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PHASE RESETTING EFFECTS
FOR ROBUST CYCLES BETWEEN CHAOTIC SETS

PETER ASHWIN, MICHAEL FIELD, ALASTAIR M. RUCKLIDGE, ROB STURMAN

ABSTRACT. In the presence of symmetries or invariant subspaces, attractors in dynamical
systems can become very complicated owing to the interaction with the invariant subspaces.
This gives rise to a number of new phenomena including that of robust attractors showing
chaotic itinerancy. At the simplest level this is an attracting heteroclinic cycle between
equilibria, but cycles between more general invariant sets are also possible.

This paper introduces and discusses an instructive example of an ODE where one can
observe and analyse robust cycling behaviour. By design, we can show that there is a
robust cycle between invariant sets that may be chaotic saddles (whose internal dynamics
correspond to a Rossler system), and/or saddle equilibria.

For this model, we distinguish between cycling that include phase resetting connections
(where there is only one connecting trajectory) and more general non-phase resetting cases
where there may be an infinite number (even a continuum) of connections. In the non-phase
resetting case there is a question of connection selection: which connections are observed
for typical attracted trajectories? We discuss the instability of this cycling to resonances of
Lyapunov exponents and relate this to a conjecture that phase resetting cycles typically lead
to stable periodic orbits at instability whereas more general cases may give rise to ‘stuck
on’ cycling.

Finally, we discuss how the presence of positive Lyapunov exponents of the chaotic sad-
dle mean that we need to be very careful in interpreting numerical simulations where the
return times become long; this can critically influence the simulation of phase-resetting and

connection selection.

Submitted to special issue of Chaos on chaotic itinerancy.
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1. INTRODUCTION

One of the main obstructions to a good understanding of the dynamics of high-
dimensional coupled systems (such as neural information processing networks)
is the relative absence of a clear and useful classification of the attractors that
one can typically find; see for example [12, 16]. For this reason, the recognition
that chaotic itinerancy can occur in such systems is a significant step towards a
better classification. Similar behaviour, where attractors show robust intermit-
tent behaviour has been seen in models with symmetries or invariant subspaces
such as [13, 8]; see the review of Krupa [17]. Itinerancy in the form of robust
heteroclinic cycles has been found in several models for coupled cells; for ex-
ample [14, 15, 3], and there are related weak notions of attraction such as those
considered in [21, 16, 1] as well as cycles between chaotic sets [10]. This paper ex-
amines a specific ODE model for a robust cycle between chaotic and equilibrium
saddles that is amenable to analysis. For this model we discuss the qualitative

properties of phase resetting connections and the selection of connections.

There is still much to be understood about the typical form of robust heteroclinic-like
attractors. In this paper, we examine a particular feature (phase resetting) that is not
present in connections between equilibria but which is common in cycles between more
complicated invariant sets. This type of behaviour has been seen in systems of cyclically
coupled maps [5, 6] and also in a truncated model of magnetoconvection [7]. However, the
analysis of the first system requires the inclusion of singularities in the map while the latter
system is too complicated to analyse fully. In this paper we consider a new model ODE on
R’ with symmetry G = (Z,)* where a wide variety of attracting robust cycles are possible.
Moreover, the ODE is simple enough to be amenable to analysis.

In Section 2 we describe the ODE which is constructed by coupling a Guckenheimer—

Holmes robust heteroclinic cycle [13] with a Rdssler system [20] in such a way that

e There are attractors that include cycles between saddle equilibria and saddle chaotic
sets.

e The attractors persist under perturbations that preserve the symmetry G.
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e The system is well-approximated by a skew product in a neighbourhood of each

saddle, but globally is not a skew product system.

This model was developed from a skew product system considered previously in [1]. The
skew product structure in this system arose through the Rossler system acting as a forcing
system on the Guckenheimer—Holmes system. Our new model breaks the skew product to a
more general two-way coupling and allows new and, we believe, more typical behaviour.

In Section 3, we show that the model displays a range of cycling chaotic attractors includ-
ing cycles between equilibria and chaotic saddles. We also describe how these attractors lose
stability. We distinguish between phase resetting connections, where there is only one con-
nection between two saddles (or ‘nodes’) in the cycle, and non-phase resetting connections
with a possibly infinite number of connections (the latter corresponds to the ‘free running’
scenario described in [5]). The system has been constructed to show both types of behaviour.
We also predict and examine the loss of stability of such robust attracting cycles at resonance
bifurcation by using transverse Lyapunov exponents. For the mapping model studied in [5],
phase resetting is associated with the bifurcation of an infinity of stable periodic solutions
whereas the non-phase resetting results in attractors that are chaotic and approximately
follow the cycling. For the cycle studied here, one connection is always non-phase resetting
and we observe dynamics exhibiting aspects of both non-phase resetting and phase resetting
cycles, but with a complicated detailed structure.

In Section 4 we investigate the classification of more general robust cycling attractors.
We highlight the problem of cycle selection in non-phase resetting cycles. Specifically, if
there are an infinite number of connections, which of them will appear in the w-limit set for
‘typical’ initial conditions?

Finally, in Section 5, we mention some problems that arise in the numerical simulation
of this cycle. In particular we show how phase resetting may be lost due to numerical
inaccuracies and we believe this is an issue that needs to be better understood for simulation

of general robust and chaotic itinerant attractors.
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2. AN ODE MODEL WITH ROBUST CYCLING BETWEEN CHAOTIC SADDLES

Let S? denote the unit sphere in R?®. We will define a coupled system of ODEs on
S? x R3. The uncoupled dynamics will basically be the product of the Guckenheimer—
Holmes dynamics with those of the Rossler equation. Throughout, we denote coordinates

on S? x R? by (x,y), where x = (21, 29, 73) and Y7 = 1.

2.1. The Guckenheimer—-Holmes and Rossler systems. We start by defining a vector
field on S? that is related to the Guckenheimer—Holmes system. If QQ : R*—R?3 is any smooth

function and (-,-) the standard inner product, we define a smooth vector field F' on S? by

F(x) = Q(x) — (Q(x), x)x, x € 2.

Note that if @ is radial (a multiple of x) then FF = 0. We define a parametrized family
F(x;b,c,d) of vector fields on S? by taking @ = (Q1, @2, Q3) where

Qi(x,b,¢c,d) = xy(bry + cxl + dars)
Q2(x,b,c,d) = wo(brs + ca’ + dadaxl)

Qs(x,b,c,d) = wx3(ba? + cxl + dx’x3),

and b, ¢, d are real parameters.

The equations used in computational simulations are either obtained by constraining x =
F(x) to x € S? or by adding radial dynamics that causes S? to become attracting. That is,

by considering x = F(x) where
F(x) = (1 - |x[)x + F(x).

The models F and F clearly reduce to the same vector field on S2, and S? is flow-invariant
for the dynamics defined by F. In Figure 1 we show the dynamics on S? for the case d = 0
and b+ ¢, be, b < 0 (for details and computation, see Field [11, Chapter 6]). Referring to
the figure, e, ey, e3 are the positive unit vectors along the x;, x5 and x3-axes respectively
and p = (1,1,1)/v/3. When bc < 0, the only zeros of F in the first octant of S? are e, e, es
and p. The equilibria eq, e, €3 are hyperbolic saddles. If b 4+ ¢ < 0 then p is a source and

the saddle connections between e;, e, e3 form an attracting heteroclinic cycle. Since F' is
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equivariant with respect to the action of G on S? defined by (1, T2, x3) — (£x1, 29, £13),
the dynamics in the remaining octants is obtained by repeated reflection in the coordinate

planes of the dynamics in the first octant.

€3

FiGUuRrRE 1. Guckenheimer-Holmes dynamics on one octant of the sphere for

the case b+ ¢, bc, b <0

Remark 2.1. The great circles on S? defined by the intersection of S? with the coordinate
planes are flow-invariant for the dynamics of the vector field F'. This invariance is preserved
when we couple with the Rossler system and it follows that we shall only need to consider

dynamics on the flow-invariant first octant of S2.
On R? the Rossler system y = G(y) (with specific parameter choices) is defined by
Gily) = —v—ys
Ga(y) = yi+0.2y
Gi(y) = 0.2+ys(y1 —5.7)

and it is well known (see for example [20]) that solutions of this system with initial conditions
close enough to the origin are observed to converge to a compact chaotic attractor A. In

addition to A, the system has equilibria at

y* ~ (0.007,-0.035,0.035), and y” ~ (—5.71,28.54, —28.54).
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Both equilibria are hyperbolic saddles: y# has a 1-dimensional stable manifold and a 2-
dimensional unstable manifold with expanding complex eigenvalues; y? has 1-dimensional
stable and 2-dimensional unstable manifolds with real eigenvalues. However, the second

equilibrium will not be of particular interest for the parameter values considered in this

paper.

2.2. Definition of the coupled system. We define a smooth map i : S?>—R. by

_ tanh(4(2z,* — 1)) + tanh(4)
B 2 tanh(4) '

1(x)

The function p is chosen to that p(0) = 0, p is even in zy, and u(+1) = 1. Moreover,
increases monotonically with the greatest rate of change occurring near the circles z; = i%
on the unit sphere.

For € > 0, let A, denote the diagonal matrix diag(e, 2¢, 3¢) and pick a fixed vector y* =
(', yd', yd) € R®. The dynamics of the y-variables will be coupled to the x-variables by the
x-dependent term —pu(x)A(y —y’). We also couple the x dynamics to the y dynamics by
making the coefficients b and ¢ functions of y.

We define our coupled system of ODEs on S% x R3 by

(1) x = F(x;b(y), c(y),d),
y = (1—-ux)G(y) — px)Ay —y7),

where
b(y) = bo + by sin(yy), ¢(y) = co + ¢ sin(ys).
Observe that when p = 0 (and z; = 0, 23 + 23 = 1), the y dynamics are identical to the
Rossler equations, whereas for p =1 (z; = +1, x5 = 23 = 0), y has an attracting fixed point
at yr.
The group (Z3)? of reflections on S? extends to the action on S? x R* defined by

(z1, 72,23, Y1, Y2, y3) = (L1, T2, £23, Y1, Y2, ¥3)

Since p is clearly (Zy)3-invariant, it follows that for any choice of parameters, the system (1)

is symmetric with respect to (Z)3.

Remark 2.2. The Guckenheimer-Holmes [13] model is also symmetric with respect to the

Zs-action defined by (xy, z3, x3) > (22, x3,21). However, u is not Zs-invariant and so (1) is
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Name | Intersection with F | Subspace Dim
+P | P {+e;} xR? |3
P | P {+e;} x R? |3
+tP | P {+e3} xR3 |3
M |p {p} xR® |3
N1y Eiy Sip x R? 4
Nos Eos Sz X R? 4
Nig | Exs Sz x R? 4

TABLE 1. With the exception of M, all these subspaces of S? x R? (or F)
are invariant for any (Z,)3-symmetric flow on S? x R3. The second column

gives the notation we use for the intersection of this space with F.

not Zsz-symmetric. Indeed, we have deliberately broken the Z; symmetry to ensure that we
can obtain cycles between saddles with different dynamics. However, it is easy to verify that
the subspace {p} x R? is flow-invariant for the system (1). Solutions lying on this subspace
can be regarded as synchronized solutions. These solutions will not play a major role for us

in this paper.

For i < j € {1,2,3}, let S;; denote the great circle of S? defined as the intersection of the
z;xj~coordinate plane with S?. Each S;; is flow-invariant for every (Z2)* symmetric flow on
S2. The pairwise intersections of all the circles S;; define the points +e, k£ = 1,2, 3, which
must be flow-invariant, and therefore equilibria, for every (Z,)? symmetric flow on S%. Let

O={x:12,>0, 22 >0 and x3 > 0} denote the positive octant of S?. Set
F =0 xR?cC S? x R?,

and let E;; denote the flow-invariant subsets of S? x R? defined by the intersection of S;; x R?
with F.

In Table 1 we list the subspaces of S? x R? and F that are flow-invariant for (1). These
are depicted schematically in Figure 2.

It follows from Table 1 that OF = U, ;E;; is flow-invariant and so F is a flow-invariant

subspace of S? x R3. Moreover, just as for the Guckenheimer-Holmes system, once we can
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FIGURE 2. A schematic representation of the invariant subspaces for the sys-
tem (1) projected onto the x;-coordinates. There can be robust connections

between invariant sets in the P, with connections in the illustrated invariant

subspaces Nj;.

describe the flow on F we can obtain the rest of the flow on S? x R? by applying symmetry
transformations (F is a fundamental domain for the action of (Z)* on S? x R?). Henceforth
in this paper we will restrict attention to the flow of (1) on F.

The dynamics of the y variables in the system can be characterized as follows: On the
subspace FEs3 of F defined by x; = 0, the dynamics are those of the Rossler equation and
so trajectories starting close enough to the origin will typically be asymptotic to a Rossler
attractor A. On the other hand, when x; = 1 (and 2 = 3 = 0), then the dynamics on P
will be asymptotic to the globally attracting fixed point y’ with eigenvalues —e, —2¢, —3e.
Roughly speaking, for initial conditions x, between these states, trajectories projected into

R? — y-space — vary between these extreme states. For future reference, we define
Aj:{ej}XACPj

for j = 2,3, The sets A; are Rossler attractors for the flow of (1) restricted to P;, j =2, 3.
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2.3. Equilibria for the coupled system. The system (1) has five hyperbolic equilibria in
the flow-invariant set P, U P, U P;3. We shall be interested in three of these equilibria:
) )

q1 = (61,YF), qz = (62,}’ , and q3 = (63,}’

(The other two equilibria are (e, y”) and (es,y?).)
The issue of whether or not there exist any other equilibria in OF for (1) is trickier and
we sketch only some partial results. Let e;; denote the edge S;; N O, 1 < j € {1,2,3}. If

(x,y) € OF is a hyperbolic equilibrium with x interior to the edge e;;, then we must have
(2) (b() + b1 sin yl)(CO + sin yg) > 0.

If we replace p(x) in (1) by the new variable ¢ € (0,1), we find two equilibrium points
u(a),v(a) for y. These can determine equilibrium points of (1) only if (2) is satisfied. For
example, if |by| > |bi|, [co| > |c1| and bycy < O then we can never satisfy (2) and so in this
case there must be exactly five equilibrium points in OF.

If U is an open isolating neighborhood of the Réssler attractor A C R? and b(y)c(y) < 0,
all y € U, then there will be no equilibria of (1) in ey3 X U C FEs3. This implies that
all trajectories in interior(Fs3) with initial conditions close enough to A, C P, will be
forward asymptotic to A3 C P;. Rather than this strong assumption, we will instead choose
parameter values (see §3) such that the ergodic average of b(y)c(y) over A is negative.

Matters are more difficult when we study the dynamics on interior(Ej,) and interior(Es;).
One way of proceeding is to replace the smooth function g with a discontinuous threshold

function, say

i(x) = 0, |n|<

)

N — DN =

- 17 |£U1| Z

The advantage of using a function of this form is that it now becomes relatively easy to
obtain precise analytical estimates (see [11]). The disadvantage is that it becomes much

harder to estimate errors in numerical investigations. In any case, if we assume that

(1) b(y)e(y) <0, all y € U, where U is an isolating neighborhood of A and
(2) y"eU
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then it is possible to verify that in this case there are no new equilibria in 0O x U and that
every trajectory starting in 00 x U stays in 00 x U and is forward asymptotic to either y*
or one of Ay, As. This result continues to hold if we approximate i by a smooth function

equal to fi away from a small neighborhood of |z;| = 1/2.
2.4. Stabilities of the equilibria forced by symmetry. Given any y € R3, we define

n(y) = (bo + by siny;)(co + ¢1sinys) = b(y)e(y).

Since we are interested in cycles we consider only the case in which n(y?) < 0, n(y*) <
0. This guarantees that each of these equilibria has one expanding and one contracting
eigendirection on S2. Note that though this is not a sufficient condition for the existence of
a cycle, as we have no information about n(y) for general y, it does enable us to compute the
dimensions of stable and unstable manifolds of the equilibria. Furthermore we restrict to the
case b(yT) < 0, b(y*) < 0, so that the orientation of a cycle has to be e; — e; — e3 — e.
Since y4 is a fixed point of the Rossler system, and since y*" is an x-independent equilibrium
of (y—y¥), the subspaces (e, y"), (e2, y?), (e3,y?) and eg3x {y*} are invariant. If y¥' = y4,
all the subspaces (e;,y") and e;; x {y”} are invariant.

If we regard S? as embedded in R?® and compute the Jacobian in R* x R? we find for

example that

by + by sinyt 0 0 0
)= ’
0 0 co+ cpsinys 0

0 0 0 E(y*)

where E(y) is the Jacobian of the Rossler equation at y. The row of zeros follows since S? is
flow-invariant for (1) and the (normal or radial) 8/dx; derivative is zero at e,. (For F' we have
a —2 eigenvalue since S? is flow-invariant and globally attracting for (1). The radial direction
is disregarded in the following discussion of dimensions.) The block diagonal structure of
the matrix gives the dimensions of stable and unstable manifolds of the equilibria directly.
Hence the eigenvalues of the Jacobian of (1) at qy are by+b; sin yf‘, Co+cq sin y{{‘ together with

three eigenvalues for Rossler equations at y# (recall that E(y“) has one negative eigenvalue



PHASE RESETTING FOR CYCLES 11

and two eigenvalues with positive real part). Thus the points q;, 7 = 2,3, have a three-
dimensional unstable manifold consisting of the two unstable directions leading to .A; and
the unstable direction normal to P;. Evaluating the Jacobian at the point q; similarly gives
a diagonal matrix with diagonal entries by + by siny!', 0, ¢y + ¢; sinys’, —e, —2¢, —3¢. Hence
the point q; has a one-dimensional unstable manifold.

In the following we will assume that y* is close to y*. It is important to note that if
y" = y4, then the unstable manifold of q; cannot be transverse to the stable manifold of
q2. Indeed, if y" = y4, then the unstable manifold of q; (in F) is ;o x {y¥'} (less the point
a2 = (eq, by")) and is therefore contained in the stable manifold of q,. When y" # y4, the
unstable manifold of q; does not intersect the stable manifold of q5.

We sum up our computations and observations in the next lemma and Figure 3. The

connections between sets are verified numerically in the next section.

Lemma 2.3. There is a non-empty open set of parameters by, by, ¢y, c1, d, € and y* such

that
dim(W*(qu)) =1, and dim(W"(qz)) = dim(W*"(qs)) = 3.
If we assume that
WH(Az) C W*(As), W*(A3) € W*(aqu),

and
W“(ql) C WS(CIQ U ./42), Wu((h) C WS(AQ Uqs U ./43), W“(qg) C WS(A;), U ql).

Then
Wi(qe) fory" =y
We(Ay)  fory" #y?

and the system has heteroclinic networks as illustrated in Figure 3.

W (1) C

Our system has a total of nine real parameters: by, bi, co, c1, d, €, and y*. The cycles
shown in Figure 3 are only robust for the case y* # y#; and then they will be present for a
non-empty open set of parameter values. In the next section we examine the stability of the
cycles.

Referring to the figure, we remark that P, contains the equilibrium point q; which is

attracting within P,. The invariant subspaces P and P contain the saddle points qj,
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r

P, P

Az
%
P2 P ~— P2

yF: yA yF:/: yA

Py

FIGURE 3. The dynamics on OF for y = y*, and the more general case
vy not equal but close to y*. The connections that are crossed consist of an
infinite number of connections, while those that are not crossed are phase
resetting. For y* = y the connection in E;5 occurs between equilibria,

otherwise it is from equilibrium to chaotic saddle.

j = 2,3, as well as copies of the Rossler attractor A. Stabilities of the saddle points in OF are
as indicated in Figure 3. The saddle points qj, 7 = 2,3 have invariant manifolds contained
within OF and dim W"(q;) = 3, dimW?(q;) = 2 in both cases. Since p = 0 on Ess, it
follows easily from the explicit equations that W"(qy) intersects W*(qs) transversally along
the connection eg3 x {y“4}. Generically, we expect that W*(qy) meets W*(q3) transversally
within all of Fs3 in which case there exist finitely many connections from q to q3. Although
in principle therefore there can exist more than one connection from q» to qz, we mark the

connection qs—qs as phase resetting.

3. ATTRACTORS INVOLVING CYCLING FOR THE MODEL

Robust homoclinic cycles between invariant sets can gain or lose stability at a resonance
bifurcation — that is, for parameter values at which the expanding and contracting eigenvalues
become equal in magnitude [9]. A similar mechanism, using Lyapunov exponents in place
of eigenvalues, can cause cycles between chaotic saddles to gain and lose stability; see for
example [1, 7]. The presence in (1) of invariant subspaces greatly simplifies the calculation

of the normal Lyapunov exponents. The cycle in question is between 3 invariant subspaces
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— one containing an equilibrium, and two containing chaotic saddles, respectively q;, As
and As. To calculate the normal Lyapunov exponents of the cycle we multiply together
the normal Lyapunov exponents of the constituent parts of the cycle. As earlier, the block
diagonal structure of the Jacobian makes it very simple to calculate these exponents. In
particular, the contracting and expanding normal Lyapunov exponents at q;, which we call

() = ¢y + ¢y sinyf. The

A and ALY respectively, are given by A = by + by siny¥ and A
normal exponents at A, and A3 can also be found (see [1]) by averaging the derivatives.
Hence for an ergodic invariant measure supported on A, the transverse Lyapunov exponents

are

A ) = [ b o), v 0)
Az

A (1) = / e, v, w)dpa(u, v, w)
As

and similarly for Az. These can be approximated as in [1] to give

(AA2) \(A2)y — (\(A2) A(As)) — (5 — 0.05360b,, ¢y + 0.11629¢, ).

C e

If we define
)\gql))\gfb))\(.AS)

c

pi=

Y

)\S;h ) )\&/42 ) )\5;43)

then we expect the cycle to be asymptotically stable for p > 1 (since in this case the normal
contraction onto the cycle dominates over the expansion), and unstable for p < 1. The
resonance of Lyapunov exponents occurs at p = 1. We use ¢j as a control parameter to govern
the stability of the cycle. Fixing by, b, ¢1, the resonance condition gives a cubic equation
for ¢} (the value of ¢y at resonance). In all of the following numerics we set by = —0.1,

b1 = ¢; = 0.5, so that the resonance condition becomes
644.604(cy + 0.01756)(c; + 0.05814)2 =1,

which gives ¢§ = 0.07285. Note that for these parameters, we have n(y) < 0 for ergodic
trajectories within A,. We also fix throughout the following d = —0.1, ¢ = 1.
It is natural to ask what type of attractors are created when cycling chaos loses stability

(or equivalently, to describe the mechanisms involved in the creation of cycling chaos). These
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matters have been addressed in [5, 6, 7], with particular reference to the difference between
phase resetting effects. A phase resetting connection occurs when there is only one trajectory
between two invariant sets. In contrast, for non-phase resetting connections, an infinite
number of different connecting trajectories may be present.

These computations assume that we are in the case y* # y?. Observe moreover that the
connection from A, to Aj is always non-phase resetting. In the other case y* = y* the
stability of the cycle may also depend on eigenvalues at qs and qs. Previous papers [5, 6, 7]
have conjectured that phase resetting connections usually give rise to stable periodic orbits
whose periods accumulate at a resonance, whereas non-phase resetting connections may not.
For the cycles discussed in this paper where some connections may be phase resetting and
others are not, we find trajectories that are representative of both types of behaviour, but

whose detailed structure is a complicated combination.

3.1. Some numerical results. Accurate simulation of (1) requires some care. As an at-
tracting cycle approaches the invariant subspaces, some of the x variables get extremely
close to zero, while the y variables remain O(1). These hugely differing scales result in the
potential for phenomena which are purely numerical artefacts and some problems caused by
this are addressed in more detail in Section 5. Figure 4 shows convergence towards a cycling
chaotic attractor for ¢y = 0.07, and y* = (0.01,1,0.01). The same trajectory is shown in
Figure 5 in logarithmic x coordinates. For these parameter values, the saddle point q; has
one positive eigenvalue for the Jacobian and so the connection from q;— A4, is phase reset-
ting. The successive approaches to the connections are shown in Figure 6. Plot (a) shows
that the connection q;—.A, is phase resetting while the connection 4;— A3 shown in (b)
is non phase resetting (see also Figure 9). In Figure 6 the connection q;—q, is shown in
the case ¢y = 0.07 and y* = y*. Numerical errors in the specification of y*" however mean
that the connection from q; to gz is not exact and in fact we see the same effect as a phase
resetting connection (a), just with a long time of residence near qs (shown by y, = 0 in this
plot); we expect great sensitivity to noise in this case.

Each time round the cycle the dynamics get closer to the invariant subspaces Ej;, and this
is reflected in the approximately geometric increase of the length 7T), of the nth epoch (see

for example [6]). Also plotted is y2, depicting the change in behaviour of the y variables, as
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FIGURE 4. A trajectory approaching a cycling chaotic attractor for by = —0.1,
by = 0.5, ¢g = 007, ¢, = 0.5, d = —0.1, ¢ = 1 and y" = (0.01,1,0.01);
timeseries for three components of z and y, are shown. Successive epochs
where the trajectory is close to the saddle equilibrium q; and the chaotic
saddles Ay, Aj are labelled at the top of diagram. The connection q;—.A4s
is phase resetting as it follows a one-dimensional unstable manifold for the

equilibrium q; .

these switch between the fixed point at q; and the chaotic behaviour of A; for j =2,3. On
increasing ¢ by a small amount we lose attraction of the cycle at a resonance and for this
system, with d < 0, we appear to create an approximately periodic chaotic attractor — see
the example illustrated in Figure 7 with ¢y = 0.09.

Examining the geometric rate of increase R as approximated by R = T), /T, can clarify
the behaviour for parameters on either side of the resonance bifurcation. Figure 8 shows
this ratio plotted against the number of circumnavigations of the cycle for two different

parameter values on either side of the resonance. In both plots, the solid line corresponds to
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|
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FIGURE 5. Attracting cycling chaos shown for same trajectory as Figure 4
but instead showing the logarithms of the x;. The lengths of the phases T,

increase approximately geometrically as the trajectory approaches the cycle.

y = (0.01,-0.04,0.04) and the dotted line to y'" = y* ~ (0.007, —0.035,0.035) to within
double precision accuracy. In plot (a) we have ¢y = 0.08 > ¢f. We observe that T,,,1/T),
tends to unity on a periodic orbit for y* # y“. In contrast, for y = y* (dotted line) we
find instead fluctuations about unity. Here R has a mean of 1.008 with a standard deviation
of 40.0332. In (b), which has ¢y = 0.072 < ¢} we expect to find (for both values of y) the
ratio R tending to a value greater than one, which gives the exponent of the geometric rate
of slowing. Both models clearly have T,,,1/T, consistently greater than one, but neither has
converged after 80 times around the cycle (the phase resetting system has R = 1.024+0.0258,
and the non-phase resetting version has R = 1.040 + 0.0327). This is symptomatic of the
difficulty of numerics for cycles — here the rate of convergence is very slow. We can increase
this rate of convergence (and increase R) simply by decreasing cg, but this also has the effect
of making the dynamics approach E;; much more quickly, and so fewer circuits round the

cycle are possible before the calculations lose significance.
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FIGURE 6. A number of orbit segments (of increasing length) are shown for
(a) a phase resetting connection for the attractor of the trajectory in Figure 4.
Each time the trajectory enters |z3] > 0.8 we set 7" to 0 and each time it
leaves |x2| > 0.8 we mark by a circle. (b) This shows the non phase resetting
connection between the chaotic saddles A, and Aj for the same cycle. On
entering |z3| > 0.8 we set 7" to 0 and mark with a circle when we leave |x3| >
0.8. The segments get longer each time around the cycle as the trajectory
slows down, finally leaving a single signal for 7" > 330. Observe that there is
no apparent coherence comparable to (a). (c) This shows a connection for the
case as above but with ¢y = 0.07 and y¥ = y4 to double precision accuracy,
with 7" = 0 on entering |zs| > 0.8. Observe that after about 300 time units,
numerical inaccuracies in specifying y* cause the connection to head towards

A as a phase resetting connection.
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FIGURE 7. A trajectory approaching an approximately periodic chaotic at-
tractor for the same parameters as Figures 4 and 5, but with ¢y = 0.09;
timeseries for three components of x and y, are shown. The orbit includes

segments of the one-dimensional unstable manifold for the equilibrium q;.

3.2. Aspects of numerical simulation. The numerical simulation of approach of trajec-
tories to a cycling attractor, and in particular the selection of connection, is difficult to

realize accurately because:

(1) There are directions with positive Lyapunov exponents within the chaotic saddles

As 3.

(2) The connection selected depends critically on the time of residence near a saddle,

and this can become unbounded.

This means that we can only believe the qualitative behaviour of connection selection for

residence times near saddles that are up to length 7" such that

nexp(A\T) < 1
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Ficure 8. The ratio R of successive times 7, plotted against circumnaviga-
tions n. The fixed parameters are (as before) by = —0.1, by — 0.5, ¢; = 0.5,
d = —0.1, ¢ = 1. Solid lines represent the phase resetting model with
y¥ = (0.01, —0.04,0.04) and dotted lines the non-phase resetting version with
yI = y# (to double precision accuracy). The control parameter values are (a)

co = 0.08 > ¢, (b) ¢o =0.072 < ¢,

where ) is the most positive tangential Lyapunov exponent for the chaotic saddle and 7 is
the machine accuracy. This means that we have an effective time-horizon

_log(n)

T
Y

beyond which errors will have accumulated to the extent that different selection behaviour
may appear. For the numerics in Section 3 we can estimate A as approximately 0.0713 for

the Rossler system. Hence for order one y at double-precision accuracy, we have n = 10716
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FIGURE 9. Loss of coherence after a phase resetting connection during attract-
ing cycling. After approximately 300 time units for the trajectory segments

shown in Figure 6(a) one loses coherence due to numerical inaccuracy.

and can expect separation from a phase resetting connection after a few hundred time units.
Figure 9 illustrates this effect.

Even for cycles that are shorter than this, computation of Lyapunov exponents has to be
done very carefully due to the fact that the local behaviour changes greatly as one moves
around the cycle. Therefore, any Lyapunov exponent calculation will typically show very
large fluctuations and slow convergence as the trajectory proceeds around the cycle.

A similar effect in the computation of approaches to invariant subspaces is observed in
[7, 19] which can be overcome by representing the distance from the invariant subspace using

an exponential numerical grid. This approach is not easily transferable to the sort of problem
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we consider here, as the distance from a given trajectory W*(q;) (rather than from a single
point) would need to be stored in an exponential grid.

Finally, we remark that we can change the choice of the numerical value 4 in the definition
of the function p so as to vary max p’. However, that if max ' becomes too large, this can
cause problems for the numerical integration. On the other hand, if max ' is too small
then the coupling can create new invariant sets near those we are interested in and further

complicate the dynamics.

4. CONNECTION SELECTION FOR NON-PHASE RESETTING CYCLES

The attractors we observe in the model (1) are comprised of a finite number of nodes —
saddle equilibria or chaotic saddles — together with possibly infinitely many connections.

In what follows, we continue to work within the fundamental domain F. Let ¢, denote
the flow of (1) restricted to F. For z € F, X C F, let d(z,X) = inf{||]z —a|| | e € X} (and
so if X is compact d(z, X) = 0 if and only if z € X). If we define A; = qy, then A; C P; is
an attractor for the dynamics restricted to P;, i = 1,2, 3. The A; are connected via the sets

of connections
C; =A{x | d(¢¢(x), Aix1) — 0 and d(¢p_¢(x), A;) — 0 as t — co}.

Equivalently, we may write
C; =W*(A) N W3 (Aipq)

where W% () are the unstable (resp. stable) sets of A;.
Provided that y* # y*, the cycle for (1) is given by

3

i=1
We can define a connection C; as being phase resetting if it is a single trajectory. In the

case that Cj is not phase resetting, the following question arises.

Selection of connections: Given an asymptotically stable robust cycle ¥ with basin of
attraction B(X), what is the likely limit set of B(X) (in the sense of Milnor [18])7 In other
words, if we discount sets of zero measure in the basin of B(X), what subset X' of ¥ is

unavoidable for the w-limit sets of points in B(X)?
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This problem was raised and partially addressed in [2] for a heteroclinic cycle between
equilibria. It was found that for the two-dimensional connection sets studied that if E; was

the strongly unstable eigenspace at A; then

e Y was typically a union of one-dimensional connections (corresponding to the strong
unstable manifolds) if dim(E;) = 1.

e ¥ =% if dim(E;) = 2, and the strongly unstable eigenvalues are complex.

Even for direct products of rather simple systems, the problem of cycle selection seems to
be very subtle — see [4]. However, it is possible to obtain results showing an absence of
cycle selection if we assume strong enough results on nodal dynamics (existence of Markov
partitions). We refer to [4] for more details.

In the context of connections between chaotic sets, there is a new significant feature.
Connections selected in an attractor determine the approach to the chaotic saddles and may
for example select ‘atypical’ routes of approach that give different Lyapunov exponents to
that expected for any ‘natural’ measure.

For model (1) in cases where the C; are more than one dimensional, we do not understand
which connections will typically be selected, and this may be a feature that is vital in
understanding the dynamics near more general chaotic itinerant attractors. As we see in the
final section, even numerical simulations are not at all easy to interpret. Possibly, a better
approach is to consider a noise-perturbed system in which case cycle selection will only occur

on a probabilistic level.

5. DISCUSSION

In summary, we have introduced a new model system in which one can observe a variety
of cycling attractors with and without phase resetting. The effect of phase resetting is not
possible in the system discussed in [1] because it is a global skew product. This model system
is locally well-approximated by a skew product near each of the nodes, but is not globally a
skew product. Although the system is carefully constructed to have the desired behaviour, it
should be stressed that the connections will be robust to any perturbation of the system as
long as the symmetries are preserved and the nature of the chaos is not changed too greatly.
In this sense, the values of the parameters and the exact forms of the functions chosen are

relatively unimportant.
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We believe that the property of phase resetting deserves closer examination in more general
chaotic itinerant attractors, as does the question of cycle selection which may be helpful in

a better statistical understanding of these attractors.
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