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Abstract

Background and Objectives: Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are
important regulators of insulin secretion, and their functional loss is an early characteristic of type 2 diabetes mellitus
(T2DM). Pharmacological levels of GLP-1, but not GIP, can overcome this loss. GLP-1 and GIP exert their insulinotropic effects
through their respective receptors expressed on pancreatic b-cells. Both the GLP-1 receptor (GLP-1R) and the GIP receptor
(GIPR) are members of the secretin family of G protein-coupled receptors (GPCRs) and couple positively to adenylate
cyclase. We compared the signalling properties of these two receptors to gain further insight into why GLP-1, but not GIP,
remains insulinotropic in T2DM patients.

Methods: GLP-1R and GIPR were transiently expressed in HEK-293 cells, and basal and ligand-induced cAMP production
were investigated using a cAMP-responsive luciferase reporter gene assay. Arrestin3 (Arr3) recruitment to the two receptors
was investigated using enzyme fragment complementation, confocal microscopy and fluorescence resonance energy
transfer (FRET).

Results: GIPR displayed significantly higher (P,0.05) ligand-independent activity than GLP-1R. Arr3 displayed a robust
translocation to agonist-stimulated GLP-1R but not to GIPR. These observations were confirmed in FRET experiments, in
which GLP-1 stimulated the recruitment of both GPCR kinase 2 (GRK2) and Arr3 to GLP-1R. These interactions were not
reversed upon agonist washout. In contrast, GIP did not stimulate recruitment of either GRK2 or Arr3 to its receptor.
Interestingly, arrestin remained at the plasma membrane even after prolonged (30 min) stimulation with GLP-1. Although
the GLP-1R/arrestin interaction could not be reversed by agonist washout, GLP-1R and arrestin did not co-internalise,
suggesting that GLP-1R is a class A receptor with regard to arrestin binding.

Conclusions: GIPR displays higher basal activity than GLP-1R but does not effectively recruit GRK2 or Arr3.
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Introduction

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insu-

linotropic polypeptide (GIP) are incretin hormones that function

primarily to enhance glucose-stimulated insulin secretion [1,2].

Their functional impairment is an early characteristic of type 2

diabetes mellitus (T2DM) [3]. Pharmacological levels of long-

acting GLP-1 receptor (GLP-1R) agonists can overcome this

impairment, and as a result, GLP-1R agonists are currently used

clinically to treat T2DM [4]. In contrast, even at supra-

physiological concentrations, GIP does not increase insulin

secretion in patients with T2DM [5]. GLP-1R and GIPR are

closely related members of the secretin family of G protein-

coupled receptors (GPCRs) and positively couple to G proteins

(Gas), resulting in an increase in intracellular cyclic 39-59-cyclic

adenosine monophosphate (cAMP) levels [6]. The actions of GLP-

1 and GIP are not limited to pancreatic b-cells, and both peptides

have numerous pleiotropic effects. For example, GLP-1 decreases

appetite and may be cardio- and neuroprotective. GIP is involved

in adipocyte metabolism and bone formation and may also have

neuroprotective and neurotrophic effects [7–9]. Together, these

actions make GLP-1R and GIPR exciting targets for the treatment

not only of diabetes and obesity but also potentially of ischemic

heart disease and neurodegenerative diseases, such as Alzheimer’s

disease and Parkinson’s disease.
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The canonical role of arrestins in regulating GPCR function is

through homologous desensitisation and internalisation. Once a

GPCR is activated, it becomes a substrate for GPCR kinases

(GRKs), which phosphorylate specific serine and threonine

residues in the receptor’s C-terminal tail and the 3rd intracellular

loop region. The GPCR can still signal through G proteins when

phosphorylated; however, phosphorylation allows arrestins to bind

to the activated receptor, preventing any further interaction with

G proteins [10]. Arrestin can also act as a scaffolding molecule

allowing the receptor to interact with components of endocytotic

machinery, such as clathrin, thus mediating internalisation as well

as signalling through G protein-independent pathways, such as

mitogen-activated protein (MAP) kinases, Src tyrosine kinases and

ubiquitin ligases [11]. Recently, arrestins have been shown to

mediate GLP-1’s insulinotropic as well as proliferative effects on

pancreatic b-cells [12,13]. Although GLP-1R is known to interact

with arrestin [14], homologous desensitisation and internalisation

of GLP-1R appear to be arrestin-independent processes [12]. In

contrast, very is little is known regarding GIPR’s interaction with

arrestin.

An active receptor conformation can either be facilitated by

agonist binding or can occur in constitutively active receptors (that

is, receptors that preferentially adopt an active conformation in the

absence of agonist). Several diseases are caused by mutations that

result in constitutively active receptors (e.g., retinitis pigmentosa)

[15]; however, constitutive activity can also be a property of

certain wild-type receptors (e.g., the ghrelin receptor) [16].

In this study we sought to compare GLP-1R and GIPR’s basal

activity and the ability of GLP-1 and GIP to stimulate GRK2 and

arrestin3 (Arr3) recruitment to their respective receptors using a

luciferase-based reporter gene assay, enzyme fragment comple-

mentation, confocal microscopy and single cell, real-time fluores-

cence resonance energy transfer (FRET).

Materials and Methods

Construction of cDNA
cDNA encoding human GLP-1R and GIPR subcloned into

pcDNA1.1 were gifts from Martin Beinborn and Alan Kopin

(Tufts University, USA). GLP-1R and GIPR were subsequently

re-ligated into pcDNA3.1 (Invitrogen, Paisley, UK). cDNA

encoding C-terminally YFP-labelled GLP-1R and GIPR (GLP-

1-YFP and GIPR-YFP) were purchased from Source Bioscience

(Nottingham, UK). GLP-1R and GIPR both possess a putative N-

terminal signal peptide that is cleaved during receptor processing

and trafficking [17,18]. Therefore, to label the receptors at their

N-termini, a myc-tag was introduced immediately downstream of

the predicted signal peptide. To achieve this, pcDNA3 was

modified by the addition of a linker region encoding the influenza

hemagglutinin signal peptide (MKTIIALSYIFCLVFAA) between

the KpnI and NotI sites of the multiple cloning site to produce

pcDNA3-hgSP. The linker was constructed by annealing two

complementary primers containing the hemagglutinin signal

peptide sequence and KpnI and NotI restriction sites. A myc-tag

(EQKLISEEDL) was introduced immediately downstream of the

predicted signal peptide of GLP-1R and GIPR by sequential

overlapping PCR using primers, which also added a NotI and

XbaI site to the products’ termini. These products were then

ligated into pcDNA3-hsSP to produce myc-GLP-1R and myc-

GIPR. The constructs were verified through sequencing.

The cDNAs for YFP- and CFP-labelled arrestin 3 (Arr3-YFP,

Arr3-CFP) have been previously described [19]. CFP-labelled

GRK2 (GRK2-CFP) was constructed by amplifying the open

reading frame of human GRK2 with suitable primers which added

a HindIII site in front of the start codon and replaced the stop

codon with an XbaI site. The resulting PCR product was cloned

into Arr3-CFP (this construct used the enhanced version of CFP;

mTurquoise) that had previously been cut with HindIII and XbaI

to remove the Arr3 open reading frame. In essence, this strategy

replaces the Arr3 open reading frame with that of GRK2. The

construct was verified through sequencing.

Ligands
Human GLP-1 (7–36) NH2 and human GIP (1–42) were

purchased from Bachem (Bubendorf, Switzerland).

Cell culture and transfection
Human embryonic kidney 293 (HEK-293) cells (ECACC Cat.

no. 85120602) were cultured in Dulbecco’s modified Eagle’s

media supplemented with 10% foetal calf serum, 100 U/ml

penicillin and 100 mg/ml streptomycin. Chinese Hamster Ovary

(CHO) cells stably expressing GLP-1R or GIPR and Arr3 were

maintained in media provided by DiscoveRx (DiscoveRx Corpo-

ration Ltd., Birmingham, UK). Cells were maintained at 37uC in a

humidified environment containing 5% CO2. HEK-293 cells were

transiently transfected using Effectene (Qiagen, Hilden, Germany),

following the manufacturer’s protocol.

Luciferase assay
Activation of GLP-1R and GIPR was assessed by a luciferase

reporter gene assay using the protocol described by Al-Fulaij et al.
[20]. Briefly, HEK-293 cells were transiently transfected with

cDNA encoding either GLP-1 or GIP receptor and a reporter

gene construct consisting of a cAMP-response element fused to a

reporter gene encoding firefly luciferase (Cre-luc) using Effectene

(Qiagen, Hilden, Germany), following the manufacturer’s proto-

col. Twenty-four hours after transfection, the cells were seeded

into white 96-well plates (Thermo Scientific, Roskilde, Denmark)

at a density of 10,000 cells/well. Twenty-four hours later, the cells

were incubated for 3 hours in media containing peptide ligand and

then lysed. Luciferase activity was quantified using LucLite

reagent (PerkinElmer Life and Analytic Sciences, Wellesley, MA,

USA).

Western blot analyses
Western blotting to detect myc-tagged GLP-1R and GIPR was

performed as described by Akhtar et al. [21]. To compare the

relative expression levels of mycGLP-1R and mycGIPR, HEK-

293 cells were transiently transfected with equal amounts of cDNA

encoding either mycGLP-1R or mycGIPR. Forty-eight hours after

transfection, the cells were harvested and lysed in buffer (pH 7.6)

containing 50 mM Tris-base, 5 mM EGTA, 150 mM NaCl, 1%

Triton 100, 2 mM Na3VO4, 50 mM NAF, 1 mM PMSF, 20 mM
phenylarsine, 10 mM sodium molybdate, 10 mg/ml leupeptin and

8 mg/ml aprotinin. Protein concentrations were estimated using

the BioRad BCA protein assay. Samples containing equal amounts

of protein were subjected to SDS-polyacrylamide gel electropho-

resis (SDS-PAGE) and transferred onto nitrocellulose membranes

(Schleicher & Schuell, Dassel, Germany). The membranes were

then incubated with monoclonal antibodies produced in mouse to

detect the myc-tagged receptors (Sigma, Germany Cat. no.

M4439) followed by the secondary anti-mouse IgG horse-radish

peroxidase-conjugated antibody (Sigma, Germany Cat. No.

A9044). Immunoreactive bands were detected using SuperSignal

chemiluminescent substrate (Pierce, UK) and Kodak autoradiog-

raphy film (G.R.I., Rayne, U.K.). b-actin levels were detected

using primary rabbit anti-human b-actin antibody (Sigma,
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Germany Cat. no. A2066) followed by the secondary goat anti-

rabbit IgG horse-radish peroxidase-conjugated antibody (Santa

Cruz Biotechnology, USA, Cat. no. SC 2030). Images were

analysed and quantified by densitometry, and myc-immunoreac-

tive bands were normalised to b-actin levels.

Enzyme fragment complementation
Arrestin recruitment to GLP-1R or GIPR was investigated

using the PathHunter eXpress kit (DiscoveRx). Briefly, the kit

detects the interaction of arrestin with the activated receptor using

enzyme fragment complementation. The b-galactosidase (b-gal)
enzyme is split into two inactive fragments. The larger fragment

(termed EA for enzyme acceptor) is fused to the C-terminal region

of the arrestin molecule, and the smaller, 4-kDa fragment of b-gal
(the ProLink) is fused to the receptors’ C-terminal tail. Upon

receptor activation, the arrestin/receptor interaction brings the

ProLink and EA fragments together, resulting in complementation

of the two fragments of b-gal and the formation of a functional

enzyme that hydrolyses the substrate and generates a chemilumi-

nescent signal.

Confocal and light Microscopy
HEK-293 cells transiently expressing Arr3-YFP and either

GLP-1R or GIPR were plated on to poly-D-lysine-coated

coverslips and mounted on to an ‘‘Attofluor’’ holder (Molecular

Probes, Leiden, The Netherlands). The subcellular location of

Arr3-YFP was monitored by live cell confocal microscopy

performed on a Leica TCS SP5 system. YFP was excited with

the 514 nm line of an argon laser, and images were captured using

an oil-immersion 636 lens with the factory settings for YFP. Loss

of cytoplasmic fluorescence over time was corrected for bleaching

and quantified using the Leica confocal software. Assessment of

the relative expression of GLP-1R-YFP and GIPR-YFP by

comparing mean fluorescence intensity was performed in a similar

manner.

Fluorescence resonance energy transfer (FRET)
measurements
HEK-293 cells were co-transfected with either GLP-1R-YFP or

GIPR-YFP and either GRK2-CFP or Arr3-CFP. At 24 hours

post-transfection, the cells were plated on poly-D-lysine-coated

coverslips (25-mm diameter) in six-well plates. After 24 hours,

FRET measurements were performed. Coverslips were mounted

on a Nikon Eclipse TE2000S inverted microscope (Nikon,

Kingston, UK) using an ‘Attofluor’ holder (Invitrogen, Leiden,

The Netherlands), and the cells were superfused continuously with

FRET buffer (137 mM NaCl, 5.4 mM KCl, 2 mM CaCl2, 1 mM

MgCl2, 10 mM HEPES pH 7.3, 0.1% bovine serum albumin)

using a computer-controlled rapid perfusion system (Ala-VC3-

8SP, ALA Scientific Instruments). Ligands were dissolved in

FRET buffer and applied using the same device. The cells were

observed using an oil immersion 100x lens and excited using a

CoolLED pE-2 (CoolLED, Andover, UK). Signals were detected

using a EMCCD camera (Evolve512, Photometrics, Tucson,

USA). The illumination time was set to 40 to 60 ms with a

frequency of 5 Hz to minimise photobleaching. CFP was excited

Table 1. Basal activity and activation of WT and modified GLP-1 and GIP receptors by their respective ligands.

pEC50 Basal Activity (% Maximum)

WT GLP-1R 9.160.04 (3) 8.860.5 (3)

GLP-1R-YFP 8.960.08 (3) 6.060.8 (3)

myc-GLP-1R 9.360.4 (3) 10.460.3 (3)

WT GIPR 10.260.3 (4) *26.063.7 (4)

GIPR-YFP 10.060.1 (4) *,#13.261.6 (4)

myc-GIPR 9.760.3 (4) ***31.161.0 (4)

The mean 6 S.E.M shown are from at least 3 independent experiments (the number of experiments is shown in brackets). pEC50 refers to 2logEC50/M.
*Basal activity significantly higher than corresponding GLP-1R modification (P,0.05),
#basal activity significantly lower than WT GIPR (P,0.05),
***basal activity significantly higher than the corresponding GLP-1R modification (P,0.001).
doi:10.1371/journal.pone.0106890.t001

Figure 1. Luciferase assay and basal activity of GLP-1R and GIPR transiently transfected in HEK-293 cells. (A) GLP-1 and GIP stimulated
cAMP-responsive luciferase activity in a dose-dependent manner in HEK-293 cells transiently expressing the corresponding receptor and reporter
gene. (B) Basal activity of GLP-1R and GIPR expressed as a percentage of maximum stimulation. The results are expressed as the mean 6 standard
error of the mean for at least 3 independent experiments; *P,0.05.
doi:10.1371/journal.pone.0106890.g001
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using 435 nm light, a 430/24 excitation filter and a 460 nm

beamsplitter (Chroma Technology, Rockingham, VT), and

fluorescence was measured at 535615 nm (YFP) and

480620 nm (CFP) through a beam splitter dichroic long-pass,

505 nm (Chroma Technology). The fluorescence signal at 535 nm

is the sum of the YFP fluorescence and bleedthrough of CFP

fluorescence into the YFP channel (approx. 40% of the

fluorescence at 480 nm); therefore the ‘‘real’’ YFP fluorescence

was calculated by subtracting the CFP bleedthrough from the F535
signal. FRET was calculated as FYFP/F480.

Data analyses
Dose-response data were fitted to a sigmoidal curve, and kinetic

experiments were fitted to mono-exponential decay curves using

GraphPad 3.0 (GraphPad, San Diego, CA). The values are

expressed as the mean 6 standard error of the mean; n = number

of independent experiments. Statistical analysis of significance was

calculated with GraphPad 3.0 using a two-tailed, unpaired

Student’s t-test.

Results

Basal activity and activation of wild-type and modified
GLP-1 and GIP receptors by their respective ligands and
relative expression levels
GLP-1 and GIP stimulated cAMP-responsive luciferase activity

in a dose-dependent manner in HEK-293 cells transfected with

Cre-luc and either wild-type GLP-1R or GIPR (Figure 1A,

Figure 2. Relative expression of labelled GLP-1R and GIPR. (A) Representative confocal images of YFP-labelled receptors transiently expressed
in HEK-293 cells; scale bar, 10 mm. (B) Mean fluorescence intensity measured from HEK-293 cells transiently expressing either GLP-1R-YFP or GIPR-YFP.
(C) A representative Western blot showing protein levels of myc-labelled receptors and b-actin in HEK-293 cells transiently transfected with either
myc-GLP-1R or myc-GIPR. (D) A densitometry histogram showing the relative expression levels of myc-GLP-1R and myc-GIPR normalised to actin. The
results are expressed as the mean 6 standard error of the mean for at least 5 independent experiments.
doi:10.1371/journal.pone.0106890.g002

Figure 3. Enzyme fragment complementation (PathHunter) assay to monitor receptor/arrestin interaction. (A) GLP-1 and GIP
stimulated the recruitment of arrestin to their respective receptors in a dose-dependent manner. Curves represent one of three independent
experiments, where each data point represents the mean of triplicates, with S.E.M displayed as error bars. (B) Comparison of maximum arrestin
binding. The results are expressed as the mean 6 standard error of the mean for at least 3 independent experiments; ***indicates P,0.0001.
doi:10.1371/journal.pone.0106890.g003
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Table 1). Ligand-independent GIPR activity was significantly

higher (P.0.05) than that of GLP-1R: 26% vs. 8.8%, respectively

(Figure 1B, Table 1). As receptor expression levels can influence

basal activity [22], the relative expression levels of GLP-1R and

GIPR were assessed by comparing the mean fluorescence intensity

of HEK-293 cells transiently expressing either GLP-1R-YFP or

GIPR-YFP. The mean fluorescence intensity was slightly higher

for GLP-1R-YFP than GIPR-YFP but did not reach significance

(Figure 2B). Fusing YFP to the C-terminus of either GLP-1R or

GIPR had no detectable effect on the potency of either ligand at its

respective receptor, whereas GIPR-YFP’s basal activity was

significantly lower than that of WT GIPR (Table 1). Nonetheless,

GIPR-YFP’s basal activity was still significantly higher (P.0.05)

than that of GLP-1R-YFP (Table 1). The relative expression of

GLP-1R and GIPR was then assessed by comparing anti-myc

immunoreactivity normalised to b-actin levels in HEK-293 cells

transiently transfected with either myc-GLP-1R or myc-GIPR.

There was no significant difference in the relative expression of

either myc-GLP-1R or myc-GIPR (Figure 2D), and the introduc-

tion of the myc-tag to the N-terminus of GLP-1R and GIPR did

not affect the potency of either ligand at its respective receptor nor

the basal activity of either receptor (Table 1). At comparable levels

Figure 4. Agonist-stimulated arrestin translocation to the plasma membrane. HEK-293 cells were transiently transfected with Arr3-YFP and
either (A) GLP-1R or (B) GIPR. Confocal images were captured every 30 s. A total of 1 mM of either (A) GLP-1 or (B) GIP was added immediately after
the first image acquisition; scale bar, 20 mm. (C) Arrestin translocation was quantified as the loss of cytoplasmic fluorescence over time. (D) Loss of
cytoplasmic fluorescence at 15 min; *indicates P,0.05. The results are expressed as the mean 6 standard error of the mean for at least 4
independent experiments.
doi:10.1371/journal.pone.0106890.g004

Figure 5. Agonist-induced FRET between receptor and (A) GRK2 and (B) Arrestin3. HEK-293 cells were transiently transfected with GLP-1R
and GIPR and (A) GRK2-CFP (B) Arr3-CFP. The traces are the mean 6 standard error of the mean for at least 5 independent experiments.
doi:10.1371/journal.pone.0106890.g005
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of expression, myc-GIPR displayed significantly greater (P.0.001)

ligand-independent activity than myc-GLP-1R (Figure 2D, Ta-

ble 1).

Enzyme fragment complementation
Using the PathHunter eXpress kit to measure arrestin-receptor

interaction, GLP-1 and GIP stimulated the recruitment of arrestin

to their cognate receptors in a dose-dependent manner, with

pEC50 values of 8.2 (60.14) and 8.1 (60.27), respectively (mean6

S.E.M for 3 independent experiments; Figure 3A). However,

maximum arrestin binding was 600% higher for GLP-1R than for

GIPR (Figure 3B).

Arrestin translocation to incretin receptors
HEK-293 cells transiently co-transfected with Arr3-YFP and

either GLP-1R or GIPR were plated on poly-D-lysine-coated

coverslips and observed using a confocal microscope. Prior to

agonist stimulation, arrestin was located in the cytosol in cells

expressing GLP-1R or GIPR. After stimulating cells with 161026

M agonist, arrestin translocation to the plasma membrane was

apparent in the cells transfected with GLP-1R (Figure 4A) but

only faintly detectable in the cells transfected with GIPR

(Figure 4B). Arrestin translocation was quantified as the loss of

cytoplasmic fluorescence over time (Figure 4C). At 15 min, the

loss of cytoplasmic fluorescence stimulated by GLP-1 was

significantly (P,0.05) greater than with GIP (Figure 4D).

Single-cell FRET experiments show that GRK2 and
Arrestin3 are recruited to agonist-stimulated GLP-1R but
not GIPR
HEK-293 cells were transiently transfected with either GLP-

1R-YFP (black traces) or GIPR-YFP (red traces) and either

GRK2-CFP or Arr3-CFP. Upon agonist stimulation, GRK2 was

recruited to GLP-1R with a rate constant of k = 0.040 s21 (60.005

SEM, n=5) and a half-life of 17.2 s. Recruitment to agonist-

stimulated GIPR was not detectable in the single-cell FRET assay

(Figure 5A). In agreement with our previous experiments, agonist

stimulation of GLP-1R resulted in robust arrestin recruitment with

a rate of k = 0.017 s21 (60.002 SEM, n= 6) and a half-life of

39.7 s. Again, agonist stimulation of GIPR did not result in

arrestin recruitment (Figure 5B). Both GRK2 and Arr3 remained

bound to GLP-1R even after agonist washout.

Light microscopy shows Arr3 remains at the membrane
after prolonged GLP-1R stimulation
HEK-293 cells were transiently transfected with Arr3-CFP and

either GLP-1R or GIPR. Cells were observed under a light

microscope at 37uC and stimulated with agonist. GLP-1R

stimulation resulted in arrestin translocation to the plasma

membrane. Arrestin remained at the plasma membrane 30 min-

utes after stimulation and did not co-internalise with GLP-1R

(Figure 6).

Discussion

GLP-1 and GIP are important regulators of glucose homeostasis

and pancreatic b-cell function, and impairment of their effect is an

early characteristic of T2DM. GLP-1R agonists are used clinically

as anti-diabetic drugs, as are DPP-IV inhibitors, which prolong the

circulating half-life of both endogenous GLP-1 and GIP [23]. To

date, GIPR agonists are not used clinically; however, GLP-1R/

GIPR co-agonists have recently been reported to have similar

efficacy to GLP-1R agonists in terms of glucose control and

superior efficacy in terms of weight loss [24]. Hence, a detailed

understanding of the signalling mechanisms of the two incretin

hormones is of great importance.

Using a luciferase-based reporter gene assay, we detected

significantly higher constitutive activity in GIPR compared with

GLP-1R (Figure 1A and B). Increased levels of receptor expression

can amplify basal activity [22]; therefore, the relative levels of

GLP-1R and GIPR expression were assessed. Both receptors were

tagged with YFP at their C-termini and a myc-tag at the N-

termini. No significant differences in expression levels were found

using either mean fluorescence intensity (YFP-tagged) or Western

blotting (myc-tagged; Figure 2). Neither modification affected the

potency of GLP-1 or GIP at their respective receptor. However,

the addition of YFP to GIPR’s C-terminus significantly reduced

the receptor’s basal activity compared with WT GIPR, although

GIPR-YFP still displayed significantly higher basal activity GLP-

1R-YFP (Table 1). The addition of a myc-tag to the N-terminus of

GLP-1R and GIPR did not significantly affect the basal activity of

either receptor. Taken together, these data demonstrate that at

comparable expression levels, GIPR displays significantly higher

levels of ligand-independent activity than GLP-1R, which in

contrast, is relatively silent. This finding is in agreement with

previous work that also demonstrated that GIPR has a consider-

able degree of basal activity [25]; however, these studies did not

compare this activity to that of GLP-1R when expressed at similar

levels. It should be noted that, based on quantitative RT-PCR,

GLP-1R is expressed at 10 times the level of GIPR in pancreatic

islets [26]. Nonetheless, a glutamic acid to glutamine substitution

at position 354 in GIPR’s 6th transmembrane domain results in

lowered basal activity. Subjects homozygous for the E354Q

polymorphism were found to have reduced fasting and post oral

glucose tolerance test serum C-peptide concentration (an indicator

Figure 6. Light microscopy (37uC) shows that CFP-labelled arrestin3 remains at the plasma membrane 30 min after stimulation with
GLP-1. Representative image of HEK-293 cells transiently transfected with GLP-1R and Arr3-CFP. A total of 1 mM of GLP-1 was added immediately
after acquisition of the first image; scale bar, 10 mm.
doi:10.1371/journal.pone.0106890.g006
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of insulin secretion) [27], suggesting that GIPR’s constitutive

activity may play a role in glucose homeostasis. More recently, the

same GIPR polymorphism has been shown to be associated with

reduced bone mineral density and increased fracture risk,

suggesting a role for GIPR’s basal activity in osteoblast function

[28].

The traditional role for GRKs and arrestins is to mediate the

homologous desensitisation and internalisation of GPCRs, as well

as activation of tyrosine kinase signalling pathways. Arr2 has been

shown to mediate GLP-1 signalling in cultured pancreatic b-cells.
Knockdown of Arr2 by RNAi reduced GLP-1-stimulated cAMP

levels and impaired GLP-1-stimulated insulin secretion [12].

Interestingly, Arr2 knockdown did not affect GLP-1R desensiti-

sation or internalisation. Arr3-knockout mice displayed impaired

glucose tolerance and insulin secretion; however, GLP-1 amplifi-

cation of insulin secretion was not affected [29]. In contrast, very

little is known regarding the interaction between GIPR and either

GRKs or arrestins. We hypothesised that given GIPR’s high level

of basal activity observed in the luciferase assay, GIPR may

interact with arrestin in a ligand-independent manner.

Several methods were employed to compare the ability of GLP-

1R and GIPR to interact with Arr3. Initially, we used a

commercially available enzyme fragment complementation assay

(PathHunter, DiscoveRx) to investigate arrestin recruitment to

GLP1-R and GIPR. GLP-1 and GIP stimulated Arr3 recruitment

to their respective receptors with comparable potency (Figure 3A).

However, the signal window for GIPR was substantially smaller

than for GLP-1R, and as a result, maximum arrestin binding was

also significantly lower (Figure 3B). Due to the nature of this assay,

we were unable to compare or manipulate variables such as the

relative expression of arrestin and/or receptors; therefore,

alternative methods were employed.

Translocation of YFP-labelled Arr3 to agonist-stimulated GLP-

1R and GIPR expressed in HEK-293 cells was monitored using

confocal microscopy. We found that GLP-1 stimulated a robust

translocation of arrestin to the plasma membrane (Figure 4A),

which is in agreement with the work of Jorgensen et al. [30], who
used bioluminescence resonance energy transfer (BRET) to

investigate GLP-1R/Arr3 interactions, and in contradiction to

the work of Syme et al, who used essentially the same experimental

design as we did but could not demonstrate recruitment of Arr3 to

agonist-stimulated GLP-1R [31]. Others have also shown the

GLP-1R interacts with both Arr2 and Arr3 [30,32]. However,

GLP-1R endocytosis appears to be an arrestin-independent

process, which is in agreement with Syme et al., who reported a

role for caveolin-1 in this process. In contrast to GLP-1R, arrestin

recruitment to agonist-stimulated GIPR was only faintly detectable

after 15 minutes of stimulation (Figure 2B). There is a lack of

information in the literature regarding the interaction between

GIPR and arrestins. Co-expression of Arr2 with GIPR impaired

GIP-mediated cAMP production and insulin release in HEK-293

cells and betaTC3 cells, respectively, but no direct interaction

between GIPR and Arr2 has been demonstrated [33]. Recent

studies using BRET have shown that GLP-1 can induce

heterodimerisation of GLP-1R and GIPR, whereas treatment

with GIP reversed dimer formation. Intriguingly, co-expression of

GLP-1R and GIPR reduced GLP-1-stimulated arrestin recruit-

ment to GLP-1R. This result suggests that GIPR can act as a

negative regulator of arrestin binding to GLP-1R and is consistent

with our data that show that GIPR poorly recruits arrestin [32].

Using single cell FRET measurements, we investigated the

kinetics of GRK2 and Arr3 recruitment to agonist-stimulated

GLP-1R and GIPR (Figure 5A and B). GLP-1 stimulated GRK2

recruitment to GLP-1R with faster kinetics than Arr3

(k = 0.040 s21 and k= 0.017 s21, respectively). Previously, studies

using BRET to investigate the kinetics of GRK2 and Arr3

interaction with GLP-1R produced similar results, with a faster

time course being observed for GRK2 than Arr3 [34]. The

authors propose a model whereby Arr3 competes with GRK2 for

interaction with the phosphorylated receptor. Although our data

are consistent with this model, we observed that Arr3 was

recruited to GLP-1R in one phase as opposed to two phases as

observed by Jorgensen et al. It is possible that this difference is due
to the different assays used to monitor the time course of GLP-1R/

Arr3 interaction. Single-cell FRET allows for greater temporal

resolution than BRET, which also measures interactions in cell

populations as opposed to single cells. The two phases are

explained as phosphorylation-independent and -dependent ar-

restin recruitment. We did not detect an initial phosphorylation-

independent phase for Arr3 recruitment to GLP-1R. A two-phase

arrestin association has previously been observed for the b2-
adrenergic receptor, and an alternative explanation is that the first

phase is due to arrestin recruitment to pre-phosphorylated

receptors [10]. The time course in our experiments was

comparable to arrestin recruitment to the parathyroid receptor,

which also displays a one-phase association [35]. Again, in contrast

to GLP-1R and in agreement with our previous experiments,

GIPR stimulation did not result in either GRK2 or arrestin

recruitment. GRK2 overexpression has been shown to increase

agonist-mediated GIPR phosphorylation; however, this has not

been demonstrated to be a direct effect [33]. To our knowledge, a

direct interaction between GIPR and GRK2 has only been

demonstrated through immunoprecipitation assays in adipocytes

[36]. This difference may be due to the cell type or the method

used to assess GIPR/GRK2 interaction. It is also possible that the

addition of the YFP molecule to the C-terminus of GIPR prevents

the receptor from interacting with GRK2 or Arr3. This possibility

is unlikely, however, as YFP-labelled GLP-1R was able to interact

with both GRK2 and Arr3, and the receptors share similar

sequences.

GPCRs can be classified by their interactions with arrestin.

Class A receptors interact with arrestin transiently at the plasma

membrane after agonist stimulation, whereas class B receptors co-

internalise with arrestin [37]. Although GLP-1R and Arr3

remained associated after agonist washout in the FRET assay, a

characteristic of Class B receptors, our experiments using light

microscopy showed that Arr3 remained at the plasma membrane

even after prolonged stimulation of GLP-1R at 37uC (Figure 4).

These data suggest that GLP1-R is a class A receptor in terms of

arrestin binding. The failure of agonist washout to dissociate GLP-

1R from Arr3 is likely to relate to the off-rate of GLP-1 from GLP-

1R.

In conclusion, we demonstrate that at comparable levels of

expression, GIPR has significantly higher levels of basal activity

than GLP-1R. Furthermore, whereas agonist stimulation of GLP-

1R results in robust recruitment of GRK2 and Arr3, the same is

not true for GIPR. We also demonstrate that GLP-1R behaves like

a class A receptor in terms of arrestin binding. As these two

receptors share considerable sequence homology, especially in

their C-terminal regions, future experiments should investigate the

molecular determinants for this differential recruitment of GRK2

and Arr3. The interaction between GLP-1R and GIPR and other

members of the GRK and arrestin family should also be

investigated.
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