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Summary 25 

Finite element analyses simulating masticatory system loading are increasingly undertaken in 26 

primates, hominin fossils and modern humans. Simplifications of models and loadcases are 27 

often required given the limits of data and technology. One such area of uncertainty concerns 28 

the forces applied to cranial models and their sensitivity to variations in these forces. We 29 

assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite 30 

element model of a human cranium. The model was loaded to simulate incisor and molar bites 31 

using different combinations of muscle forces. Symmetric, asymmetric, homogeneous and 32 

heterogeneous muscle activations were simulated by scaling maximal forces. The effects were 33 

compared with respect to strain distribution (i.e. modes of deformation) and magnitudes; bite 34 

forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, 35 

strain magnitudes and bite forces were directly proportional to total applied muscle force and 36 

relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ 37 

reaction forces and mandibular fossa strains decrease and increase on the balancing and 38 

working sides according to the degree of asymmetry of loading. These results indicate that 39 

when modes, rather than magnitudes, of facial deformation are of interest, errors in applied 40 

muscle forces have limited effects. However the degree of asymmetric loading does impact on 41 

TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in 42 

relation to studies of skeletal and fossil material, where muscle data are not available and 43 

estimation of muscle forces from skeletal proxies is prone to error.   44 

Keywords: finite element analysis; human cranium; masticatory muscle activity; sensitivity 45 

analysis.  46 



 

Introduction 47 

Finite element analyses (FEAs) simulating masticatory system loading in crania of primates 48 

hominin fossils and modern humans are increasingly common. However data on muscle 49 

forces, required to accurately load a model to simulate a particular function are often lacking. 50 

This means that approximations and simplifications are required and the sensitivity of finite 51 

element models to these needs to be understood. Muscle force is a parameter that is of 52 

relevance in any mechanical analysis of the masticatory system. It is generally agreed that, in 53 

simple terms, the human jaw functions as a lever (Hylander, 1975; Koolstra et al., 1988; 54 

Spencer, 1998) with the temporomandibular joint (TMJ) acting as a fulcrum, the bite point as 55 

the resistance and the muscle force as the load. The magnitude of the resulting bite force is 56 

dependent on skeletal anatomy, the locations of muscle attachment sites and so, lever arm 57 

lengths as well as muscle force magnitudes. FEA has been increasingly used to predict the 58 

mechanical response of the skull to both muscle and bite forces in terms of deformation, 59 

strains and stress. These parameters are then commonly investigated in relation to  60 

evolutionary (Strait et al., 2009; Wroe et al., 2010; Smith et al., 2015b), developmental (Kupczik 61 

et al., 2009) and physiological or pathological processes and adaptations (Tanne et al., 1988; 62 

Gross et al., 2001; Koolstra and Tanaka, 2009; Ross et al., 2011; Toro-Ibacache et al., 2015b).  63 

Since reliable FEA simulation depends on accurate geometry and boundary conditions 64 

(Richmond et al., 2005; Rayfield, 2007; Kupczik, 2008), anatomically and functionally accurate 65 

models should work better than simplified models. However, current methods for FE model 66 

construction cannot fully reproduce the details of skull morphology, material properties and 67 

functional loadings, particularly when these data are not available as is the situation when 68 

dealing with archaeological or fossil material. These cases pose a particular dilemma in 69 

estimating muscle forces, which raises the question of the effects of inaccurate muscle force 70 

estimation on FE model performance. Many sensitivity analyses have been carried out in 71 

relation to FEA of vertebrate crania or mandibles. These have mainly focused in the effects of 72 

omitting anatomical structures such as sutures, sinuses, the periodontal ligament, or on the 73 

effects of varying the mechanical properties of bone (Strait et al., 2005; Kupczik et al., 2007; 74 

Gröning et al., 2011; Wood et al., 2011; Bright, 2012; Fitton et al., 2015). Only two articles 75 

have assessed the effects of varying muscle parameters on the strains/stresses of FE models of 76 

non-human primate crania (Ross et al., 2005; Fitton et al., 2012). In both cases, the authors 77 

concluded that although the varying of muscle parameters impacts performance, the 78 



 

importance of the effects should be weighed against the aims of the study. Here we aim to 79 

systematically explore the impact of errors in applied muscle forces in an FE model of a 80 

modern human cranium to better understand the consequences in hominins. 81 

The maximum contractile force of a muscle can be estimated using anatomical and chemical 82 

dissection methods to measure muscle mass and fibre length and so, to estimate muscle 83 

physiological cross-sectional area (van Eijden et al., 1997; Antón, 1999) which is directly 84 

proportional to the maximum force that can be generated. This method is impractical for 85 

ethical reasons in living humans, and impossible in archaeological and fossil material. In living 86 

humans, the cross-sectional areas (CSA) of jaw-elevator muscles obtained from medical images 87 

have been proposed as a reasonable estimator of the potential maximum force of pennate 88 

muscles (Weijs and Hillen, 1985, 1986; Koolstra et al., 1988; van Spronsen et al., 1991). When 89 

the muscles are absent, like in fossil or museum material, bony marks are used to estimate CSA 90 

(Demes and Creel, 1988; Antón, 1990; O'Connor et al., 2005; Wroe et al., 2010). However, we 91 

showed in a previous study that the CSA estimation based on bone markings is not accurate in 92 

humans, leading to an overestimation of force magnitudes and, in the case of the masseter, 93 

values that do not correlate with the measured ones (Toro-Ibacache et al., 2015a). 94 

Estimating the magnitude of force actually produced by a muscle during a certain task can also 95 

pose a challenge. The electromyographic (EMG) activity of a muscle while exerting maximum 96 

and sub-maximum voluntary contractions is often used as a proxy for muscle force (Hagberg 97 

et al., 1985; Ueda et al., 1998; Farella et al., 2009). When maximum muscle forces are estimated 98 

from muscle PCSAs, the normalised levels of EMG activity can be used to scale the force 99 

magnitudes produced under a certain task (see Ross et al. 2005 for a study in Macaca). This 100 

approach is limited to superficial muscles unless invasive methods are used (Soderberg and 101 

Cook, 1984; Reaz et al., 2006), which constrains its use in living humans. Although the EMG 102 

activity of masticatory muscles has a complex relationship with bite force, during isometric 103 

contraction a close-to-linear relationship is found (Prum et al., 1978; Hagberg et al., 1985; 104 

Wang et al., 2000). During biting tasks, a symmetric pattern of activation has been observed 105 

during maximum intercuspidation (Ferrario et al., 2000; Schindler et al., 2005), unilateral food 106 

crushing (Spencer, 1998) and isometric bites (van Eijden, 1990) but not during complete, 107 

consecutive mastication cycles (Stohler, 1986). Additionally, Farella et al. (2009) found 108 

changing  patterns of muscle activation over time under maximum and sub-maximum 109 



 

sustained unilateral bites. Intra and inter-individual variability in muscle force levels is then an 110 

additional source of complexity in data reproduction. 111 

The effects of incorrectly reproducing the magnitudes of masticatory muscle forces on 112 

reaction forces and the mode and magnitude of deformation predicted by FE models of the 113 

human cranium have not yet been explored, and is the aim of the present study. Deformation 114 

is assessed both locally using strains and globally (i.e. general changes in size and shape) using 115 

geometric morphometric methods (Fitton et al., 2012; O'Higgins and Milne, 2013). 116 

We tested the hypothesis that varying the relative magnitudes of muscle force during the same 117 

biting task has no effect on FEA results in terms of strain distribution and magnitudes, bite 118 

forces, TMJ reaction forces and global modes of model deformation. To test this hypothesis, 119 

several extreme combinations of muscle forces representing different patterns of muscle 120 

activation were simulated while skull and muscle anatomy, tissue material properties and the 121 

kinematic constraints of the model were kept constant. It is to be expected from Hooke’s law 122 

that principal strain magnitudes will scale linearly with applied total load (O'Higgins and Milne, 123 

2013), however the expectations with regard to modes of deformation are less clear.  124 

 125 

Materials and Methods 126 

Data 127 

An FE model of the cranium of a male human aged 43, with full dentition, was built from 128 

segmented CT data used in previous studies (Toro-Ibacache et al., 2015a; Toro-Ibacache et al., 129 

2015b), where muscle CSAs were also directly measured. The image data comprise a medical 130 

CT scan of a living patient taken at the Teaching Hospital of the University of Chile (Hospital 131 

Clínico de la Universidad de Chile, Santiago de Chile). The data were used with ethics 132 

committee approval, under the terms of the hospital ethics protocol for the use of patient data. 133 

The CT scan was carried out for medical reasons before the beginning of this study using a 134 

Siemens 64-channel multidetector CT scanner equipped with a STRATON tube (Siemens 135 

Somatom Sensation 64, Siemens Healthcare, Erlangen, Germany). The primary reconstruction 136 

of images was performed using specialist software tool (Syngo Multimodality Workplace, 137 

Siemens Healthcare, Erlangen, Germany). Voxel size was 0.44 x 0.44 x 1 mm. The 138 

segmentation was performed on the image stacks exported as DICOM files.  139 



 

Three-dimensional cranial morphology was reconstructed from the CT volume stack using 140 

Avizo (v.7.0.1, Visualization Sciences Group, Burlington, USA). Semi-automated segmentation 141 

of CTs based on grey level thresholds was used to separate bone from surrounding tissues and 142 

air. Manual segmentation was then performed where needed for anatomical accuracy. 143 

Paranasal sinuses were preserved but cortical and cancellous bone were not segmented as 144 

distinct tissues, rather the bone was treated as a solid whole with the material properties of 145 

cortical bone. This approach has been used in a macaque model (Fitton et al., 2015) and 146 

validated in a previous study (Toro Ibacache, 2014) that showed little effect on mode of 147 

deformation (the key focus of this study).  148 

Finite element model and loadcases 149 

The volume data produced by the CT segmentation was resampled to an isometric voxel size 150 

of 0.44 mm, exported as BMP stacks and converted into an FE mesh of 6,306,181 eight-noded 151 

cubic elements by direct voxel conversion. Cancellous bone was omitted, and hence all bone 152 

was modelled as a solid material with a Young’s modulus of 17 GPa and 50 GPa for teeth, 153 

both with a Poisson’s ratio of 0.3. This model building approach has been used in previous 154 

studies of cranial FE models (Wroe et al., 2010; Bright and Gröning, 2011; Fitton et al., 2012; 155 

Jansen van Rensburg et al., 2012; Toro-Ibacache et al., 2015b) and is relevant in cases where 156 

model resolution, fossilization or taphonomic processes do not allow to accurately model 157 

cancellous bone (Bright and Gröning, 2011; Fitton et al., 2015; Toro-Ibacache et al., 2015b), or 158 

when models are generated via 3D surface warping (O'Higgins et al., 2011). 159 

Each loaded model was kinematically constrained at the most anterior and superior parts of 160 

both mandibular fossae in the x, y and z axes. Vertical constraints on the incisal border of both 161 

central incisors (I1) and on the occlusal face of left and right first molars (M1) were applied 162 

separately, simulating bite points. The choice of axes of constraint was based on prior 163 

experiments in which constraints were reduced (e.g. TMJ constrained in x and y only) with the 164 

result that the model experienced rigid-body motion when loaded. Thus the chosen constraints 165 

were the minimum required to fix the model in space while not over-constraining it. Left and 166 

right M1 bites were simulated to control for possible effects of asymmetries in bone 167 

morphology and muscle attachment. Muscle origins and insertions were reproduced in the 168 

model based on the original CT image in which muscles were clearly visible.  169 

 170 



 

Muscle forces 171 

Static bites were simulated at I1 and unilaterally at the left or right M1. As noted above, the 172 

maximum muscle forces from the temporal, masseter and medial pterygoid muscles were 173 

estimated from their CSAs measured in previous studies (Toro-Ibacache et al., 2015a; Toro-174 

Ibacache et al., 2015b) using a protocol based on that of Weijs and Hillen (1984) and the 175 

formula, Force = CSA x 37 N/cm2, where the last term is an estimate of the magnitude of 176 

intrinsic muscle strength for human masticatory muscles (Weijs and Hillen, 1985; O'Connor et 177 

al., 2005). The estimated values of CSA and maximum forces are presented in Table 1. 178 

Before assessing the impact of different loading scenarios on FE model performance, two 179 

sensitivity analyses were undertaken. In the first, the results of applying maximal forces based 180 

on estimated CSAs, which are asymmetric (Table 1), were compared with identical biting 181 

simulations using symmetric muscle forces (average of left and right applied to both sides). In 182 

the second, the strain maps resulting from the simulated bites on left and right M1 were 183 

compared to check that bites on different sides produce results that are approximately 184 

reflected versions of each other.   185 

To test the hypothesis, loadcases simulating different muscle activation levels for each bite 186 

point were made by scaling the estimated maximum muscle forces (Ross et al., 2005; Fitton et 187 

al., 2012). Since it is impractical to reproduce all possible combinations of muscle forces, three 188 

main patterns of ‘activation’ were explored, based on EMG studies of individuals performing 189 

different biting tasks. These simulated activation patterns use: symmetric and homogeneously 190 

activated muscles during I1 and unilateral M1 bites, asymmetric and homogeneously activated 191 

muscles during unilateral M1 bites and symmetric and asymmetric heterogeneously activated 192 

muscles under both I1 and M1 bites. 193 

To simulate symmetric, homogeneous muscle activations (van Eijden, 1990; Spencer, 1998), 194 

the models were loaded during both I1 and M1 biting simulations with the forces of the three 195 

pairs of jaw-elevator muscles all scaled to 100%, 50% or 25% of maximum force.  196 

To simulate asymmetric, homogenously activated muscles during M1 biting (Blanksma and van 197 

Eijden, 1995), each muscle of the working side applied 100% of its maximum force. On the 198 

balancing side, the forces applied by each muscle were simultaneously scaled to 75%, 50% or 199 

25% of the maximum. 200 



 

To simulate symmetric, heterogeneously activated muscles (Vitti and Basmajian, 1977; Moore 201 

et al., 1988; van Eijden, 1990; Blanksma and van Eijden, 1995; Farella et al., 2009), during I1 202 

biting the maximum forces of the temporalis, masseter and medial pterygoid were applied in 203 

the ratio of 50%:100%:100%, and then 25%:100%:100% of maximum force. In the 204 

asymmetric, heterogeneously activated loadcases during M1 biting simulations, 50% of the 205 

maximum force of all balancing side muscles was applied. Two separate sets of working side 206 

forces were applied in the following ratios: temporalis:masseter:medial 207 

pterygoid=50%:100%:100% and 25%:100%:100%.  208 

Details of muscle activations in each loadcase are provided in Table 2. Loadcases 1 to 3 209 

simulate symmetric, homogeneous muscle activations under I1 bites. Loadcases 4 to 9 simulate 210 

symmetric, homogeneous activations under left and then right M1 bites. Loadcases 10 to 15 211 

represent asymmetric, homogenously activated muscles during left and then right M1 biting. 212 

Loadcases 16 and 17 represent symmetric, heterogeneously activated muscles during I1 biting. 213 

Loadcases 18 to 21 simulate asymmetric, heterogeneously activated loadcases during left and 214 

then right M1 bites.  215 

Model pre- and postprocessing were performed using the FEA program VOX-FE (Fagan et 216 

al., 2007; Liu et al., 2012). 217 

  218 



 

Comparison of mechanical performance among loadcases 219 

Bite forces and TMJ reaction forces were calculated by summing the forces predicted by the 220 

FEA at each constrained node on the tooth. Force magnitudes were then plotted against 221 

applied muscle forces to assess the relationships between these variables. Deformation of the 222 

model was assessed by comparing strain contour plots, representing the spatial distribution of 223 

regions of high and low strains and their magnitudes. Global modes of deformation were also 224 

compared among loadcases using Procrustes size and shape analyses based on a configuration 225 

of 51 craniofacial landmarks (Table 3) representing the form of the cranium and facial 226 

structures normally strained during biting (Demes, 1987; Gross et al., 2001; Kupczik et al., 227 

2009; Ross et al., 2011). The Procrustes size and shape analysis comprises rotation and 228 

translation but not scaling of the landmark coordinates of the original, unloaded cranium and 229 

the coordinates from the deformed, loaded crania, followed by principal components analysis 230 

(PCA) of the new coordinates (Fitton et al., 2012; O'Higgins et al., 2012). It has been argued 231 

(Curtis et al., 2011) that zygomatic arch deformations from primate skull FEA may not 232 

accurately reflect reality because the temporalis fascia which is, as in this study often omitted, 233 

may limit zygomatic arch deformation in life. Therefore, in order to assess the impact of 234 

zygomatic arch deformation on the analysis of global model  deformation the size and shape 235 

analysis was repeated using a subset of 43 landmarks, excluding those located in the zygomatic 236 

arch (see Table 3). 237 

The analysis of global model deformation was performed using the EVAN toolbox (v.1.62, 238 

www.evan-society.org). 239 

  240 



 

Results 241 

Before considering the results in relation to the hypothesis, two initial sensitivity analyses are 242 

reported. In the first, the results of applying maximum forces based on estimated CSAs, that 243 

are asymmetric (Table 1), are compared with identical biting simulations using identical left-244 

right muscle forces (average of left and right, applied to both sides). Compared to the 245 

loadcases based on directly estimated (and so, asymmetric) maximum muscle forces, the 246 

symmetric loadcases predicted virtually identical bite forces, TMJ reaction forces and strain 247 

magnitudes. With regard to mode of deformation, patterns of strain distribution (data not 248 

shown) and global model deformation (see results for all loadcases) assessed by landmarks 249 

were also almost identical. In the second sensitivity analysis, bites on left and right M1 resulted 250 

in strain contour maps that are almost perfect mirror images of each other (data not shown). 251 

As such, only the strain distributions and magnitudes under left M1 bites are considered 252 

further. 253 

Strain distribution and magnitudes 254 

For each simulated bite, the strain contour maps arising from different loadcases show 255 

differences in strain magnitudes but much less so in distribution. Thus, where strains are 256 

predicted to be relatively high or low differs little among simulations but the average strain 257 

magnitude does differ. 258 

The highest strains and largest fields of high strain are found in the regions of masseter and 259 

medial pterygoid attachment, and in the facial regions close to the bite point. That is, during 260 

incisor bites, the maxilla adjacent to the nasal notch and, during molar bites, the zygomatic 261 

region and frontal process of the maxilla (Figs. 1 and 2).  262 

During I1 biting simulations, strains decrease from maximum values of >200 με to 100-200 με 263 

in the face, zygomatic arch and mandibular fossae as the magnitude of total applied muscle 264 

force decreases. Although this was expected for models 1-3, in the other I1 loadcases the 265 

distribution of regions of high and low strain hardly varies, irrespective of the pattern of 266 

muscle activation (Fig. 1). The same situation occurs in the face during unilateral M1 bites. In 267 

the mandibular fossa, strain magnitudes differ between left and right sides among loadcases. 268 

The loadcases with more symmetric total muscle forces, i.e. loadcases 4 to 9 and 18 to 21 (see 269 

Table 2 for details), predict the highest strains over the mandibular fossa of the balancing side 270 



 

relative to the working side (e.g. in loadcase 4, strains in the fossae exceed 200 με and are larger 271 

on the balancing than on the working side; Fig. 2). This pattern is inverted when the most 272 

markedly asymmetric activation patterns are applied (loadcases 11, 12, 14 and 15; Fig. 2). Thus, 273 

when the most asymmetric muscle activation pattern is applied (loadcases 12 and 15), the 274 

mandibular fossa of the working side shows a larger area reaching strains over 200 με than the 275 

balancing side fossa where most strains are ~150 με (Fig. 2). 276 

Bite force and TMJ reaction force  277 

Predicted bite forces and TMJ reaction forces (Table 2; Figs. 3 to 5) are consistent with the 278 

results depicted by the strain contour plots. In general, bite force and TMJ reaction force 279 

increase in proportion to total applied muscle force, particularly during I1 bites (loadcases 1 to 280 

3, 16 and 17; Figs. 3a and 5a). During M1 bites, TMJ reaction force is higher on the balancing 281 

side than the working side with homogeneously activated muscles (loadcases 4 to 9; Figs. 3b 282 

and 3c). In contrast, increasingly asymmetric, homogenous loadcases (10 to 15; Fig. 4) predict 283 

lower TMJ forces on the balancing than the working side, and those with asymmetric, 284 

heterogeneously activated muscles (i.e. those with varying working side temporalis force, 285 

loadcases 18 to 21; Figs. 5b and 5c) further reduce the TMJ force difference between working 286 

and balancing sides.  287 

Global model deformation  288 

The Procrustes size and shape PCA of cranial deformations resulting from FEA distinguished 289 

three different general vectors of deformation, one for each bite point. These are represented 290 

as lines connecting the unloaded model and the loadcases for each bite point (Fig. 6). 291 

Differences among loadcases with the same bite point comprise mainly of differences in 292 

magnitude (distance from the unloaded model) rather than mode (direction of vector). The 293 

vectors connecting the unloaded and molar biting simulations are almost symmetrically 294 

disposed about the vectors representing incisor bites (Fig. 6). Thus, the global model 295 

deformations arising from left and right M1 bites are almost mirror images of each other. The 296 

small degree of asymmetry in the vectors likely reflects asymmetry of form. These findings 297 

reflect the symmetries and asymmetries of the strain contour maps noted earlier. 298 

The largest degrees of deformation (distances between unloaded and loaded models in the 299 

plot) are achieved when muscles are activated homogeneously and maximally, irrespective of 300 



 

the bite point. Examining the inset warpings, in both I1 and M1 bites the greatest deformations 301 

occur in the alveolar process near the bite point. With incisor bites the lower face is dorso-302 

ventrally deflected with respect to the upper face and neurocranium. With M1 bites the face 303 

undergoes torsion and local deformation above the bite point. The vectors of deformation of 304 

the models with symmetrically applied but varying muscle forces scale exactly in proportion to 305 

applied force and are coincident in direction. As noted earlier for strains, loadcases created 306 

using perfectly symmetric muscle forces (the average of left and right) deform along almost 307 

identical vectors as models using their directly estimated and so, asymmetric force magnitudes 308 

(loadcases 1S to 9S, Fig. 6).  309 

The omission of zygomatic arch landmarks has a small effect on the PCA of FEA results (Fig. 310 

7). The main effect is that the vectors from all muscle activation patterns applied to each bite 311 

point more nearly overlap. This indicates that deformations of the zygomatic arch accounted 312 

for a substantial portion of the divergences between vectors representing the same bite point 313 

in Fig. 6. 314 

  315 



 

Discussion 316 

The present study assessed the effects on FE model performance of varying muscle activations 317 

during simulated static incisor and molar bites. This is important because muscle forces are 318 

rarely known with any precision, and this is especially so when simulating biting in fossil or 319 

skeletal material. In consequence, simplified or estimated loadings are often applied. Thus 320 

maximal muscle forces might be more or less accurately estimated from bony proxies (Wroe et 321 

al., 2010) or estimated from data corresponding to other, related species (Strait et al., 2009; 322 

Smith et al., 2015b). Forces might be applied to simulate maximum (100%) activation of all 323 

muscles (Smith et al., 2015a) or some more complex muscle activation pattern might be used 324 

(Kupczik et al., 2009). This study aimed to assess the sensitivity of some aspects of FE model 325 

performance to such variations in muscle activations; namely strains, bite forces, TMJ forces 326 

and global modes of model deformation.  327 

The null hypothesis is that varying the relative magnitudes of muscle force during the same 328 

biting task has no effect on FEA results in terms of strain distribution and magnitudes, bite 329 

forces, TMJ reaction forces and global modes of model deformation. Strictly, this hypothesis 330 

was falsified, but the effects of varying muscle activation pattern on modes of deformation are 331 

very small everywhere except in the zygomatic arch and mandibular fossa. As expected given 332 

that bone is represented by an isotropic linearly elastic material, the effect of varying 333 

magnitudes of force is to proportionately diminish the magnitude of model deformation. 334 

Likewise, bite and TMJ reaction forces also scale with muscle force. These results are further 335 

discussed below. 336 

Strain distribution and magnitude 337 

During all simulations, strains are greatest in the in the vicinity of the bite point and large 338 

where the masseter and medial pterygoid muscles attach. Temporalis, in having a very large 339 

attachment area to the large, stiff cranium, does not produce large strains over the vault when 340 

it contracts. Thus the major changes in cranial strain maps between muscle activation patterns 341 

occur in the regions of the masseter and medial pterygoid attachments.  342 

The results of this study indicate that the greatest impact on facial strains arises through 343 

variations in the total applied muscle force. Strain magnitudes (Figs. 1 and 2) show an 344 

approximately linear relationship with total applied muscle force. This is in agreement with the 345 



 

results of Ross et al. (2005) and Fitton et al. (2012) in macaque models and it is expected for 346 

linearly elastic materials. 347 

Varying simulated muscle activation patterns has a small impact on strain distribution. 348 

Principally this affects the regions local to the masseter muscle attachment site, causing strains 349 

to vary in this region according to the force of masseter contraction. This finding of consistent 350 

strain distribution under different muscle loading regimens points to the possibility of 351 

performing reliable FEAs of living, archaeological and fossil hominin crania using simplified 352 

muscle activations (e.g. symmetrically applied maximal muscle forces). Estimates of these 353 

forces might be obtained from the literature, directly from muscle CSAs as in the present 354 

study, or from bony proxies. This last method of estimation is likely to be inaccurate (Antón, 355 

1994; Toro-Ibacache et al., 2015a). However, such inaccuracy likely will impact strain 356 

magnitudes but not relative facial strains. Thus, if relative rather than absolute strains are of 357 

interest, reasonable muscle activation patterns all produce approximately similar results insofar 358 

as they apply similar total force. 359 

The present study varied relative force magnitudes but not muscle orientations. Each muscle 360 

was considered to have a single vector of action. This was a necessary simplification given the 361 

resolution of the CT images, since the finer details of muscle anatomy and fibre directions are 362 

not known. It is worth noting in this regard that subdividing e.g. the masseter into different 363 

parts with different vectors may introduce significant errors in estimation of the principal 364 

vector of muscle action (Röhrle and Pullan, 2007). The effect of varying the directions of 365 

muscle force vectors is worth exploring in future studies, especially where only the cranium is 366 

available and the position of mandibular muscle insertions has to be estimated. It is likely that 367 

such variations of vectors will principally impact modes of deformation.  368 

Bite force and TMJ reaction force 369 

As expected with strain magnitudes, predicted bite force is proportional to total applied muscle 370 

force (Table 3). The same occurs with TMJ reaction forces during I1 bites. During I1 biting, 371 

small asymmetries in TMJ reaction forces can be observed, which is expected given the normal 372 

asymmetry of the skull.  373 

Temporomandibular joint loading is an important human masticatory functional parameter; 374 

altered load distribution during mastication may result in dysfunction due to morphological 375 

changes and an inflammatory response in the articular tissues (McNamara, 1975; Tanaka et al., 376 



 

2008; Barton, 2012). Temporomandibular joint loading in humans is difficult to estimate due 377 

to the impracticability of using direct methods and also because the mathematical models used 378 

to predict it have been shown to be highly sensitive to variations in muscle parameters 379 

(Throckmorton, 1985; Koolstra et al., 1988). Nevertheless, today it is generally acknowledged 380 

that during unilateral bites, the TMJ of the balancing side is more loaded than that of working 381 

side (Hylander, 1975; Throckmorton and Throckmorton, 1985; Koolstra and van Eijden, 2005; 382 

Shi et al., 2012). In this study such differences in loading between working and balancing sides 383 

are achieved during symmetric or close to symmetric muscle activations. However, under 384 

unilateral bites a much greater asymmetry (irrespective of heterogeneity) in muscle activations 385 

reverses the relationship between TMJ reaction forces at the working and balancing sides (Fig. 386 

3). The sensitivity of TMJ reaction forces in the FE model to asymmetries in simulated muscle 387 

activations calls for further investigation using e.g. multibody dynamic approaches (Curtis, 388 

2011; Shi et al., 2012) to better understand the apparent reversal of TMJ reaction forces.  389 

Considering these results, symmetrical maximum muscle forces appear to be a reasonable 390 

simplification approach in FEAs of the human cranium as long as relative rather than absolute 391 

strain magnitudes are of interest. 392 

Global model deformation 393 

As with predicted strains and bite forces, for each simulated bite point, varying the muscle 394 

activation pattern mainly produces differences in the magnitude rather than mode of global 395 

model deformation of the cranium as assessed by PCA of size and shape coordinates. This 396 

magnitude relates to the total applied muscle force and reflects the linear relationship between 397 

load and deformation in isotropic linear elastic materials (as bone and teeth are modelled here), 398 

and is consistent with the findings of O’Higgins and Milne (2013) in femora.  399 

That asymmetric muscle activations principally impact on zygomatic arch deformation is 400 

consistent with the findings of Fitton et al. (2012) who also noted that varying muscle 401 

activations mainly led to differences in the degree of zygomatic arch deformation. Principally 402 

this affects the regions local to the masseter muscle attachment site. We found that ignoring 403 

zygomatic landmarks in the size and shape analysis results in vectors of deformation that 404 

closely overlap for each bite point, irrespective of muscle activation pattern. This may reflect a 405 

physiological, greater sensitivity of the zygomatic region to varying muscle force or it may be a 406 

consequence of inadequate representation of the temporal fascia (Curtis et al., 2011). The 407 



 

present study is uninformative in this regard. However, removing zygomatic arch landmarks 408 

does not affect the way model deformation in the face is depicted: dorsal bending of the 409 

maxilla during I1 bites and apical-buccal deformation of the tooth and its alveolar bone during 410 

M1 bites. 411 

 412 

  413 



 

Conclusion 414 

The results of this study show that the main effect of varying relative magnitudes of applied 415 

muscle forces on the FE model of a human cranium during simulated biting concerns the 416 

scaling of deformation (local strains and global size and shape change) and bite force with total 417 

applied muscle force. The effect on mode of deformation is much smaller, principally 418 

impacting on the zygomatic arch, where masseter attaches. TMJ reaction forces seem to be 419 

sensitive to symmetry of loading of the masticatory system  420 

The hypothesis that varying the relative magnitudes of muscle forces during the same biting 421 

task has no effect on FEA results in terms of strain distribution and magnitude, bite force, 422 

TMJ reaction force and global model deformation was falsified. Thus, while modes of 423 

deformation (as assessed by strain distributions and the size and shape PCA) are relatively 424 

unaltered, the magnitudes of deformation vary with total applied muscle force as might be 425 

expected. Likewise, and as expected, bite force covaries with total applied muscle force. On the 426 

other hand, the relative magnitudes of left and right TMJ reaction forces are sensitive to 427 

applied muscle forces, especially asymmetry of these forces.  428 

Considering these findings, when relative strain magnitudes among cranial regions are the 429 

focus of interest, the use of symmetric maximum muscle forces is a reasonable loading 430 

simplification. However the degree of deformation and so, magnitudes of strains are unlikely 431 

to be accurately predicted unless accurate muscle forces are applied. This is of particular 432 

relevance in the study of archaeological material and fossil hominins, where no muscle data are 433 

available.  434 
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Figure Legends 616 

Figure 1. Strain contour plots from example I1 biting simulations. The charts depict the 617 

percentages of maximal muscle force applied in each loadcase: working side, dark green bars; 618 

balancing side, light green bars. Loadcases 1, 2 and 3 correspond to symmetric, homogeneous 619 

muscle forces. Loadcases 16 and 17 simulate symmetric, heterogeneous muscle forces, with 620 

lower levels of activation of the temporalis (T) compared to masseter (M) and medial pterygoid 621 

(MP) muscles.  622 

Figure 2. Strain contour plots from left M1 biting simulations. The charts depict the 623 

percentages of maximal muscle force applied in each loadcase: working side, dark green bars; 624 

balancing side, light green bars. Loadcases 4, 5 and 6 correspond to symmetric, homogeneous 625 

muscle forces. Loadcases 10, 11 and 12 correspond to asymmetric, homogeneous muscle 626 

forces, with diminishing simulated activation of balancing side muscles. Loadcases 18 and 19 627 

simulate asymmetric, heterogeneous muscle forces, with the temporalis (T) activated to lesser 628 

degree than masseter (M) and medial pterygoid (MP) muscles on the working side. 629 

Figure 3. Bite forces and TMJ reaction forces in loadcases simulating symmetrically and 630 

homogeneously activated muscles. Loadcase number is shown in bold. (a) I1 bites, (b) left M1 631 

bites (working side=left), and (c) right M1 bites (working side=right).  632 

Figure 4. Bite forces and TMJ reaction forces in loadcases simulating asymmetric, 633 

homogeneously activated muscles. Loadcase number is shown in bold. (a) Left M1 bite 634 

(working side=left), (b) right M1 bite (working side=right). 635 

Figure 5. Loadcases simulating heterogeneously activated muscles. Bite forces and TMJ 636 

reaction forces are plotted against the percentage of maximum temporalis force acting on the 637 

working side. Loadcase number is shown in bold. (a) I1 bites, (b) left M1 bites (working 638 

side=left), and (c) right M1 bites (working side=right). 639 

Figure 6. Principal components analysis of 51 cranial landmarks on the unloaded model and 640 

the same model under different loadcases. The lines represent the vectors of deformation 641 

under each loading regimen. Loadcase numbers are shown in bold. S=loadcases with 642 

symmetric muscle force magnitudes, L=left and R=right. The inset surfaces with overlain 643 

transformation grids show: leftmost, the unloaded model; right upper, the largest deformation 644 



 

of the model resulting from right M1 biting; right middle, the largest deformation resulting 645 

from I1 biting; right lower,  the largest deformation of the model resulting from left M1 biting, 646 

all with the degree of deformation magnified 1000 times for visualisation. 647 

Figure 7. Principal components analysis of 43 cranial landmarks on the unloaded model and 648 

the same model under different loadcases. Landmarks on the zygomatic arch are not included. 649 

The lines represent the vectors of deformation under each loading regimen. Loadcase numbers 650 

are shown in bold. S=loadcases with symmetric muscle force magnitudes, L=left and R=right. 651 

The inset surfaces with overlain transformation grids show: leftmost, the unloaded model; 652 

right upper, the largest deformation of the model resulting from left M1 biting; right middle, 653 

the largest deformation resulting from I1 biting; right lower,  the largest deformation of the 654 

model resulting from right M1 biting, all with the degree of deformation magnified 1000 times 655 

for visualisation. 656 



Table 1. Estimated values of CSA and maximum forces of jaw-elevator muscles. 

Muscle 
CSA (cm2) Muscle force (N) 

Left Right Left Right 

Temporalis 4.54 4.61 168.02 170.67 

Masseter 3.62 3.35 134.06 124.01 

Medial Pterygoid 3.35 3.18 124.01 117.49 

 

 



Table 2. Predicted bite and TMJ reaction forces. L=left, R=right, T=temporalis, 

M&MP=masseter and medial pterygoid muscles. TMJ forces from the working side are 

marked with an asterisk (*). 

Loadcase Bite point 
Working / balancing side

muscle activation 

Bite force 

(N) 

TMJ reaction force (N)

L-TMJ R-TMJ 

1 L- and R-I1 100%/100% 234.29 218.76 254.22 

2 L- and R-I1 50%/50% 117.15 109.38 127.10 

3 L- and R-I1 25%/25% 58.60 54.67 63.59 

4 L-M1 100%/100% 358.91 87.77* 277.53 

5 L-M1 50%/50% 179.44 43.89* 138.75 

6 L-M1 25%/25% 89.72 21.95* 69.39 

7 R-M1 100%/100% 355.09 242.91 128.81* 

8 R-M1 50%/50% 177.58 121.48 64.42* 

9 R-M1 25%/25% 88.56 61.01 32.36* 

10 L-M1 100% / 75% 315.84 110.69* 205.81 

11 L-M1 100% / 50% 272.73 135.96* 135.74 

12 L-M1 100% / 25% 229.61 162.43* 72.56 

13 R-M1 100% / 75% 309.76 174.33 145.76* 

14 R-M1 100% / 50% 264.27 106.15 166.17* 

15 R-M1 100% / 25% 220.05 39.99 187.86* 

16 
L- and R-I1 50% (T), 100% (M&MP) / 

50% (T), 100% (M&MP) 

188.74 176.31 195.99 

17 
L- and R-I1 25% (T), 100% (M&MP) / 

25% (T), 100% (M&MP) 

165.90 161.85 170.76 

18 L-M1 50% (T), 100% (M&MP) / 50% 237.59 83.94* 146.09 

19 L-M1 25% (T), 100% (M&MP) / 50% 219.99 72.50* 151.36 

20 R-M1 50% (T), 100% (M&MP) / 50% 230.02 120.51 102.51* 

21 R-M1 25% (T), 100% (M&MP) / 50% 212.79 127.75 77.85* 

 

 



Table 3. Landmarks for size and shape analysis of global deformation. The landmarks on the 

zygomatic arch are marked with an asterisk (*). 

No. Name Definition   

1 Vertex Highest point of the cranial vault.   

2 Nasion Intersection between frontonasal and internasal junction. 

3 Anterior Nasal Spine Tip of the anterior nasal spine.   

4 Prosthion Most buccal and occlusal point of the interalveolar septum between central 

incisors. 

5 Occiput Most posterior point of the cranium.   

6&20 Supraorbital Torus Most anterior point of the supraorbital ridge.   

7&21 Infraorbitale Most inferior point of the infraorbital ridge.  

8&22 Nasal Notch Most lateral point of the nasal aperture.   

9&23 First Molar Most buccal and mesial point of the junction of M1 and the alveolar process. 

10&24 Last Molar Most buccal and distal point of the junction between the.last molar and the 

alveolar process. 

11&25 Zygo-maxillar Most inferior point of the zygomatico-maxillary junction.  

12&26 Fronto-zygomatic Most lateral point of the fronto-zygomatic junction.  

13&27 Fronto-temporal angle Point at the intersection between the frontal and temporal processes of the 

zygomatic bone. 

14&28 Zygomatic Arch lateral* Most lateral point on the zygomatic arch.   

15&29 Zygomatic Root posterior Most posterior-superior point of the intersection between the zygomatic root and 

the squama of the temporal bone. 

16&30 Zygomatic Root anterior Most anterior point of the intersection between the zygomatic root and the 

squama of the temporal bone. 

17&31 Zygomatic Arch medial* Most lateral point on the inner face of the zygomatic arch. 

18&32 Infratemporal Crest Most medial point of the infratemporal crest. 

19&33 Eurion Most lateral point of the cranial vault. 

34&37 Anterior Temporalis origin Most anterior point of origin of the temporal muscle in the temporal line. 

35&38 Superior Temporalis origin Most superior point of origin of the temporal muscle in the temporal line. 

36&39 Posterior Temporalis origin Most posterior point of origin of the temporal muscle in the temporal line.  

40&43 Anterior Masseteric origin Most anterior point of origin of the masseter muscle.   

41&44 Posterior Masseteric origin* Most posterior point of origin of the masseter muscle. 

42&45 Mid-Masseteric origin* Midpoint along the origin area of the masseter muscle. 

46&49 Superior Pterygoid origin Most superior point of origin of the medial pterygoid muscle. 

47&50 Inferior Pterygoid origin Most inferior point of origin of the medial pterygoid muscle.  

48&51 Mid-Pterygoid origin Midpoint of the area of origin of the medial pterygoid muscle. 
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