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Abstract 

A number of soundscape studies have suggested the need for suitable parameters for soundscape 

measurement, in addition to the conventional acoustic parameters. This paper explores the applicability of pitch 

features that are often used in music analysis and their algorithms to environmental sounds. Based on the 

existing alternative pitch algorithms for simulating the perception of the auditory system and simplified 

algorithms for practical applications in the areas of music and speech, the applicable algorithms have been 

determined, considering common types of sound in everyday soundscapes. Considering a number of pitch 

parameters, including pitch value, pitch strength, and percentage of audible pitches over time, different pitch 

characteristics of various environmental sounds have been shown. Among the four sound categories, i.e. water, 

wind, birdsongs, and urban sounds, generally speaking, both water and wind sounds have low pitch values and 

pitch strengths; birdsongs have high pitch values and pitch strengths; and urban sounds have low pitch values 

and a relatively wide range of pitch strengths. 
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1 Introduction 

Over the past fifteen years, the perception and evaluation of soundscape (referring to the total sound 

environment [1]) have been researched through numerous studies. It has been revealed that conventional 

acoustic parameters for noise measurement [2, 3], e.g. weighted sound pressure levels (SPLs), alone are not 

adequate for the measurement of soundscape [4]; more parameters are needed, which are more likely to be 

correlated with people’s subjective evaluation of soundscape [5-7], such as comfort [4], pleasantness [8], 

annoyance [9], etc. For example, background noise level, standard deviation of short LAeq [4, 8], temporal 

structure [10, 11] and some psychoacoustic parameters [12, 13] have been used. In addition to these parameters, 

there is a recognized need to explore the possibility of additional parameters for soundscape measurement.  

Since soundscape and music are closely related, in that music could be regarded as an imitation of 

environmental soundscapes or an ideal soundscape of the mind [1],  musical features, particularly the 

psychoacoustic parameters that have previously been applied mainly in music perception, may also be applicable 

in soundscape research. In the fields of music psychology and psychoacoustics, the sensations of hearing are 

generally studied from four aspects, i.e. loudness, pitch, rhythm, and timbre. While loudness, timbre (including 

sharpness, tonality, roughness and fluctuation strength), and rhythm have been used to analyze the characteristics 

of soundscapes and environmental sounds [14-17], further study is required of the pitch aspect. Pitch 

corresponds to the sound’s physical property of frequency, whereas loudness, rhythm, and timbre respectively 

correspond to amplitude, time, and both frequency and time properties. Pitch may be defined as “that attribute of 

auditory sensation in terms of which sounds may be ordered on a musical scale” [18, 19]. (The pitch value to a 

sound is generally assigned by the frequency of a pure tone having the same subjective pitch as that sound [18].) 

While pitch or pitch value specifies the pitch sensation along a scale from low to high, other pitch parameters 

define additional pitch sensations independent of pitch value, e.g., pitch strength specifies the sensation along a 

scale from faint to distinct [20]. 

In the field of psychology of music, relations between musical features and humans’ emotion and 

evaluation have been studied for decades. For example, high pitch, wide pitch range and large pitch variation 

may be associated with emotions like high activation, excitement, surprise [21], happiness [22, 23], pleasantness, 

anger, and fear [24]; low pitch and narrow pitch range may be associated with low activation, calmness, 

boredom, sadness [22], unpleasantness, and pleasantness, and small pitch variation with anger and fear [25]. 
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(The apparent contradiction, e.g., both high and low pitch are associated with pleasantness, may depend on the 

context, that is, the combination and interaction with other features [25].) It is expected that these pitch 

parameters might be useful in soundscape measurement, especially for the emotional evaluation of soundscapes 

[26]. However, unlike music and speech, environmental sounds may be mainly composed of noise rather than 

discernable complex and/or pure tones, thus, there is a need to study the applicability of the pitch features to 

environmental sounds.  

This paper, therefore, aims first to explore the pitch algorithms and parameters applicable to soundscape 

analysis, and then to study the pitch characteristics of various different environmental sounds. In the rest of this 

paper, first, the method for sound sample collection is described. Then, a number of existing algorithms are 

implemented with simplification/modification for environmental sounds. From these implemented models, the 

one with the best simulation performance for environmental sounds is selected, using a small size of sound 

samples. A number of pitch parameters, which correspond to subjective pitch sensations, and their statistical 

indices, which describe the variations of these parameters over time, are derived/developed based on the model 

selected. Finally, the characteristics of, and differences among various environmental sounds are studied in these 

pitch features, using a relatively large sample size. 

2 Sound sample collection 

Environmental sound sources that are often heard in outdoor soundscapes of everyday life are considered 

in this study, which include sounds from both nature and human activity/facility. The sound recordings were 

collected from multiple databases and supplemented by recordings made by the authors. Recordings were made 

in the countryside, natural parks, and urban areas in England, from 1994 to 2010. Calibration was based on 

measured SPLs, or in cases where calibration data was not available, based on reasonable estimates of the SPL 

range [14, 16]. The recordings are mono channel, 30 seconds in duration, and are sampled at 44,100 Hz (16 bit). 

Further details (including the recording equipment used) of the recordings can be found in [14]. 

 

(a) (b) 

(c) (d) 

Fig. 1. Spectrogram: (a) birdsong, (b) music, (c) stream, and (d) traffic. 

To examine the applicability of the pitch algorithms to soundscape research (Sections 3 and 4.1), a small 

set of samples are used, including 11 environmental sounds in which a single sound source is predominantly 

present and 4 soundscape sounds in which multiple sound sources are simultaneously present. The 11 

environmental sound recordings are sounds of stream, river, sea waves, wind, birdsong, fountain, church bells, 

street music, street machinery, traffic, and voice. The 4 soundscape sound recordings are from 4 common urban 

places, and have different combinations of sound sources; they are soundscapes on a street with traffic, clock 

(Big Ben), and talking sounds, in a park with fountain and geese sounds, in a market place with talking sounds 

and footsteps, and in an urban square with music and talking sounds. Since the applicability of pitch algorithms 
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is affected by the spectrum of audio signal to be estimated, specifically, whether it is composed of mainly 

broadband/band-pass noises or complex/pure tones, this small set of samples, from the collected recordings, is 

selected to cover a representative range of spectra and their variations of time of natural and urban 

environmental sounds [27]. For example, wind and traffic sounds are studied for broadband noises, machinery 

for band-pass noises/tones, birdsong, church bells, music, and voice for tones, and stream sounds for a 

combination of noises and tones. The natural water sounds of stream, river, and sea waves are all included since 

they have quite different patterns of variations of spectrum. The spectra over time of part of the recordings are 

shown in Fig. 1. It shows that the music in particular has a rather different spectrum compared to the other 

sounds, suggesting the importance of studying the applicability of musical features to environmental sounds.  

To analyze the characteristics of various environmental sounds in terms of the pitch features (Section 5), 

102 30-s recordings with single sound sources are used. Also, the correlation and principal component analyses 

of the developed pitch indices (Sections 4.2 and 4.3) are based on the large sample set. This set of recordings 

comprises natural sounds, which include water sounds (stream, river, and sea waves), wind sounds (in 

deciduous/coniferous trees and heathland), and birdsongs (in woodland, heathland/grassland, moorland/wetland, 

farmland, and coastal), and human activity/facility sounds in urban areas, which include sounds of church bells, 

fountains, street music, street machinery (e.g. cleaning machine, rubbish bin loading, and construction work), 

traffic, voice, and footsteps. In this paper, fountain sounds, differing from natural water sounds, are included in 

urban sounds, according to the definition of natural sounds in [16] (their primary excitation mechanism are not 

from nature), and since they have higher energy in high frequencies than natural water sounds. (More details 

about the composition of the 102 sound samples, including the numbers of recordings in each sound category, 

i.e., water sounds, wind sounds, birdsongs, and urban sounds, can be found in Fig. 4 and Table 5.) 

 

3 Model implementation and comparison 

A number of pitch models, i.e. spectral model and temporal model, according to the two classes of pitch 

perception theories, and simplification model for real-time pitch analysis in music and speech, are 

simplified/modified and implemented in a MATLAB program with MIRtoolbox 1.3.4, and then compared based 

on their pitch estimation performance for environmental sounds. The MIRToolbox is a MATLAB toolbox 

dedicated to the extraction of musically related features from audio signals, within the context of music 

information retrieval (MIR) [28].  

3.1 Spectral model  

There have been two classes of pitch perception theories that attempt to correlate the pitch of stimuli with 

the anatomical properties and physiological responses of the auditory system [18]. One of them is the 'place' 

theory [29]. As the spectral analysis taking part in the inner ear, different frequencies of a stimulus excite 

different places along the basilar membrane (BM) and hence neurones with different characteristic frequencies 

(CFs). The 'place' theory proposes that the pitch is determined by the recognition of excitation pattern of 

different places along the BM. 

The implementation of the spectral model is based on Wightman’s mathematical "pattern-transformation 

model" [30], which shows a family similarity to Terhardt’s pattern recognition model [29, 31, 32] (a 

combination or competition of spectral-pitch pattern and virtual-pitch pattern) and Goldstein’s theory [33, 34], 

and is less computationally sophisticated. It is implemented through the calculation of cepstrum, which is 

defined as the power spectrum of the amplitude-logarithm of the power spectrum [35], and has been used for 

pitch detection in voiced-speech [36, 37]. That is, the model calculates first the power spectrum of an audio 

signal, which roughly transforms the stimulus into a pattern of peripheral neural activity or response of the BM, 

and then performs a Fourier transformation on the power spectrum. In other words, the output transformed 

pattern is the autocorrelation function of the signal; this is a spectrally based autocorrelation model (frequency 

domain computation) and thus phase-insensitive, which is different from temporally based autocorrelation 

models (time domain computation) as following in Section 3.2 that are phase-sensitive [38]. The pitches 

correspond to the peaks in the cepstrum: The abscissas of the function correspond to the reciprocal of the values 

of the perceived pitches, whereas the ordinates are related to the corresponding pitch strengths of the pitches [16]. 

3.2 Temporal model  

An alternative to the place theory is the 'temporal' theory [18]. When a neurone is excited, the nerve firings 

tend to occur at a particular phase of the stimulating waveform, and thus the intervals between successive neural 

impulses approximate integral multiples of the period of the stimulating waveform (i.e., phase locking). The 

'temporal' theory suggests the pitch is related to the temporal patterns of neural impulses within and across 

neurones.  
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The implementation is based on the temporal models of Moore [18] and Meddis et al. [39-41], with some 

simplifications for pitch simulation of environmental sounds in this paper. This simplified model consists of four 

key stages: (1) The signal is decomposed through a bank of critical-band filters that simulates the frequency 

analysis of the cochlea or BM [18, 38, 42]. The output of each filter corresponds to the mechanical motion of the 

BM and roughly represents the nerve impulses at that point. (2) Within each channel, an autocorrelation analysis 

is performed on the output filterband waveform. The autocorrelation estimates a distribution of time intervals 

among all spikes (or nerve fibre firing probabilities), similar to Licklider [38] and Meddis et al. [39-41]. This 

approximates the time intervals between only successive spikes [18] and is computationally convenient. (3) All 

the autocorrelation functions (ACFs) are averaged across channels to generate a summary autocorrelation 

function (SACF). (4) The peaks of the SACF are picked, which correspond to the pitches.  

In stage (1), a number of different auditory filters are used, in order to compare their pitch simulation 

performances and find the one with the optimal performance for environmental sounds, in terms of 

computational accuracy and efficiency. These auditory filters include the gammatone filterbank [43], Bark scale 

critical bands [20], and third-octave band filters. They are all commonly used to represent the magnitude 

characteristic of the human auditory filter [43-45]. For gammatone filters, 10, 20, 40 and 80 filters (e.g. 60 or 

more gammatone filters have been used in Meddis et al.’s models [39-41]) with half overlapping along a scale 

between 50 and 22000 Hz are used here. The gammatone filterbank calls the Auditory Toolbox in MATLAB [46, 

47]. Third-octave band filters have been used in loudness calculating procedure as an approximation of critical 

bands [20, 48]. The third-octave band filterbank used in this paper consists of 21 non-overlapping bands which 

cover the frequencies from 44 to 18000 Hz (the lowest three filters are one-octave band-pass filters) [49]. The 

temporal models using these different filterbanks are compared in Section 3.6.  

3.3 Simplification pitch model  

Based upon the pitch algorithms for simulation of auditory perception, some simplification pitch models 

have been developed for practical application of real-time pitch analysis in music and speech, and are thus 

computationally efficient and may be applicable for large sample size analysis. Part of Tolonen and Karjalainen 

[50]’s model is implemented, which can be seen as a computational simplification of the model of Meddis and 

O'Mard [41]. The procedure is as follows. (1) Instead of multi-channels in Section 3.2, this model essentially 

divides the signal into two channels, above and below 1000 Hz. (2) The envelope of the high-channel signal is 

then calculated by lowpass filtering at cut-off frequency of 1kHz. (3) The model computes ACFs of the low-

channel signal and of the envelope of the high-channel signal. (4) The resulting two ACFs are averaged to 

produce a SACF, in which the peaks indicate the pitches of signal. The exponential magnitude compression of 

the “generalized” autocorrelation and the enhanced SACF in Tolonen and Karjalainen [50]’s model are not used 

in this study, since they increase the risk of sensitivity to noise and thus are not suitable for environmental 

sounds [50]. 

3.4 Parameter setting 

The calculation parameters of these models implemented are set for environmental sounds based on the 

small set of sound samples. For each of these different models, unitary pitch range, between 75 and 5000 Hz, is 

considered. The lowest pitch value taken into consideration follows the convention in pitch estimation [51]. For 

the highest pitch value, above 4-5kHz the ability of the auditory system to discern changes in the frequency of 

pure tones diminishes and the sense of musical pitch disappears. Furthermore the tones produced by musical 

instruments, the human voice and most everyday sound sources all have fundamental frequencies below this 

range [18].  

During peak selection from the cepstrum or SACF, the total amplitude of the function is firstly normalized 

between 0 and 1. It is postulated that a given local maximum of the function will be considered as a peak if it 

meets a number of conditions: (1) its normalized amplitude is higher than a threshold, specified by the parameter 

of "Threshold"; (2) the differences of amplitude with both the adjacent local minima are higher than a threshold, 

specified by the parameter of "Contrast"; (3) abscissa distance (frequency distance) to adjacent peak is greater 

than a given threshold, specified by the parameter of "Reso". The higher peak remains out of two adjacent peak 

candidates with a distance lower than the threshold. In addition, the peak near the place corresponding to the 

abscissa of zero of the function is ignored [30]. Of each model, different values of the condition parameters have 

been compared and set to obtain the optimal and balanced results based on the 15 sound samples, in that the 

major peaks of the function with positive absolute autocorrelation coefficients are generally selected [16]. While 

multiple pitches can be picked, the most prominent four pitches (if there are more than four), i.e. the ones with 

the highest pitch strengths corresponding to the highest four peaks, are extracted to reflect the different pitch 

properties of the sounds, given that some of the 15 sound samples show only zero to two pitches whereas some 

others show even eight to ten pitches using most of the models (as discussed in Section 3.5 below), and also, the 

strengths of additional pitches are small and thus less relevant. The parameter settings, indicated in the 

corresponding commands in MATLAB for each model, are shown in Table 1. It is noted that the authors have 
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modified the program to a small extent to meet the needs in this study, and thus a number of the commands are 

not directly available in MIRtoolbox.  

For the calculation of variation of pitches over time, the signal is first decomposed into successive frames 

of short duration, and pitches are calculated within each frame. The frame length of 46.4ms and hop length of 

10ms are used according to Tolonen and Karjalainen [50].  

 

Table 1 Pitch values and pitch strengths of four prominent average pitches of 11 environmental sounds with different models. 

  Bird 

song 

Church 

bells 

Fountain Machine Music River Sea 

waves 

Stream Traffic Voice Wind 

Cepstrum 

p=mirpitch('folder','

Cepstrum','Max',500

0,'Threshold',0,'Cont

rast',0.2,'Reso','Semi

Tone','total',4) 

PV 

 
3815 2610 4421 2329 557 3163 1002 1105 3574 882 4437 

1991 2158 3658 3907 2486 2316 1189 3990 2700 1463 3650 

1095 3990 2754 2575 1430 801 1078 2742 1770 4344 - 

- 512 3148 1825 491 605 2741 1427 1522 2094 - 

PA 

(1e

+4) 

8.781 2.777 6.875 2.672 2.769 8.574 7.095 1.363 2.906 1.615 2.734 

4.590 2.776 6.205 2.744 1.770 5.359 6.974 1.082 2.593 1.577 1.870 

2.310 2.380 5.547 1.487 1.707 4.567 6.942 0.722 1.711 1.509 - 

- 2.243 5.540 1.107 1.679 3.738 6.020 0.713 1.430 1.395 - 

2Channels 

p=mirpitch('folder','

2Channels','Max',50

00,'Threshold',0.3,'C

ontrast',0.1,'Reso','Se

miTone','Generalized

',2,'Enhanced',0,'tota

l',4) 

PV 

 

483 114 823 174 146 - - 861 - 272 - 

85 101 266 94 - - - 119 - - - 

248 129 394 - - - - 394 - - - 

102 939 - - - - - - - - - 

PA 

 

1.689 2.096 0.847 0.551 1.275 - - 0.689 - 0.230 - 

0.644 1.502 0.233 0.420 - - - 0.403 - - - 

0.571 1.454 0.225 - - - - 0.280 - - - 

0.522 1.433 - - - - - - - - - 

10 Gammatone 

p=mirpitch('folder','

Gammatone','Max',5

000,'Threshold',0.4,'

Contrast',0.1,'Reso','

SemiTone','Compres

s',2,'Enhanced',0,'tot

al', 4) 

PV 

 
3672 232 733 200 221 205 445 735 - 218 214 

1917 464 451 93 148 732 206 442 - 444 439 

457 101 1159 - 111 445 112 1161 - 111 - 

533 177 276 - 446 1189 720 274 - 154 - 

PA 

 

1.914 1.942 1.008 1.185 1.634 0.758 1.149 1.407 - 1.403 1.209 

1.706 1.835 0.620 0.622 1.082 0.748 0.807 0.980 - 0.691 0.762 

1.316 1.769 0.601 - 1.044 0.747 0.336 0.763 - 0.581 - 

1.084 1.615 0.390 - 1.036 0.627 0.285 0.707 - 0.243 - 

20 Gammatone 

p=mirpitch('folder','

Gammatone','Max',5

000,'Threshold',0.3,'

Contrast',0.1,'Reso','

SemiTone','Compres

s',2,'Enhanced',0, 

'total',4) 

PV 

 

4017 205 739 104 147 105 153 923 - 152 - 

2011 102 360 - 111 153 206 745 - 103 - 

453 93 459 - 558 357 275 276 - 279 - 

491 473 274 - 209 275 355 365 - - - 

PA 

 

1.581 1.830 0.258 0.226 0.955 0.253 0.443 0.554 - 0.695 - 

0.832 1.685 0.253 - 0.603 0.180 0.315 0.427 - 0.501 - 

0.796 1.576 0.245 - 0.269 0.111 0.261 0.351 - 0.226 - 

0.641 1.491 0.234 - 
-

0.097 
0.072 0.254 0.322 - - - 

40 Gammatone 

p=mirpitch('folder','

Gammatone','Max',5

000,'Threshold',0.3,'

Contrast',0.1,'Reso','

SemiTone','Compres

s',2,'Enhanced',0, 

'total',4) 

PV 

 

4072 115 813 176 148 - - 1064 - 276 - 

2027 102 204 93 - - - 402 - - - 

493 938 258 - - - - 118 - - - 

556 84 134 - - - - 286 - - - 

PA 

 

8.618 7.529 0.634 0.770 4.897 - - 1.550 -  0.857 -  

4.714 7.130 0.384 0.675 - - - 1.151 - - - 

4.616 7.027 0.302 - - - - 0.509 - - - 

3.702 6.728 0.288 - - - - 0.330 - - - 

80 Gammatone 

p=mirpitch('folder','

Gammatone','Max',5

000,'Threshold',0.3,'

Contrast',0.1,'Reso','

SemiTone','Compres

s',2,'Enhanced',0, 

'total',4) 

PV 

 
4050 115 812 177 148 - - 1067 - 274 - 

2017 102 205 93 - - - 400 - - - 

491 939 268 - - - - 119 - - - 

551 84 376 - - - - 281 - - - 

PA 

 
275 3652 37 17 3629 - - 77 - 649 - 

158 3511 27 14 - - - 53 - - - 

146 3449 22 - - - - 46 - - - 

122 3294 19 - - - - 9 - - - 

Bark 

p=mirpitch('folder','

Bark','Max',5000,'Th

reshold',0.3,'Contras

t',0.15,'Reso','SemiTo

ne','Compress',2,'En

hanced',0,'total',4) 

PV 

 

4078 102 745 125 149 130 - 1067 1122 275 - 

490 115 381 - - - - 117 248 - - 

552 949 101 - - - - 398 117 - - 

2036 84 278 - - - - 278 - - - 

PA 

 

2.217 1.470 0.149 0.716 0.894 0.170 - 0.205 0.508 0.230 - 

1.309 1.457 0.085 - - - - 0.190 0.354 - - 

1.118 1.344 0.083 - - - - 0.190 0.192 - - 

1.077 1.283 0.077 - - - - 0.069 - - - 

Third-octave 

p=mirpitch('folder','

Klapuri','Max',5000,'

Threshold',0.3,'Contr

ast',0.1,'Reso','SemiT

one','Compress',2,'E

nhanced',0,'total',4) 

PV 

 
4085 102 751 177 149 - 94 887 - 94 - 

2035 115 374 93 - - - 402 - 276 - 

490 84 472 - - - - 118 - - - 

549 941 949 - - - - 297 - - - 

PA 

 
1.922 1.841 0.170 0.311 1.313 - 0.170 0.377 - 0.232 - 

1.072 1.735 0.161 0.293 - - - 0.256 - 0.175 - 

0.969 1.682 0.131 - - - - 0.175 - - - 

0.887 1.607 0.107 - - - - 0.093 - - - 

 
 



Yang et al.: J. Sound Vib.    [http://dx.doi.org/10.1016/j.jsv.2016.03.040] 

 

6 

 

Table 2 Pitch values and pitch strengths of four prominent average pitches of 4 soundscape sounds with different models. 

  Street Park Market Square 

Cepstrum  PV 

 
3142 2567 4017 3985 

2604 3682 3407 2970 

1288 1154 2311 - 

1001 2141 588 - 

PA 

(1e+4) 

2.362 2.087 2.485 2.627 

1.591 1.766 1.498 2.576 

1.429 1.562 1.377 - 

1.246 1.443 0.839 - 

2Channels  PV 

 

99 77 - 87 

168 133 - - 

- 91 - - 

- 470 - - 

PA 

 
0.589 0.361 - 1.599 

0.426 0.358 - - 

- 0.276 - - 

- 0.269 - - 

10 

Gammatone  

PV 

 
216 449 437 93 

99 721 223 206 

449 226 - - 

- 114 - - 

PA 

 

1.532 1.366 1.444 0.984 

0.792 0.758 0.681 0.851 

0.147 0.679 - - 

- 0.411 - - 

20 

Gammatone  

PV 

 

102 153 - 98 

153 354 - - 

- 272 - - 

- 215 - - 

PA 

 
0.607 0.566 - 0.711 

0.341 0.479 - - 

- 0.474 - - 

- 0.352 - - 

40 

Gammatone  

PV 

 
99 153 - 87 

169 77 - - 

- 134 - - 

- 91 - - 

PA 

 

2.268 1.516 - 7.127 

1.393 1.476 - - 

- 1.410 - - 

- 1.201 - - 

80 

Gammatone 

 

PV 

 

99 77 - 87 

169 153 - - 

552 134 - - 

- 91 - - 

PA 

 
270 738 - 209 

195 697 - - 

146 636 - - 

- 618 - - 

Bark  PV 

 
100 134 128 175 

169 152 - 93 

- 77 - - 

- 90 - - 

PA 

 

0.674 0.359 0.244 0.638 

0.537 0.346 - 0.439 

- 0.333 - - 

- 0.313 - - 

Third-octave  PV 

 

99 151 - 87 

169 134 - - 

- 469 - - 

- 77 - - 

PA 

 
0.472 0.262 - 2.725 

0.276 0.260 - - 

- 0.234 - - 

- 0.192 - - 

 

3.5 Comparison of pitch models  

To compare the simulation performance of the models implemented on environmental sounds, the 

pitch/pitches of the 15 sound samples are calculated according to each of the models. Both the variation of 

pitches over time and average pitches over the whole duration are calculated. The average pitch is calculated by 

ACF based on the whole duration, in contrast to ACFs of successive frames; the results of the sound samples 

using all the models, in terms of average pitch values (PV) and corresponding pitch strengths represented as 

amplitudes (PA), are shown in Tables 1 and 2. From the tables, it can be seen that the results are quite different 

across the different models, though some matches.  
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The simplification model (i.e. the '2Channels' method) has the limited frequency analysis range of pitch, 

focusing on low-to-mid fundamental frequencies, with maximum pitch of around 1kHz for the 15 sounds. It is 

determined by the boundary of the two channels, as both channels have the low-pass characteristics at the 

frequency of 1 kHz. Unlike most music and speech sounds, the pitches of environmental sounds may exceed that 

region as expected, e.g., the birdsongs may have pitches of about 4kHz using the temporal models as discussed 

in the following paragraphs. Since the two-channels method is a simplification of the temporal method, it is 

expected that the temporal models may derive more accurate results. Therefore, the two-channels pitch model 

may not be applicable for environmental sounds because of its limitation on pitch analysis range.  

Using the spectral model based on the computation of cepstrum, the pitches of most of the 15 sounds are 

high. As shown in Tables 1 and 2, the most prominent pitches have values of above 2.5 kHz for the majority of 

the sounds (exceptions include pitch values of ~1 kHz for sea wave, stream, and voice, and ~500 Hz for music). 

A possible reason of these relatively high pitch results is that environmental sounds may consist of large 

amounts of noise, rather than pure or complex tones as in music. While Wightman [30]’s and cepstrum methods 

focus on the analysis of complex tones – the power spectra of which consist of evenly spaced components, for 

noises, the estimations of high pitch values may result from the random changes of noise signals and 

consequently the quick changes in spectra along the frequency scale, but may not correspond to real pitch 

sensation. Thus, the cepstrum method implemented can only be used for pitch analysis of certain sound types 

such as music and speech, but not for general environmental sounds. Although the inadequacy of the algorithm 

might be corrected with a number of modifications, e.g., a pre-whitening filter involved in Tolonen and 

Karjalainen [50]’s model to remove short-time correlation of the signal, no effort has been made to implement 

these modifications due to the complexity [30].  

Using the temporal models, it can be seen from Tables 1 and 2 that the values of the pitches calculated vary 

among the 15 sounds. Taking the results by the algorithm based on 40 gammatone filter bands for example, the 

values of the most prominent pitches are ~4000 Hz for birdsongs, ~1000 Hz for sounds of fountain and stream, 

and no pitch perceived for river, sea waves, traffic, and wind. The pitch strengths of birdsongs, church bells 

(both above 7.5 for the most prominent pitches), and music (about 4.9) are higher than the others. These results 

may be consistent with what could be expected of human’s pitch perception of environmental sounds; for 

example, traffic sounds consist of mainly broadband noise (without steep spectral slopes [20]) and thus do not 

evoke any pitch sensation. For sounds with harmonics, such as church bells and music, pitch values correspond 

to the fundamental frequencies. Indeed, the temporal theories/models were thought to explain two pitch 

perception mechanisms associated with both resolved and unresolved harmonics [18], and proved to be capable 

of explaining the majority of experimental results in pitch perception [42], including both complex tone and 

interrupted noise [39]. 

3.6 Comparison of filterbanks 

The temporal models may be the appropriate methods for pitch analysis of environmental sounds as 

discussed above; however, it would be computationally expensive if a large number of filter bands were used. It 

is expected that the larger the number of filters used in this paper the more accurate the result would be, but 

computation time would also increase with increasing number of filters. Hence, the simulation performances 

based on the gammatone filters with different numbers of filter bands (10, 20, 40, and 80), the Bark scale filters, 

and the third-octave band filters are compared, in order to look for a balance between computational accuracy 

and efficiency.  

As shown in Tables 1 and 2, between the gammatone filters, the pitch results differ when different numbers 

of filters are used. 40 and 80 gammatone filters generally produce similar results of pitch values in terms of 

variation of pitches over time, whereas the pitches over time computed with 10 or 20 gammatone filters tend to 

congregate more at certain frequencies. It is likely to be caused by the very limited number of filterbands. Both 

the Bark scale and third-octave band filters produce similar average pitch results to 40/80 gammatone filters, 

though the order of the four most prominent pitches – i.e. sorted by pitch strength from high to low – may vary. 

Also, these results (both pitches and relative pitch strengths) are somewhat similar to those produced by the 

'2Channels' method, except for high frequencies above about 1kHz. This agreement between the two types of 

models from another aspect supports the reliability of the pitch results.  

In terms of calculation speed, both the Bark scale and third-octave band filters have similar numbers of 

filters to 20 gammatone filters and thus similar calculation speeds, all of which are quicker than the 40/80 

gammatone filters. In other words, the Bark scale and third-octave band filters have similar accuracy 

performance to the gammatone filters with higher numbers of bands, but reduced computation time in this study. 

The calculation speed of the third-octave band filters is slightly quicker than the Bark scale filters because of its 

computational simplicity. Based on these results, therefore, the simplified temporal model implemented with the 

third-octave band filters is selected for the further pitch analysis of environmental sounds in this paper. 
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4 Determination of pitch parameters for environmental sounds 

4.1 Pitch parameters based upon statistic analysis 

Based on the model selected above, three pitch parameters related to subjective pitch sensations are derived. 

They are pitch value (PV), pitch strength (PA), and percentage of audible pitches over time (PN) (i.e. the ratio 

between the numbers of frames with pitch produced and the total frames in the duration). In order to describe the 

variations of pitch characteristics of sounds over time, a number of statistical indices are calculated from the 

results of the 15 sound samples.  

The histograms of the four prominent pitches over time generally do not differ significantly for each 

sample, thus, to simplify the calculation, only the most prominent pitch (one pitch) in each frame is used. The 

histogram of the most prominent pitches over time of birdsongs is shown in Fig. 2, as an example. The 

histograms are non-normally distributed along the linear frequency scale. Therefore, to summarize the pitch data 

over time, a number of descriptive statistical indices are calculated for the pitch features (i.e. PV, PA and PN). 

For PV and PA, the statistical indices include average (AVE), median, mode (the value which occurs most 

frequently in the data), standard deviations (STDEV and STDEVA), maximum, minimum, range (the difference 

between the maximum and minimum), and 5%, 10%, 25%, 75%, 90%, and 95% percentiles. 

 

(a) (b) (c) 

Fig. 2. Pitch statistics: (a) histogram, (b) weighted histograms, and (c) SACF. 

 

Table 3 Component matrix and communalities of pitch indices. 

 
Component matrix Communalities 

 
PC 1 PC 2 PC 3 PC 4 

Extraction of 

3 PCs 

Extraction of 

4 PCs 

PV1 0.807 0.165 0.200 -0.268 0.718 0.790 

PV2 0.628 0.250 0.396 -0.158 0.614 0.639 

PV3 0.692 0.259 -0.102 -0.129 0.556 0.573 

PV4 0.580 0.074 0.061 0.373 0.346 0.485 

PA1 0.785 -0.422 0.283 -0.024 0.874 0.875 

PA2 0.653 -0.664 0.290 0.128 0.951 0.968 

PA3 0.684 -0.631 0.299 0.117 0.956 0.970 

PA4 0.691 -0.589 0.280 0.178 0.904 0.935 

PN -0.826 0.142 0.387 0.170 0.852 0.880 

PV AVE 0.939 0.286 0.018 0.075 0.963 0.969 

PV Mode 0.665 0.418 -0.296 0.446 0.705 0.904 

PV STDEV 0.835 0.260 0.243 -0.301 0.825 0.915 

PV STDEVA 0.744 0.437 0.398 0.050 0.904 0.906 

PV Range 0.591 0.513 0.193 -0.339 0.650 0.764 

PV Percentile5 0.785 0.281 -0.382 0.291 0.841 0.926 

PV Percentile25 0.835 0.257 -0.100 0.294 0.773 0.859 

PA AVE 0.751 -0.314 -0.515 -0.177 0.928 0.959 

PA STDEV 0.598 -0.360 -0.570 -0.328 0.813 0.920 

PA STDEVA 0.802 -0.208 -0.235 -0.046 0.741 0.743 

 

As discussed in Section 3.5, another way for describing the average pitch of a given sound is calculating it 

from the ACF based on the whole duration, in contrast to averaging pitches over time. The results from the 

sound samples show the shapes of the SACFs are similar to those of the weighted histograms, see Fig. 2 as an 

example. Weighted histograms, which also take into account the strength of each pitch, are computed by adding 

the strengths of the pitches rather than counting the number of pitches in each frequency bin on a histogram. 
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Thus, indices based on the SACF over the whole duration reflect also the characteristics of weighted histograms 

to some degree, and are used in this paper. These indices include values of the four prominent average pitches 

(PV1, PV2, PV3, PV4) and their pitch strengths or amplitudes (PA1, PA2, PA3, PA4). In total, 26 indices are 

included, part of which are shown in Table 3.  

It is noted that more parameters and indices could be extracted based on the SACFs from which pitches are 

calculated or from the variation of pitches over time, e.g. pitch ambiguity, in addition to pitch strength indicated 

by the absolute height of peaks in the SACF pattern, which is thought to be related to the relative height and 

number of neighboring peaks in the pattern [30], and variance of successive pitches. However, this paper focuses 

on the indices discussed above. 

4.2 Correlations and principal components of the pitch indices 

Principal component analysis (PCA) is implemented to reduce the dimensionality of the dataset. The 

following analyses are based on the 102 samples, and the SPSS Statistics 20 software is used. Before the PCA, 

the correlations between the 26 pitch indices discussed above are first examined. The cases with missing values 

are excluded pairwise. The results shows that the correlations are high (coefficients above 0.8) between a 

number of the indices, e.g. between PA1, PA2, PA3, and PA4, between the statistical indices of PV over time, 

and between the statistical indices of PA over time. Among the indices, the ones that are particularly highly 

correlated (coefficients above 0.95) with some others are in general excluded from the index set for the PCA, for 

which 19 indices are remained.  

The PCA is conducted on the correlation matrix of the 19 pitch indices. The cases with missing values are 

excluded listwise. Kaiser-Meyer-Olkin measure of sampling adequacy shows a result of 0.75, which generally 

indicates the adequacy of the sample size and the availability of the analysis. Among the 19 components 

extracted, the eigenvalues of first four components are greater than one. The first component accounts for 54.4% 

of the total variance, while the second, third and fourth account for 14.4%, 9.7% and 5.6% respectively. Table 3 

shows the correlations between the first four components and indices, with high correlations (above 0.5) 

highlighted, and the proportion of each index’s variance that can be explained by the retained principal 

components (PCs). It shows that all these indices (expect for PV4, of which the proportion is below 0.5) are 

generally well represented by the first four or three PCs. Component 1 represents almost all the indices as it has 

high correlations with them all, whereas Component 2 has high correlations with PA2, PA3, PA4, and PV Range, 

and Component 3 has high correlations with PA AVE and PA STDEV, but both mainly represent only a few of 

the indices. These results suggest that the pitch indices may form a single dimension of the variance based on the 

current dataset used in this study. These results can also be seen on the component loading plots, shown in Fig. 3, 

where the first three components are displayed. It can be seen that the indices are generally clustered in groups. 

In Fig. 3 (a), Component 1 mainly separates PN from the rest of the indices, whereas Component 2 separates PV 

and PA indices. In Fig. 3 (b), Component 3 approximately separates statistical indices of PV/PA over time and 

PV/PA of the four average pitches for the whole duration. (Exclusive PN, PCA generally generates the similar 

results for the PV and PA indices.) 

 

(a) (b) 

Fig. 3.  Loading plot of the principal components of pitch indices, (a) Components 1 and 2, and (b) Components 1 and 3. 
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Table 4 Pearson’s correlations between pitch and timbre indices. 

 
S AVE S STDEV S MAX S MIN Ton AVE  Ton STDEV Ton MAX Ton MIN Fls AVE  Fls STDEV Fls MAX Fls MIN 

PV1 0.395** 0.620** 0.654** -0.017 -0.035 -0.003 0.168 -0.086 0.419** 0.483** 0.508** 0.205 

PV2 0.411** 0.520** 0.638** 0.056 -0.043 -0.076 0.114 c 0.392** 0.441** 0.489** 0.244 

PV3 0.327* 0.480** 0.491** -0.068 -0.074 -0.109 0.079 c 0.200 0.294* 0.330* -0.029 

PV4 0.319* 0.290* 0.352* 0.044 0.021 0.025 0.102 c 0.321* 0.166 0.273 0.291* 

PA1 0.156 0.643** 0.539** -0.262* 0.382** 0.480** 0.587** 0.090 0.517** 0.533** 0.559** 0.339** 

PA2 0.003 0.503** 0.418** -0.348** 0.552** 0.580** 0.646** c 0.426** 0.439** 0.474** 0.282* 

PA3 0.039 0.492** 0.400** -0.322* 0.563** 0.580** 0.627** c 0.367** 0.389** 0.415** 0.178 

PA4 0.064 0.470** 0.385** -0.285 0.546** 0.555** 0.570** c 0.354* 0.362* 0.378** 0.163 

PN  -0.192 -0.433** -0.422** 0.149 -0.134 -0.241* -0.431** 0.072 -0.408** -0.393** -0.424** -0.268** 

PV AVE 0.578** 0.759** 0.792** 0.081 0.051 0.100 0.292** -0.070 0.623** 0.602** 0.641** 0.431** 

PV Mode 0.591** 0.611** 0.683** 0.166 0.051 0.079 0.252* -0.044 0.571** 0.446** 0.516** 0.507** 

PV STDEV 0.545** 0.771** 0.778** 0.059 0.028 0.101 0.290** -0.098 0.620** 0.624** 0.661** 0.444** 

PV STDEVA 0.565** 0.740** 0.769** 0.111 0.017 0.060 0.213* -0.087 0.615** 0.642** 0.677** 0.405** 

PV Range 0.612** 0.646** 0.715** 0.236* -0.062 0.018 0.116 -0.146 0.533** 0.488** 0.518** 0.429** 

PV Percentile5 0.568** 0.701** 0.696** 0.076 0.074 0.129 0.291** -0.046 0.597** 0.471** 0.513** 0.496** 

PV Percentile25 0.516** 0.691** 0.714** 0.070 0.060 0.097 0.249* -0.051 0.555** 0.524** 0.552** 0.372** 

PA AVE  0.419** 0.690** 0.652** -0.086 0.338** 0.449** 0.633** 0.096 0.637** 0.520** 0.573** 0.546** 

PA STDEV 0.342** 0.575** 0.534** -0.089 0.274** 0.402** 0.550** 0.034 0.507** 0.403** 0.446** 0.437** 

PA STDEVA 0.405** 0.739** 0.716** -0.118 0.426** 0.547** 0.708** 0.095 0.769** 0.705** 0.766** 0.598** 

** and * respectively indicate correlation is significant at the 0.01 level and 0.05 level (2-tailed), and c indicates it cannot be computed because at least one of the variables is constant. 
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4.3 Correlations between the pitch indices and the timbre indices 

To check if any of the pitch indices represents the same or similar variance with the other psychoacoustic 

indices, including loudness and timbre (sharpness, tonality, roughness, and fluctuation strength), that have been 

used for soundscape analysis [14], the correlations between the 19 pitch indices and these previous 

psychoacoustic indices are examined. The cases with missing values are excluded pairwise. The results show 

that the correlation coefficients generally are not very high (below 0.6), with the highest coefficients of 0.6 to 0.8 

existing between certain pitch and timbre indices; e.g. between pitch (both value and strength) and variation and 

maximum of sharpness (S STDEV, S MAX), between pitch strength and maximum tonality (Ton MAX), and 

between pitch (both value and strength) and fluctuation strength (Fls AVE, Fls STDEV, Fls MAX); parts of the 

results are shown in Table 4. In other words, the pitch indices developed in this paper in general provide 

additional variance to the psychoacoustic indices that have been used in soundscape analyses. These correlations 

between pitch and timbre indices can be understood in the way that either there are certain inherent common 

variances contained in the parameters or indices, or the correlations appear based on the current data set, i.e., 

certain samples show a number of characteristics simultaneously, e.g., the birdsong recordings have high pitch 

value and strength and meanwhile high sharpness, tonality and fluctuation strength. 

5 Pitch characteristics of environmental sounds  

5.1 Hierarchical cluster analysis 

With the 19 pitch indices discussed above, the 102 recordings are clustered gradually using hierarchical 

cluster analysis (HCA) that starts with each case in a separate cluster and then combines clusters until only one is 

left. The dendrogram is shown in Fig. 4. It shows that between the last two clusters, one has most of the 

birdsongs recordings. In the other, there are a sub-cluster of church bells and a sub-cluster of some music, voice 

and birdsongs; the categories are rather mixed in the other sub-clusters. The different characteristics of the 

sounds in different categories in terms of the pitch indices are analyzed in the following section with one-way 

analysis of variance (ANOVA). 

5.2 One-way analysis of variance 

The mean values of the four sound categories, i.e. water, wind, birdsongs, and urban sounds, in terms of 

the 19 pitch indices, are compared with ANOVA, in order to examine if the sound categories differ from each 

other significantly in one or more indices. For each index, the cases with missing values are excluded from the 

analysis. The assumption of ANOVA, i.e., the homogeneity of variances of the indices, is firstly tested. It shows 

that the p values of all the indices are less than the level of 0.05, which suggests the assumption is rejected and 

the variances are unequal. 

Table 5 Means of pitch indices for the four categories. 

 
 Water Wind Bird Urban 

 Total N Mean N Mean N Mean N Mean 

PV1 75 24 232 9 530 28 2593 14 289 

PV2 62 19 276 3 261 28 1030 12 249 

PV3 50 14 199 0 - 27 1055 9 178 

PV4 47 12 294 0 - 26 860 9 304 

PA1 75 24 0.238 9 0.242 28 1.434 14 0.800 

PA2 62 19 0.172 3 0.132 28 0.872 12 0.599 

PA3 50 14 0.142 0 - 27 0.698 9 0.528 

PA4 47 12 0.109 0 - 26 0.616 9 0.443 

PN 102 34 0.969 23 0.816 28 0.352 17 0.649 

PV AVE 102 34 233 23 202 28 1754 17 221 

PV Mode 102 34 103 23 102 28 1313 17 128 

PV STDEV 102 34 204 23 152 28 872 17 176 

PV STDEVA 102 34 206 23 155 28 880 17 153 

PV Range 102 34 2085 23 1163 28 3534 17 1513 

PV Percentile5 102 34 83 23 83 28 466 17 87 

PV Percentile25 102 34 105 23 101 28 1092 17 114 

PA AVE 102 34 0.270 23 0.279 28 1.050 17 0.513 

PA STDEV 102 34 0.081 23 0.102 28 0.557 17 0.241 

PA STDEVA 102 34 0.088 23 0.110 28 0.447 17 0.240 
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Fig. 4. Dendrogram for the 102 recordings by HCA. 

The results of ANOVA show that the significance of F ratio (p value) is less than the level of 0.05 in terms 

of all the indices, suggesting some significant differences among the means of the categories, or between at least 

two categories. Furthermore, considering the inequality of the variances, post hoc tests are employed both to 

verify the results and to identify which of the specific categories differ. Table 5 shows the number of cases and 

the group means of each category. Table 6 shows the results of the post hoc tests using the Dunnett’s T3 method, 

displaying the multiple comparisons among the categories in terms of difference between the means. Here, post 



Yang et al.: J. Sound Vib.    [http://dx.doi.org/10.1016/j.jsv.2016.03.040] 

 

13 

 

hoc tests are not performed for PV3, PV4, PA3, and PA4, since the wind sound group has no cases showing 

result in the indices. The analysis shows that for almost all these pitch indices there are significant mean 

differences between birdsongs and the other three sound categories. Birdsongs have higher pitch values and 

pitch strengths, and lower percentage of audible pitches over time than the other three categories. In addition, a 

number of indices also show differences between these three other categories, as shown in Table 6. For example, 

between water and wind sounds, water sounds have a lower mean of PV1 and a higher mean of PV Range than 

wind sounds. More detailed results about the characteristics of the environmental sounds are discussed in the 

following section (Section 5.3). 

5.3 Characteristics of the sound categories 

Since high correlations exist among each group of indices as discussed above in Section 4.2, a number of 

key pitch indices among the 19 pitch indices used in the ANOVA can be are selected - PV1, PA1, PN, PV AVE, 

and PA AVE. They respectively represent the different index groups: Pitch values of the four average pitches for 

the whole duration, pitch strengths of the four average pitches, the percentage of audible pitches over time, 

statistical indices of pitch values over time, and indices of pitch strengths over time. They in general contribute 

most to the first component by PCA as shown in Table 3. With the 5 key indices, the 102 sound samples are 

plotted in the two-dimensional coordinate systems with their axes presenting the key indices, as shown in Fig. 5.  

From Fig. 5, as well as Table 5 in Section 5.2, it can be seen that, as per the results of ANOVA, the 

recordings in birdsongs category have relatively high pitch values and pitch strengths compared to the other 

three categories. The values are generally above 1000Hz for PV1 and 500Hz for PV AVE, and above 0.5 for 

PA1 and PA AVE. Recordings in water and wind sound categories are located in almost the same areas in the 

figures; both have relatively low pitch values and strengths, generally below 1000Hz for PV1 and 500Hz for PV 

AVE, and below 0.5 for PA1 and PA AVE. In water sounds, PV AVE values of stream sounds are between 280 

and 510Hz, whereas of river and sea waves sounds are below 280Hz. Recordings in the urban sound category 

generally have relatively low pitch values (below 1000Hz for PV1 and 500Hz for PV AVE) and a relatively 

wide range of pitch strengths compared to water and wind sounds, varying between about 0 to 2 for PA1 and 

about 0 to 1 for PA AVE (about 0.9 to 1.1 for music, 0.5 to 0.9 for voice, and generally below 0.5 for the other 

sounds). In terms of PN, it shows that the PN values of all birdsongs are relatively low, generally below 0.8; 

those of all water sounds are high, close to 1; and those of wind sounds and a majority of urban sounds are in a 

wide range, from about 0 to 1. Among urban sounds, the PN values of traffic sounds are low, about 0.08 to 0.15, 

and of church bells and fountain sounds are high, about 1. In other words, in general, birdsongs have fewer 

pitches audible over time than wind sounds, and than water sounds, which have audible pitches nearly 

throughout their duration. This could be explained by the nearly silent periods between successive birdsongs, 

whereas wind and water sounds are relatively constant. It is also noted that the PN index reflects a relative value 

in this paper. It is the percentage of relative audible pitches; when a sound sample, such as birdsongs, has pitches 

with very high pitch strength, other pitches in it (such as pitches in the nearly silent periods) become less notable 

and are not counted in the percentage. 
 

(a) (b) (c) 

Fig. 5. Characteristics of the four sound categories in terms of the key pitch indices, (a) PV1 and PA1, (b) PV AVE and PA AVE, and (c) PV 

AVE and PN. 
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Table 6 Multiple comparisons (I-J) of pitch indices for the four categories. 

(I) Category Water Wind Bird Urban 

(J) Category Wind Bird Urban Water Bird Urban Water Wind Urban Water Wind Bird 

PV1 -298* -2361* -56 298* -2063* 242 2361* 2063* 2305* 56 -242 -2305* 

PV2 15 -754* 27 -15 -769 13 754* 769 781* -27 -13 -781* 

PV3 - - - - - - - - - - - - 

PV4 - - - - - - - - - - - - 

PA1 -0.004 -1.196* -0.562* 0.004 -1.192* -0.558* 1.196* 1.192* 0.633* 0.562* 0.558* -0.633* 

PA2 0.040 -0.700* -0.427 -0.040 -0.739* -0.467* 0.700* 0.739* 0.272 0.427 0.467* -0.272 

PA3 - - - - - - - - - - - - 

PA4 - - - - - - - - - - - - 

PN 0.153 0.618* 0.321* -0.153 0.465* 0.168 -0.618* -0.465* -0.297* -0.321* -0.168 0.297* 

PV AVE 31 -1521* 12 -31 -1552* -19 1521* 1552* 1533* -12 19 -1533* 

PV Mode 1 -1210* -24 -1 -1211* -25 1210* 1211* 1185* 24 25 -1185* 

PV STDEV 52 -667* 29 -52 -720* -24 667* 720* 696* -29 24 -696* 

PV STDEVA 51 -674* 53 -51 -724* 2 674* 724* 726* -53 -2 -726* 

PV Range 922* -1449* 572 -922* -2371* -350 1449* 2371* 2021* -572 350 -2021* 

PV Percentile5 0 -383* -4* 0 -382* -4 383* 382* 379* 4* 4 -379* 

PV Percentile25 4 -987* -9 -4 -991* -13 987* 991* 978* 9 13 -978* 

PA AVE -0.009 -0.780* -0.243* 0.009 -0.771* -.0234* 0.780* 0.771* 0.537* 0.243* 0.234* -0.537* 

PA STDEV -0.021 -0.476* -0.159* 0.021 -0.456* -.0139* 0.476* 0.456* 0.317* 0.159* 0.139* -0.317* 

PA STDEVA -0.021 -0.359* -0.151* 0.021 -0.337* -0.130 0.359* 0.337* 0.207* 0.151* 0.130 -0.207* 

* indicates significantly different group means at the 0.05 level. 
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6 Conclusions and discussions 

By examining the pitch simulation performance of the different pitch models implemented in this paper, 
including temporal models and spectral models based on the pitch perception and simplified model in music and 
speech, the temporal model implemented is found to be applicable to the pitch analysis of the common 
environmental sounds in soundscapes considered. This simplified temporal model, based on the temporal 
theories/models of pitch perception, is implemented by the decomposition through third-octave band filters, 
autocorrelation computation, and pitch selection.  

Using this model, a number of parameters that correspond to pitch sensations, i.e. pitch value, pitch 
strength, and the percentage of audible pitches over time, and statistical indices that describe the pitch features 
over time are developed for the analysis of environmental sounds in this study. The correlations between the 
pitch indices and the loudness and timbre indices that have been used in soundscape analyses are not very high, 
except for certain correlations (coefficients of about 0.6 to 0.8), e.g. between pitch (both value and strength) and 
sharpness, and between pitch strength and tonality. It suggests that the pitch indices developed provide 
additional variance to the previous psychoacoustic indices for soundscape measurement.  

In terms of these pitch indices, the different characteristics of different environmental sounds are shown. In 
general, both water sounds and wind sounds have low pitch values and pitch strengths, and high percentage of 
audible pitches over time. Birdsongs have high pitch values and pitch strengths, higher than the other three 
categories, and low percentages of audible pitches. Urban sounds have low pitch values and a wide range of 
pitch strengths; they have higher mean pitch strength and lower mean percentage of audible pitches than water 
and wind sounds. Among urban sounds, pitch strengths are high for music and voice, and low for the other 
sounds. The percentages of audible pitches of traffic sounds are low, as they in general do not evoke any pitch 
sensation, and those of church bells and fountain sounds are high.  

To certain degree, the results correspond to those on the association of pitch features and emotions in 
music (as discussed in Section 1). For example, birdsongs (high pitch) are usually perceived/evaluated as 
activation and pleasantness, whereas water and wind sounds (low pitch) are usually perceived as calmness and 
pleasantness (such as in [9]). Relationships between the pitch sensations as indicated in this paper and the 
emotional evaluations of soundscapes could be examined in future studies. Moreover, according the results in 
this paper on different pitch characteristics of various environmental sounds, the pitch parameters/indices could 
be used for the automatic recognition of environmental sound sources [15], such as to identify birdsongs from 
other sound sources. While this paper focuses mainly on the environmental sounds in which a single sound 
source is predominantly present, it is expected that the pitch simulation model is also applicable to more general 
soundscape sounds, since this algorithm is found to be suitable for the environmental sounds covering a wide 
range of spectra, with both noise and tone components.  
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