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Quasilinear theory is often utilized to approximate the dynamics of fluids exhibiting significant
interactions between mean flows and eddies. We present a generalization of quasilinear theory
to include dynamic mode interactions on the large scales. This generalized quasilinear (GQL)
approximation is achieved by separating the state variables into large and small zonal scales via
a spectral filter rather than by a decomposition into a formal mean and fluctuations. Nonlinear
interactions involving only small zonal scales are then removed. The approximation is conservative
and allows for scattering of energy between small-scale modes via the large scale (through non-local
spectral interactions). We evaluate GQL for the paradigmatic problems of the driving of large-scale
jets on a spherical surface and on the β-plane and show that it is accurate even for a small number of
large-scale modes. As GQL is formally linear in the small zonal scales it allows for the closure of the
system and can be utilized in direct statistical simulation schemes that have proved an attractive
alternative to direct numerical simulation for many geophysical and astrophysical problems.

PACS numbers: 47.27.wg, 47.27.eb, 92.60.Bh, 92.10.A-

Even with the advent of peta- and exascale computing,
many problems of nonlinear physics are not amenable
to direct numerical simulations (DNS) of the governing
partial differential equations (PDEs) in the parameter
regimes of physical relevance. For example, geophysi-
cal and astrophysical flows exhibit variability over such
a vast range of spatial and temporal scales that DNS of
the master PDEs will remain out of reach for the fore-
seeable future. A number of complementary approaches
to DNS have therefore been investigated that employ ap-
proximations of varying complexity. These approaches
generally attempt to achieve some degree of fidelity for
the evolution of the large spatial scales, whilst parame-
terizing the small-scale interactions in a sub-grid model
[1]. Typically, the models are constructed by postulating
an ad hoc, though usually plausible, prescription for the
response of the large scales to the small-scale interactions
in the form of transport coefficients.

A more robust approach is to construct self-consistent
equations for the evolution of the low-order statistics of
the flow. Termed Direct Statistical Simulation (DSS),
this technique has been shown to be able to reproduce
mean flows and two-point correlation functions for model
problems describing a wide range of physical processes.
In its simplest form DSS employs a quasilinear (QL) ap-
proximation to describe the interaction between the large
and small scales [2–4]. The QL approximation has a long
history, owing to its utility in the derivation of analyt-
ical theories for turbulent interactions and interactions
between waves and mean flows; quasilinear equations of-
ten also arise naturally as the result of the asymptotic
reduction of a master system of PDEs [5]. This simplest
form of DSS has been utilized successfully to describe
the statistics of a range of physical systems including the

driving of mean flows in plasmas and on giant planets
[6], the sustenance of wall-bounded shear-flow turbulence
[7], the growth of a dry atmospheric convective boundary
layer [8], and even the development of the magnetorota-
tional instability in accretion discs [9].

Although exact in the limit of strong mean flows or for
a sufficient separation of timescales [10], DSS truncated
at second-order in the nonlocal equal-time cumulant (de-
noted S3T [2] or CE2 [3]) works less effectively as the sys-
tem is driven harder, reducing timescale separation with
the faster dynamics. This was demonstrated in Ref. 11,
which compared the statistics derived from DNS for the
problem of driving β-plane jets with those from quasilin-
ear DSS (CE2). CE2 reproduced both the number and
strength of jets for large timescale separation but failed
as the system was driven further away from equilibrium.

One way to remedy this failure in statistical closures
is to employ a higher-order truncation for DSS. This has
been pursued by extending the statistical scheme to in-
clude eddy/eddy scattering [12]. The resulting schemes
(termed CE2.5 or CE3∗) have a higher computational
cost than those that rely on quasilinear approximations,
but do perform better as the system is driven further
away from equilibrium [12]. Perhaps a better approach
is to generalize the QL approximation itself so that it
remains amenable to analysis and provides a foundation
for a new statistical method. Here we evaluate this gen-
eralization of QL, which we call GQL, for the important
problem of the driving of barotropic jets and demonstrate
that it can work even in parameter regimes for which QL
(and hence CE2/S3T) will fail. These results motivate
a new form of DSS that generalizes the second-order cu-
mulant expansion (GCE2) that we shall demonstrate in
a subsequent paper.



2

Consider modeling the evolution of a state vector
q(~r, t) specified by a system of master PDEs where
(for simplicity) all the nonlinearities in the system are
quadratic. This system can be written as

qt = L[q] +N [q,q], (1)

where L represents a linear vector differential opera-
tor and N is the operator that includes the nonlinear
(quadratic) interactions such as those in the material
derivative. Specializing to models that are translationally
invariant in one direction, denoted the zonal direction, we
proceed by generalizing the standard Reynolds decompo-
sition of the state vector into parts, one that oscillates
slowly, and one rapidly, in that direction: q = q + q

′.
The bandpass filters that we choose are projection oper-
ators that obey q = q and q′ = 0 but not q q = q q as
a Reynolds decomposition would. On a rotating sphere,
for instance, the filter separates components that oscil-
late in the azimuthal (φ) direction at zonal wavenumbers
|m| less than or equal to Λ from those that oscillate with
|m| > Λ:

q(θ, φ) =
∑

|m|≤Λ

eimφ
qm(θ),

q
′(θ, φ) =

∑

|m|>Λ

eimφ
qm(θ). (2)

The GQL approximation is then obtained by neglecting
those interactions in the evolution equations represented
schematically by Figure 1(d-f); hence

qt ≡ L[q] +N [q′, q′] +N [q, q] (3)

q
′
t ≡ L[q′] +N ′[q, q′] +N ′[q′, q] . (4)

The two nonlinear terms that appear in Eq. 3 correspond
to diagrams (a) and (b) in Figure 1 and the sum of the
two nonlinear terms in Eq. 4 is interaction (c). Terms
N [q, q

′] + N [q′, q] [diagram (d)], N ′[q, q] [(e)], and
N ′[q′, q

′] [(f)] are discarded. The QL approximation is
recovered in the limit Λ = 0, for which q is simply the
zonal mean. In the opposite limit Λ → ∞, q′ = 0 and
the exact and fully nonlinear (NL) dynamics of Eq. 1
are recovered. Thus GQL interpolates between QL and
the exact dynamics and provides a systematic way to
improve the QL approximation.
An important feature of the new GQL system is that,

like QL, the triad interactions that are retained respect
the linear and quadratic conservation laws of the orig-
inal model such as conservation of angular momentum,
energy and enstrophy. Two advantages of GQL theory
over QL theory should now be emphasized. First, the
low modes are allowed to undergo fully nonlinear inter-
actions and thus constitute the resolved model. Satellite
modes or zonons therefore can be captured [13]. The sec-
ond advantage is that small-scale eddies exchange energy
through their interaction with the large scales, unlike in

(b) (c)

(d) (e) (f)

|m1 −m2| ≤ Λ

(a)

|m1 +m2| ≤ Λ |m1 +m2| > Λ

m1 > Λ m2 > Λ |m1| ≤ Λ |m2| ≤ Λ |m2| ≤ Λ|m1| > Λ

FIG. 1. Triad interactions between modes. Long wavelength
fields q with zonal wavenumber |m| ≤ Λ and short wavelength
fields q′ with |m| > Λ are shown. Diagrams (a)–(c) in the
top row are retained by the GQL approximation and triad
interactions (d)–(f) in the bottom row are omitted.

QL in which the mean flow has only zero zonal wavenum-
ber. In GQL energy can be redistributed among smaller
zonal scales via scattering off the large-scale flows, a non-
local spectral transfer. The high modes in the GQL ap-
proximation thus function as a novel, deterministic sub-
grid model. Moreover, GQL is able to predict the re-
sponses of the distributions for quadratic fluxes (here,
Reynolds stresses) in a manner that simply is not possible
for QL, since this energy redistribution is not captured
by a QL (or equivalently, CE2) description.
We examine the effectiveness of the GQL approxima-

tion as applied to barotropic dynamics on a spherical
surface (0 ≤ φ < 2π, 0 ≤ θ ≤ π) and on a local Carte-
sian β-plane (0 ≤ x < 2π, 0 ≤ y < 2π). The barotropic
vorticity equation for ζ ≡ e1 · (∇× u), where e1 = r̂ on
the spherical surface and e1 = ẑ on the β-plane, is given
by

∂tζ + J(ψ, f + ζ) = −κζ +D + η(t). (5)

Here J( , ) is the Jacobian and we have utilized the
streamfunction representation u = ∇× (ψe1). The mo-
tion is damped by Rayleigh friction –κζ and also a dis-
sipation D that removes small-scale structures. On the
spherical surface D takes the form of a hyperdiffusion,
whilst on the β-plane viscous dissipation ν∇2ζ is used.
Finally, rotation is incorporated through the Coriolis pa-
rameter f , where f = 2Ωcos θ for the spherical system
and f = f0 + βy for the local β-plane model. The forc-
ing η(t) is chosen to be stochastic and narrow band in
spectral space, with a short renewal time [12].
Much is known about the dynamics of this system ow-

ing to its importance as a paradigm problem for the for-
mation of jets in Earth’s atmosphere and oceans, the
outer layers of gas giants, stellar interiors and exoplan-
ets [14–16] and the formation of zonal flows in tokamaks
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FIG. 2. Time- and zonal-averaged zonal velocity as a function
of latitude. Time averaging over 5,000 days (50,000 days for
QL) commences after a spin-up of 500 days. NL is the fully
nonlinear simulation. In the QL limit (Λ = 0) there is no
mechanism to transfer angular momentum from low latitudes,
where it is forced, to high latitudes. GQL corrects this defect.

[5]. Briefly, energy injected at small scales is transferred
to larger scales via nonlinear interactions. Owing to
the underlying anisotropy of the system, the energy at
large scales is preferentially transferred into systematic
zonal flows (here a zonal flow is in the φ- or x-direction).
Two competing mechanisms have been proposed for the
energy transport. The first involves the scale-by-scale
transfer of energy known as the inverse cascade [17] which
involves eddy/eddy scattering. The other is non-local in
wavenumber space and relies upon the direct transfer of
energy to the largest scales. This forcing via Reynolds
stress terms only involves eddies interacting with eddies
directly to produce mean flows. Of course in any real
fluid system both of these mechanisms are operative, with
their relative importance often characterized by the Kubo
number R or its analogues [5].

On the sphere, pure spectral DNS with truncation in
wavenumbers 0 ≤ ℓ ≤ L and |m| ≤ min{ℓ,M} is per-
formed. We choose spectral cutoffs L = 30 and M = 20
and work on the unit sphere and in units of time (days)
such that Ω = 2π. To remove enstrophy cascading to
small scales, hyperviscosity ν3(∇2 + 2)∇4ζ is included.
The parameters for the jet are chosen as in Ref. 12. The
fluid motion is driven by stochastic forcing η and damped
by friction with κ = 0.02. Only modes with 8 ≤ ℓ ≤ 12
and 8 ≤ |m| ≤ ℓ are stochastically forced. This has
the effect of confining the stochastic forcing to lower lat-
itudes. Figure 2 shows that, in contrast with QL, GQL
is in fact able to scatter angular momentum to high lati-
tudes, reproducing the zonal flow there as well as at low
latitudes. Figure 3 similarly confirms that GQL is able to
reproduce the two-point correlation function of the vor-
ticity, again in contrast to QL (Λ = 0), which shows too
strong and too coherent waves owing to the absence of
eddy-eddy scattering.

Next we evaluate GQL on the β-plane for various
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FIG. 3. Second cumulant (two-point correlation function of
the vorticity). One point is centered along the prime meridian
and at latitude 0◦. The non-local nature of the correlations
(or ‘teleconnections’) is evident.

choices of the cutoff wavenumber Λ. We start by perform-
ing a full DNS using a pseudo-spectral scheme [18] at a
spectral resolution of 20482. As in Ref. [11] the stochas-
tic forcing is chosen to be random but here concentrated
in a spectral band of wavenumbers 11 ≤ |kx|, |ky| ≤ 14.
The system is evolved from a state of rest until a solution
with 4 strong jets is reached. This state is moderately
far from equilibrium as measured by the so-called Zonos-
trophy Index Rβ = 2.6 [19] and Kubo number R ≈ 0.1
(the precise values depend on y). It is the subsequent
evolution of this state under the various degrees of ap-
proximation (different choices of Λ) that we investigate.

Figure 4(a) shows the evolution of the zonal jets as a
function of latitude (y) and time (t) in a Hovmöller di-
agram for the mean vorticity ζ(y, t). At the start of the
interval (t = 0) 4 jets are visible, but this configuration
is unstable and around t = 4, 500 the two jets nearest
the top of the computational domain merge to form one
jet. This complicated merging process occurs relatively
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FIG. 4. Color-coded Hovmöller diagram (space-time plots
with time t along the horizontal axis and 0 ≤ y ≤ 2π along
the vertical axis) for the mean vorticity ζ(y, t) for (a) NL DNS
(Λ = 1024), (b) Λ = 3, (c) Λ = 1, (d) Λ = 0 (equivalent to
QL).

quickly and the three jet structure remains stable un-
til the end of the computation. Figure 4(b-d) show the
comparable evolution in space and time of the mean flow
at various levels of truncation. Figure 4(b,c) illustrate
the dynamics for Λ = 3 and Λ = 1, respectively; for
these cases, the forcing injects energy directly into small-
scale modes. Remarkably, the GQL approximation run
at Λ = 3 and even Λ = 1 is able to reproduce the large-
scale dynamics of the fully NL DNS. It is only for the
quasilinear system (Λ = 0) that the qualitative dynam-
ics are not replicated; for this case only two jets remain at
the end of the run, and the transitions to reach this state
are significantly different. The efficacy of the GQL over
the QL approximation also may be demonstrated by ex-
amining the two-dimensional spectra when averaged over
the second half of the evolution. It is clear from Figure 5
that GQL is able to redistribute power over a wide range
of zonal wavenumbers.

A formal justification for the GQL approximation is
provided by a multiple-scales asymptotic reduction of
the PDEs governing a class of anisotropic flows. In
the context of the barotropic β-plane vorticity equa-
tion (Eq. 5), two zonal coordinates and timescales are
introduced: χ ≡ x and X ≡ ǫx, and τ ≡ t and
T ≡ ǫt, where ǫ is a scale separation parameter that
can be related to the ratio of dissipation to forcing. A
fast-averaging operation over (χ,τ) is introduced such
that each dependent variable is decomposed, in physical
space, into a coarse-grained, slowly-varying mean field
(again denoted with an overbar) and a fluctuation (de-
noted with a prime): ζ(χ,X, y, τ, T ; ǫ) = ζ(X, y, T ; ǫ) +
ζ ′(χ,X, y, τ, T ; ǫ). Eq. (5) with multiscale derivatives
is parsed into equations for the mean and fluctuation
fields, and the vorticity ζ and streamfunction ψ are ex-

NL

QL

GQL

GQL
Λ = 0

Λ = 1024

kx kx

kxkx

ky

ky

ky

ky

Λ = 3
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FIG. 5. Time-averaged vorticity power spectra on a log
10

scale for fully NL DNS (Λ = 1024), GQL with Λ = 3 and
Λ = 1, and QL (Λ = 0). In all cases power scatters in the
meridional y-direction via the nonlinear interaction. Like NL,
GQL also redistributes power in the zonal direction. Small
power seen in the QL spectrum outside of the forced zonal
wavenumbers is due to the initial condition and vanishes
rapidly with time.

panded in asymptotic series in (fractional) powers of ǫ
as: ζ ∼ ζ0 +

√
ǫ
(

ζ1 + ζ ′1
)

+ . . . , and similarly for ψ.
The form of these expansions is dictated by the require-
ments that: (i) the large-scale flow be incompressible;
(ii) the (dimensionless) jets u ≡ ∂yψ have O(1) magni-
tude; and, crucially, (iii) the meridional Reynolds-stress
divergence arising from the fluctuation fields feeds back
on the slowly-varying mean at the appropriate order.
Given these considerations the fluctuation equations are
readily deduced to be quasilinear about the O(1) mean
flow. The equations for the evolution of the slowly-
varying mean fields are obtained via a secularity con-
dition, which yields the system

∂T ζ + J(ψ, ζ) + β∂Xψ = −∂y
(

ζ ′∂χψ′
)

− κζ +D, (6)
∂2yψ = ζ, (7)

where β, κ and D are the O(1) rescaled (dimensionless)
beta coefficient, Rayleigh friction coefficient and dissipa-
tion, respectively, and the subscripts on the leading-order
fields have been omitted. The corresponding leading-
order fluctuation system (again dropping subscripts) is
given by

∂τ ζ
′ − ∂yψ∂χζ

′ + ∂χψ
′∂yζ + β∂χψ

′ = η′(τ), (8)
(

∂2χ + ∂2y
)

ψ′ = ζ ′, (9)
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where η′(τ) is the fluctuation forcing. Upon reverting to
a single set of temporal scales, the GQL formulation can
be interpreted as a spectral space implementation of the
multiscale reduced PDE system (6)–(9). In the appropri-
ate asymptotic limit, this alternative reduction not only
provides a formal mathematical justification for the GQL
formulation but also is suggestive of other multiscale al-
gorithms for simulating the reduced dynamics [20].
An extension of quasilinear theory has been intro-

duced for the reduced description of out-of-equilibrium
anisotropic fluid systems. GQL theory reinterprets the
underlying linearization as the dynamics are linearized
about a coarse-grained rather than strictly mean field
that undergoes fully nonlinear interactions. One cru-
cial consequence is that energy is redistributed among
small-scale modes via scattering off the large-scale flow,
in stark contrast to QL dynamics. The utility of GQL
theory has been demonstrated for the canonical problem
of the driving of zonal jets in barotropic turbulence; for
the parameter regime investigated, the accuracy of the
QL method is shown to be significantly improved by re-
taining even just one coarse mode. Further advantages of
the method include its ease of implementation and guar-
anteed preservation of conservation laws of the master
equations. The GQL formulation thus provides a seam-
lessly integrated closure for sub-grid dynamics that has
broad applicability to anisotropic turbulent flows arising
in nature and technology. Energy redistribution via eddy
scattering off the large scales is the key improvement over
the QL approximation. The GQL approximation may
thus be expected to be widely applicable to systems that
include nonlinear interactions between scales – a problem
that is ubiquitous in nonlinear physics.
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