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Introduction

Half of the African population, and most priority sites for

conservation, are concentrated in mountain and coastal

regions (Fig. 1). In these places, climatic gradients are

steep and feedbacks between land, water and atmosphere

are much more localized than the pixel resolutions of

general circulation models (GCMs). Through the CORDEX

initiative (Jones, Giorgi & Asrar, 2011), outputs from

regional climate models (RCMs) have become available for

Africa. Nested within GCMs, regional models simulate

climate at finer spatial and temporal resolutions (Fig. 1).

Yet at ~50 km, they remain too coarse-grained for many

applications in ecology (Platts et al., 2013). Here, we use a

range of observational baselines to empirically downscale

RCM outputs to resolutions amenable to ecological appli-

cations at local scales (up to 1 km). Results for the middle

and late 21st century are available online https://webfiles.

york.ac.uk/KITE/AfriClim/.

Materials and methods

RCM outputs for the period 1950–2100 were provided by

the Swedish Meteorological and Hydrological Institute and

the Canadian Centre for Climate Modelling and Analysis,

at a resolution of ~50 km (0.44° 9 0.44°). The Swedish

model (SMHI-RCA4) was driven by boundary conditions

from eight GCMs (Fig. 1a) and the Canadian model

(CCCma-CanRCM4) by CanESM2. Future climates were

projected under two IPCC-AR5 representative concentra-

tion pathways: RCP4.5 and RCP8.5, which project global

temperature anomalies of 2.4°C and 4.9°C above pre-

industrial levels by 2100 (Rogelj, Meinshausen & Knutti,

2012), with atmospheric CO2 equivalents of 650 and

1370 ppm by 2100, respectively (Moss et al., 2010).

We used change-factor downscaling to recover spatial

variation at local scales and to correct for differences

between observed and simulated baseline climates (Tabor

& Williams, 2010). Due to uncertainty in observational

baselines, we imposed RCM change-factors (future anom-

alies) onto four different data sets for rainfall and two data

sets for temperature: CRU CL 2.0 (New et al., 2002),

WorldClim v1.4 (Hijmans et al., 2005), TAMSAT TARCAT

rainfall v2.0 (Maidment et al., 2014); and CHIRPS rainfall

v1.8 (Funk et al., 2014). These grids, and thus downscaled

projections, vary in resolution from 30″ (~1 km) to 100

(~19 km).

To calculate change-factors, we first averaged RCM

output for monthly 2-m air temperature (mean, minimum

andmaximum) and monthly rainfall over the period 1961–

1990, matching to the time spans of CRU and WorldClim

(Fig. 1a). Similarly, we calculated monthly rainfall around

the year 2000 (1986–2015) to match the midpoints of

TAMSAT and CHIRPS. Future anomalies were obtained

by subtracting these simulated baselines from 30-year

averages around the 2050s (2041–2070) and 2080s

(2071–2100).Anomalieswere spline-interpolated tohigher

resolutions (Mitasova & Mitas, 1993) and, for temperature,

added to observational baselines (B). Rainfall anomalies (D)

were imposed as absolute changes relative to the baselines:

B 9 |1 + D/(B + 1)| (Ramirez-Villegas & Jarvis, 2010).

We provide downscaled grids for each GCM-RCM-

baseline triplet separately and, for SMHI-RCA4, multi

model ensembles over eight GCMs. In addition to monthly

grids, we provide 21 summary variables for applications in

ecology (Table 1). Analyses were carried out using R

(Pierce, 2011; R Core Team, 2012) and GRASS-GIS

(GRASS Development Team, 2012).

Results and discussion

By late century, sub-Saharan Africa is projected a

mean annual temperature of 26.4–27.6°C (RCP4.5) or*Correspondence: E-mail: philip.platts@york.ac.uk
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(a)

(b)

Fig 1 (a) Schematic of the downscaling procedure. Eight GCMs and two representative concentration pathways (RCP4.5 and RCP8.5) were

dynamically downscaled by the SMHI-RCA4 and CanRCM4 regional climatemodels (RCMs). Change-factors debias RCMoutputs using high-

resolution baselines from CRU, WorldClim, TAMSAT and CHIRPS. (b) Applying change-factors to output from regional, rather than global

climate models is especially important inmountain and coastal regions, which harbour amajority of both people (http://www.worldpop.org.

uk/) and biodiversity (Stattersfield et al., 1998; Mittermeier et al., 2004). Mountain extent is according to Kapos et al. (2000)
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27.9–29.8°C (RCP8.5), depending on the model (Table 1).

Rainfall is projected to increase in western and eastern parts

of the continent, coupled with increased seasonality (Fig. 2;

Tables S1–S5). Changes in rainfall are, on average, lower at

higher latitudes, with a slight drying trend depending on the

model (Fig. 2). Ensemble means project the Mediterranean

Basin, south-east Africa, eastern Madagascar and the

Ethiopian Highlands to be at risk from prolonged seasonal

aridity (consecutive months of rainfall�PET), while the

Horn of Africa, Gabon and coastal Angola are projected

shorter periods of aridity. Within these regions, downscaled

projections reveal considerable variation, with spatially

complex climates subject to multiple extrema in RCM

anomalies at sub-GCM scales.

We note that while empirical downscaling of RCMs

(cf. GCMs) reduces uncertainty at the mesoscale, the

Table 1 Summary variables derived from downscaled monthly temperature and rainfall grids. Spatial means compare observed (CRU,

WorldClim, TAMSAT and CHIRPS) and modelled (nine GCM-RCM combinations) climate across sub-Saharan Africa (up to 20°N).

Projected future climates are given as ranges in the spatial means over all 18 (temperature) or 36 (moisture) GCM-RCM-baseline triplets.

Similar tables, summarizing spatial means within five subregions of Africa, are provided as Supplementary Information (Tables S1–S5).

Gridded data are available online https://webfiles.york.ac.uk/KITE/AfriClim/

Codea Description Units

Baseline (1961–1990b) Mid-century (2041–2070) Late century (2071–2100)

Observed Modelled RCP4.5 RCP8.5 RCP4.5 RCP8.5

Temperature variables

BIO1 Mean annual temperature1 °C 24.3–24.4 22.0–24.1 26.0–26.9 26.6–27.8 26.4–27.6 27.9–29.8

BIO2 Mean diurnal range in temp2 °C 12.9–13.3 12.5–14.6 12.9–13.3 12.9–13.3 12.9–13.3 12.9–13.3

BIO3 Isothermality3 °C 63.6–64.9 59.3–62.4 62.1–64.5 61.5–64.5 61.7–64.7 60.6–64.0

BIO4 Temperature seasonality4 °C 2.3–2.4 2.3–2.8 2.3–2.6 2.3–2.5 2.3–2.6 2.3–2.6

BIO5 Max temp warmest month °C 34.2–34.3 32.7–35.6 36.1–37.1 36.7–37.9 36.5–37.6 38.1–39.9

BIO6 Min temp coolest month °C 13.0–13.2 10.8–13.1 14.6–15.6 15.2–16.5 15.0–16.3 16.4–18.4

BIO7 Annual temperature range5 °C 21.0–21.3 20.9–24.8 21.1–21.7 21.1–21.9 21.1–21.9 21.3–22.3

BIO10 Mean temp warmest

quarter6
°C 26.9–27.1 24.7–27.2 28.6–29.9 29.2–30.7 29.1–30.4 30.7–32.7

BIO11 Mean temp coolest quarter6 °C 21.0–21.1 18.6–20.4 22.7–23.6 23.3–24.4 23.2–24.2 24.7–26.4

PET Potential

evapotranspiration7
mm 1812–1835 1690–1833 1886–1946 1911–1983 1904–1973 1971–2070

Moisture variables

BIO12 Mean annual rainfall8 mm 678–882 692–973 678–951 683–974 676–959 677–1013

BIO13 Rainfall wettest month mm 145–176 156–189 149–198 151–203 150–201 153–213

BIO14 Rainfall driest month mm 4–8 2–10 3–8 3–8 3–8 3–8

BIO15 Rainfall seasonality4 mm 49–59 55–67 50–65 50–67 50–66 51–70

BIO16 Rainfall wettest quarter6 mm 356–451 393–492 360–496 365–511 364–502 368–532

BIO17 Rainfall driest quarter6 mm 21–36 11–43 20–36 20–37 20–36 20–38

MI Annual moisture index9 – 0.39–0.51 0.42–0.63 0.37–0.51 0.37–0.52 0.36–0.51 0.35–0.52

MIMQ Moisture index moist

quarter6
– 0.82–1.06 1.02–1.36 0.79–1.1 0.80–1.11 0.78–1.11 0.77–1.14

MIAQ Moisture index arid quarter6 – 0.05–0.09 0.03–0.12 0.05–0.09 0.05–0.09 0.05–0.09 0.04–0.08

DM Number of dry months10 Month 7.55–8.33 7.11–8.65 7.50–8.50 7.47–8.51 7.50–8.51 7.45–8.64

LLDS Length of longest dry

season11
Month 7.40–8.14 6.77–8.40 7.31–8.24 7.28–8.26 7.31–8.25 7.23–8.37

1Mean of monthly means. 2Mean of monthly (max temp–min temp). 3100 9 BIO2/BIO7. 4Standard deviation over monthly values (cf.

coefficient of variation in BIOCLIM). 5BIO5–BIO6. 6Any consecutive 3-month period. 7Hargreaves 1985 method (see Hargreaves & Allen,

2003). 8Sum of monthly rainfall. 9BIO12/PET. 10Dry/arid if monthly moisture index <0.5 (UNEP, 1997). 11Maximum run of consecutive

dry months.
a‘BIO’ variables correspond to BIOCLIM nomenclature (Xu & Hutchinson, 2011), but note that derivation for4 is not identical.
bObservational baselines for moisture variables include data from 1983 to 2012 (TAMSAT and CHIRPS), as well as from 1961 to 1990

(CRU and WorldClim).
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assumption of temporal stasis in local climatic variation,

as inferred from observational baselines, remains a

source of error (Tabor & Williams, 2010). Further, the

accuracy of baseline climatologies is limited by the

distribution of meteorological stations in Africa, which

particularly for rainfall remain sparse. We mitigate this

Fig 2 Projected changes by late century (2071–2100, RCP4.5) for three variables listed in Table 1. Baseline climates in this example are

from CRU (temperature, 1975 baseline) and CHIRPS (rainfall, 2000 baseline). Maps picture changes in SMHI-RCA4 ensemble means. Box

plots show spatial variation within five subregions of Africa for each GCM-RCM pair (RCM is SMHI-RCA4 except for CC2, which uses

output from CanRCM4). Box widths are proportional to the root-mean-squared error, comparing observed versus modelled climates over

the baseline period. Horizontal lines mark the ensemble mean for each region

© 2014 John Wiley & Sons Ltd, Afr. J. Ecol., 53, 103–108
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issue by including two satellite-derived baselines for

rainfall, in addition to the interpolated climatologies. At

larger scales, assumptions underlying RCPs are inten-

tionally diverse (Moss et al., 2010) and GCM-RCM

ranges are sometimes high (Table 1; Fig. 2).

Driven with ERA-Interim reanalysis data, RCMs are

reasonably skilful in simulating climatic variability over

Africa, and biases are effectively reduced by the ensemble

mean (Nikulin et al., 2012; Endris et al., 2013; Gbobaniyi

et al., 2014). To project future climate, RCMs are driven by

GCMs. Comparing GCM-RCM estimates with observational

data over the 30-year baseline, there is good agreement

between large-scale means, but models underestimate

temperatures during cooler months, particularly in the

north and west, and so overestimate seasonality (Tables 1

and S1–S5). In southern Africa, models overestimate

rainfall during the wettest months while underestimating

aridity during the dry season. Such differences are superfi-

cially addressed by change-factor downscaling (bias correc-

tion), but nonetheless highlight weaknesses in model skill

over Africa and/or uncertainties in the validation data

(Wilby et al., 2004; Brands et al., 2013).

Climate projections are in immediate demand by scien-

tists, governments and nongovernmental organizations.

High-resolution projections are available globally (e.g.,

http://www.worldclim.org/cmip5) but are empirically

derived directly from GCMs, with no dynamical downscal-

ing. AFRICLIM is an important step forward in this respect:

the archives span eight GCMs downscaled using two RCMs

and four observational baselines, under two emissions

pathways and at multiple high-spatial resolutions. We

encourage users to interpret the data critically, however,

with due consideration of the above uncertainties, partic-

ularly with respect to model skill in the region of interest

(see e.g., Nikulin et al., 2012; Cr�etat, Vizy & Cook, 2014).
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