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We report investigations of capacitively coupled carbon tetrafluoride (CF4) plasmas excited with

tailored voltage waveforms containing up to five harmonics of a base frequency of 5.5MHz. The

impact of both the slope asymmetry, and the amplitude asymmetry, of these waveforms on the

discharge is examined by combining experiments with particle-in-cell simulations. For all

conditions studied herein, the discharge is shown to operate in the drift-ambipolar mode, where a

comparatively large electric field in the plasma bulk (outside the sheaths) is the main mechanism

for electron power absorption leading to ionization. We show that both types of waveform asym-

metries strongly influence the ion energy at the electrodes, with the particularity of having the high-

est ion flux on the electrode where the lowest ion energy is observed. Even at the comparatively

high pressure (600mTorr) and low fundamental frequency of 5.5MHz used here, tailoring the volt-

age waveforms is shown to efficiently create an asymmetry of both the ion energy and the ion flux

in geometrically symmetric reactors. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4947453]

I. INTRODUCTION

Capacitively coupled radio frequency (CCRF) plasmas

are commonly used in a wide range of applications, including

thin film deposition and plasma etching, with end products in

the semiconductor industry or in the medical sector.1 In the

case of plasma etching, electronegative gases such as carbon

tetrafluoride (CF4) are generally used,2 often driven by a low

frequency3 of a few megahertz. These processes usually

require control of the ion flux as well as the ion energy, a

feature unachievable in classical single frequency CCRF

discharges.4 It is possible, however, to control the ion energy

using well-separated multiple frequencies or through fre-

quency coupling of harmonics, for example, via the electrical

asymmetry effect (EAE), independently of other plasma pa-

rameters and, in particular, independently of the ion flux.5–16

In this paper, we will investigate the effect of both amplitude

asymmetric and slope asymmetric waveforms on ion proper-

ties in CF4 plasmas.

According to an analytical model developed by

Czarnetzki et al., the appearance of a self-bias, g,5–7 due to

the EAE, can be expressed as

g ¼ "
~Vm1 þ e ~Vm2

1þ e
; (1)

where ~Vm1 and ~Vm2 are the maximum and the minimum

(relative to the temporal average) of the applied voltage wave-

form VAC(t), respectively, and e is the symmetry parameter

e ¼
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where V̂ sp and V̂ sg are the maximum sheath voltages across

the sheaths at the powered and grounded electrodes, respec-

tively; Ap and Ag are the area of the powered and the

grounded electrodes; Qmg and Qmp are the maximum unbal-

anced charges in the respective sheaths; and #nsp and #nsg are

the respective mean ion densities in the sheaths. Following

the pioneering work of Wendt et al.,17,18 waveforms com-

prising multiple harmonics of the same fundamental fre-

quency, f, known as Tailored Voltage Waveforms (TVWs),

have been shown to provide yet more control of the EAE

compared to the two-frequency case.19 Such amplitude

asymmetric waveforms are based on the following form for

the driving voltage waveform:20

VAC tð Þ ¼ V0

XN

k¼1

N " k þ 1

N
cos kxtþHð Þ; (3)

where V0 is a voltage amplitude factor, N is the number

of harmonics (here varied between one and five), x¼ 2pf is

the angular frequency (here corresponding to a frequency

f¼ 5.5MHz), and H is a phase shift. V0 is set to give the
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desired peak-to-peak voltage, VPP. The amplitudes of the

individual harmonics are chosen to maximize the amplitude

asymmetry of the waveform ( ~Vm1/ ~Vm2) and, therefore, maxi-

mize the accessible range of the DC self-bias according to

Eq. (1).20 The phase shift H can be varied to control the am-

plitude asymmetry from a maximum (H¼ 0) to a minimum

(H¼ p). Such waveforms, with N¼ 4, are shown in Fig. 1(a)

for different values of H.

Alternatively, it was recently shown21–23 that some con-

trol over the asymmetry of argon discharges can be obtained

using sawtooth waveforms (i.e., with differing rise and fall

rates), defined by the following expression:

VAC tð Þ ¼ 6V0

XN

k¼1

1

k
sin kxtð Þ: (4)

The slope asymmetry of the waveform can then be con-

trolled by the number of frequencies, N. The 1/k pre-factors

are chosen to maximize the slope asymmetry for a given N.

The minus sign in Eq. (4) corresponds to sawtooth-up wave-

forms, while the plus sign corresponds to sawtooth-down

waveforms. Such waveforms, with different N, are shown in

Fig. 1(b) (the case N¼ 1 corresponds to a pure sinusoid).

Here, the increase of the rising slope with N can be clearly

observed. These waveforms were shown to induce a fast

sheath expansion and a slow sheath contraction in front of

one electrode, and a slow sheath expansion and a fast sheath

contraction on the other side.23 As a consequence, a strong

asymmetry of the electron power absorption (and therefore

the ionization rate) can be produced in geometrically sym-

metric argon discharges, with larger ionization closer to the

electrode where the sheath expands rapidly. A DC self-bias

was also shown to appear in argon discharges in this case,

despite the absence of an amplitude asymmetry (i.e.,
~Vm1 ¼ ~Vm2), because of different mean ion densities in the

sheaths (e 6¼ 1 in Eq. (1)), and therefore different ion fluxes

at the electrodes.

More recently, Bruneau et al.24 have studied the impact

of waveforms with continuously changing amplitude and

slope asymmetry, obtained by slightly shifting the higher fre-

quencies from the harmonics. These waveforms are shown to

control the shape of the ion flux distribution function and, in

particular, its width, while keeping the ion flux and mean ion

energy constant. They are, however, not used in the present

study.

Although the impact of the amplitude and slope asym-

metry of a waveform has been studied in detail in argon dis-

charges,6–12,21–23 only one article by Schulze et al.25 has

looked at the effect of TVWs on CF4 discharges, and it is

briefly studied in an article by Bruneau et al.26 The former

study contained only simulations with no experimental

measurements and was limited to two harmonics.

Furthermore, there is an interest in studying the behavior of

CF4 discharges when excited with low fundamental frequen-

cies, as used in etching applications.3 In the present paper,

the results of particle-in-cell (PIC) simulations are compared

to experimental results, including phase-resolved optical

emission spectroscopy (PROES) measurements. The impacts

of both the amplitude and the slope of the waveform are

investigated, using up to five harmonics with a fundamental

frequency of 5.5MHz.

II. METHODS

A. Simulations

The simulations consider four types of charged species:

CF3
þ, CF3

", F" ions, and electrons. Although more species

may be present, it has been shown in previous studies that

these are the dominant ones.27–33 The energy-dependent

cross sections for the electron-CF4 collision processes are

presented in Fig. 2(a). The cross-sections are taken from

Kurihara et al.,34 except for electron attachment processes

which are taken from Bonham et al.35 A complete list of the

electron impact collision processes used in this model can be

found in Schulze et al.25 Although a large number of ion-

CF4 reactions take place in CF4 discharges,
27,32,36 only a lim-

ited set of reactions are included here. The energy dependent

cross sections for these reactions are shown in Fig. 2(b).

These collision processes include reactive as well as elastic

collisions of different ions with CF4. Because of the signifi-

cant negative ion densities in these plasmas, recombination

processes between positive and negative ions, as well as

between electrons and CF3
þ, must be taken into account.

These processes are simulated following the procedure by

Nanbu and Denpoh.37 The rate of the electron-CF3
þ recom-

bination is taken from Denpoh and Nanbu.38

The interelectrode distance is set to 2.5 cm, and the

neutral gas is assumed to be uniformly distributed with a

FIG. 1. (a) Waveforms according to Eq. (3) with different phase shifts, H,

and (b) waveforms according to Eq. (4), corresponding to sawtooth-down

waveforms, for different numbers of harmonics N.
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temperature of 350K. Electrons hitting the electrodes are

reflected with a probability of 20%,39 while the ion-induced

emission of secondary electrons, c, is set to 0.

The DC self-bias in the simulations is determined as

follows: at the beginning of the simulations, a bias of 0V is

set. After executing the simulation for 100 RF cycles, the

fluxes of the positively and negatively charged particles to

each of the two electrodes are evaluated. Depending on the

balance of these fluxes, the DC self-bias is changed by a

small value. This procedure is continued until the DC self-

bias reaches a converged value, and the charged particle

fluxes to each of the two electrodes are balanced.

B. Experiments

The experimental setup has been described in detail in

Ref. 23. A reactor with an inter-electrode gap of 2.5 cm was

made geometrically symmetric by adding a thick Teflon ring

(inner diameter 10 cm), fitted with a 2.5' 2.5' 10 cm piece

of borosilicate glass to allow optical access. The working

pressure was varied between 50mTorr and 600mTorr in the

experiments. The voltage waveform was generated using a

computer-controlled arbitrary function generator (AFG) and

a broadband power amplifier as described previously.19 The

true delivered waveform is monitored by a high voltage

probe, and the waveform is corrected for distortion using a

feedback loop as proposed by Patterson et al.18 Phase-

resolved images of the plasma-induced optical emission are

recorded with an intensified charge-coupled device (ICCD)

camera (Andor iStar), which is synchronized to the AFG,

and the phase varied using a delay generator. The gate time

of the camera is 2 ns, therefore giving 91 images within one

RF-cycle for a fundamental frequency of 5.5MHz. The exci-

tation rate at each position and phase is derived from the

measured emission from the F atom line at 703.7 nm, using

the deconvolution method proposed in Ref. 40, and is com-

pared to the dissociative ionization rate from the simulations.

The electron energy thresholds are 14.7 eV (Ref. 41) for

electron-impact excitation of the emitting state from ground

state F atoms (experimentally observed) and 16 eV for disso-

ciative ionization (used in the simulations), respectively.

Although two different processes are compared, these proc-

esses have similar energy thresholds and will therefore probe

in a comparable way the high energy electron population.

This strategy therefore limits us to a qualitative comparison

of the dynamics of energetic electrons. A more thorough

way of addressing this issue would be to include the F atom

distribution in the simulations. Such a refinement, which

remains for future work, may lead to the possibility of a

more quantitative comparison between experiment and

simulation.

III. RESULTS

In the following, the impact of waveforms with an am-

plitude asymmetry (according to Eq. (3)) on a CF4 discharge

is investigated in Section III A, while in Section III B, we

focus on the impact of waveforms with a slope asymmetry

(according to Eq. (4)). In both cases, the excitation rates and

the DC self-bias are compared between the simulations and

the experiments, and the simulations are used to investigate

the impact of TVWs on the ion flux and the ion flux-energy

distribution function (IFEDF) at each electrode, since these

could not be measured here.

A. Amplitude asymmetry

In this case, waveforms according to Eq. (3) are used,

with N¼ 4, and the phase shift H is varied to control the am-

plitude asymmetry of the waveform. The neutral gas pressure

is kept constant at 600mTorr, and V0 is set to 96V (giving a

peak-to-peak voltage VPP¼ 300V for H¼ 0).

Figure 3 shows the DC self-bias, g, observed experimen-

tally and given by the simulations as a function of H. The

agreement is good for almost all values of H, except for

H¼ 0.75p and H¼ 1.75p. The DC self-bias voltage, g,

increases as H is increased between 0 and p, and then

decreases, consistent with the amplitude ratio ~Vm1/ ~Vm2,

which decreases in the first range and increases in the second

one. It is worth noting that the variation of the DC self-bias

with H is not as linear as in argon.21 Indeed, for H lower

than 0.5p, it only slightly increases with H, whereas it

increases more significantly for H between 0.5p and p.

Overall, the range over which the DC self-bias can be con-

trolled is significantly larger than that observed previously in

the case of argon,10,12,20 or in CF4
25 (although only two

frequencies have been used in the latter case).

In the following, H is varied only between 0 and p,

since for H between p and 2p, the discharge is simply a

FIG. 2. Cross sections of electron-impact (a) and ion-impact (b) collision

processes included in the simulations as a function of the electron and ion

incident energy, respectively. Sources for the cross-sections are given in the

text.
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mirror image of that for H between 0 and p. Figure 4 shows

the spatio-temporal dependence of the excitation rate,

derived from the experimentally measured optical emission

of the F line at 703.7 nm (top row), compared to the rate of

CF4 dissociative ionization obtained from simulations (mid-

dle row), as a function of H from 0 to p (from left to right).

As mentioned in Section II, F atom excitation and CF4 disso-

ciative ionization by electron impact have similar electron

energy thresholds (of 14.5 and 16 eV, respectively), and

should therefore have rates that vary in a similar way with

electron density and temperature. The x-axis represents

position (with the powered electrode at x¼ 0 cm and the

grounded electrode at x¼ 2.5 cm), while the y-axis represents

time, and spans one fundamental RF cycle. The sheath

edge position is obtained from the simulations using the

Brinkmann criterion42 and is shown as a white line in the

simulation plots. The images are normalized to the maximum

of the excitation (or ionization) of the case at H¼ 0.5p. Also

shown in the bottom row is the dynamics of the electric field

outside the sheath region (the latter being shown in black)

obtained from the simulations.

The agreement between the experiments and the simula-

tions is very good. The only significant difference is observed

for H¼ 0.75p, which is a region where the discharge asym-

metry depends strongly on H, as already observed in the DC

self-bias voltage in Fig. 3. Therefore, a small difference in H

between the experiments and the simulations will lead to

large changes in the excitation dynamics. It should be noted

that, in the experiments, a difference can be observed

between the cases H¼ 0 and H¼ p, whereas they should be

mirror images of each other. This small discrepancy can be

attributed either to imperfect optical alignment or to residual

geometric asymmetry of the reactor.

Looking at the cases with H between 0 and 0.5p, one

can see that the highest ionization peak occurs close to

the grounded electrode during sheath contraction. This is the

opposite of what has been observed for argon,9 where the

highest ionization occurs at the sheath edge during sheath

expansion. This can be explained by the different dominant

electron power absorption mechanisms in Ar and CF4. In Ar,

electrons gain energy during the rf cycle predominantly by

reflection from the expanding sheaths, whereas in CF4, elec-

trons gain energy predominantly by the drift-ambipolar

mechanism under many conditions, as described by Schulze

et al.25,43 This can be observed in the bottom row of Fig. 4.

Indeed, in this case, a strong electric field is present in the

plasma bulk (outside the sheath). This field accelerates the

electrons from the plasma centre towards the powered elec-

trode. However, a floating potential sheath prevents these

electrons from reaching the electrode, trapping them close to

the electrode and creating a region with a high density of

FIG. 3. DC self-bias, g, as a function of H. The black solid line and squares

represent the experimental results, and the red dashed line and circles repre-

sent the results of PIC simulations.

FIG. 4. Spatio-temporal excitation rate

derived from measurements of the emis-

sion line at 703.7 nm using PROES (top

row), rate of dissociative ionization

(middle row), and electric field (bottom

row) obtained from PIC simulations,

using a waveform with N¼ 4 harmonics

according to Equation (3), for different

values of H from 0 (left) to p (right).

The x-axis represents position (with the

powered electrode at x¼ 0 cm and the

grounded electrode at x¼ 2.5 cm), while

the y-axis represents time, and spans

one fundamental RF cycle.
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highly energetic electrons, thus significantly increasing the

rates of dissociative ionization and excitation. These two

regions with electric fields in opposite directions can be

regarded as a double layer, which develops in strongly elec-

tronegative gas discharges, even in single frequency excita-

tion.44 The reasons for the development of such a structure

in the case of multi-frequency excitation are studied in more

detail in Ref. 45. The observed asymmetry therefore origi-

nates from the fact that this drift-ambipolar electric field

only appears in front of a sheath which is rapidly collapsing.

Figure 5(a) shows the CF3
þ flux at the powered and

grounded electrodes obtained from the simulations. For

H¼ 0, the flux is highest at the grounded electrode, where

the ion energy is lowest (as can be inferred from the large

negative self-bias shown in Fig. 3 in this case). This is differ-

ent from the case of argon, where the flux is highest at the

electrode where the ion energy is highest.21 This is due,

again, to the strong drift-ambipolar electric field which

builds up in the plasma bulk in front of the grounded elec-

trode sheath when it contracts. When H is increased to

H¼ 0.5p, the ion flux increases at the grounded electrode

and decreases at the powered electrode, giving a flux

2.5 times larger at the grounded electrode compared to the

powered one. When H is further increased, the ion flux at the

grounded electrode decreases strongly, reaching a minimum

for H around 0.75p. This reduction is consistent with the

lower ionization rate observed in Fig. 4, and with a signifi-

cant change in the electric field dynamics.

Figure 5(b) shows the mean ion energy, hEii, at the pow-
ered and grounded electrodes obtained from the simulations.

For H¼ 0, the mean ion energy is close to 50 eV at the pow-

ered electrode, and only about 6 eV at the grounded elec-

trode, i.e., the ratio of the mean energy values at the two

electrodes is about eight. This result is surprising at such a

high pressure, where the collisionality in the sheaths is high.

This ratio is much larger than that obtained with two fre-

quencies by Schulze et al.25 at a fundamental frequency of

13.56MHz. The increase in the number of harmonics cannot

explain this increase, and it must therefore be caused by the

difference in the fundamental frequency. Such a study is,

however, out of the scope of this paper and will be presented

elsewhere.45 This result indicates that TVWs allow control

of the ion energy over a large range in CF4 when the funda-

mental frequency is low, even at high pressures.

As a consequence of both the DC self-bias and the CF3
þ

flux dependence on H, the ion flux-energy distribution func-

tion (IFEDF) evolution with H is non-trivial. The IFEDF,

obtained from the simulations, is shown in Figs. 5(c) and

5(d) for the grounded and powered electrodes, respectively.

Note that the IFEDF is shown in log-scale. At the grounded

electrode, the maximum ion energy remains low for H/p

below 0.7, which is consistent with the strong negative DC

self-bias. Above this value, the maximum ion energy greatly

increases, as a consequence of the increase of the DC self-

bias, while the maximum of the IFEDF decreases, consistent

with the reduction of the ion flux. The exact opposite occurs

at the powered electrode.

B. Slope asymmetry

In the following, sawtooth waveforms according to Eq.

(4) are used, and the number of harmonics composing the

waveform N is varied to control the slope asymmetry of the

waveform. The fundamental frequency is set to 5.5MHz, and

the peak-to-peak voltage is 400V. In Ar, the strongest asym-

metry was obtained at high pressures;22 therefore, we first

examine the results at 600mTorr. In addition, it was shown

that the electronegativity of CF4 discharges increases with

pressure.25 Therefore, we investigated the effect of pressure

on the discharge asymmetry over the range 50–600mTorr.

1. High pressure regime (600mTorr)

Figure 6(a) shows the DC self-bias obtained, when the

discharge is excited with sawtooth-up and sawtooth-down

waveforms. Full symbols and solid lines represent the exper-

imental data, while the simulation results are represented by

open symbols and dashed lines. The agreement between the

simulations and the experiments is good, except for the case

N¼ 2, for which the simulations yield a significantly higher

DC self-bias compared to the experiments. The reason for

this discrepancy, despite the good agreement for the other

cases, is still unclear.

FIG. 5. Flux (a) and mean ion energy, <Ei>, (b) of CF3
þ ions at the pow-

ered (blue dashed line and down-triangles) and grounded (green solid line

and up-triangles) electrodes; CF3
þ flux-energy distribution function at the

grounded (c) and powered (d) electrodes; these results have been obtained

from the simulations.
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The sawtooth-up waveforms lead to a negative DC self-

bias, while the sawtooth-down waveforms give a positive

one. This is the opposite of what was observed for Ar.22,23 In

addition, the amplitude of the normalized DC self-bias can

be more than two times higher than that obtained in Ar.

Finally, whereas the DC self-bias continuously increases in

argon as more harmonics are added, this is not the case for

CF4 discharges, as no increase, or even a small decrease, is

observed when increasing N from 3 to 5. The reason for this

behavior lies in the CF3
þ flux to the electrodes. Indeed, as

mentioned in the Introduction, whereas ~Vm1 ¼ ~Vm2 for these

waveforms, the mean ion density at the sheath edges may

differ, and so may the ion fluxes, leading to the appearance

of a DC self-bias. We will see below that the ionization is

highly asymmetric, leading to a large difference in the mean

ion density in the two sheaths (e.g., #nsp > #nsg), leading to a

symmetry parameter different from one according to Eq. (2)

(e.g., e> 1) and, therefore, to a non-zero self-bias according

to Eq. (1) (e.g., g> 0).

Figure 6(b) shows the CF3
þ flux at the powered and

grounded electrodes obtained from the simulations, for dis-

charges excited with a sawtooth-down waveform. Whereas

the ion flux at the grounded electrode increases only slightly

with N, the ion flux at the powered electrode increases by a

factor of 4.5 when N is increased from 1 to 2, and then con-

tinues to slowly increase when N is further increased. As a

consequence, the highest flux ratio of about 5 (with a higher

flux at the powered electrode) is obtained for N¼ 2.

Therefore, the larger asymmetry in the normalized DC self-

bias is linked to a larger asymmetry in the ion fluxes.

Figure 6(c) displays the mean ion energy, hEii, at the
powered and grounded electrodes obtained from the simula-

tions. As one can see, and as expected from the positive DC

self-bias, the ion energy is lower at the powered electrode.

The ratio of the mean ion energy at both electrodes changes

little as N is varied, with a value of about 2.2. Therefore, for

N> 1, the ion flux is highest at the electrode where the ion

energy is lowest.

In order to better understand how large the discharge

asymmetry is at these conditions, Fig. 7 shows the simulated

IFEDF at the powered and grounded electrodes with a

sawtooth-down waveform for N¼ 2 or N¼ 5. Note that the

vertical axis scale is logarithmic. As mentioned before, for

N¼ 2, the total ion flux obtained at the powered electrode is

five times higher than at the grounded electrode. However,

this figure also shows that the ion energy at the powered

electrode is significantly lower, with a mean ion energy

lower by a factor of two. Of interest is also the maximum ion

energy, which was shown in Refs. 46 and 47 to be of great

importance as far as material treatment is concerned, and

which is four times lower at the powered electrode in the

case N¼ 2. For the case N¼ 5, the asymmetry is slightly

lower but remains very large (the ion flux is three times

higher on the powered electrode, the mean ion energy is two

times lower, and the maximum ion energy is three times

lower).

Figure 8 shows the excitation rate extracted from F atom

optical emission (top row), which is compared to the rate of

dissociative ionization obtained from the simulations (second

row), when the discharge is excited with a sawtooth-down

waveform with N¼ 1 to 5 (from left to right). The data for

FIG. 6. (a) DC self-bias voltage, g, experimentally measured (solid lines and

full symbols), and obtained from PIC simulations (dashed lines and open

symbols), for sawtooth-up (black lines and up-triangles) and sawtooth-down

(red lines and down-triangles) waveforms; (b) CF3
þ flux, at the powered

(blue dashed line and down-triangles) and grounded (green solid line and

up-triangles) electrodes, for a sawtooth-down waveform, obtained from the

simulations; (c) mean ion energy, hEii, of CF3
þ ions at the powered (blue

dashed line and down-triangles) and grounded (green solid line and up-trian-

gles) electrodes, for a sawtooth-down waveform, obtained from the simula-

tions; these results are shown as a function of N.

FIG. 7. Ion Flux-Energy Distribution Function (IFEDF) at the powered

(blue lines) and grounded (green lines) electrodes for a sawtooth-down

waveform with N¼ 2 (dashed lines) or N¼ 5 (solid lines), obtained from the

simulations.
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both the simulations and the experiments are normalized to

the maximum of the case N¼ 5. The bottom row shows the

dynamics of the electric field. The plots of the ionization rate

also show the position of the edges of the sheaths. As N is

increased, the excitation strongly increases close to the pow-

ered electrode as the sheath collapses, while it increases less

at the grounded electrode as that sheath expands. The excita-

tion peak due to sheath expansion is slightly larger in the

experiments (in particular, for large N), presumably due to a

small optical misalignment (see also Fig. 4), that tends to

decrease the amplitude close to the powered electrode.

This strong excitation close to the powered electrode

indicates a significant difference in the excitation dynamics

in CF4 plasmas compared to that observed in Ar. As shown in

the bottom row of Fig. 8, this excitation occurs when a strong

negative electric field appears close to this electrode, similar

to what is observed in case of amplitude-asymmetric wave-

forms, indicating that the discharge is again operating in DA

mode under these conditions. Once again, a double-layer

structure is observed,44 which efficiently accelerates and traps

electrons, leading to large excitation. The origin of the stria-

tions observed in the spatio-temporal electric field for the

case N¼ 1 is unknown. They were not observed experimen-

tally, possibly because of limited spatial resolution.

In order to demonstrate the importance of the discharge

asymmetry under these conditions, Fig. 9 shows (time-inte-

grated) pictures through the PROES window of a CF4 dis-

charge excited with a sawtooth-down waveform with N¼ 1

(left) and N¼ 2 (right). The arrows indicate the position of

the powered (P.E.) and grounded (G.E.) electrodes. No post-

processing was applied to these images, i.e., they correspond

to what can be seen by the naked eye. The discharge is

observed in the central square, corresponding to the window

in the Teflon ring. Whereas the light emission is uniform

across the electrode gap for sinusoidal excitation (N¼ 1), it

is strongly localized close to the powered electrode for a

FIG. 8. Spatio-temporal excitation rate

derived from measurement of the

emission line at 703.7 nm using

PROES (top row), the rate of dissocia-

tive ionization (middle row), and elec-

tric field (bottom row) obtained from

PIC simulations, using a sawtooth-

down waveform with N¼ 1 to 5 (from

left to right); the images are normal-

ized by the maximum of the case with

N¼ 5.

FIG. 9. Images taken through the

PROES window of the CF4 discharge

excited with a sawtooth-down wave-

form with N¼ 1 (left) and N¼ 2

(right). The arrows indicate the posi-

tion of the powered (P.E.) and

grounded (G.E.) electrodes.
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sawtooth waveform (N¼ 2); the emission of almost one half

of the discharge has been “turned off.” This is consistent

with the PROES results shown in Fig. 2. Although not quan-

titative, these pictures give a visual impression of the strong

impact of sawtooth waveforms on the spatial distribution of

the discharge.

2. Effect of gas pressure

In this section, we explore how the effect of slope asym-

metry depends on gas pressure. The other conditions are kept

identical to those defined beforehand. It was shown previ-

ously that the gas pressure has a strong impact on the dis-

charge asymmetry obtained with sawtooth waveforms in

argon.22 Reducing the gas pressure increases the mean free

path for energetic electrons, and this leads to changes to the

spatial profiles of excitation and ionization. In addition,

Schulze et al.43 demonstrated that the impact of the DA heat-

ing decreases at lower pressure, which could also affect the

discharge asymmetry.

Figure 10 shows the DC self-bias voltage, experimen-

tally measured, and obtained from the PIC simulations, as a

function of pressure p, for sawtooth-up and sawtooth-down

waveforms, for (a) N¼ 2, (b) N¼ 3, and (c) N¼ 5. The

experimental trends are well reproduced by the simulations

for each value of N.

In all cases, the DC self-bias voltage increases with

pressure, similar to argon.22 For N¼ 2, the DC self-bias

increases linearly with pressure over the range investigated

(both in the experiments and in the simulations), whereas for

N> 2, a strong increase of the DC self-bias is observed at a

pressure of about 200mTorr, followed by a weaker increase

when pressure is further increased.

In order to understand the different behaviour for N¼ 2

and N> 2, Fig. 11 shows the rate of the dissociative ioniza-

tion obtained from the simulations, for discharges excited

with sawtooth-down waveforms with N¼ 2 (first row) and

N¼ 5 (second row) for pressures of 50mTorr, 150 mTorr,

300mTorr, and 600mTorr (from left to right). No normaliza-

tion has been applied to these images.

It can be seen that for N¼ 2, the excitation remains close

to the powered electrode over this pressure range. Increasing

the pressure only makes the excitation features more local-

ized and draws them closer to the powered electrode, and no

clear transition can be observed. In contrast, for N¼ 5, at

low pressure the maximum excitation is closer to the

grounded electrode, possibly because electron energy gain

from sheath expansion is comparable to or larger than the

energy gain from the drift-ambipolar electric field. However,

when the pressure is increased to 300mTorr, a sharp transi-

tion occurs and the excitation becomes strongly localized

close to the powered electrode, possibly because the drift-

ambipolar electric field becomes the main source for electron

energy gain. The fact that this transition occurs for N¼ 5 but

not for N¼ 2 might be due to the fact that the energy gain by

sheath expansion strongly depends on N, as it was observed

in argon.23 Therefore, the changes in the excitation dynamics

explain why the DC self-bias shows a transition for N> 2

but not for N¼ 2.

IV. CONCLUSION

We have investigated the impact of amplitude and slope

asymmetry of the driving voltage waveforms on the electri-

cal asymmetry of geometrically symmetric CF4 discharges.

For all the conditions studied here, the discharge was found

to operate in the DA mode, where a strong drift-ambipolar

electric field adjacent to (but outside) the collapsing sheath is

responsible for most of the ionization. Predictions of PIC

simulations were found to be in good qualitative agreement

with experimental data.

Controlling the amplitude asymmetry of the waveform

via the phase shift H has been shown to be an efficient way

of controlling the ion energy, with maximum energies up to

nine times higher at one electrode compared to the other.

However, at these high pressure conditions, significant

FIG. 10. DC self-bias voltage, experimentally measured (solid lines and full

symbols), and obtained from PIC simulations (dashed lines and open sym-

bols), as a function of pressure p, for sawtooth-up (black lines and up-trian-

gles) and sawtooth-down (red lines and down-triangles) waveforms, for (a)

N¼ 2, (b) N¼ 3, and (c) N¼ 5.
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changes in the ion flux also occur as H is varied. In particu-

lar, much lower ion fluxes are observed specifically for H

around 0.75p, where the effects of the slope asymmetry and

the amplitude asymmetry of the waveform balance each

other out.

This effect in CF4 occurs because, unlike for argon, the

slope asymmetry of the waveform creates an ionization

asymmetry as large as that created by the amplitude asym-

metry. For instance, for some conditions, one electrode can

have an ion flux five times higher than at the opposite elec-

trode, while at the same time having a maximum ion energy

four times lower. At lower pressures, electron energy gain

via sheath expansion is more significant and can become

comparable to that due to drift-ambipolar fields, therefore

reducing the asymmetry.

To conclude, TVWs can be used to create a strong

asymmetry of both the ion energy and the ion flux, even in

geometrically symmetric reactors and with a low fundamen-

tal frequency. Larger (and inverted) effects are observed in

electronegative gases (CF4) compared to Ar, especially at

higher pressure. This effect may be of potential interest for

plasma etching applications.
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