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Abstract

The growth of laminar boundary-layer streaks caused by free-stream turbulence
encountering a flat plate in zero-pressure-gradient conditions is investigated experi-
mentally in a wind tunnel and numerically by solving the unsteady boundary-region
equations. A comparative discussion amongst the most relevant theoretical frame-
works, such as the Goldstein theory, the Taylor-Stewartson theory, the optimal-
growth theory and the Orr-Sommerfeld theory, is first presented and parallels and
complimentary aspects of the theories are pointed out to justify the use of the
Goldstein theory in our study. The statistical properties of the positive and negative
fluctuations of the laminar streaks are discussed, showing how the total time average
of the boundary-layer fluctuations masks the true character of the disturbance flow
and revealing that the maximum values and the root-mean-square of positive and
negative fluctuations grow downstream at the same rate. The downstream growth
rate of the low-frequency disturbances and the decay rate of the high-frequency
disturbances are also computed for the first time. The numerical solutions of the un-
steady boundary-region equations are compared successfully with the streak profiles
measured in the wind tunnel and with direct numerical simulation results available
in the literature.

∗ Corresponding author

Preprint submitted to Elsevier Science May 11, 2016



Key words: Boundary layers, transition to turbulence

1 Introduction

The topic of boundary-layer transition to turbulence is of extreme importance
in the aeronautical, turbomachinery, and maritime industries because of the
much higher wall friction drag exerted by the flow in the turbulent regime than
in the laminar regime. It is therefore paramount for scientists and engineers
to understand the physical causes of such a process, to predict its occurrence,
and to control it to delay the breakdown of the flow to turbulence.

1.1 The laminar streaks and bypass transition

Boundary-layer transition in the presence of a low level of free-stream turbu-
lence is widely acknowledged to be initiated by exponentially growing Tollmien-
Schlichting (TS) waves [49], but for free-stream turbulence levels which are
comparable to and larger than about 1%, the laminar-flow breakdown ap-
pears to be linked to streamwise-elongated regions of high and low streamwise
velocity which dominate the boundary-layer core. These structures have been
termed laminar streaks, breathing modes, or Klebanoff modes [22, 21]. The
streaks are believed to be responsible for bypass transition in which the role
of unstable TS waves, as predicted by the linear stability theory, is likely to
be marginal or even irrelevant [33]. The breakdown of the Klebanoff modes is
caused by secondary instability and occurs abruptly along the flat plate. In
most industrial flow scenarios, free-stream flows impinging on rigid surfaces
are common and bypass transition is the norm. This has spurred a growing
interest in the Klebanoff modes over the last twenty years.

A complete understanding of the bypass transition has not been attained, de-
spite research efforts based on experiments [33, 11, 16, 17, 37, 39], numerical
simulations [20, 24, 38], and theoretical analysis [26] (hereafter referred to
LWG99) [28, 60, 44, 13]. The boundary layer has been revealed to act as a
filter for the full-spectrum free-stream vortical disturbances, thereby allowing
low frequency disturbances to penetrate into the boundary-layer core and to
amplify significantly, whilst preventing high-frequency fluctuations from grow-
ing downstream. The high-frequency disturbances therefore remain confined
in the outer portion of the shear layer. As the breakdown mechanism is still
unclear, prediction of transition subjected to free-stream turbulence for aero-
nautical and turbomachinery applications relies heavily on empirical models
based mainly on experimental data [35, 34, 1].

1.2 Theoretical frameworks for the laminar streaks

A mathematical description of the Klebanoff modes has been developed by
Goldstein and co-workers (LWG99), [60, 58, 57, 13]. The Goldstein theory ac-
counts for the presence of free-stream disturbances that are responsible for the
generation and downstream development of the streaks. It is remarked that the

2



correct description of the free-stream vortical disturbances is essential for cap-
turing the streak dynamics. The key physical mechanism for the formation of
the Klebanoff modes is revealed: there is an interaction between the boundary-
layer disturbances and the free-stream fluctuations and the free-stream flow is
continuously affected by the downstream growth of the boundary layer. Only
the wall-normal and spanwise velocity components of the free-stream distur-
bances are relevant for the formation and growth of large streamwise-velocity
streaks in the boundary-layer core, while the free-stream streamwise velocity
component plays a secondary role. Ricco [42] (hereafter referred to as R9), by
adopting LWG99’s asymptotic approach, showed that a balance between the
free-stream pressure fluctuations and the streamwise velocity fluctuations is
relevant for the formation of the streak fluctuations in the outer part of the
boundary layer. A realistic streak profile along the whole wall-normal extent of
the boundary layer was obtained by R9 and good agreement with the experi-
mental data by Westin et al. [56] was shown. Ricco & Dilib [43] employed R9’s
approach to show that the peak of the streak amplitude in the boundary-layer
core may be completely suppressed if intense wall transpiration is applied
and Ricco and co-authors [47, 46, 45] have studied the Klebanoff modes in
compressible boundary layers.

Other theories have been put forward to describe the laminar streaks. The
three most relevant ones are discussed below.

− The Taylor-Stewartson theory
The first attempt to model the wall-normal profile of the streaks is due to
Taylor [52]. He recognized that the streak profile can be described in terms
of a small spanwise modulation of the boundary layer thickness. Stewart-
son [50] translated Taylor’s original idea in mathematical form by a simple
perturbation of the boundary-layer thickness and showed that the root-
mean-square (rms) profile of the streamwise velocity fluctuations agrees well
with u = ηF ′′ (where F (η) = ψ/

√
2νU∞x is the Blasius function [5], ψ is

the boundary-layer streamfunction, ν is the kinematic viscosity, U∞ is the
free-stream velocity, x is the streamwise coordinate, η = y/δ is the scaled
wall-normal coordinate and δ is the laminar boundary-layer thickness).

− The optimal-growth theory
This approach was first developed by Luchini [28] and Andersson et al. [2].
The objective of the analysis is to find the initial velocity profile near the
leading edge that maximizes a specified cost function, which may represent
the energy of the perturbation within the entire viscous layer or at a specified
downstream distance. When the peak disturbance is normalized, the wall-
normal profile agrees well with the Taylor-Stewartson mode and with the
experimental rms profiles of the streamwise velocity in the boundary-layer
core [56, 33], although no comparison on the downstream evolution has been
carried out.

The three-dimensional boundary-layer equations (which coincide with
LWG99’s boundary-region equations) describe the flow. The crucial differ-
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ence with the Goldstein theory is the specification of the initial and free-
stream boundary conditions. In the optimal-growth theory, the free-stream
disturbances, which cause the formation and downstream growth of the
streaks, are not included in the formulation. Homogeneous outer boundary
conditions are imposed on the streamwise and spanwise velocity compo-
nents, i.e., the boundary-layer disturbances vanish as the boundary-layer
wall-normal coordinate approaches the free stream. As a consequence, the
initial conditions in the general three-dimensional case cannot be found be-
fore starting the numerical integration. A special case is represented by dis-
turbances with spanwise wavelengths which are much larger the boundary-
layer thickness. For this case the downstream growth rate is x0.213 [27].

Goldstein’s asymptotic analysis instead allows the mathematically precise
and unambiguous specification of both the initial conditions, which describe
the flow in the proximity of the leading edge of the plate from which the
downstream evolution of the streaks commences, and the outer (free-stream)
boundary conditions, which characterize the flow in the outer portion of the
boundary layer and its interplay with the free-stream disturbance flow. The
correct mathematical representation of both conditions is crucial because
they uniquely determine the streak dynamics. The initial conditions are
unequivocally linked with the outer flow through the matched asymptotic
expansion approach. The key point here is that their mathematical relation
synthesizes the physical interaction between the oncoming free-stream dis-
turbance flow and the boundary layer near the leading edge. The initial and
outer flow are therefore fully consistent and their mathematical relation-
ship is found by expanding the solution of the outer flow through a series
(LWG99). This series in turn leads to a regular power-series expansion of the
initial flow near the leading edge. An asymptotic composite solution for the
wall-normal streak profile at small downstream distances is then obtained.
This profile is used to initiate the downstream computation of the parabolic
boundary-region equations.

In the optimal-growth theory, the mathematical relationship between the
boundary-layer perturbation flow and the free-stream flow is not established.
The initial conditions are therefore unknown a priori and thus cannot be
specified as an input to the calculations. The initial condition is computed
as an output through the optimization procedure, together with the streak
flow field downstream. As elucidated by Wundrow & Goldstein [60], the
effectiveness of the optimal growth theory to model the early stage of bypass
transition is thus questioned.

As the oncoming free-stream perturbation flow is neglected in the frame-
work, the “optimal” flow is obviously not dependent on the free-stream flow
characteristics (such as wavelength, frequency, energy spectrum) as it is in
experiments and in the Goldstein theory. Instead, the final solution (initial
and downstream flows) depends on the arbitrary choices of the cost func-
tion to be maximized (velocity components to be included, kernel), on the
initial location, and on the final location of the domain inside which the cost
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function is maximized. Through the optimal-growth theory, the character-
istics of the free-stream flow, such as its wavelength, frequency, intensity,
and spectrum, cannot be linked with the downstream growth of the streaks,
with the location of their secondary instability and with the dynamics of
bypass transition.

Furthermore, the optimal-growth theory predicts the streaks to be steady,
while experimental studies have shown that the Klebanoff modes are un-
steady and their breakdown occurs intermittently in time. LWG99’s initial
condition analysis shows that the unsteadiness can be neglected only in the
very proximity of the leading edge. The importance of the unsteadiness has
been confirmed by Wu & Choudhari [57].

The theoretical and numerical work by Higuera & Vega [18] showed that
the spanwise wavenumber can be eliminated from Luchini [28]’s and Ander-
sson et al. [2]’s equations, thereby proving that the optimization technique
employed to search for the optimal mode is not necessary. As Higuera &
Vega considered the steady problem only and did not take into account
the distributed free-stream forcing, their scaled solution is the analogue
of the asymptotic quasi-steady solution found by LWG99 (bottom of page
183 in LWG99) for the case of vanishing free-stream fluctuations. Further
investigations of the steady boundary-layer streaks without free-stream per-
turbations have been carried by Martin & Martel [31, 32].

− The Orr-Sommerfeld theory
The continuous spectra of the Orr-Sommerfeld and Squire equations has
been used extensively to describe the small-amplitude streaks generated
by free-stream turbulence. Differently from the Goldstein theory and the
optimal-growth theory (for which the equations of motions are parabolic
and account for the downstream flow evolution), the Orr-Sommerfeld theory
is local because the disturbance flow only depends on the mean boundary-
layer flow at the specified downstream location and not on the evolution of
the flow from the proximity of the leading edge. This model has also been
employed widely to synthesize the inflow in DNS of bypass transition [20, 6].

The use of the Orr-Sommerfeld theory to generate the inflow condition
for DNS simulations has recently been proved to be invalid by Dong & Wu
[10]. Non-parallel terms are not retained in the formulation as the flow is
assumed to be parallel. Dong and Wu showed, amongst other things, that
neglecting non-parallel terms causes:
i) a spurious “Fourier-modes entanglement”, that is, a physically unrealis-

tic interaction between free-stream modes which prevents the specifica-
tion of all possible free-stream disturbances.

ii) a free-stream flow which is a result of the boundary-layer computa-
tion and is not imposed a priori as the oncoming free-stream flow, for
example as it happens in a wind tunnel where the free-stream flow
is produced by an upstream turbulence-generating grid. The crucial
point here is that, in a laboratory, the oncoming free-stream distur-
bance flow may obviously exist even if the flat plate does not, while the
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Orr-Sommerfeld theory leads to the absurd result that the free-stream
flow is present only if the boundary-layer flow is modelled.

iii) unrealistic high magnitudes of the free-stream perturbation velocity,
which have been arbitrarily “smoothed” by an artificial function to lower
values when the Orr-Sommerfeld and Squire modes have been used as
inflow for DNS (refer to page 174 of Brandt et al. [6]).

The mathematical representation of the free-stream disturbance flow through
the Orr-Sommerfeld and Squire spectra is therefore called into question by
Dong & Wu [10] as this spectrum is a by-product of the linear operator and
has no physical meaning.

It is curious to note that the Orr-Sommerfeld theory and the optimal-growth
theory are somewhat complimentary as the most distinguished features of one
theory are absent in the other theory. The optimal-growth theory accounts
for the initial conditions, nonlocality, nonparallel effects of the streaks, but
does not model free-stream vortical disturbances and unsteadiness. Reversely,
the Orr-Sommerfeld theory does model the effect of free-stream turbulence
and unsteadiness, but neglects nonparallel and nonlocal effects, and thus the
downstream evolution of the perturbation and the influence of the flow near
the leading edge. The Goldstein theory instead includes all these features,
which are all essential to characterize the streak dynamics.

There is a further parallel between the optimal-growth theory and the Orr-
Sommerfeld theory. Neither the initial conditions in the optimal-growth theory
nor the free-stream flow in the Orr-Sommerfeld theory are inputs to the com-
putation: they are results in both theories. On the contrary, the initial and
free-stream conditions are inputs in the Goldstein theory. Table 1 schemati-
cally summarizes the main features of the four theories discussed.

1.3 Objectives and structure of the paper

The objectives of the present study are discussed as follows.

• Evolution of positive and negative fluctuations
A statistical characterization of the positive and negative (with respect to
the mean) fluctuations of the laminar streaks is still lacking. To address
this point, accurate wind-tunnel measurements have been performed in a
flat-plate laminar boundary layer in the presence of a medium level of free-
stream turbulence. Another objective is to study how the most energetic
instantaneous motions evolve downstream and how their characteristics re-
late to time-averaged statistics.

• Downstream growth of streaks at different frequencies
The second objective is to investigate how streaky structures corresponding
to different frequencies grow or decay downstream.

• Assessment of the theory
Our wind-tunnel data and the DNS results by Wu & Moin [59] are used to
assess the theoretical frameworks by LWG99 and R9. The objective is to
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Theory Locality Initial conditions Free-stream conditions Unsteadiness Nonparallel

Goldstein theory (LWG99,[57],R9) Non-local Matched asymp. expan. Matched asymp. expan. Yes Yes

Taylor-Stewartson theory [52, 50] Local Absent Absent No Yes

Optimal-growth theory [28, 2] Non-local Optimal initial Absent No Yes

Orr-Sommerfeld theory [20, 6] Local Absent Fourier-modes entangl. Yes No
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Figure 1. Wind-tunnel test section.

compare the profiles obtained through our boundary-region solutions with
the measured wall-normal profiles of the streamwise velocity at a specified
frequency and with the DNS profiles. R9 compared his numerical results
with the data by Westin et al. [56], but further comparison is needed to
confirm the validity of the theoretical approach.

Section §2 describes the wind-tunnel facility and the experimental procedures,
while the mathematical formulation is presented in §3. The experimental re-
sults are discussed in §4. Section §5 contains the comparisons between our
boundary-region results and our experimental data and the DNS data by Wu
& Moin [59]. Section §6 summarizes the results.

2 Experimental procedures

In this section, the wind tunnel apparatus, the experimental procedures, and
the characteristics of the free-stream flow are presented. More details of the
experimental procedures can be found in the thesis by Brighenti [7].

2.1 Wind-tunnel apparatus and hot-wire anemometry measurements

A zero-pressure-gradient laminar boundary layer flow with a mean free-stream
velocity U∗

∞
= 3.1±0.03 m/s has been investigated experimentally by a single

hot-wire anemometer in a non-return wind tunnel at the Stokes Research
Institute at the University of Limerick. The superscript ∗ hereinafter indicates
dimensional quantities. The experiments have been conducted at a pressure of
99430 Pa and at a temperature of 21.2◦C, maintained constant to within 0.3◦C.
The kinematic viscosity of air at these conditions was ν∗=1.5·10−5 m2/s.

Figure 1 shows a schematic diagram of the experimental apparatus. The free-
stream flow was induced by a 70kW motor-driven centrifugal fan at the inlet of
the wind tunnel. The test surface was a flat 10-mm-thick aluminium plate and
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the test section measured 1 m in length and 0.3 m in width and height. The
leading edge was semi-cylindrical with a radius of about 1 mm. As shown in
figure 1, the top surface of the plate was parallel to the mean-flow direction and
its thickness increased linearly from 2 mm at the leading edge to 10 mm at a
downstream location of 100 mm. The thickness remained constant downstream
of this location. References [55] and [7] give further details on the apparatus
and the measurements along planes at different spanwise locations, which show
that the mean flow can be considered two-dimensional. The downstream part
of the plate was a trailing-edge flap, which allowed positioning the stagnation
line at the leading edge and avoiding separation. Walsh et al. [55] carried
out liquid-crystal shear-stress measurements and china clay visualization to
demonstrate that a 45◦ flap angle helped guarantee the attached flow in the
proximity of the leading edge. As also demonstrated by Brighenti [7] on his
pages 35-36, the choice of this angle also ensured that zero-pressure-gradient
conditions were achieved in the measurement region and that the laminar
boundary layer showed excellent agreement with the Blasius laminar solution.

The streamwise mean and fluctuating velocities were measured using an A.A.
Lab Systems AN-1005 constant temperature hot-wire anemometer operated at
an overheat temperature of 250◦C. A Dantec 55P14 single right-angle probe,
connected to a Digiplan Pk 3 stepper motor drive, was used. A traversing
system which allowed increments of 10 µm was employed for measurements
along the test section and normal to the plate. The hot-wire calibration was
carried out in the range 0-20 m/s by fitting the data using King’s law. This
range exceeds the one of the measurements presented herein because the latter
are part of a broader study on boundary-layer transition, documented in the
thesis by Brighenti [7]. The distance between the surface and the first wall-
normal position y was estimated by extrapolation of the Blasius solution pro-
file, after discarding points strongly affected by heat conduction through the
wall. Hot-wire measurements were taken for a number of streamwise positions
with sampling periods of 20 s. This duration corresponded to a minimum of
about 10 independent realizations, estimated through the representative low-
est frequency measured, i.e., about 0.5 Hz. The sample frequency was 10 kHz,
low-pass filtered at 3.8 kHz.

The data presented are for Reynolds numbers up to Reθ = U∗

∞
θ∗/ν∗ =161,

where θ∗ is the momentum thickness. Although we have not conducted mea-
surements in the transition region and therefore we have not computed the
exact location of the beginning of the transition process, our last measurement
location was upstream of predicted transition locations, i.e., Reθ,tr =169.5, ob-
tained through the widely used correlation formula Reθ,tr = 400Tu(%)−5/8 [34]
and Reθ,tr =188.5, found by use of Reθ,tr = 460Tu(%)−0.65 [19].
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Figure 2. Decay of free-stream turbulence intensity Tu(%) (left) and growth of in-
tegral length scale Λ∗ (right) for grid generated turbulence in log-log scale. The
straight lines are the algebraic expressions (1) and (3) for Tu(%) and Λ∗, respec-
tively. The grid is 280 mm upstream of the leading edge of the plate and the first
data point is at the leading edge. Inset in left graph: u∗rms scaled as in equation (2),
i.e., U and X are the left- and the right-hand-side in (2), respectively.

2.2 Free-stream turbulence

The free-stream turbulence was generated by the uniform flow passing through
a perforated plate with square openings and positioned perpendicularly to the
oncoming flow between the inlet contraction and the test section. The bar
thickness was t∗b=2.6 mm and the distance between adjacent openings was
also 2.6 mm along both the wall-normal and the spanwise directions. The mesh
width M∗, i.e., the length of each side of the square opening, was 22 mm. The
grid solidity, measured as the percentage of solid area with respect to the total
grid area, was 23%, i.e., below 50% in order to avoid flow instabilities due to
jet coalescence [14, 48]. The leading edge of the plate was located at 280 mm,
i.e., at about 13M∗ downstream of the grid, a sufficient distance to avoid the
intense anisotropic character of the turbulence in the proximity of the grid
[48].

The free-stream turbulence intensity was Tu(%) = 100u∗rms/U
∗

∞
=3.95% at

the leading edge, where u∗rms indicates the rms of the streamwise velocity
fluctuations,

u∗rms =

√
[u′∗(t∗)]2,

where u′∗(t∗) = u∗(t∗)− u∗(t∗), u∗(t∗) indicates the instantaneous streamwise
velocity, and the symbol · denotes the time average. The turbulence decay can
be represented through the following algebraic expression,

Tu(%) = Ct(x∗ − x∗o,t)
−n, (1)

where x∗ is the streamwise distance from the leading edge and x∗o,t is the virtual
streamwise position of the grid for the turbulence intensity, which accounts
for the fact that the origin of the decaying turbulence may not agree with the
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actual location of the grid. Figure 2 (left) shows the turbulence intensity data.
The method of least squares gives Ct = 53, n = 0.51 and x∗o,t = −152 mm, i.e.,
x∗o,t/M

∗ = −6.9. The value of the virtual origin was found to be smaller than
the actual origin also by Fransson et al. [11] and is typically in the range of
0−20x∗o,t/M

∗ upstream of the leading edge [36]. The value for n matches well
n = 0.5 for isotropic turbulence, found by Tennekes & Lumley [53]. Data for
n reported in the literature are in the range 0.5 − 0.665 [9, 36, 61, 54]. The
accurate data measured by Fransson et al. [11] showed very good agreement
with the analytical curve when n = 0.6 was used. The scatter in the values
for n has generally been attributed to the dependence of grid turbulence on
the initial conditions [12, 23].

The inset of figure 2 (left) shows the same u∗rms data scaled as in the seminal
paper by Comte-Bellot & Corrsin [9], i.e.,

(
U∗

∞

u∗rms

)2

= A
(

x∗

M∗ + t∗b
− x∗1
M∗ + t∗b

)nc

, (2)

where A = 68, x∗1/(M
∗ + t∗b) = 4, and nc = 1.1 are found through the method

of least squares. These values are within the ranges found in the literature,
i.e., A = 13− 71, x∗1/(M

∗ + t∗b) = 1− 9, nc = 1− 1.39 (refer to tables on page
666 in Comte-Bellot & Corrsin [9]).

The streamwise integral time scale of the free-stream turbulence was computed
through the autocorrelation of the time signal u∗(t∗) of the streamwise velocity
fluctuations as follows

Λ∗

t =

∫
∞

0

u′∗(t∗)u′∗(t∗ + τ ∗)

u∗2rms

dτ ∗. (3)

Taylor’s hypothesis of frozen turbulence [51] was employed to obtain the in-
tegral length scale from the integral time scale as follows: Λ∗ = Λ∗

tU
∗

∞
(refer

to Pope [40] on page 224). Figure 2 (right) shows the integral length scale
data. The integral scale was Λ∗ = 7.5 mm at the leading edge of the plate
and increased downstream as the turbulence decayed, as widely reported in
the literature [11]. The following analytical expression may be employed

Λ∗(mm) = Cl(x∗ − x∗o,l)
m.

The method of least squares gives Cl = 0.31, m = 0.62 and x∗o,l = −173 mm
(x∗o,l/M

∗ = −7.9) for the virtual streamwise position of the grid for the integral
length scale, which is close to the value of the virtual origin for the turbulence
intensity. The value for m is comparable with m = 0.5 proposed by Laws &
Livesey [25].
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3 Mathematical formulation

The mathematical framework by LWG99 and R9 is summarized in this section.

3.1 Free-stream flow and scaling

As in the wind tunnel experiments, an incompressible flow of uniform velocity
U∗

∞
past a flat plate is considered. Superimposed on U∗

∞
are statistically-

stationary vortical fluctuations of the gust type, i.e., they are passively con-
vected by the mean flow. The flow is described by Cartesian coordinates, i.e.,
by the vector x = x̂i+ yĵ+ zk̂, where x, y and z define the streamwise, wall-
normal, and spanwise directions, respectively. Lengths are scaled by λ∗z, the
characteristic spanwise wavelength of the gust, the velocities are scaled by U∗

∞
,

the pressure by ρ∗U∗2
∞

, where ρ∗ is the density, and the time by λ∗z/U
∗

∞
.

The free-stream vorticity fluctuations are modelled as a superposition of sinu-
soidal disturbances:

u− î = ǫu∞(x− t, y, z) = ǫû∞ei(k·x−kxt) + c.c., (4)

where û∞={û∞x , û∞y , û∞z }, ǫ ≪ 1 indicates the gust magnitude, and c.c. de-
notes the complex conjugate. The problem is formulated for a single dom-
inant Fourier component of the free-stream turbulence. Low-frequency (i.e.,
long-wavelength) disturbances with kx ≪ 1 are considered since these are the
ones that can penetrate the most into the boundary layer. An asymptotically
large Reynolds number Rλ = U∗

∞
λ∗z/ν

∗ ≫ 1 is defined and the streamwise
coordinate is scaled as x = kxx = O(1).

3.2 Mathematical description of the laminar streaks

For the laminar boundary-layer flow over a flat plate, a similarity solution
exists with the similarity variable defined as

η = y

√
Rλ

2x
= y∗

√
U∗
∞

2ν∗x∗
. (5)

The mean flow solution is expressed as

U = F ′(η), V = (2xRλ)
−1/2 (ηF ′ − F ) , (6)

where the prime indicates differentiation with respect to η, and U and V
represent the mean Blasius streamwise and wall-normal velocity components.
It follows from the x-momentum equation that F is governed by

F ′′′ + FF ′′ = 0, (7)

with boundary conditions F (0) = F ′(0) = 0 and F ′ → 1 as η → ∞. The
solution in the boundary layer is expressed as:

{u, v, w, p} = {U, V, 0,−1/2}
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u0(x, η),

√
2xkx
Rλ

v0(x, η), w0(x, η), p0(x, η)



 ei(kzz−kxt) + c.c.+ . . . (8)

The velocity and pressure disturbances are expressed as [15]

{u0, v0} = C(0)
{
u(0), v(0)

}
+ (ikz/kx)C{u, v},

w0 = −(ikx/kz)C
(0)w(0) + Cw,

p0 = (kx/Rλ)C
(0)p(0) + iκ (kx/Rλ)

1/2Cp,





(9)

where

κ =
kz√
kxRλ

=
1

λ∗z

√
2πν∗λ∗x
U∗
∞

= O(1), (10)

C(0) = û∞x +
ikxû

∞

y√
k2x + k2z

= O(1), C = û∞z +
ikzû

∞

y√
k2x + k2z

= O(1). (11)

The terms proportional to the components {u, v, w, p} have been studied by
LWG99 and represent the dominant part of the vorticity and pressure fluctua-
tions in the core of the boundary layer. The terms proportional to the compo-
nents {u(0), v(0), w(0), p(0)} indicate the second-order part in the boundary-layer
core and the leading-order part of the Klebanoff modes at the outer edge of
the boundary layer. They have been studied by R9. Both {u(0), v(0), w(0), p(0)}
and {u, v, w, p} satisfy the linearized unsteady boundary-region (LUBR) equa-
tions, which represent the asymptotic limit of the Navier-Stokes equations for
disturbances with streamwise wavelength which is long compared with both
the boundary-layer thickness and the spanwise wavelength. The condition for
linearization is ǫRλ ≪ 1. The LUBR equations are given in LWG99 on page
180 and for brevity are not repeated here. The free-stream boundary condi-
tions are given by expressions (5.28)-(5.31) on page 183 in LWG99 and by
expressions (2.13) and (2.21)-(2.23) on pages 276 and 277 in R9. The initial
conditions are given by expressions (5.24)-(5.27) on page 182 in LWG99 and
by expressions (2.30) on page 279 in R9 (refer also to Appendices A and B
in R9). The no-slip condition is used at the wall for the velocity components.
The numerical procedures are described in R9 on page 283 and further details
on the physics of the formation of the Klebanoff modes, besides the ones in
LWG99 and R9, are found in Ricco [41].

4 Experimental results

4.1 Time-averaged statistics of streaks

As predicted by the Goldstein theory (LWG99), the instantaneous time traces
(not shown) indicate that the largest velocity fluctuations are measured in the
boundary-layer core. The energy spectra at different wall-normal positions
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reveal that in the boundary-layer core the low-frequency structures, i.e., the
laminar streaks, are amplified and the high-frequency ones are damped with
respect to the free stream. This phenomenon of the boundary layer behaving
as a filter to the high-frequency free-stream fluctuations was previously termed
shear sheltering [20].

The instantaneous time trace u∗(t∗) is divided in positive and negative fluctu-
ations with respect to the local time-averaged value, u∗. The same definition
has been employed by Asai et al. [3]. The positive and negative streaks are
therefore defined as follows,

u∗pos : u
′∗(t∗) > u∗(t∗)

u∗neg : u
′∗(t∗) < u∗(t∗).





(12)

The rms, skewness S, and third moment T are calculated from the full velocity
signal, and from the positive and negative streaks separately (95% percentile
of the full signal is considered, as in [29]).

Figure 3 shows the statistics of the full signal of the streamwise velocity and of
the positive and negative streaks. Figure 3a) shows the rms of the scaled veloc-
ity. In agreement with previous studies [33], its maximum is at y∗/δ∗ =1.3-1.4,
where the boundary-layer thickness δ∗ is the wall-normal location where the
mean velocity is 0.99U∗

∞
. In the outer region, y∗/δ∗>1, the rms of the negative

streaks is larger than the one of the positive streaks. As the free stream is
approached, the rms values reach the same level. The maxima of the positive
and negative streak rms levels are located at different wall-normal positions.
This observation may explain the double maximum in the rms profiles found
in other experiments, i.e., the data shown in figure 9 on page 208 in [56].

The skewness of the signals, shown in figure 3b), gives a clear indication of the
boundary-layer locations at which the positive and negative streaks dominate.
While in figure 3a) it is not evident which of the two is more significant near
the wall, the skewness profiles distinctly show that the positive fluctuations
dominate for y∗/δ∗<1.

Another good measure of the positive and negative streaks is the third mo-
ments, shown in figure 3c). Close to the wall, the value is almost zero indicat-
ing that the fluctuation level in this high-shear region is low, despite the high
skew. The high skew is caused by the low rms level close to the wall. This
illustrates that the near-wall flow is mildly altered in terms of fluctuations by
the presence of free-stream turbulence, similar to that of the viscous sub-layer
of a turbulent boundary layer.

Figure 3d) presents the spectra of the positive (dashed lines) and negative
streaks (solid lines). Near the wall at y∗/δ∗ =1, the positive streaks contain
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Figure 3. Statistics of full signal, positive and negative fluctuations within the bound-
ary layer at x∗=192 mm (Reθ = 130). a) Rms; b) skewness; c) third moment; d)
energy spectra. The numbers in graph d) indicate y∗/δ∗.

slightly more energy than the negative ones for frequencies F=2πf ∗ν∗106/U∗2
∞

>10. At y∗/δ∗ =2, the negative streaks have higher energy content at the low
frequencies and lower energy at higher frequencies. Near the free stream, at
y∗/δ∗ =4.3, the energy within the positive and negative streaks is almost
identical, which is expected as the flow becomes more isotropic.

4.2 Maximum streamwise streak velocity

Although the time-averaged representation of the positive and negative streaks
provides insight into the flow physics, it is unlikely that this approach would
identify the details of the breakdown process. One hypothesis may be that the
only streaks leading to turbulent spots are those with the velocity perturbation
levels higher than a threshold as it has been shown that low-energy streaks
do not become turbulent spots [30]. Therefore, it is interesting to study the
largest values of velocity perturbations.

Figure 4 shows the percentage intensity as functions of the wall-normal coor-
dinate of the full time signal of the streamwise velocity fluctuations, and of
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ity perturbations within the boundary layer. Right: growth rates scaled by their
maximum values (the subscript s denotes this scaling).

the positive and negative streaks. Near the wall, positive streaks have higher
magnitudes than the negative streaks and the opposite is true near the free
stream. The peak positive fluctuations can be five times higher than the full-
signal average, while the peak of the negative fluctuations can exceed the
full-signal average by six-seven times. The peak of the negative fluctuations
can be double the peak of the positive fluctuations in the outer part of the
boundary layer.

Figure 5 (left) shows the downstream growth of the maximum values across
the boundary layer of the time-averaged urms, maximum positive and nega-
tive velocity perturbations, and the 99% and 1% levels as functions of Reθ.
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shows G, the ratio of growth rates of the maximum energy from x∗=40 mm to
x∗=275 mm, as a function of the frequency F .

The rms varies approximately linearly with Reθ (i.e., with the square root of
Rex=U

∗

∞
x∗/ν∗), in agreement with previous experiments [33, 11]. As shown

in figure 5 (right), where the data are normalized by the values at the last
measurement location, the positive and negative velocity perturbations also
scale linearly and have the same scaled growth rate of the rms for Reθ>90.

4.3 Frequency content of streaks

The interest in this section is on the wall-normal distribution of streak energy
at specified frequencies and on their downstream evolution. Figure 6 shows the
energy content at x∗=40 mm (Reθ = 60) (left) and at x∗=275 mm (Reθ = 161)
(right). As also shown in figure 3, the main contribution to urms is from the
lowest frequencies, F<150 (f ∗<15Hz), and this contribution increases as the
flow evolves downstream. The disparity in magnitude amplifies downstream as
disturbances with the highest frequency decay (F=610), penetrating less into
the boundary layer and showing no peak value within the boundary layer. The
high-frequency disturbances decay downstream much more in the boundary-
layer core than near the free stream. The peak energy is about y∗/δ∗ =1.4 for
F<300 at x∗=40 mm, while at x∗ = 275 mm the peak of lowest frequencies
moves closer to the wall at about y∗/δ∗ =1 and the peak of the higher fre-
quencies moves towards the free stream. For F=3, there is over an order of
magnitude energy increase near the wall, while for F=610, there is an order
of magnitude energy reduction near the wall. The inset of figure 6 shows G,
the ratio of maximum energy at x∗=40 mm and x∗=275 mm, as a function of
the frequency F . The maximum growth rate is inversely proportional to the
frequency.

Figure 7 (left) shows the downstream growth of the peak full-signal energy
values at different frequencies, and figure 7 (right) the same quantity for the
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Full signal Negative Positive

F A B A B A B

3 1.6E-10 2.8 5 E-11 2.8 4.5E-11 2.8

46 6E-9 2.0 1.1 E-9 2.1 3E-9 1.9

89 2.1E-7 1.2 2.5 E-8 1.4 1.06E-7 1.1

150 7.1E-6 0.35 3 E-6 0.8 3E-6 0.3

303 4.2E-5 -0.28 1.7 E-6 0.2 2.7E-5 -0.4

610 3.6E-4 -1.0 5.3 E-5 -0.8 8E-6 -0.4

Table 2
Exponential constants to represent the data of figure 7, with the form E = A(Re0.5x )B.

negative fluctuations (the energy of the positive fluctuations is not shown). For
F < 100, the disturbances again show an intense growth, while for F > 150,
the disturbance energy decays. The negative and positive streaks display the
same trends, although the negative streaks at high frequency, F= 610, drop
substantially faster than their positive counterpart.

These growth and decay rates are quantified in Table 2, which summarizes the
constants of the exponential curve fit to all the frequencies of figure 7 with an
equation of the form E = A(Re0.5x )B. The equation for the F = 46 results in a
nearly linear relationship between E and Rex, which is the same result found
in figure 5 (left) when the whole spectrum was considered through urms.

5 Validation of theoretical results against experimental and direct

numerical simulations results

The objective of this section is to compare the wall-normal profiles of the
streak streamwise velocity computed by solving the unsteady boundary region
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equations with our experimental profiles and with the rms profiles obtained by
the DNS carried out by Wu & Moin [59] (figure 29 on page 33 in their paper). In
[59], bypass transition to turbulence is induced in a flat-plate Blasius boundary
layer by periodically passing free-stream patches of turbulence.

As evident from the profiles at x∗=40 mm (Reθ = 60) in figure 6 and from the
DNS profiles shown by Wu & Moin, the energy content in the outer portion
of the boundary layer is comparable with the content in the boundary-layer
core. Therefore, it is essential to combine the LWG99 theory, which describes
the streaks in the boundary-layer core, and the R9 theory, which describes the
leading-order behaviour in the outer portion of the boundary layer.

As our experimental data and Wu & Moin’s data were obtained through the
free-stream forcing of full-spectrum turbulence while our numerical results
correspond to the evolution of a single Fourier mode, a few assumptions are
to be advanced for a meaningful comparison. The key objective is to find the
Fourier mode that is most responsible for the growth of the streaks inside the
boundary layer. Thanks to these assumptions, described in the following, the
number of free parameters is kept to a minimum.

5.1 Assumptions and estimation of flow quantities

• Small-amplitude fluctuations
It is assumed that the boundary-layer fluctuations can be treated as lin-
earized perturbations about the Blasius flow. For our experiments, this is
reasonable at x∗ = 40 mm (Reθ = 60) and x∗ = 275 mm (Reθ = 161)
because these locations are upstream of the beginning of the transition re-
gion, where nonlinear effects dominate. For the DNS profiles, it is clear that
nonlinear interactions are absent at the downstream locations of the profiles
in figure 29 of Wu & Moin’s paper [59] because their mean velocity profile
agrees with the Blasius profile (refer also to figure 8 on page 19 in [59]).

Under this assumption, each vortical structure corresponds to a Fourier
mode and is assumed to evolve independently. For our experiments, the
gust-convection relation, k∗x=2πf ∗/U∗

∞
=2π/λ∗x, is thus assumed to hold. For

the DNS results, the dominant streamwise length scale is the streamwise
distance between the free-stream passing patches of turbulence, which can
be estimated from figure 1 on page 10 in [59]. We assume that this distance
is of the same order as the streamwise wavelength of the representative
free-stream gust, λ∗x, which allows computing x = 2πx∗/λ∗x. We focus on
our experimental profiles for F = 3 and F = 303 at x∗ =40 mm (Reθ = 60)
and x∗ =275 mm (Reθ = 161), and on the DNS profiles in figure 29 in [59].

• Axial-symmetric turbulence in y − z plane
It is assumed that the free-stream turbulence is axial-symmetric, i.e., homo-
geneous and isotropic in y− z planes perpendicular to the mean flow [4, 8].
In our experiments, this assumption is reasonable because the free-stream
flow is generated by a rigid grid with equal spacing along the wall-normal
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and spanwise directions. Therefore, vortical structures which are symmet-
ric along these two directions are generated. In the DNS, the free-stream
turbulence is isotropic in y− z planes perpendicular to the mean flow. It is
thus assumed that λ∗y=λ

∗

z (κy=ky/
√
kxRλ=κ) and û∞y =û∞z , defined in (4).

• Estimation of spanwise wavelength
The spanwise wavelength λ∗z must also be estimated. For both the ex-

periments and the DNS, λ∗z is estimated through the decay rate of the free-
stream disturbances. According to linear theory, a free-stream gust modelled
by a single Fourier component decays exponentially along the streamwise
direction because of viscous effects along the wall-normal and spanwise di-
rections. The free-stream decay rate is exp

[
−(κ2 + κ2y)x

]
, which is evident

from the outer free-stream boundary conditions for the boundary-region
equations, given in (5.29) and (5.30) on page 183 in LWG and in (2.13) and
(2.21)-(2.23) on pages 277 and 278 in R9. By use of the definitions of the
scaled wavenumbers κ and κy and of the scaled streamwise coordinate x,
the spanwise wavelength is estimated as follows:

λ∗z = 2π

√
2ν∗∆x∗

U∗
∞
ln(ur)

,

where ur is the ratio of the free-stream perturbation velocities at the two
downstream locations between which the viscous decay is considered, i.e.,
x∗ =40 mm (Reθ = 60) and x∗ =275 mm (Reθ = 161) for our experiments
and Reθ = 100 and Reθ = 180 for the DNS. The only parameters estimated
through fitting the experimental data are therefore û∞x and û∞z .

Note that, although different values for û∞x and û∞z are estimated for
different frequencies in our experiments, the same values are used at the
different x locations as the change in the free stream along this direction is
accounted for by the exponential decay due to viscous effects.

For our experimental results, it is found that for F = 3, λ∗z = 24 mm, κ=0.72,
û∞x = 1 and û∞z = 0.35, and, for F = 303, λ∗z = 14 mm, κ=0.09, û∞x = 0.15 and
û∞z = 0.03. For the DNS results, it is found that κ=0.38, kx =0.08, û∞x = 15
and û∞z = 1.

5.2 Results

Figure 8 presents the comparison between the experimental profiles and the
numerical calculations of the boundary-region solution u0, given by the first
expression in (9). The overall agreement of the trends is good, which further
confirms the validity of the LWG99 and R9 theories. The match between
our calculations and the experimental data is better than in the comparison
between Westin et al. [56] and the boundary-region solutions, presented by
R9, especially in the outer layer, where u(0) is of leading order.

Figure 9 shows the comparison between Wu & Moin’s DNS data (symbols)
and our boundary-region calculations (lines). The wall-normal locations of
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√
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in Wu & Moin [59].

the maxima in the boundary-layer core, the downstream growth of the lami-
nar streaks, and the local minima in the outer portion of the boundary layer
are captured satisfactorily. Two main disagreements between the profiles are
worth discussing. The profiles at the location closest to the leading edge (black
circles) show excellent agreement up to η̃ = 2, whereas at higher locations the
DNS data present a more marked local minimum than the boundary-region
ones. This mismatch near the free stream is likely to be due to our simplified
model of the passing turbulent patches by a convected gust. Near the leading
edge the laminar streaks have not grown to a sufficient magnitude and there-
fore the outer flow plays a dominant role [42]. At the furthermost streamwise
location and near the free stream the DNS profiles (black diamonds) are more
intense than the boundary-region profiles because the nonlinear effects, which
are not included in our formulation, start to exert their influence as this is the
location closest to the transition point. It has indeed been shown by experi-
ments [33] (figure 2c on page 156) and by Ricco et al. [44] (figure 10a on page
21) that in a pre-transitional boundary layer nonlinear vortical interactions
cause an increase in fluctuation intensity in the outer region of the boundary
layer.

Wu & Moin [59] correctly demonstrated that the transition mechanism is not
caused by Tollmien-Schlichting waves and recognized that a bypass transition
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process must be at work. The comparison in figure 9 proves that the breakdown
to turbulence is initiated through the growth of the laminar streaks, whose
dynamics is described mathematically by the LWG99 and R9 theories.

Figure 10 shows the relative contributions to the full streak profile of the
boundary-layer core component u (dashed line), described by the LWG99 the-
ory, and the outer-layer component u(0) (dash-dotted line), described by R9
theory, at Reθ = 100. As predicted by the asymptotic theory, u(0) is dominant
in the outer portion of the boundary layer. It also offers a significant contri-
bution in the core of the boundary layer, which demonstrates that LWG99’s
u component and R9’s u(0) component must be employed together to describe
the streak dynamics at this downstream location.

The LWG99 and R9 theories provide a firm basis for describing the laminar
streaks at the early stages of the evolution and further effort is needed to
predict the initiation of transition due to free-stream turbulence. A first step
in this direction can be taken by solving the nonlinear boundary region equa-
tions forced by full-spectrum turbulence and by carrying out the secondary
instability analysis of the nonlinearly-saturated Klebanoff modes.
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6 Summary and concluding remarks

In this paper, we have studied a pre-transitional flat-plate boundary layer per-
turbed by free-stream turbulence. The four most relevant theoretical frame-
works describing the Klebanoff modes have been thoroughly discussed and
parallels and complimentary aspects of the theories have been pointed out.
This discussion has supported our choice to use the Goldstein theory [26].

We have observed that the level of instantaneous streaky perturbations are
much larger than the time-averaged velocities and that the positive streaks are
more energetic closer to the wall and negative streaks are more intense near the
free stream. It was found that the rms level and the maximum perturbations
of positive and negative streaks grow downstream at approximately the same
rate.

The time signal of the streak velocity was divided into discrete frequency
bands to examine the streamwise evolution of the perturbations in each band.
As the flow evolves downstream, the maximum values in the lower frequency
bands move slightly towards the wall, while those in the high frequency bands
move towards the free stream. For the first time, the growth rates of the
maximum energy level have been computed to quantify how low-frequency
disturbances amplify and how higher-frequency disturbances decay as the flow
evolves downstream. It was also found that the growth rate of medium-low
frequency was proportional to the growth rate of the urms.

Finally, we have compared our asymptotic numerical solutions with streak pro-
files measured in the wind tunnel and computed through DNS [59]. We have
shown that the theoretical frameworks developed by LWG99 and R9 success-
fully predict these profiles across the whole wall-normal extent of the boundary
layer, despite the simplifying assumptions adopted in the theoretical formu-
lation, described in §5. Amongst these, the most significant simplification is
arguably the hypothesis that the free-stream turbulence is axial-symmetric
and that it can be represented by a dominant Fourier mode with equal wave-
lengths along the wall-normal and spanwise directions.

Future lines of research should be directed to the dependence of the nonlinear
streaks on the characteristics of the free-stream flow, on the estimation of
the transition location for different free-stream flows, and on more controlled
experimental campaigns for further validation of the theoretical framework
employed in this paper.
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