2 Notation and the formulation of the main result

Notation 2.1. Let us denote the classical spaces:

L
p := Lp(D;R3) or Lp(D;R3×3),

W
k,p := Wk,p(D;R3), Hk := Hk(D;R3) = Wk,2(D;R3), and V :=W1,2.

The dual brackets between a space X and its dual X∗ will be denoted X∗〈·, ·〉X . A scalar product in a Hilbert space H

will be denoted 〈·, ·〉H and its associated norm ‖ · ‖H .

Assumption 2.2. Let D be an open and bounded domain in R3 with C2 boundary Γ := ∂D. n is the outward normal

vector on Γ. λ1 ∈ R, λ2 > 0, h j ∈ L∞ ∩W1,3, for j = 1, . . . ,N. φ : R3 → R+ ∪ {0} is in C4 and φ, ∇φ, φ′′ and φ(3) are

bounded. ∇φ is also globally Lipschitz.

Assumption 2.3. We assume that (Ω,F ,F = (Ft)t≥0,P) a filtered probability space satisfying the so called usual

conditions, i.e.

(i) P is complete on (Ω,F ),

(ii) for each t ≥ 0, Ft contains all (F ,P)-null sets,

(iii) the filtration (Ft)t≥0 is right-continuous,

and that (W(t))t≥0 =
(

(W j)
N
j=1

(t)
)

t≥0 is a RN-valued, F-Wiener process defined on (Ω,F ,F,P).

In this paper we are going to study the following equation,















































du(t) =
[

λ1u(t) × (

∆u(t) − ∇φ(u(t)
))

−λ2u(t) ×
(

u(t) × (

∆u(t) − ∇φ(u(t)
))

)]

dt +

N
∑

j=1

(

u(t) × h j

) ◦ dW j(t), t ≥ 0,

∂u
∂n

∣

∣

∣

Γ
= 0, u(0) = u0.

(2.1)

Remark 2.4. Since the function φ : R3 → R is of C4 class, it’s Fréchet derivative dxφ : R3 → R, at x ∈ R3, can be

identified with a vector ∇φ(x) ∈ R3 such that

〈∇φ(x), y〉R3 = dxφ(y), y ∈ R3.
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Definition 2.5. A weak solution of (2.1), with u0 ∈ V, is system consisting of a filtered probability space

(Ω′,F ′,F′,P′), an N-dimensional F′-Wiener process W ′ = (W ′
j
)N

j=1
and an F′-progressively measurable process

u′ = (u′i)
3
i=1 : Ω′ × [0,T ]→ V ∩ L∞

such that for all ψ ∈ C∞
0

(D;R3), t ∈ [0,T ], we have, P′-a.s.,

〈u′(t), ψ〉L2 = 〈u0, ψ〉L2 − λ1

∫ t

0

〈∇u′(s),∇ψ × u′(s)〉L2 ds

+ λ1

∫ t

0

〈u′(s) × ∇φ(u′(s)), ψ〉L2 ds

− λ2

∫ t

0

〈∇u′(s),∇(u′ × ψ)(s) × u′(s)〉L2 ds (2.2)

+ λ2

∫ t

0

〈u′(s) × (u′(s) × ∇φ(u′(s)), ψ〉L2 ds

+

N
∑

j=1

∫ t

0

〈u′(s) × h j, ψ〉L2 ◦ dW ′j(s).

Next we will formulate the main result of this paper:

Theorem 2.6. Under the assumptions listed in Assumption 2.2, for every u0 ∈ V, there exits a a weak solution

(Ω′,F ′,F′,P′),W ′ = (W ′j)
N
j=1, u

′ = (u′i)
3
i=1

of (2.1) such that

E

∫ T

0

∥

∥

∥u′(t) × ∆u′(t) − u′(t) × ∇φ(u′(t))
∥

∥

∥

2

L2 dt < ∞ (2.3)

u′(t) = u0 + λ1

∫ t

0

(

u′ × ∆u′ − u′ × ∇φ(u′)
)

(s) ds

−λ2

∫ t

0

u′(s) × (

u′ × ∆u′ − u′ × ∇φ(u′)
)

(s) ds

+

N
∑

j=1

∫ t

0

(u′(s) × h j) ◦ dW ′j(s);

for every t ∈ [0,T ], in L2(Ω′;L2), and

|u′(t, x)|R3 = 1, for Lebesgue a.e. (t, x) ∈ [0,T ] × D and P′ − a.s.. (2.4)

u′ ∈ Cα([0,T ];L2), P
′ − a.s., for every α ∈ (0,

1

2
). (2.5)

Remark 2.7. The notation u′ × ∆u′ used in Theorem 2.6 will be defined in the Notation 6.11.

The notation u′ × (u′ × ∆u′) used in Theorem 2.6 will be defined in the Notation 6.12.
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Remark 2.8. Our results are for the Laplace operator with Neumann boundary conditions. Without any difficult work

one could prove the same result for the Laplace operator on a compact manifold without boundary. In particular, for

Laplace operator with periodic boundary condition.

3 Galerkin approximation

Let A be the −Laplace operator in D acting on R3-valued functions with the Neumann boundary condition, i.e.

D(A) =

{

u ∈ H2 :
∂u

∂n

∣

∣

∣

∣

∂D
= 0

}

⊂ L2, Au = −∆u, u ∈ D(A).

Sine A is self-adjoint, by ([13, Thm 1, p. 335]), there exists an orthonormal basis {ek}∞k=1
of L2, consisting of

eigenvectors of A, such that ek ∈ C∞(D̄) for all k = 1, 2, . . . ,. We set Hn = linspan{e1, e2, . . . , en} and by πn denote

the orthogonal projection from L2 to Hn. Put A1 := I + A. Then V = D(A
1
2

1
) = D(A

1
2 ) and ‖u‖V = ‖A

1
2

1
u‖L2 for u ∈ V.

The following definition and proposition relate to the fractional powers of A1 and will be frequently used later.

Definition 3.1. For any nonnegative real number β we define the Hilbert space Xβ := D(A
β

1
), which is the domain of

the fractional power operator A
β

1
. The dual of Xβ is denoted by X−β, see [9].

Proposition 3.2. We have, see [23, 4.3.3],

Xγ = D(A
γ

1
) =























{

u ∈ H2γ : ∂u
∂n

∣

∣

∣

∣

∂D
= 0

}

, if 2γ > 3
2
,

H
2γ, if 2γ < 3

2
.

Proposition 3.3. If u ∈ D(A), v ∈ V then

〈Au, v〉L2 =

∫

D

〈∇u(x),∇v(x)〉R3×3 dx,

∫

D

〈u(x) × Au(x), Au(x)〉R3 dx = 0, (3.1)

∫

D

〈u(x) × (u(x) × Au(x)), Au(x)〉R3 dx = −
∫

D

|u(x) × Au(x)|2 dx, (3.2)

∫

D

〈u(x) × Au(x), v(x)〉R3 dx =

3
∑

i=1

∫

D

〈

∂u

∂xi

(x),
∂v

∂xi

(x) × u(x)

〉

R3

dx, (3.3)

∫

D

〈u(x) × (u(x) × Au(x)), v(x)〉R3 dx =

3
∑

i=1

∫

D

〈

∂u

∂xi

(x),
∂(v × u)

∂xi

(x) × u(x)

〉

R3

dx. (3.4)

Proof. [Proof of (3.3) and (3.4)] The equality (3.3) follows from [9]. Since 〈u × (u × Au), v〉 = 〈u × Au, v × u〉

and v × u ∈ V, (3.4) follows from (3.3).
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We consider the following equation in Hn (Hn ⊂ D(A)) with all the assumptions in Assumptions 2.2 and 2.3, see

the Introduction for the motivation of the system.























































dun(t) = −πn

{

λ1un(t) ×
[

Aun(t) + πn

(∇φ(un(t)
))

]

−λ2un(t) ×
(

un(t) ×
[

Aun(t) + πn

(∇φ(un(t)
))

])}

dt

+
∑N

j=1 πn

[

un(t) × h j

]

◦ dW j(t), t ≥ 0,

un(0) = πnu0.

(3.5)

Let us define the following maps:

F1
n : Hn ∋ u 7−→ −πn(u × Au) ∈ Hn, (3.6)

F2
n : Hn ∋ u 7−→ −πn

(

u × (u × Au)
) ∈ Hn, (3.7)

F3
n : Hn ∋ u 7−→ −πn (u × πn(∇φ(u))) ∈ Hn, (3.8)

F4
n : Hn ∋ u 7−→ −πn

(

u × (u × πn(∇φ(u)))
)

∈ Hn, (3.9)

G jn : Hn ∋ u 7−→ πn(u × h j) ∈ Hn, j = 1, . . . ,N. (3.10)

Since the restriction An of A to Hn is linear and bounded operator in Hn, and since Hn ⊂ D(A) ⊂ L∞, we infer that

G jn and F1
n , F

2
n , F

3
n , F

4
n are well defined maps from Hn to Hn.

The problem (3.5) can be written in a compact way, see also (3.13),







































dun(t) = λ1

(

F1
n

(

un(t)
)

+ F3
n

(

un(t)
)

)

dt − λ2

(

F2
n

(

un(t)
)

+ F4
n

(

un(t)
)

)

dt

+ 1
2

∑N
j=1 G2

jn

(

un(t)
)

dt +
∑N

j=1 G jn

(

un(t)
)

dW j(t),

un(0) = πnu0.

(3.11)

Remark 3.4. In the Equations (2.1) and (3.5), we use the Stratonovich differential and in the Equation (3.11) we use

the Itô differential. The following equality relates the two differentials: for a smooth map G : L2 → L2,

(Gu) ◦ dW(t) =
1

2
G′(u)[G(u)] dt +G(u) dW(t), u ∈ L2.

Remark 3.5. As in equation (1.3), we also have

−∇Hn
En(un) = Aun + πn∇φ(un),

so with the projection “πn”s in equation (3.5), our approximation keeps as much as possible the structure of equation

(2.1), and consequently we will get the a priori estimates.

In order to establish solvability of Equation (3.11) we have the following result whose proof is omitted.
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Lemma 3.6. The maps F i
n, i = 1, 2, 3, 4 are Lipschitz on balls, that is, for every R > 0 there exists a constant

C = C(n,R) > 0 such that whenever x, y ∈ Hn and ‖x‖L2 ≤ R, ‖y‖L2 ≤ R, we have

∥

∥

∥F i
n(x) − F i

n(y)
∥

∥

∥

L2 ≤ C‖x − y‖L2 .

The map G jn is linear, G∗
jn
= −G jn and

‖G jnu‖Hn
≤ ‖u‖L2‖h j‖L∞ , u ∈ Hn. (3.12)

Moreover for i = 1, 2, 3, 4 and u ∈ Hn, we have

〈

F i
n(u), u

〉

L2
= 0.

Corollary 3.7. [2] The Equation (3.5) has a unique global solution un : [0,T ]→ Hn.

Proof. By Lemma 3.6, the coefficients F i
n, i = 1, 2, 3, 4 and G jn are locally Lipschitz and of one sided linear

growth. Hence, see e.g. [2], the Equation (3.5) has a unique global solution un : [0,∞)→ Hn.

Let us define functions Fn and F̂n : Hn → Hn by

Fn = λ1(F1
n + F3

n) − λ2(F2
n + F4

n), and F̂n = Fn +
1

2

N
∑

j=1

G2
jn.

Then the problem (3.5) (or (3.11)) can be written in the following compact way

dun(t) = F̂n

(

un(t)
)

dt +

N
∑

j=1

G jn

(

un(t)
)

dW j(t). (3.13)

4 A priori estimates

In this section we will get some properties of the solution un of Equation (3.5) especially some a priori estimates.

Theorem 4.1. Assume that n ∈ N. Then for every t ∈ [0,∞),

‖un(t)‖L2 = ‖un(0)‖L2 , a.s.. (4.1)
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Proof. Let us consider a C∞ function ψ : Hn ∋ u 7→ 1
2
‖u‖2

H
∈ R. Since ψ′(u)(g) = 〈u, g〉L2 and ψ′′(u)(g, k) =

〈k, g〉L2 , by the Itô Lemma and Lemma 3.6, we get

1

2
d‖un(t)‖2H =

















〈

un(t), F̂n

(

un(t)
)

〉

L2
+

1

2

N
∑

j=1

〈

G jn

(

un(t)
)

,G jn

(

un(t)
)

〉

L2

















dt

+

N
∑

j=1

〈

un(t),G jn

(

un(t)
)

〉

L2
dW j(t)

=
1

2

N
∑

j=1

















〈

un(t),G2
jn

(

un(t)
)

〉

L2
+

N
∑

j=1

∥

∥

∥G jn

(

un(t)
)

∥

∥

∥

2

L2

















dt + 0 dW j(t) = 0

Hence the result follows.

Lemma 4.2. Let us define a function Φ : Hn → R by

Φ(u) :=
1

2

∫

D

‖∇u(x)‖2 dx +

∫

D

φ
(

u(x)
)

dx, u ∈ Hn. (4.2)

Then Φ ∈ C2(Hn) and for u, g, k ∈ Hn,

duΦ(g) = Φ′(u)(g) = 〈∇u,∇g〉L2 +

∫

D

〈∇φ(u(x)
)

, g(x)〉R3 dx (4.3)

= 〈Au, g〉L2 +

∫

D

〈∇φ(u(x)
)

, g(x)〉R3 dx,

Φ′′(u)(g, k) = 〈∇g,∇k〉L2 +

∫

D

φ′′
(

u(x)
)(

g(x), k(x)
)

dx. (4.4)

Proposition 4.3. There exist constants a, b, a1, b1 > 0 such that for all n ∈ N,

∥

∥

∥∇G jnu
∥

∥

∥

2

L2 ≤ a
∥

∥

∥∇u
∥

∥

∥

2

L2 + b, u ∈ Hn, (4.5)

and
∥

∥

∥∇G2
jnu

∥

∥

∥

2

L2 ≤ a1

∥

∥

∥∇u
∥

∥

∥

2

L2 + b1, u ∈ Hn. (4.6)

Proof. Since estimate (4.6) follows from a double application of (4.5) it is sufficient to prove the latter. Since A1

is self-adjoint and A1 ≥ A, we have

∥

∥

∥∇G jnu
∥

∥

∥

2

L2 =
(

AG jn(u),G jn(u)
)

L2
≤ (A1G jn(u),G jn(u))L2

=

∥

∥

∥

∥

∥

A
1
2

1
πn(u × h j)

∥

∥

∥

∥

∥

2

L2

=

∥

∥

∥

∥

∥

πnA
1
2

1
(u × h j)

∥

∥

∥

∥

∥

2

L2

≤
∥

∥

∥

∥

∥

A
1
2

1
(u × h j)

∥

∥

∥

∥

∥

2

L2

=
∥

∥

∥(u × h j)
∥

∥

∥

2

V
≤ N

(

‖u × h j‖2L2 + ‖∇(u × h j)‖2L2

)

≤
[

‖h j‖2L∞
(

‖u‖2
L2 + 2‖∇u‖2

L2

)

+ 2‖∇h j‖2L3‖u‖2L6

]

.
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Next, since L6 ֒→ V, by equality (4.1) we infer that

∥

∥

∥∇G jnu
∥

∥

∥

2

L2 ≤ a
∥

∥

∥∇u
∥

∥

∥

2

L2 + b,

for some constants a and b which only depend on ‖h j‖L∞ , ‖∇h j‖L3 and ‖u0‖L2 , but not on n.

Remark 4.4. The previous results will be used to prove the following fundamental a priori estimates on the sequence

{un} of the solution of Equation (3.5).

Theorem 4.5. Assume that p ≥ 1, β > 1
4

and T > 0. Then there exists a constant C > 0, such that for all n ∈ N,

E sup
r∈[0,t]

{

∥

∥

∥∇un(r)
∥

∥

∥

2

L2 +

∫

D

φ
(

un(r, x)
)

dx

}p

≤ C, t ∈ [0,T ], (4.7)

E

[(∫ T

0

∥

∥

∥un(t) × (

∆un(t) − πn∇φ
(

un(t)
))

∥

∥

∥

2

L2 dt

)p]

≤ C, (4.8)

E

[(∫ T

0

∥

∥

∥un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) )

∥

∥

∥

2

L
3
2 (D)

dt

)p]

≤ C, (4.9)

E

∫ T

0

∥

∥

∥πn

(

un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) ))

∥

∥

∥

2

X−β
dt ≤ C. (4.10)

Proof. [Proof of (4.7) and (4.8)] By the Itô Lemma applied to the function Φ defined in (4.2) we get

Φ
(

un(t)
) −Φ(

un(0)
)

=

N
∑

j=1

∫ t

0

Φ′
(

un(s)
)

G jn

(

un(s)
)

dW j(s)

+

∫ t

0

















Φ′
(

un(s)
)

F̂n

(

un(s)
)

+
1

2

N
∑

j=1

Φ′′
(

un(s)
)

G jn

(

un(s)
)2

















ds, t ∈ [0,T ]. (4.11)

Since

Φ′
(

u
)

F̂n

(

u
)

= − λ2

∥

∥

∥u × (

∆u − πn(∇φ(u)
)

∥

∥

∥

2

L2

− 1

2

N
∑

j=1

〈∆u − πn

(∇φ(u)
)

, πn(u × h j) × h j〉L2 (4.12)

Φ′
(

u
)

[G jn

(

u
)

] = −〈∆u, u × h j〉L2 + 〈∇φ(u), πn(u × h j)〉L2 , (4.13)

Φ′′(u)[G jn(u)2] = = ‖∇πn(u × h j)‖2L2 (4.14)

+

∫

D

φ′′
(

u(x)
)(

πn(u × h j)(x), πn(u × h j)(x)
)

dx.
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in view of Equation (4.2), we infer that Equation (4.11) transforms to:

1

2
‖∇un(t)‖2

L2 +
1

2

∫

D

φ(un(t, x)) dx + λ2

∫ t

0

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖2
L2 ds

=
1

2
‖∇un(0)‖2

L2 +
1

2

∫

D

φ(un(0)(x)) dx − 1

2

N
∑

j=1

∫ t

0

〈∆un(s), πn(un(s) × h j) × h j〉L2 ds (4.15)

+
1

2

N
∑

j=1

∫ t

0

〈∇φ(un(s)), πn(un(s) × h j) × h j〉L2 ds +
1

2

N
∑

j=1

∫ t

0

‖∇πn(un(s) × h j)‖2L2 ds

+
1

2

N
∑

j=1

∫ t

0

∫

D

φ′′(un(s)(x))(πn(un(s) × h j)(x), πn(un(s) × h j)(x)) dx ds

−
N

∑

j=1

∫ t

0

〈∆un(s), un(s) × h j〉L2 dW j(s) +

N
∑

j=1

∫ t

0

〈∇φ(un(s), πn(un(s) × h j)〉L2 dW j(s).

Next we will get estimates for some terms on the right hand side of Equation (4.15).

For the first term, we have

‖∇un(0)‖2
L2 = ‖∇πnu0‖2L2 ≤ ‖πnu0‖2V = ‖A

1
2

1
πnu0‖2L2 = ‖πnA

1
2

1
u0‖2L2 ≤ ‖A

1
2

1
u0‖2L2 = ‖u0‖2V. (4.16)

Since φ is bounded, we can find a constant Cφ > 0, such that
∣

∣

∣

∫

D
φ
(

un(0, x)
)

dx
∣

∣

∣ ≤ Cφm(D).

For the third term, by (4.6) and Cauchy-Schwartz inequality, we have

∣

∣

∣〈∆un(s), πn(un(s) × h j) × h j〉L2

∣

∣

∣ =
∣

∣

∣〈∇un(s),∇G2
nun(s)〉L2

∣

∣

∣ (4.17)

≤ ‖∇un(s)‖L2

√

a1‖∇un(s)‖2
L2 + b1 ≤

√
a1‖∇un(s)‖2

L2 +
b1

2
√

a1

.

For the fourth term, by equality (4.1) and Cauchy-Schwartz inequality, we have

〈∇φ(un(s)), πn(un(s) × h j) × h j〉L2 ≤ Cm(D)‖u0‖L2‖h j‖2L∞ . (4.18)

For the fifth term, by (4.5), we have

∥

∥

∥∇πn(un(s) × h j)(s)
∥

∥

∥

2

L2 =
∥

∥

∥∇G jn(un(s))
∥

∥

∥

2

L2 ≤ a‖∇un(s)‖2
L2 + b. (4.19)

For the sixth term, we have

∫

D

∣

∣

∣

∣

φ′′
(

un(s, x)
)

(

πn(un(s) × h j)(x), πn(un(s) × h j)(x)
)

∣

∣

∣

∣

dx

≤ Cφ′′

∫

D

∣

∣

∣πn(un(s) × h j)(x))
∣

∣

∣

2
dx ≤ Cφ′′‖h j‖2L∞‖u0‖2L2 . (4.20)
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Thus, there exists a constant C2 > 0 such that for all n ∈ N, t ∈ [0,T ] and P-almost surely:

‖∇un(t)‖2
L2 +

∫

D

φ
(

un(t, x)
)

dx + 2λ2

∫ t

0

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖2
L2 ds

≤ C2

∫ t

0

‖∇un(s)‖2
L2 ds +C2 + 2

N
∑

j=1

∫ t

0

〈

∇un(s),∇G jn

(

un(s)
)

〉

L2
dW j(s)

+

N
∑

j=1

∫ t

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉

L2
dW j(s). (4.21)

Let us now fix p ≥ 1. Then by Hölder the Burkholder-Davis-Gundy inequality, there exists constant Ci,K > 0

such that for all n ∈ N,

E sup
r∈[0,t]

{

‖∇un(r)‖2
L2 +

∫

D

φ
(

un(r, x)
)

dx + 2λ2

∫ r

0

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖2
L2 ds

}p

≤ 4p−1C
p

2
tp−1
E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+4p−12E sup
r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇un(s),∇G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

+4p−1
E sup

r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

+ 4p−1C
p

2
.

E sup
r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇un(s),∇G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ KE

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ t

0

〈

∇un(s),∇G jn

(

un(s)
)

〉2

L2
ds

∣

∣

∣

∣

∣

∣

∣

∣

p

2

,

E sup
r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ KE

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ t

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉2

L2
ds

∣

∣

∣

∣

∣

∣

∣

∣

p

2

.

By the inequality (4.5) we get, for any ε > 0,

E

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ t

0

〈

∇un(s),∇G jn

(

un(s)
)

〉2

L2
ds

∣

∣

∣

∣

∣

∣

∣

∣

p

2

≤ E





















sup
r∈[0,t]

‖∇un(r)‖p
L2

















N
∑

j=1

∫ t

0

‖∇G jn(un(s))‖2
L2 ds

















p

2





















≤ E

















ε sup
r∈[0,t]

‖∇un(r)‖2p

L2 +
4

ε

















N
∑

j=1

∫ t

0

‖∇G jn(un(s))‖2
L2 ds

















p














≤ εE

(

sup
r∈[0,t]

‖∇un(r)‖2p

L2

)

+
4

ε
(2t)p−1apN p

E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+
4

ε
2p−1(bt)pN p.
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E

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ t

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉2

L2
ds

∣

∣

∣

∣

∣

∣

∣

∣

p

2

≤ E





















sup
r∈[0,t]

‖∇φ(un(r))‖p
L2

















N
∑

j=1

∫ t

0

‖∇G jn(un(s))‖2
L2 ds

















p

2





















≤ ε [Cm(D)]2p +
4

ε
(2t)p−1apN p

E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+
4

ε
2p−1(bt)pN p.

Hence we infer that for t ∈ [0,T ],

E sup
r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇un(s),∇G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ KεE

(

sup
r∈[0,t]

‖∇un(r)‖2p

L2

)

+
4K

ε
(2t)p−1apN p

E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+
4K

ε
2p−1(bt)pN p, (4.22)

E sup
r∈[0,t]

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

∫ r

0

〈

∇φ(un(s)
)

,G jn

(

un(s)
)

〉

L2
dWs

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ Kε [Cm(D)]2p +
4K

ε
(2t)p−1apN p

E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+
4K

ε
2p−1(bt)pN p. (4.23)

Hence, for every t ∈ [0,T ], we have

E sup
r∈[0,t]

{

‖∇un(r)‖2
L2 +

∫

D

φ
(

un(r, x)
)

dx + 2λ2

∫ r

0

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖2
L2 ds

}p

≤ 4p−1C
p

2
tp−1
E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+ 4p−1KεE

(

sup
r∈[0,t]

‖∇un(r)‖2p

L2

)

+ 4p−1Kε [Cm(D)]2p

+
8K

ε
(8t)p−1apN p

E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+
K

ε
8p(bt)pN p

By setting ε = 1
2K4p−1 , we can find constants C3 and C4 which do not depend on n such that

E sup
r∈[0,t]

{

‖∇un(r)‖2
L2 +

∫

D

φ
(

un(r, x)
)

dx

+2λ2

∫ r

0

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖2
L2 ds

}p

= C3E

(∫ t

0

‖∇un(s)‖2p

L2 ds

)

+C4. (4.24)

Thus by inequality (4.24), we have

ψn(t) ≤ C3

∫ t

0

ψn(s) ds +C4, t ∈ [0,T ], (4.25)
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where, for t ∈ [0,T ], we put

ψn(t) = E sup
s∈[0,t]

{

∥

∥

∥∇un(s)
∥

∥

∥

2

L2 +

∫

D

φ
(

un(s, x)
)

dx

+2λ2

∫ s

0

‖un(τ) × (∆un(r) − πn∇φ(un(r)))‖2
L2 dr

}p

.

Observe that ψn is a bounded Borel function. Indeed, for s in[0,T ] we have ‖∇un(s)‖L2 ≤ ‖un(s)‖V ≤ Cn‖un(s)‖L2 ≤

Cn‖u0‖L2 and ‖un(s)‖L∞ ≤ Cn‖un(s)‖L2 ≤ Cn‖u0‖L2 , where Cn is a constant depending on n, so that

‖un(s) × (∆un(s) − πn∇φ(un(s)))‖Hn
Cn‖u0‖L2

(

Cn‖u0‖L2 +Cm(D)
1
2

)

.

Therefore by the Gronwall inequality, we infer that

E sup
r∈[0,t]

{

∥

∥

∥∇un(r)
∥

∥

∥

2

L2 +

∫

D

φ
(

un(r, x)
)

dx + 2λ2

∫ r

0

‖un(τ) × (∆un(τ) − πn∇φ(un(τ)))‖2
L2 dτ

}p

≤ CT ,

for some CT > 0, and all t ∈ [0,T ]. This completes the proof of inequalities (4.7) and (4.8).

Proof. [Proof of (4.9)] By the the Sobolev imbedding theorem, see e.g. [1], V ֒→ L6, we can find a constant c > 0

such that

∥

∥

∥un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) )

∥

∥

∥

L
3
2
≤ c

∥

∥

∥un(t)
∥

∥

∥

V

∥

∥

∥un(t) × (

∆un(t) − πn∇φ
(

un(t)
))

∥

∥

∥

L2 .

Therefore, by (4.1), (4.7) and (4.8), we get

E

[(∫ T

0

∥

∥

∥un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) )

∥

∥

∥

2

L
3
2

dt

)p]

≤ c

(

E

[

sup
r∈[0,T ]

∥

∥

∥un(r)
∥

∥

∥

4p

V

])
1
2















E















(∫ T

0

∥

∥

∥un(t) × (

∆un(t) − πn∇φ
(

un(t)
))

∥

∥

∥

2

L2 dt

)2p


























1
2

≤ C,

Note that C is independent of n. This completes the proof of (4.9).

Proof. [Proof of (4.10)] Since β > 1
4

we infer, by the Sobolev imbedding theorem, that Xβ ֒→ H2β(D) and

H
2β(D) ֒→ L3 continuously. Thus L

3
2 (D) ֒→ X−β continuously. And since for ξ ∈ L2,

‖πnξ‖X−β = sup
‖ϕ‖

Xβ
≤1

|X−β〈πnξ, ϕ〉Xβ | = sup
‖ϕ‖

Xβ
≤1

|〈πnξ, ϕ〉L2 |

= sup
‖ϕ‖

Xβ
≤1

|〈ξ, πnϕ〉L2 | ≤ sup
‖πnϕ‖Xβ≤1

|X−β〈ξ, πnϕ〉Xβ | = ‖ξ‖X−β .
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Thus there exists some constant c > 0 such that

E

∫ T

0

∥

∥

∥πn

(

un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) ))

∥

∥

∥

2

X−β
dt

≤ cE

∫ T

0

∥

∥

∥un(t) × (

un(t) × (

∆un(t) − πn∇φ
(

un(t)
)) )

∥

∥

∥

2

L
3
2

dt.

Hence (4.10) follows from (4.9).

Proposition 4.6. Let un, for n ∈ N, be the solution of equation (3.5) and assume that α ∈ (0, 1
2
), β > 1

4
, p ≥ 2. Then the

following estimates holds:

sup
n∈N
E
(‖un‖2Wα,p(0,T ;X−β)

)

< ∞. (4.26)

We need the following Lemma to prove (4.26).

Lemma 4.7 ([14], Lem 2.1). Assume that E is a separable Hilbert space, p ∈ [2,∞) and a ∈ (0, 1
2
). Then there exists

a constant C depending on T and a, such that for any progressively measurable process ξ = (ξ j)
∞
j=1

, if I(ξ j) is defined

by I(ξ) :=
∑∞

j=1

∫ t

0
ξ j(s) dW j(s), t ≥ 0, then

E ‖I(ξ)‖p
Wa,p(0,T ;E)

≤ CE

∫ T

0

















∞
∑

j=1

|ξ j(r)|2E

















p

2

dt,

In particular, P-a.s. the trajectories of the process I(ξ j) belong to Wa,2(0,T ; E).

Proof. [Proof of (4.26)] Let us fix α ∈ (0, 1
2
), β > 1

4
, p ≥ 2. By equation (3.11), we get

un(t) = u0,n + λ1

∫ t

0

(

F1
n

(

un(s)
)

+ F3
n

(

un(s)
)

)

ds − λ2

∫ t

0

(

F2
n

(

un(s)
)

+ F4
n

(

un(s)
)

)

ds

+
1

2

N
∑

j=1

∫ t

0

G2
jn

(

un(s)
)

ds +

N
∑

j=1

∫ t

0

G jn

(

un(s)
)

dW(s) =: u0,n +

4
∑

i=1

ui
n(t), t ∈ [0,T ].

By Theorem 4.5, equality (4.1), inequality (3.12) and Lemma 4.7 there exists C > 0 such that for all n ∈ N,

E

[

‖u1
n‖2W1,2(0,T ;L2)

]

≤ C, E
[

‖u2
n‖2W1,2(0,T ;X−β)

]

≤ C,

‖u3
n‖2W1,2(0,T ;L2)

≤ C, P − a.s..

E

[

sup
t∈[0,T ]

‖un(t)‖p
L2

]

= E
[

‖un(0)‖p
L2

]

≤ C.

E

[

‖u4
n‖

p

Wα,p(0,T ;X−β)

]

≤ C.

Therefore since H1(0,T ; X−β) ֒→ Wα,p(0,T ; X−β) continuously, we get inequality (4.26).
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5 Tightness of the laws of approximating sequence

In this subsection we will state a result on the tightness, on a suitable path space, the laws {L(un) : n ∈ N}. The

proof of this result is based the a priori estimates (4.1)-(4.10). The proof of this result is omitted since it only a

relatively simple modification of the proof of a corresponding result from [9].

Lemma 5.1. If p ≥ 2, q ∈ [2, 6) and β > 1
4
, then the measures {L(un) : n ∈ N} on Lp(0,T ;Lq(D)) ∩C([0,T ]; X−β) are

tight.

6 Construction of new Probability Space and Processes

In this section we will use the Skorohod Theorem to obtain another probability space and an almost surely

convergent sequence defined on this space whose limit is a weak martingale solution of equation (2.1).

By Lemma 5.1 and the Prokhorov Theorem, we have the following property.

Proposition 6.1. Let us assume that W is a N-dimensional Wiener process and p ∈ [2,∞), q ∈ [2, 6) and β > 1
4
. Then

there is a subsequence of {un} which we will denote it in the same way as the full sequence, such that the laws L(un,W)

converge weakly to a certain probability measure µ on Lp(0,T ;Lq(D)) ∩C([0,T ]; X−β) ×C([0,T ];RN).

Now by the the Skorohod Theorem we have:

Proposition 6.2. Let µ be the measure from Proposition 6.1. There exist a probability space (Ω′,F ′,P′), and

(on this space) sequence (u′n,W
′
n) of [L4(0,T ;L4) ∩C([0,T ]; X−β)] ×C([0,T ];RN)-valued random variables and an

L4(0,T ;L4) ∩C([0,T ]; X−β)] ×C([0,T ];RN)-valued random variable (u′,W ′) such that such that, on [L4(0,T ;L4) ∩

C([0,T ]; X−β)] ×C([0,T ];RN),

(a) L(un,W) = L(u′n,W
′
n), n ∈ N,

(b) L(u′,W ′) = µ,

and, P′-a.s., (c)
(

u′n,W
′
n

)→ (

u′,W ′
)

in [L4(0,T ;L4) ∩C([0,T ]; X−β)] ×C([0,T ];RN).

Notation 6.3. Let us denote by F′ the filtration generated by processes u′ and W ′ on the probability space (Ω′,F ′,P′).

From now on we will prove that u′ is the weak solution of equation (2.1). And we begin with showing that {u′n}

satisfies the same a priori estimates as the original sequence {un}. By the Kuratowski Theorem, we have

Proposition 6.4. The Borel subsets of C([0,T ]; Hn) are Borel subsets of L4(0,T ;L4) ∩C([0,T ]; X−
1
2 ).

So we have the following two results.

Corollary 6.5. u′n takes values in Hn and the laws on C([0,T ]; Hn) of un and u′n are equal.

Lemma 6.6. The sequence {u′n} introduced in Proposition 6.2 satisfies the following estimates:

sup
t∈[0,T ]

∥

∥

∥u′n(t)
∥

∥

∥

L2 ≤
∥

∥

∥u0

∥

∥

∥

L2 , P
′ − a.s., (6.1)
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sup
n∈N
E
′
[

sup
t∈[0,T ]

∥

∥

∥u′n(t)
∥

∥

∥

2r

V

]

< ∞, ∀r ≥ 1, (6.2)

sup
n∈N
E
′
[(∫ T

0

‖u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
)) ‖2
L2 dt

)r]

< ∞, ∀r ≥ 1, (6.3)

sup
n∈N
E
′
∫ T

0

∥

∥

∥u′n(t) × (

u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
)) )

∥

∥

∥

2

L
3
2

dt < ∞, (6.4)

sup
n∈N
E
′
∫ T

0

∥

∥

∥πn

[

u′n(t) × (

u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
)) )]

∥

∥

∥

2

X−β
dt < ∞. (6.5)

Now we will study some inequalities satisfied by the limiting process u′.

Proposition 6.7. Let u′ be the process which is defined in Proposition 6.2. Then we have

ess sup
t∈[0,T ]

‖u′(t)‖L2 ≤ ‖u0‖L2 , P
′ − a.s. (6.6)

sup
t∈[0,T ]

‖u′(t)‖X−β ≤ c‖u0‖L2 , P
′ − a.s. (6.7)

Proof. First we will prove inequality (6.6). Since u′n converges to u′ in L4(0,T ;L4) ∩C([0,T ]; X−β) P′ a.s. and

L
4 ֒→ L2, we infer that P′ a.s. u′n converges to u′ in L2(0,T ;L2). Therefore by (6.1) we deduce (6.6).

Next we will prove inequality (6.7). Since L2 ֒→ X−β, in view of (6.1), we have

sup
t∈[0,T ]

‖u′n(t)‖X−β ≤ c sup
t∈[0,T ]

‖u′n(t)‖L2 ≤ c‖u0‖L2 , P
′ − a.s.

Since by Proposition 6.2 u′n converges to u′ in C([0,T ]; X−β), we infer that (6.7) holds.

We continue investigating properties of the process u′. The next result and it’s proof are related to the estimate

(6.2).

Proposition 6.8. Let u′ be the process which was defined in Proposition 6.2. Then we have

E
′[ess sup

t∈[0,T ]

‖u′(t)‖2r
V

] < ∞, r ≥ 2. (6.8)

Proof.

Since L2r(Ω′; L∞(0,T ;V)) is isomorphic to
(

L
2r

2r−1 (Ω′; L1(0,T ; X−
1
2 ))

)∗
, by the Banach-Alaoglu Theorem we infer

that the sequence {u′n} contains a subsequence, denoted in the same way as the full sequence, and there exists an element

v ∈ L2r(Ω′; L∞(0,T ;V)) such that u′n → v weakly∗ in L2r(Ω′; L∞(0,T ;V)). In particular, we have

〈u′n, ϕ〉 → 〈v, ϕ〉, ϕ ∈ L
2r

2r−1 (Ω′; (L1(0,T ; X−
1
2 ))).
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This means that
∫

Ω′

∫ T

0

〈u′n(t, ω), ϕ(t, ω)〉 dt dP′(ω)→
∫

Ω′

∫ T

0

〈v(t, ω), φ(t, ω)〉 dt dP′(ω).

On the other hand, if we fix ϕ ∈ L4(Ω′; L
4
3 (0,T ;L

4
3 )), by inequality (6.2) we have (to avoid too long formulations,

we omit some parameters t in the following equations)

sup
n

∫

Ω′

∣

∣

∣

∣

∣

∣

∫ T

0
L4〈u′n(t), ϕ(t)〉

L
4
3

dt

∣

∣

∣

∣

∣

∣

2

dP′(ω) ≤ sup
n

∫

Ω′

∣

∣

∣

∣

∣

∣

∫ T

0

‖u′n‖L4‖ϕ‖
L

4
3

dt

∣

∣

∣

∣

∣

∣

2

dP′(ω)

≤ sup
n

∫

Ω′
‖u′n‖2L∞(0,T ;L4)

‖ϕ‖2
L1(0,T ;L

4
3 )

dP′(ω) ≤ sup
n

‖u′n‖2L4(Ω′;L∞(0,T ;L4))
‖ϕ‖2

L4(Ω′;L1(0,T ;L
4
3 ))
< ∞.

So the sequence
∫ T

0 L4〈u′n(t), ϕ(t)〉
L

4
3

dt is uniformly integrable on Ω′. Moreover, by the P′ almost surely convergence

of u′n to u′ in L4(0,T ;L4), we get P′-a.s.

∣

∣

∣

∣

∣

∣

∫ T

0
L4〈u′n(t), ϕ(t)〉

L
4
3

dt −
∫ T

0
L4〈u′(t), ϕ(t)〉

L
4
3

dt

∣

∣

∣

∣

∣

∣

≤
∫ T

0

∣

∣

∣

∣L4〈u′n(t) − u′(t), ϕ(t)〉
L

4
3

∣

∣

∣

∣

dt ≤ ‖u′n − u′‖L4(0,T ;L4)‖ϕ‖
L

4
3 (0,T ;L

4
3 )
→ 0.

Therefore
∫ T

0 L4〈u′n(t), ϕ(t)〉
L

4
3

dt→
∫ T

0 L4〈u′(t), ϕ(t)〉
L

4
3

dt P′-a.s. and thus, by Vitali Theorem,

∫

Ω′

∫ T

0
L4〈u′n(t, ω), ϕ(t, ω)〉

L
4
3

dt dP′(ω)→
∫

Ω′

∫ T

0
L4〈u′(t, ω), ϕ(t, ω)〉

L
4
3

dt dP′(ω).

Hence we deduce that

∫

Ω′

∫ T

0
L4〈v(t, ω), ϕ(t, ω)〉

L
4
3

dt dP′(ω) =

∫

Ω′

∫ T

0
L4〈u′(t, ω), ϕ(t, ω)〉

L
4
3

dt dP′(ω)

By the density of L4(Ω′; L
4
3 (0,T ;L

4
3 )) in L

2r
2r−1 (Ω′; L1(0,T ; X−

1
2 )), we infer that u′ = v and so by since v satisfies

(6.8) we infer that u′ also satisfies (6.8). The proof is complete.

Now we will strengthen part (ii) of Proposition 6.2 about the convergence of u′n to u′.

Proposition 6.9.

lim
n→∞
E
′
∫ T

0

‖u′n(t) − u′(t)‖4
L4 dt = 0. (6.9)

Proof. Since u′n → u′ in L4(0,T ;L4) ∩C([0,T ]; X−β) P′-a.s., by (6.2) and by (6.8),

sup
n

E
′
(∫ T

0

‖u′n(t) − u′(t)‖4
L4 dt

)2

≤ 27 sup
n

(

‖u′n‖8L4(0,T ;L4)
+ ‖u′‖8

L4(0,T ;L4)

)

< ∞,

we can apply the Vitali Theorem to deduce (6.9). This completes the proof.
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By inequality (6.2), the sequence {u′n}∞n=1
is bounded in L2(Ω′; L2(0,T ;H1)). And since

u′n → u′ in L2(Ω′; L2(0,T ;L2)), we infer that

Diu
′
n → Diu

′ weakly in L2(Ω′; L2(0,T ;L2)), i = 1, 2, 3. (6.10)

Lemma 6.10. There exists a unique Λ ∈ L2(Ω′; L2(0,T ;L2)) such that for every v ∈ L2(Ω′; L2(0,T ;W1,4)),

E
′
∫ T

0

〈Λ(t), v(t)〉L2 dt =

3
∑

i=1

E
′
∫ T

0

〈Diu
′(t), u′(t) × Div(t)〉L2 dt. (6.11)

Proof. We will omit“(t)” in this proof. Let us denote Λn := u′n × Au′n. By the estimate (6.3), there exists a constant

C such that

‖Λn‖L2(Ω′;L2(0,T ;L2)) ≤ C, n ∈ N.

Hence by the Banach-Alaoglu Theorem, there exists Λ ∈ L2(Ω′; L2(0,T ;L2)) such that Λn → Λ weakly in

L2(Ω′; L2(0,T ;L2)).

Let us fix v ∈ L2(Ω′; L2(0,T ;W1,4)). Since u′n(t) ∈ D(A) for almost every t ∈ [0,T ] and P′-almost surely, by the Propo-

sition 3.3 and estimate (6.3) again, we have

E
′
∫ T

0

〈Λn, v〉L2 dt =

3
∑

i=1

E
′
∫ T

0

〈Diu
′
n, u
′
n × Div〉L2 dt.

Moreover, by the results: (6.10), (6.2) and (6.9), we have for i = 1, 2, 3,

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

〈Diu
′, u′ × Div〉L2 dt − E′

∫ T

0

〈Diu
′
n, u
′
n × Div〉L2 dt

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

E
′
∫ T

0

〈Diu
′ − Diu

′
n, u
′ × Div〉L2 dt

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

〈Diu
′
n, (u

′ − u′n) × Div〉L2 dt

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

E
′
∫ T

0

〈Diu
′ − Diu

′
n, u
′ × Div〉L2 dt

∣

∣

∣

∣

∣

∣

+
(

E
′
∫ T

0

‖Diu
′
n‖2L2 dt

)
1
2

×
(

E
′
∫ T

0

‖u′ − u′n‖4L4 dt
)

1
4

(

E
′
∫ T

0

‖Div‖4L4 dt

)

1
4

→ 0.

Therefore we infer that

lim
n→∞
E
′
∫ T

0

〈Λn, v〉L2 dt =

3
∑

i=1

E
′
∫ T

0

〈Diu
′, u′ × Div〉 dt.

Since on the other hand we have proved Λn → Λ weakly in L2(Ω′; L2(0,T ;L2)) equality (6.11) follows.

It remains to prove the uniqueness of Λ, but this follows from the fact that

L2(Ω′; L2(0,T ;W1,4)) is dense in L2(Ω′; L2(0,T ;L2)) and (6.11). This complete the proof of Lemma 6.10.

Notation 6.11. The process Λ introduced in Lemma 6.10 will be denoted by u′ × ∆u′ (as explained in the Appendix).

Note that u′ × ∆u′ is an element of L2(Ω′; L2(0,T ;L2)) such that for all test functions v ∈ L2(Ω′; L2(0,T ;W1,4)) the
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following identity holds

E
′
∫ T

0

〈(u′ × ∆u′)(t), v(t)〉L2 dt =

3
∑

i=1

E
′
∫ T

0

〈Diu
′(t), u′(t) × Div(t)〉L2 dt.

Notation 6.12. Since by the estimate (6.8), u′ ∈ L2(Ω′, L∞(0,T ;V)) and by Notation 6.11, Λ ∈ L2(Ω′; L2(0,T ;L2)),

the process u′ × Λ ∈ L
4
3 (Ω′; L2(0,T ;L

3
2 (D))). And u′ × Λ will be denoted by u′ × (u′ × ∆u′).

Notation 6.13. Λ − u′ × ∇φ(u′) will be denoted by u′ × (

∆u′ − ∇φ(u′)).

Next we will show that the limits of the following three sequences

{

u′n ×
(

∆u′n − πn∇φ
(

u′n
)) }

n,

{

u′n × (u′n ×
(

∆u′n − πn∇φ
(

u′n
))

)
}

n,

{

πn

(

u′n × (u′n ×
(

∆u′n − πn∇φ
(

u′n
))

)
)}

n,

exist and are equal respectively to

u′ × (

∆u′ − ∇φ(u′)) ,

u′ × (u′ × (

∆u′ − ∇φ(u′))),

u′ × (u′ × (

∆u′ − ∇φ(u′))).

By inequalities (6.3)-(6.5), the first sequence is bounded in L2r(Ω′; L2(0,T ;L2)) for r ≥ 1, the second sequence

is bounded in L2(Ω′; L2(0,T ;L
3
2 )) and the third sequence is bounded in L2(Ω′; L2(0,T ; X−β)). And since the Banach

spaces L2r(Ω′; L2(0,T ;L2)), L2(Ω′; L2(0,T ;L
3
2 )) and L2(Ω′; L2(0,T ; X−β)) are all reflexive, by the Banach-Alaoglu

Theorem, there exist subsequences weakly convergent. So we can assume that there exist

Y ∈ L2r(Ω′; L2(0,T ;L2)),

Z ∈ L2(Ω′; L2(0,T ;L
3
2 )),

Z1 ∈ L2(Ω′; L2(0,T ; X−β)),

such that

u′n ×
(

∆u′n − πn∇φ
(

u′n
))→ Y weakly in L2r(Ω′; L2(0,T ;L2)), (6.12)

u′n ×
(

u′n ×
(

∆u′n − πn∇φ
(

u′n
)))→ Z weakly in L2(Ω′; L2(0,T ;L

3
2 )), (6.13)

πn

(

u′n ×
(

u′n ×
(

∆u′n − πn∇φ
(

u′n
))))→ Z1 weakly in L2(Ω′; L2(0,T ; X−β)). (6.14)

Remark. Similar argument has been done in [9] for terms not involving ∇φ. Our main contribution here is to show the
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validity of such an argument for term containing ∇φ (and to be more precise). This works because earlier, see Lemma

6.6, we have been able to prove generalized estimates as in [9].

Proposition 6.14. If Z and Z1 defined as above, then Z = Z1 ∈ L2(Ω′; L2(0,T ; X−β)).

Proof. Since (L
3
2 )∗ = L3, Xβ = H2β and Xβ ⊂ L3 (as β > 1

4
), we infer that L

3
2 ⊂ X−β. Hence

L2(Ω′; L2(0,T ;L
3
2 )) ⊂ L2(Ω′; L2(0,T ; X−β))

and thus Z ∈ L2(Ω′; L2(0,T ; X−β)) and Z1 ∈ L2(Ω′; L2(0,T ; X−β)).

Recall that Xβ = D(A
β

1
) and let X

β

k
= Hk with the norm inherited from Xβ. Then

⋃∞
k=1 X

β

k
is dense Xβ and

thus
⋃∞

k=1 L2(Ω′; L2(0,T ; X
β

k
)) is dense in L2(Ω′; L2(0,T ; Xβ)). Thus it is sufficient to prove that for any ψ ∈

L2(Ω′; L2(0,T ; X
β

k
)),

〈Z1, ψ〉L2(Ω′;L2(0,T ;X−β)) L2(Ω′;L2(0,T ;Xβ))
= 〈Z, ψ〉

L2(Ω′;L2(0,T ;X−β)) L2(Ω′;L2(0,T ;Xβ))
. (6.15)

For this aim let us fix k, n ∈ N and ψ ∈ L2(Ω′; L2(0,T ; X
β

k
)). Then we have

〈πn(u′n × (u′n ×
(

∆u′n − πn∇φ
(

u′n
))

)), ψ〉
L2(Ω′;L2(0,T ;X−β)) L2(Ω′;L2(0,T ;Xβ))

= E
′
∫ T

0

〈πn(u′n(t) × (u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

)), ψ(t)〉X−β Xβ dt

= E
′
∫ T

0

〈πn(u′n(t) × (u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

)), ψ(t)〉
L

2
L

2 dt

= E
′
∫ T

0

〈u′n(t) × (u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

), ψ(t)〉
L

2
L

2 dt

= E
′
∫ T

0

〈u′n(t) × (u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

), ψ(t)〉X−β Xβ dt

= 〈u′n × (u′n ×
(

∆u′n(t) − πn∇φ
(

u′n(t)
))

), ψ〉
L2(Ω′;L2(0,T ;X−β)) L2(Ω′;L2(0,T ;Xβ))

.

Hence by (6.13) and (6.14) we get (6.15) as required and the proof is complete.

Lemma 6.15. For any measurable process ψ ∈ L4(Ω′; L4(0,T ;W1,4)), we have equality

lim
n→∞
E
′
∫ T

0

〈u′n(t) × (

∆u′n − πn∇φ
(

u′n(t)
))

, ψ(t)〉L2 dt = E′
∫ T

0

〈Y(t), ψ(t)〉L2 dt

= E
′
∫ T

0

3
∑

i=1

〈∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉L2 ds − E′
∫ T

0

〈

u′(t) × ∇φ(u′(t)), ψ〉
L2 dt.

Proof. Let us fix ψ ∈ L4(Ω′; L4(0,T ;W1,4)). Firstly, we will prove that

lim
n→∞
E
′
∫ T

0

〈u′n(t) × ∆u′n(t), ψ(t)〉L2 dt = E′
∫ T

0

3
∑

i=1

〈

∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

dt. (6.16)
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For each n ∈ N we have

〈u′n(t) × ∆u′n(t), ψ〉L2 =

3
∑

i=1

〈

∂u′n(t)

∂xi

, u′n(t) × ∂ψ(t)

∂xi

〉

L2

(6.17)

for almost every t ∈ [0,T ] and P′ almost surely. Since by Corollary 6.5, P(u′n ∈ C([0,T ]; Hn)) = 1, we infer that for

each i ∈ {1, 2, 3} we can write

〈

∂u′n(t)

∂xi

, u′n(t) × ∂ψ(t)

∂xi

〉

L2

−
〈

∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

(6.18)

=

〈

∂u′n(t)

∂xi

− ∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

+

〈

∂u′n(t)

∂xi

, (u′n(t) − u′(t)) × ∂ψ(t)

∂xi

〉

L2

.

Since L4 ֒→ L2 andW1,4 ֒→ L2, there exists a constant C1 > 0 such that

E
′
∫ T

0

∣

∣

∣

∣

∣

∣

〈

∂u′n(t)

∂xi

, (u′n(t) − u′(t)) × ∂ψ(t)

∂xi

〉

L2

∣

∣

∣

∣

∣

∣

dt

≤ C1E
′
∫ T

0

‖u′n(t)‖H1‖u′n(t) − u′(t)‖L4‖ψ(t)‖W1,4 dt.

Moreover by the Hölder’s inequality,

E
′
∫ T

0

‖u′n(t)‖H1‖u′n(t) − u′(t)‖L4‖ψ(t)‖W1,4 dt

≤ T
1
2

(

E
′ sup

t∈[0,T ]

‖u′n(t)‖2
H1

)
1
2
(

E
′
∫ T

0

‖u′n(t) − u′(t)‖4
L4 dt

)

1
4
(

E
′
∫ T

0

‖ψ(t)‖4
W1,4 dt

)

1
4

.

Hence, by (6.2), (6.9) we infer that

lim
n→∞
E
′
∫ T

0

∣

∣

∣

∣

∣

∣

〈

∂u′n(t)

∂xi

, (u′n(t) − u′(t)) × ∂ψ(t)

∂xi

〉

L2

∣

∣

∣

∣

∣

∣

dt = 0. (6.19)

Since both u′ and
∂ψ

∂xi
belong to L4(Ω′; L4(0,T ;L4)), so that u′ × ∂ψ

∂xi
∈ L2(Ω′; L2(0,T ;L2)), by (6.10) we have

lim
n→∞
E
′
∫ T

0

〈

∂u′n(t)

∂xi

− ∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

dt = 0. (6.20)

Therefore by (6.18), (6.19), (6.20), we infer that

lim
n→∞
E
′
∫ T

0

〈

∂u′n(t)

∂xi

, u′n(t) × ∂ψ(t)

∂xi

〉

L2

dt = E′
∫ T

0

〈

∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

dt (6.21)

and consequently by (6.17), we arrive at (6.16).
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Secondly, we will show that

lim
n→∞
E
′
∫ T

0

〈

u′n(t) × πn∇φ
(

u′n(t)
)

, ψ
〉

L2 dt = E′
∫ T

0

〈

u′(t) × ∇φ(u′(t)), ψ〉
L2 dt. (6.22)

Since

∣

∣

∣

〈

u′n(t) × πn∇φ
(

u′n(t)
)

, ψ〉L2 − 〈u′(t) × ∇φ(u′(t)), ψ〉
L2

∣

∣

∣

≤
∥

∥

∥ψ
∥

∥

∥

L2

∥

∥

∥u′n(t) − u′(t)
∥

∥

∥

L2

∥

∥

∥∇φ(u′n(t)
)

∥

∥

∥

L2 +
∥

∥

∥ψ
∥

∥

∥

L2

∥

∥

∥u′(t)
∥

∥

∥

L2

∥

∥

∥πn∇φ
(

u′n(t)
) − ∇φ(u′(t))

∥

∥

∥

L2 ,

we have

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

〈

u′n(t) × πn∇φ
(

u′n(t)
)

, ψ
〉

L2 dt − E′
∫ T

0

〈

u′(t) × ∇φ(u′(t)), ψ〉
L2 dt

∣

∣

∣

∣

∣

∣

≤
(

E
′
∫ T

0

∥

∥

∥ψ
∥

∥

∥

4

L1,4 dt

)

1
4
(

E
′
∫ T

0

∥

∥

∥u′n(t) − u′(t)
∥

∥

∥

4

L4 dt

)

1
4
(

E
′
∫ T

0

∥

∥

∥∇φ(u′n(t)
)

∥

∥

∥

2

L2 dt

)

1
2

+

(

E
′
∫ T

0

∥

∥

∥ψ
∥

∥

∥

4

W1,4 dt

)

1
4
(

E
′
∫ T

0

∥

∥

∥u′(t)
∥

∥

∥

4

L4 dt

)

1
4
(

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′n(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 dt

)

1
4

→ 0.

Thus, in order to prove (6.22) we need to prove that

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′n(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 dt → 0 (6.23)

For this aim, we note that since ∇φ is global Lipschitz, there exists a constant C such that

(

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′n(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 dt

)

1
2

≤
(

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′n(t)
) − πn∇φ

(

u′(t)
)

∥

∥

∥

2

L2 dt

)

1
2

+

(

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 dt

)

1
2

≤ C

(

E
′
∫ T

0

∥

∥

∥u′n(t) − u′(t)
∥

∥

∥

2

L2 dt

)

1
2

+

(

E
′
∫ T

0

∥

∥

∥πn∇φ
(

u′(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 dt

)

1
2

.

By (6.9), the first term on the right hand side of above inequality converges to 0. And since
∥

∥

∥πn∇φ
(

u′(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 → 0 for almost every (t, ω) ∈ [0,T ] ×Ω, and since ∇φ is bounded,
∥

∥

∥πn∇φ
(

u′(t)
) − ∇φ(u′(t))

∥

∥

∥

2

L2 is uniformly integrable, hence the second term of right hand side also converges to

0 as n→ ∞. This proves (6.23) and consequently also (6.22).
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Therefore by equalities (6.16) and (6.22), we have

lim
n→∞
E
′
∫ T

0

〈u′n(t) × [∆u′n(t) − πn∇φ(u′n(t))], ψ(t)〉L2 dt (6.24)

= E
′
∫ T

0

3
∑

i=1

〈

∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉

L2

dt + E′
∫ T

0

〈

u′(t) × ∇φ(u′(t)), ψ〉
L2 dt.

Moreover, by (6.12), for every ψ ∈ L2(Ω′; L2(0,T ;L2)),

lim
n→∞
E
′
∫ T

0

〈u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

, ψ〉L2 dt = E′
∫ T

0

〈Y(t), ψ〉L2 dt. (6.25)

Hence by (6.24) and (6.25), we deduce that

lim
n→∞
E
′
∫ T

0

〈u′n(t) × (

∆u′n(t) − πn∇φ
(

u′n(t)
))

, ψ(s)〉L2 dt

= E
′
∫ T

0

〈Y(t), ψ(t)〉L2 dt

= E
′
∫ T

0

3
∑

i=1

〈∂u′(t)

∂xi

, u′(t) × ∂ψ(t)

∂xi

〉L2 dt + E′
∫ T

0

〈

u′(t) × ∇φ(u′(t)), ψ(t)
〉

L2 dt.

This completes the proof of Lemma 6.15.

Lemma 6.16. For any process ψ ∈ L4(Ω′; L4(0,T ;L4)) we have

lim
n→∞
E
′
∫ T

0
L

3
2
〈u′n(s) × (

u′n(s) × (

∆u′n − πn∇φ
(

u′n(t)
)) )

, ψ(s)〉L3 ds

= E
′
∫ T

0
L

3
2
〈Z(s), ψ(s)〉L3 ds (6.26)

= E
′
∫ T

0
L

3
2
〈u′(s) × Y(s), ψ(s)〉L3 ds. (6.27)

Proof. Let us take ψ ∈ L4(Ω′; L4(0,T ;L4)). For n ∈ N, put Yn := u′n ×
(

∆u′n + ∇φ
(

u′n
))

. Since

L4(Ω′; L4(0,T ;L4)) ⊂ L2(Ω′; L2(0,T ;L3)) =
[

L2(Ω′; L2(0,T ;L
3
2 ))

]′
, we deduce that (6.13) implies that (6.26)

holds.

So it remains to prove equality (6.27). Since by the Hölder’s inequality

‖ψ × u′‖2
L2 =

∫

D

|ψ(x) × u′(x)|2 dx ≤
∫

D

|ψ(x)|2|u′(x)|2 dx

≤ ‖ψ‖2
L4‖u′‖2L4 ≤ ‖ψ‖4L4 + ‖u′‖4L4 .
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And since by (6.9), u′ ∈ L4(Ω′; L4(0,T ;L4)), we infer that

E
′
∫ T

0

‖ψ × u′‖2
L2 dt ≤ E′

∫ T

0

‖ψ‖4
L4 dt + E′

∫ T

0

‖u′‖4
L4 dt < ∞.

This proves that ψ × u′ ∈ L2(Ω′; L2(0,T ;L2)) and similarly ψ × u′n ∈ L2(Ω′; L2(0,T ;L2)).

Thus since by (6.12), Yn ∈ L2(Ω′; L2(0,T ;L2)), we infer that

L
3
2
〈u′n × Yn, ψ〉L3 =

∫

D

〈u′n(x) × Yn(x), ψ(x)〉 dx

=

∫

D

〈Yn(x), ψ(x) × u′n(x)〉 dx = 〈Yn, ψ × u′n〉L2 . (6.28)

Similarly, since by (6.12), Y ∈ L2(Ω′; L2(0,T ;L2)), we have

L
3
2
〈u′ × Y, ψ〉L3 =

∫

D

〈u′(x) × Y(x), ψ(x)〉 dx

=

∫

D

〈Y(x), ψ(x) × u′(x)〉 dx = 〈Y, ψ × u′〉L2 . (6.29)

Thus by (6.28) and (6.29), we get

L
3
2
〈u′n × Yn, ψ〉L3 −

L
3
2
〈u′ × Y, ψ〉L3 = 〈Yn, ψ × u′n〉L2 − 〈Y, ψ × u′〉L2

= 〈Yn − Y, ψ × u′〉L2 + 〈Yn, ψ × (u′n − u′)〉L2 .

In order to prove (6.27), we are aiming to prove that the expectation of the left hand side of the above equality goes to

0 as n→ ∞. By (6.12), since ψ × u′ ∈ L2(Ω′; L2(0,T ;L2)),

lim
n→∞
E
′
∫ T

0

〈Yn(s) − Y(s), ψ(s) × u′(s)〉L2 ds = 0.

By the Cauchy-Schwartz inequality and equation (6.9), we have

E
′
∫ T

0

〈Yn(s), ψ(s) × (u′n(s) − u′(s))〉2
L2 ds ≤ E′

∫ T

0

‖Yn(s)‖2
L2‖ψ(s) × (u′n(s) − u′(s))‖2

L2 ds

≤ E
′
∫ T

0

∥

∥

∥Yn(s)
∥

∥

∥

L2

∥

∥

∥ψ(s)
∥

∥

∥

L4

∥

∥

∥u′n(s) − u′(s)
∥

∥

∥

L4 ds

≤
(

E
′
∫ T

0

∥

∥

∥Yn(s)
∥

∥

∥

2

L2 ds

)

1
2
(

E
′
∫ T

0

∥

∥

∥ψ(s)
∥

∥

∥

4

L4 ds

)

1
4
(

E
′
∫ T

0

∥

∥

∥u′n(s) − u′(s)
∥

∥

∥

4

L4 ds

)

1
4

→ 0.
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Therefore, we infer that

lim
n→∞
E
′
∫ T

0
L

3
2
〈u′n(s) × (u′n(s) × ∆u′n(s)), ψ(s)〉L3 ds = E′

∫ T

0
L

3
2
〈u′(s) × Y(s), ψ(s)〉L3 ds.

This completes the proof of Lemma 6.16.

The next result will be used, see Theorem 8.1, to show that the process u′ satisfies the condition |u′(t, x)|R3 = 1 for

all t ∈ [0,T ], x ∈ D and P′-almost surely.

Lemma 6.17. For any bounded measurable function ψ : D→ R we have

〈Y(s, ω), ψu′(s, ω)〉L2 = 0,

for almost every (s, ω) ∈ [0,T ] ×Ω′.

Proof. Let B ⊂ [0,T ] ×Ω′ be an arbitrary progressively measurable set.

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

, ψu′n(s)
〉

L2 ds − E′
∫ T

0

1B(s)〈Y(s), ψu′(s)〉L2 ds

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

, ψ(u′n(s) − u′(s))
〉

L2 ds

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
)) − Y(s), ψu′(s)

〉

L2 ds

∣

∣

∣

∣

∣

∣

.

Next we will show that both terms in the right hand side of the above inequality will converge to 0.

For the first term, by the boundness of ψ, (6.3) and (6.9), we have

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

, ψ(u′n(s) − u′(s))
〉

L2 ds

∣

∣

∣

∣

∣

∣

≤ E
′
∫ T

0

∥

∥

∥u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

ψ
∥

∥

∥

L2

∥

∥

∥u′n(s) − u′(s)
∥

∥

∥

L2 ds

≤
∥

∥

∥u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

ψ
∥

∥

∥

L2(Ω′;L2(0,T ;L2))

∥

∥

∥u′n − u′
∥

∥

∥

L2(Ω′;L2(0,T ;L2))
→ 0.

For the second term, since 1Bψu′ ∈ L2(Ω′; L2(0,T ;L2)), by (6.9) and (6.12), we have

∣

∣

∣

∣

∣

∣

E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
)) − Y(s), ψu′(s)

〉

L2 ds

∣

∣

∣

∣

∣

∣

→ 0.

Therefore we infer that

0 = lim
n→∞
E
′
∫ T

0

1B(s)
〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

, ψu′n(s)
〉

L2 ds

= E
′
∫ T

0

1B(s)〈Y(s), ψu′(s)〉L2 ds,



29

where the first equality follows from the fact that 〈a × b, a〉 = 0. By the arbitrariness of B, this concludes the proof of

Lemma 6.17.

7 Conclusion of the proof of the existence of a weak solution

Our aim in this section is to prove that the process u′ from Proposition 6.2 is a weak solution of equation (2.1)

according to the definition 2.5. Because the argument is quite analogous to the one in [9] we will try to omit the details

leaving only the structure of the proof.

First we define a sequence of L2-valued process (Mn(t))t∈[0,T ] on the original probability space (Ω,F ,P) by

Mn(t) := un(t) − un(0) − λ1

∫ t

0

πn

(

un(s) × (

∆un(s) − πn∇φ
(

un(s)
)))

ds

+λ2

∫ t

0

πn

(

un(s) × (

un(s) × (

∆un(s) − πn∇φ
(

un(s)
))))

ds (7.1)

−1

2

N
∑

j=1

∫ t

0

πn

(

(πn(un(s) × h j)) × h j

)

ds.

Since un is the solution of the Equation (3.5), we infer that

Mn(t) =

N
∑

j=1

∫ t

0

πn(un(s) × h j) dW j(s), t ∈ [0,T ]. (7.2)

The proof u′ is a weak solution of the Equation (2.1) is 2 steps:

Step 1 : Define a process M′(t) by formula (7.1), but with u′ instead of un.

Step 2 : Prove equality (7.2) but with u′ instead of un and W ′
j

instead of W j.

7.1 Step 1

We define a sequence of L2-valued process
(

M′n(t)
)

t∈[0,T ] on the new probability space (Ω′,F ′,P′) by a formula

similar as (7.1).

M′n(t) := u′n(t) − u′n(0) − λ1

∫ t

0

πn

(

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
)))

ds

+λ2

∫ t

0

πn

(

u′n(s) × (

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))))

ds (7.3)

−1

2

N
∑

j=1

∫ t

0

πn[(πn(u′n(s) × h j)) × h j] ds.

In the following result we show that the sequence {M′n} is convergent.
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Lemma 7.1. For each t ∈ [0,T ] the sequence of random variables M′n(t) is weakly convergent in L2(Ω′; X−β) and it’s

limit M′(t) satisfies the following equality.

M′(t) := u′(t) − u0 − λ1

∫ t

0

(

u′(s) × (

∆u′(s) − ∇φ(u′(s)
)))

ds

+λ2

∫ t

0

(

u′(s) × (

u′(s) × (

∆u′(s) − ∇φ(u′(s)
))))

ds

−1

2

N
∑

j=1

∫ t

0

(u′(s) × h j) × h ds.

Proof. Let t ∈ (0,T ] and U ∈ L2(Ω′; Xβ).

Since u′n → u′ in C([0,T ]; X−β) P′-a.s. we infer that

lim
n→∞ X−β〈u′n(t),U〉Xβ = X−β〈u′(t),U〉Xβ , P

′ − a.s.

Since L2 ֒→ X−β, by (6.1) there exists a constant C such that

sup
n

E
′
[

∣

∣

∣X−β〈u′n(t),U〉Xβ

∣

∣

∣

2
]

≤ sup
n

E
′‖U‖2

XβE
′‖u′n(t)‖2

X−β ≤ CE′‖U‖2
XβE

′‖u0‖2L2 < ∞

and thus by the Vitali Theorem this implies that

lim
n→∞
E
′[X−β〈u′n(t),U〉Xβ] = E′[X−β〈u′(t),U〉Xβ].

By (6.12) and (6.14) we infer that

lim
n→∞
E
′
∫ t

0

〈

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))

, πnU
〉

L2 ds = E′
∫ t

0

〈Y(s),U〉L2 .

lim
n→∞
E
′
∫ t

0
X−β

〈

πn

(

u′n(s) × (

u′n(s) × (

∆u′n(s) − πn∇φ
(

u′n(s)
))))

,U
〉

Xβ ds = E′
∫ t

0

〈Z(s),U〉Xβ ds.

Moreover, by the Hölder inequality and (6.9) we get

E
′
∫ t

0

∣

∣

∣

∣

〈πn((u′n(s) − u′(s)) × h j) × h j, πnU〉L2

∣

∣

∣

∣

ds

≤ ‖h j‖2L∞‖U‖L2(Ω′;L2(0,T ;L2))

(

E
′
∫ t

0

‖u′n(s) − u′(s)‖4
L4 ds

)
1
4

t
1
4 m(D)

1
4 → 0.

Hence by Lemmata 6.15 and 6.16, we deduce that

lim
n→∞ L2(Ω′;X−β)〈M′n(t),U〉L2(Ω′;Xβ) = L2(Ω′;X−β)〈M′(t),U〉L2(Ω′;Xβ).
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This concludes the proof of Lemma 7.1.

Before we can continue with the proof that u′ is the weak solution of equation (2.1), we need to establish that the

processes W ′ and W ′n from Proposition 6.2 are Brownian Motions. This will be stated in Lemmata 7.2 and 7.3, which

can be proved as in [9]. The proofs however will be omitted.

Lemma 7.2. Suppose the W ′n defined in (Ω′,F ′,P′) has the same distribution as the Brownian Motion W defined in

(Ω,F ,P) as in Proposition 6.2. Then W ′n is also a Brownian Motion.

Lemma 7.3. The process (W ′(t))t∈[0,T ] is a real-valued Brownian Motion on (Ω′,F ′,P′) and if 0 ≤ s < t ≤ T then the

increment W ′(t) −W ′(s) is independent of the σ-algebra generated by u′(r) and W ′(r) for r ∈ [0, s].

Remark 7.4. We will denote F′ the filtration generated by (u′,W ′) and F′n the filtration generated by (u′n,W
′
n). Then by

Lemma 7.3, u′ is progressively measurable with respect to F′ and by Lemma 7.2, u′n is progressively measurable with

respect to F′n.

7.2 Step 2

Let us summarize what we have achieved so far. We have got our process M′ and have shown W ′ is a Wiener

process. Next we will show a similar result as in equation (7.2) to prove u′ is a weak solution of the Equation (2.1).

But before that we still need some preparation.

In what follows we assume that β > 1
4
. The following result is needed to prove Lemma 7.6.

Proposition 7.5. If h ∈ L∞ ∩W1,3, then there exists ch > 0: for every u ∈ Xβ, u × h ∈ X−β and

‖u × h‖X−β ≤ ch‖u‖X−β < ∞. (7.4)

Proof. Let us fix h ∈ L∞ ∩W1,3. Then there exists c > 0 such that for every z ∈ H1

‖z × h‖2
H1 = ‖∇(z × h)‖2

L2 + ‖z × h‖2
L2 ≤ 2(‖∇z × h‖2

L2 + ‖z × ∇h‖2
L2 ) + ‖z × h‖2

L2

≤ 2(‖h‖2
L∞‖∇z‖2

L2 + ‖∇h‖2
L3‖z‖2L6 ) + ‖h‖2

L∞‖z‖2L2 ≤ 2(‖h‖2
L∞ + c2‖∇h‖2

L3 )‖z‖2
H1 .

So the linear map Mh : H1 ∋ z 7−→ z × h ∈ H1 is bounded. Since Mh : L2 → L2 is also bounded and Xβ = [L2,H1]β,

by the interpolation theorem we infer that Mh : Xβ → Xβ is bounded.

Next, let us fix u ∈ L2 ⊂ X−β and z ∈ Xβ. Since X−β is equal to the dual space of Xβ we have

|〈u × h, z〉| = |〈u, z × h〉| ≤ ‖u‖X−β‖Mh(z)‖Xβ ≤ ch‖u‖X−β‖z‖Xβ .

By the density of L2 in X−β the above inequality holds for every u ∈ X−β. In particular, for every u ∈ X−β, u × h ∈ X−β

and inequality (7.4) holds. The proof is complete.



32

The proof of next Lemma is omitted because it is similar as part of the proof of Lemma 5.2 in Brzeźniak, Goldys

and Jegaraj [9].

Lemma 7.6. For each m ∈ N, we define the partition
{

sm
i

:= iT
m
, i = 0, . . . ,m

}

of [0,T ]. Then for any ε > 0, there exists

m0(ε) ∈ N such that for all m ≥ m0(ε), we have:

(i)

lim
n→∞





















E
′





















∥

∥

∥

∥

∥

∥

∥

∥

N
∑

j=1

∫ t

0

















πn(u′n(s) × h j) −
m−1
∑

i=0

πn(u′n(sm
i ) × h j)1(sm

i
,sm

i+1
](s)

















dW ′jn(s)

∥

∥

∥

∥

∥

∥

∥

∥

2

X−β









































1
2

<
ε

2
;

(ii)

lim
n→∞
E
′
[
∥

∥

∥

∥

∥

∥

m−1
∑

i=0

N
∑

j=1

πn(u′n(sm
i ) × h j)(W

′
jn(t ∧ sm

i+1) −W ′jn(t ∧ sm
i ))

−
m−1
∑

i=0

N
∑

j=1

πn(u′(sm
i ) × h j)(W

′
j(t ∧ sm

i+1) −W ′j(t ∧ sm
i ))

∥

∥

∥

∥

∥

∥

2

X−β

]

= 0;

(iii)

lim
n→∞





















E
′





















∥

∥

∥

∥

∥

∥

∥

∥

N
∑

j=1

∫ t

0

(πn(u′(s) × h j) −
m−1
∑

i=0

πn(u′(sm
i ) × h j)1(sm

i
,sm

i+1
](s)) dW ′j(s)

∥

∥

∥

∥

∥

∥

∥

∥

2

X−β









































1
2

<
ε

2
;

(iv)

lim
n→∞
E
′





















∥

∥

∥

∥

∥

∥

∥

∥

N
∑

j=1

∫ t

0

(πn(u′(s) × h j) − (u′(s) × h j)) dW ′j(s)

∥

∥

∥

∥

∥

∥

∥

∥

2

X−β





















= 0.

Now we are ready to state the Theorem which means that u′ is the weak solution of equation (2.1).

Theorem 7.7. For each t ∈ [0,T ] we have M′(t) =
∑N

j=1

∫ t

0
(u′(s) × h j) dW ′

j
(s).

Proof. Step 1: We will show that

M′n(t) =

N
∑

j=1

∫ t

0

πn(u′n(s) × h j) dW ′jn(s) (7.5)

P
′ almost surely for each t ∈ [0,T ] and n ∈ N.

Let us fix that t ∈ [0,T ] and n ∈ N. Let us also fix m ∈ N and define the partition
{

sm
i

:= iT
m
, i = 0, . . . ,m

}

of [0,T ]. Let

us recall that (u′n,W
′
n) and (un,W) have the same laws on the separable Banach space C([0,T ]; Hn) ×C([0,T ];RN).

Since the following map is continuous,

Ψ : C([0,T ]; Hn) ×C([0,T ];RN)→ Hn

(un,W) 7−→ Mn(t) −
m−1
∑

i=0

N
∑

j=1

πn(un(sm
i ) × h j)(W j(t ∧ sm

i+1) −W j(t ∧ sm
i )),
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by invoking the Kuratowski Theorem we infer that the L2-valued random variables:

Mn(t) −
m−1
∑

i=0

N
∑

j=1

πn(un(sm
i ) × h j)(W j(t ∧ sm

i+1) −W j(t ∧ sm
i ))

M′n(t) −
m−1
∑

j=0

N
∑

j=1

πn(u′n(sm
i ) × h j)(W

′
jn(t ∧ sm

i+1) −W ′jn(t ∧ sm
j ))

have the same laws. Let us denote un,m :=
∑m−1

i=0 un(sm
i

)1[sm
i
,sm

i+1
). By the Itô isometry, we have

∥

∥

∥

∥

∥

∥

∥

m−1
∑

i=0

πn(un(sm
i ) × h j)(W j(t ∧ sm

i+1) −W j(t ∧ sm
i )) −

∫ t

0

πn(un(s) × h j) dW j(s)

∥

∥

∥

∥

∥

∥

∥

2

L2(Ω;L2)

(7.6)

= E

∥

∥

∥

∥

∥

∥

∫ t

0

(

πn(un,m(s) × h j) − πn(un(s) × h j)
)

dW j(s)

∥

∥

∥

∥

∥

∥

2

L2

≤ ‖h j‖2L∞E
∫ t

0

‖un,m(s) − un(s)‖2
L2 ds.

Since un ∈ C([0,T ]; Hn) P-almost surely, we have

lim
m→∞

∫ t

0

‖un,m(s) − un(s)‖2
L2 ds = 0, P − a.s.. (7.7)

Moreover by equality (4.1), we infer that

sup
m

E

∣

∣

∣

∣

∣

∣

∫ t

0

‖un,m(s) − un(s)‖2
L2 ds

∣

∣

∣

∣

∣

∣

2

≤ sup
m

E

∣

∣

∣

∣

∣

∣

∫ t

0

(

2‖un,m(s)‖2
L2 + 2‖un(s)‖2

L2

)

ds

∣

∣

∣

∣

∣

∣

2

(7.8)

≤ E

∣

∣

∣4‖u0‖2L2 T
∣

∣

∣

2
= 16‖u0‖4L2 T 2 < ∞.

By (7.8), we have
∫ t

0
‖un,m(s) − un(s)‖2

L2 ds is uniformly (with respect to m) integrable. Therefore by the uniform

integrability and (7.7), we have

lim
m→∞
E

∫ t

0

‖un,m(s) − un(s)‖2
L2 ds = 0.

Then by above equality and (7.6), we have

lim
m→∞

∥

∥

∥

∥

∥

∥

∥

m−1
∑

i=0

πn(un(sm
i ) × h j)(W j(t ∧ sm

i+1) −W j(t ∧ sm
i )) −

∫ t

0

πn(un(s) × h j) dW j(s)

∥

∥

∥

∥

∥

∥

∥

2

L2(Ω;L2)

= 0.

Similarly, because u′n satisfies the same conditions as un, we also get

lim
m→∞

∥

∥

∥

∥

∥

∥

∥

m−1
∑

i=0

πn(u′n(sm
i ) × h)(W ′jn(t ∧ sm

i+1) −W ′jn(t ∧ sm
i )) −

∫ t

0

πn(u′n(s) × h j) dW ′jn(s)

∥

∥

∥

∥

∥

∥

∥

2

L2(Ω;L2)

= 0.

Hence, since the L2 convergence implies the weak convergence, we infer that the random variables

Mn(t) −∑N
j=1

∫ t

0
πn(un(s) × h j) dW j(s) and M′n(t) −∑N

j=1

∫ t

0
πn(u′n(s) × h j) dW ′

jn
(s) have same laws. But Mn(t) −
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∑N
j=1

∫ t

0
πn(un(s) × h j) dW j(s) = 0 P-almost surely, so (7.5) follows.

Step 2: From Lemma 7.6 and the Step 1, we infer that M′n(t) converges in L2(Ω′; X−β) to
∑N

j=1

∫ t

0
(u′(s) × h j) dW ′

j
(s) as

n→ ∞. This completes the proof of Theorem 7.7.

Summarizing, it follows from Theorem 7.7 that for every t ∈ [0,T ] the following equation is satisfied in

L2(Ω′; X−β):

u′(t) = u0 + λ1

∫ t

0

(

u′ × (

∆u′ − ∇φ(u′)
))

(s) ds (7.9)

− λ2

∫ t

0

u′(s) × (

u′ × (

∆u′ − ∇φ(u′)
))

(s) ds

+

N
∑

j=1

∫ t

0

(u′(s) × h j) ◦ dW ′j(s).

Hence by Definition 2.5, u′ is a weak solution of Equation (2.1).

8 Verification of the constraint condition

Now we will start to show some regularity of u′.

Theorem 8.1. The process u′ from Proposition 6.2 satisfies:

|u′(t, x)|R3 = 1, for Lebesgue a.e. (t, x) ∈ [0,T ] × D and P′ − a.s.. (8.1)

To prove Theorem 8.1, we need to use [21, Theorem 1.2]. The proof similar to the proof of [9, property (2.11) ]

and although we can add some missing details, the proof is omitted.

From Theorem 8.1 we can deduce the following result.

Theorem 8.2. The process u′ from Proposition 6.2 satisfies: for every t ∈ [0,T ], in L2(Ω′;L2),

u′(t) = u0 + λ1

∫ t

0

(

u′ × (

∆u′ − ∇φ(u′)
))

(s) ds (8.2)

−λ2

∫ t

0

u′(s) × (

u′ × (

∆u′ − ∇φ(u′)
))

(s) ds

+

N
∑

j=1

∫ t

0

(u′(s) × h j) ◦ dW ′j(s).

Proof. It is enough to prove that the terms in equation (8.2) are in the space L2(Ω′;L2). For this aim let us note

that by (6.12), Lemma 6.15 and (8.1),

E
′
(∫ T

0

∥

∥

∥

(

u′ × (

∆u′ − ∇φ(u′)
))

(t)
∥

∥

∥

2

L2 dt

)r

< ∞, r ≥ 1. (8.3)
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E
′
∫ T

0

∥

∥

∥u′(t) × (

u′ × (

∆u′ − ∇φ(u′)
))

(t)
∥

∥

∥

2

L2 dt < ∞.

This completes the proof of Theorem 8.2.

Theorem 8.3. The process u′ defined in Proposition 6.2 satisfies: for every α ∈ (0, 1
2
),

u′ ∈ Cα([0,T ];L2), P
′ − a.s.. (8.4)

Proof of Theorem 8.3 follows from the Kolmogorov test, Jensen and Burkholder-Davis-Gundy inequalities,

equation (7.9) and our estimates (8.3) and (6.6).

A Some explanation

This Appendix aims to clarify the meaning of the process Λ from Notation 6.11 and Lemma 6.10. And the

explanation present here goes back to Visintin [24].

Definition A.1. Assume that D ⊂ Rd, d ≤ 3. Suppose that M ∈ H1(D). We say that M × ∆M exists in the L2(D) sense

(and write M × ∆M ∈ L2(D)) iff there exists B ∈ L2(D) such that for every u ∈ W1,3(D),

〈B, u〉L2 =

3
∑

i=1

〈DiM,M × Diu〉L2 , (A.1)

where 〈·, ·〉 = 〈·, ·〉L2 .

Remark. Since H1(D) ⊂ L6(D) and Diu ∈ L3(D), the integral on the RHS above is convergent.

Remark. If M ∈ D(A), then B = M × ∆M can be defined pointwise as an element of L2(D). Moreover by Proposition

3.3, (A.1) holds, so M × ∆M in the sense of Definition A.1. The next result shows that this can happen also for less

regular M.

Proposition A.2. Suppose that Mn ∈ H1(D) so that Λn := Mn × ∆Mn ∈ L2(D) and

|Λn|L2 ≤ C.

Suppose that

|Mn|H1 ≤ C.

Suppose that

Mn → M weakly in H1(D).

Then M × ∆M ∈ L2(D).
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Proof. By the assumptions there exists a subsequence (n j) and Λ ∈ L2(D) such that for any q < 6 (in particular

q = 4)

Λn j
→ Λ weakly in L2(D)

Mn j
→ M strongly in Lq(D)

∇Mn j
→ ∇M weakly in L2(D)

We will prove that M × ∆M = Λ ∈ L2. Let us fix u ∈ W1,4(D).

First we will show that

〈Λ, u〉 =
3

∑

i=1

〈DiM,M × Diu〉, (A.2)

Since 〈Λn, u〉 =
∑3

i=1〈DiMn,Mn × Diu〉 we have

−〈Λn, u〉 +
3

∑

i=1

〈DiM,M × Diu〉

= −
3

∑

i=1

〈DiMn,Mn × Diu〉 +
3

∑

i=1

〈DiM,M × Diu〉

=

3
∑

i=1

〈DiM − DiMn,M × Diu〉 +
3

∑

i=1

〈DiMn,M × Di − Mn × Diu〉

= In + IIn

Since M × Diu ∈ L2 and DiM − DiMn → 0 weakly in L2 we infer that In → 0. Moreover, by the Hölder inequality we

have

|IIn| ≤
3

∑

i=1

|DiMn|L2 |M − Mn|L4 |Diu|L4 → 0.

Thus, 〈Λn, u〉 →
∑3

i=1〈DiM,M × Diu〉. On the other hand, 〈Λn, u〉 → 〈Λ, u〉, what concludes the proof of equality (A.2)

for u ∈ W1,4(D).

Since both sides of equality (A.2) are continuous with respect to W1,3(D) norm of u and the space W1,4(D) is dense in

W1,3(D), the result follows.
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[9] Z. Brzeźniak, B. Goldys and T. Jegaraj: Weak solutions of a stochastic Landau-Lifshitz-Gilbert Equation, Applied

Mathematics Research eXpress, 2013, 2013(1): 1-33.
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