. eprints@whiterose.ac.uk
= Whlte Rose https://eprints.whiterose.ac.uk

Qo o
w) ReseCerh On"ne Universities of Leeds, Sheffield and York

Deposited via The University of York.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/99190/

Version: Accepted Version

Article:

Davis, Robert lan, Cucu-Grosjean, Liliana, Bertogna, Marko et al. (2016) A Review of
Priority Assignment in Real-Time Systems. Journal of systems architecture. pp. 64-82.
ISSN: 1383-7621

https://doi.org/10.1016/j.sysarc.2016.04.002

Reuse
Other licence.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

i = % UNIVERSITY
ﬁ \‘Eﬁ’/ University of oy %

UNIVERSITY OF LEEDS S Sheffield

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.sysarc.2016.04.002
https://eprints.whiterose.ac.uk/id/eprint/99190/
https://eprints.whiterose.ac.uk/

A Review of Priority Assignment in Real-Time Systems

Robert I. Davis'" Liliana Cucu-Grosjean®, Marko Bertogna®, Alan Burns'
'Real-Time Systems Research Group, Department of Computer Science, University of York, York, UK.
2AOSTE Team, INRIA Paris-Rocquencourt, France.

*University of Modena, Italy.

rob.davis@york.ac.uk, liliana.cucu@inria.fr, marko.bertogna@unimore.it, alan.burns@york.ac.uk

Abstract - 1t is over 40 years since the first seminal work on
priority assignment for real-time systems using fixed priority
scheduling. Since then, huge progress has been made in the
field of real-time scheduling with more complex models and
schedulability analysis techniques developed to better
represent and analyse real systems. This tutorial style review
provides an in-depth assessment of priority assignment
techniques for hard real-time systems scheduled using fixed
priorities. It examines the role and importance of priority in
fixed priority scheduling in all of its guises, including: pre-
emptive and non-pre-emptive scheduling; covering single- and
multi-processor systems, and networks. A categorisation of
optimal priority assignment techniques is given, along with the
conditions on their applicability. We examine the extension of
these techniques via sensitivity analysis to form robust priority
assignment policies that can be used even when there is only
partial information available about the system. The review
covers priority assignment in a wide variety of settings
including: mixed-criticality systems, systems with deferred
pre-emption, and probabilistic real-time systems with worst-
case execution times described by random variables. It
concludes with a discussion of open problems in the area of
priority assignment.

Categories and Subject Descriptors: C.3 [Real-time and
embedded systems]

General Terms: Performance, Design, Algorithms

Additional Key Words and Phrases: survey; review; priority
assignment; priority order; fixed priority; real-time scheduling;
schedulability analysis; optimal priority assignment; deadline
monotonic; rate monotonic, robust priority assignment;
Controller Area Network (CAN); multiprocessor; uniprocessor.

PREAMBLE

Many presentations are written as a consequence of first
writing a paper. This paper was written as a consequence of
the first author giving the Keynote talk at the 20th
International Conference on Real-Time and Network
Systems (RTNS) in 2012, thus a presentation of much of the
material in this paper can be found at
http://rtns2012.1oria.fr/#page=Invitedtalk.

L INTRODUCTION

Hard real-time systems are characterised by the need for
both functional and temporal correctness. Such systems are
required not only to produce appropriate responses or outputs
to their stimuli or inputs (functional correctness), but to do so

within specified time constraints (temporal correctness).
These time constraints are typically expressed in terms of
deadlines on the elapsed time between a stimulus or input
and the corresponding response or output.

Today, hard real-time systems are found in many
different application areas including; aerospace, automotive,
and railway systems, space and satellite systems, medical
monitoring and imaging systems, industrial process control,
and robotics. The majority of these systems are multitasking
and use a scheduler within the Real-Time Operating System
(RTOS) to determine which one of many tasks is given
access to the processor or processors at any given time.

The vast majority of commercial Real-Time Operating
Systems use a fixed priority scheduler; indeed, automotive
standards such as OSEK [1] and AUTOSAR [2] mandate the
use of fixed priority scheduling. With fixed priority
scheduling, each task is assigned a static priority offline, then
at runtime, each job of that task competes for the processor
on the basis of its priority, with the highest priority job
selected for execution. One of the most common questions
asked regarding the scheduling of such systems is:

“How should I assign priorities?”

This is an important question, since a poor priority
assignment will mean that the scheduler may run jobs in an
order that is far from optimall, leading to missed deadlines,
even though the overall workload or utilisation of the system
is low. This can have significant commercial consequences.
If a system can only utilise a small fraction of its overall
processing or network capacity before deadlines start being
missed, then as further functionality is added, it will become
unreliable, or will need upgrading to more expensive
hardware.

A. Why is Priority Assignment Important?

In real-time systems that use fixed priority scheduling,
appropriate priority assignment is essential to avoid
overprovisioned hardware, to provide headroom for
additional functionality, and to avoid reliability issues caused
by intermittent failures due to deadline misses.

To illustrate this point, we use an example from the
automotive industry. Controller Area Network (CAN) [27],
[46] is a broadcast bus that is widely used for in-vehicle
networking. Communications over CAN are effectively

! We define what is meant by an optimal priority assignment in Section II.

scheduled using fixed priority non-pre-emptive scheduling,
with the message identifiers (IDs) used as priorities during
arbitration to determine the order in which messages are sent
on the bus. In his keynote talk at ECRTS 2012 [35], Darren
Buttle of ETAS remarked on the myth of CAN bus
utilisation believed by many in industry:
“You cannot run CAN reliably at more than 35%
utilisation””

This myth comes from a general practice of assigning
message IDs (i.e. priorities) in an ad-hoc way reflecting the
data content of the message, ECU supplier and other legacy
issues. The effect of assigning message IDs in an ad-hoc way
that has no correlation with message deadlines was
highlighted by Davis et al. [51]. Figure 1 shows the
frequency distribution of the breakdown utilisation [68] of
10,000 typical automotive CAN configurations with 80
messages (10ms to 1 second periods). The breakdown
utilisation is computed by scaling the bus speed until the
message set is only just schedulable and then recording the
overall bus utilisation (i.e. message transmission times
divided by periods) at that speed. From the graph it is clear
that priority assignment is important. Figure 1 shows that
assigning priorities in an optimal way leads to typical
breakdown utilisations of 80% or more, whereas ad-hoc or
random priority assignment leads to typical bus utilisations
of 35% or less, hence the myth described by Buttle [35].

1600

1400
Optimal
Priorities

1200
Ad-hoc

Priorities

1000

©
o
o

35% or less v 80% or more

Frequency

[=2]
o
o

B
o
o

200

0 i
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Breakdown Utilisation %

Figure 1: Breakdown Utilisation

B. How to Assign Priorities?

In this paper, we provide a tutorial-style review of
answers to the question, “How fo assign priorities?”

We survey work on priority assignment through the
ages. We look at simple task models where Deadline
Monotonic priority assignment is optimal and see how
departures from these models break this optimality. We
review Audsley’s algorithm for Optimal Priority
Assignment (OPA), including the rules for when it can and
cannot be used — as well as a catalogue of situations where it

2 Figure may vary but not significantly.

is useful. We look at how this algorithm has been extended
to form Robust Priority Assignments (RPA), and how they
can be used to define priority orderings when only partial
information is available about a system. For systems and
schedulability analyses where Audsley’s algorithm cannot
be directly applied, we examine what can be done to avoid
checking all possible priority orderings. We also recount
how the basic OPA algorithm can be modified to obtain
priority assignments that minimise the number of priority
levels needed, and also how it can be used to minimise the
lexicographical distance or the reverse lexicographical
distance from any desired priority ordering.

This review covers priority assignment for fixed priority
scheduling in all of its guises, including: pre-emptive, non-
pre-emptive, and deferred pre-emption scheduling; for
single-processor, multi-processor, and networked systems.
As well as conventional systems, we review priority
assignment in mixed criticality systems, and probabilistic
real-time systems where worst-case execution times are
described by random variables.

At the end of the review, we set out a number of open
problems in priority assignment, including priority
assignment in systems with Cache Related Pre-emption
Delays, and dual-priority scheduling [33].

The review ends with a summary of the key results and
current challenges, and provides recommendations for those
wanting to know “How fo assign priorities?”

Note, the focus of this review is on priority assignment,
we deliberately do not go into depth on the closely related
topic of schedulability analysis. For more information on
that topic, the interested reader is directed to reviews and
surveys on single processor [12], [83], [53] and
multiprocessor [50] scheduling.

II. SYSTEM MODEL, TERMINOLOGY AND NOTATION

In this paper, we consider types of systems scheduled
using fixed priorities. In this section, we outline a basic task
model that is capable of extension in a variety of different
ways. Some of these extensions are also detailed here,
whereas others are specific to particular problem domains
and are discussed later. We also define the terminology used
in schedulability analysis. We note that a similar system
model also applies to communications on CAN with ‘task’
replaced by ‘message’ and ‘execution time’ replaced by
‘transmission time’.

A. System model

The system model used in this paper focuses on the
fixed priority scheduling of a set of n statically defined tasks
which together make up a task set. Each task z; is identified
by its index i from 1 to n. Each task is assumed to have a
unique priority. The notation hp(i) (and hep(i)) is used to
denote the set of tasks with priorities higher than (higher
than or equal to) i. Similarly, Ip(i) (and lep(i)) are used to
denote the set of tasks with priorities lower than (lower than
or equal to) i.

Each task 7; is assumed to have a bounded worst-case
execution time C,, a minimum inter-arrival time or period
T., and a relative deadline D,. Note, we assume a discrete
time model, with all of these task parameters represented by
positive integers. Each task 7, may generate a potentially
unbounded sequence of invocations (or jobs). Each job of
task 7, has an execution time that is upper bounded by C,,
an arrival time at least 7, after the arrival of the previous
job of the same task, and a relative deadline D, after its
arrival.

A task set is referred to as periodic if each job of every
task 7; arrives exactly 7, after the previous job of the same
task. A task set is referred to as sporadic if each job of a
task 7; may arrive at any time that is at least 7, after the
arrival of the previous job of the same task. Thus the
sporadic task model forms a generalisation of the periodic
one. In this paper, unless explicitly stated, we refer to
sporadic tasks sets.

Task sets may be further classified according to the
deadlines of their component tasks. If all tasks have
deadlines equal to their periods (D, =T), then we have an
implicit-deadline task set. If instead, all tasks have deadlines
that are less than or equal to their periods, then that
constitutes a constrained-deadline task set. Finally, in an
arbitrary-deadline task set, task deadlines may be smaller
than, the same as, or larger than their periods.

The utilisation U; of a task 7, is equal to its execution
time divided by its period (U;=C;/T;). The total utilisation
U of a task set is the sum of the utilisations of all its tasks.

This task model permits a number of simple extensions
as follows.

Tasks may make mutually exclusive access to shared
resources, thus task 7, may be blocked from executing for at
most the blocking time B; due to lower priority tasks that
access shared resources (e.g. via the Stack Resource Policy
[15]) . Otherwise, tasks are assumed to be independent, and
not to self-suspend.

For periodic task sets, the first arrival of a job of task
is assumed to take place at an offset O; from time ¢ =0.
(Note offsets are assumed to be normalised so that the
minimum offset of any task is zero). If Vi O, =0, then the
task set is referred to as synchronous, since all tasks have a
synchronous arrival at time ¢ = 0. Otherwise it is referred to
as asynchronous, or simply as having offsets.

There may be a delay of up to the release jitter J,
between the notional arrival and the release of each job of
task 7, at which point it becomes ready to execute.

The worst-case response time R, [64] of a task is
defined as the longest possible time from the release of a job
of the task until that job completes execution. Calculation of
a task’s worst-case response time allows its schedulability to
be trivially checked by comparison with its deadline and
release jitter: R, <D; —J,.

There are a number of different forms of fixed priority
scheduling, depending on if and when pre-emption is
permitted. With Fixed Priority Pre-emptive Scheduling

(FPPS), when a high priority task become ready to execute,
a lower priority job that is currently running will be
suspended (pre-empted) in order to allow the higher priority
job to execute. With Fixed Priority Non-pre-emptive
Scheduling (FPNS) such pre-emption is not permitted, and
the higher priority job has to wait until the lower priority job
completes before it can access the processor. Between these
two extremes, is deferred pre-emption (FPDS), where pre-
emption may be deferred for some interval of time after a
higher priority task becomes ready, either by the RTOS
[16], or due to non-pre-emptable regions in the task’s code
(co-operative scheduling) [31].

With FPDS, each task is assumed to have a final non-pre-
emptive region of length F; in the range [1,C;]. This model
of FPDS subsumes both fully pre-emptive and fully non-pre-
emptive scheduling, since if Vi F; =1, then FPDS equates
to FPPS, whereas if Vi F; = C; we have FPNS. (Note that
with a discrete time model, the minimum possible length of a
non-pre-emptive region is 1, since a task cannot be pre-
empted during a single processor clock cycle).

With fixed priority scheduling each job of a task 7, has
the same priority given by the priority assigned to the task.
This is sometimes referred to as fixed task priority
scheduling, as distinct from fixed job priority scheduling
where each individual job of a task can have a different
priority. An example of fixed job priority scheduling is
Earliest Deadline First (EDF) where job priorities correspond
to absolute deadlines. In the remainder of this paper when we
refer to fixed priority scheduling, we mean fixed task priority
scheduling.

The critical instant [69] for a task 7, refers to a scenario
or pattern of job releases that result in a job of the task
exhibiting the worst-case response time.

We use the term priority level-i busy period to mean an
interval of time [#,,f,) during which tasks, of priority i or
higher, that were released at the start of the busy period at ¢,
or during the busy period but prior to its end at ¢, , are either
executing or ready to execute. We note that by definition, the
worst-case response time of a task at priority i must occur
within a priority level-i busy period.

B. Schedulability Analysis

Definition: Schedulable: A task set is said to be schedulable
with a priority assignment O, under some fixed priority
scheduling algorithm G, if all valid sequences of jobs that
may be generated by the task set can be scheduled by
algorithm G using priority ordering Q without any missed
deadlines.

A schedulability test for some fixed priority scheduling
algorithm G is referred to as sufficient, if all the task sets and
priority orderings that are deemed schedulable according to
the test are in fact schedulable under the scheduling
algorithm. Similarly, a schedulability test is referred to as
necessary, if all the task sets and priority orderings that are
deemed unschedulable according to the test are in fact
unschedulable under the scheduling algorithm. A

schedulability test that is both sufficient and necessary is
referred to as exact.

C. Priority Assignment Policies

The goal of a priority assignment policy is to provide a
schedulable priority order whenever such an ordering exists.
This leads to a definition of optimal priority assignment. We
note that the optimality of a particular priority assignment
policy is with respect to a particular task model (for
example constrained-deadline, sporadic tasks), and a
scheduling policy (e.g. FPPS). It is also useful to define
optimality with respect to the schedulability test used, which
may be exact or only sufficient. Hence, in general the
optimality of a priority assignment policy is with respect to
a given configuration comprising (i) the task model, (ii) the
scheduling algorithm, and (iii) the schedulability test used.

Definition: Optimal Priority Assignment. A priority
assignment policy P is said to be optimal with respect to a
configuration (task model M, fixed priority scheduling
algorithm G, and schedulability test S), if and only if every
set of tasks that is compliant with the task model and is
deemed schedulable under algorithm G by test S with some
priority assignment policy is also deemed schedulable under
algorithm G by test S using policy P.

In other words, P is optimal if it is at least as good as any
other priority assignment policy.

In the remainder of the paper, when we refer to the
optimality of a priority assignment policy with respect to a
particular configuration, giving only the task model and
scheduling algorithm, then we are implicitly also referring to
an exact test.

III. EARLY WORK ON PRIORITY ASSIGNMENT

The first work on priority assignment considered fixed
priority pre-emptive scheduling (FPPS) on a single
processor, for a simple periodic task model without blocking
or release jitter.

In 1967, Fineberg and Serlin [56] considered two
synchronous periodic tasks with implicit-deadlines scheduled
using FPPS. They showed that it is better to assign the higher
priority to the task with the shorter period. In 1973, Liu and
Layland [69] extended this result and showed that Rate-
Monotonic Priority Ordering (RMPO) is optimal for
synchronous periodic task sets with implicit-deadlines.
(Rate-Monotonic priority assignment assigns priorities in the
same order as task periods, with the task with the shortest
period having the highest priority).

Liu and Layland’s famous result was generalised in 1982
by Leung and Whitehead [67] who showed that Deadline-
Monotonic Priority Ordering (DMPO) is optimal for
synchronous periodic task sets with constrained-deadlines.
However, minor changes to the task model (e.g. offset
release times, or arbitrary deadlines) or to the scheduling
algorithm (e.g. non-pre-emptive rather than pre-emptive
fixed priority scheduling) are enough to break the optimality

of DMPO. Leung and Whitehead [67] showed that DMPO is
not optimal for periodic tasks with constrained deadlines and
offset release times as illustrated in Figure 2 for the set of
tasks in Table I below.

TABLE I: TASK PARAMETERS

Task C D T (0]
7 2 3 4 2
Ty 3 4 8 0

v v v
Ta
0 4 8 12 16
hiLilLi
B
0 4 8 12 16
(2)
v v
B
T T T >
0 4 8 12 16
W
Ta
0 4 8 12 16
(b)

Figure 2: Deadline Monotonic priority ordering is not optimal for tasks with
offset release times.

With Deadline Monotonic priority ordering, task 7, has the
higher priority. In this case, jobs of task 7 miss their
deadlines (Figure 2(a)). However, if the priority ordering is
reversed, then it is easy to see that the task set is schedulable
(Figure 2(b)). (Note, Leung and Whitehead [67] showed that
in order to check schedulability for periodic tasks with
constrained deadlines and offsets, it is sufficient to check all
deadlines in an interval of length (2H + O™) where H is
the hyperperiod (Least Common Multiple of task periods)
and O™ is the largest offset).

Goossens and Devilliers [60] showed in 1997 that
DMPO is also not optimal for so called offset free systems
where both offsets and priorities may be freely chosen with
the aim of finding a schedulable system.

In 1990, Lehoczky [66] showed that DMPO is also not
optimal for synchronous periodic task sets with arbitrary
deadlines as illustrated in Figure 3 for the set of tasks in
Table II below. With Deadline Monotonic priority ordering,
task 7, has the higher priority. In this case, the first job of
task 7 in the priority level-i busy period misses its deadline
(Figure 3 (a)). However, if the priority ordering is reversed,
then all jobs meet their deadlines (Figure 3 (b)). Note that in
this case, the second job of task 7, has a longer response
time than the first).

TABLE II: TASK PARAMETERS
Task C D T
T, 52 110 100
52 154 140

A

;o
Ny
S+
[$]
o

0

ﬁ* Hx

IIIIIIIIIIIIIII
250

)

A
B m

T TTT | T'TT | T T | ITrTTTTTT 4

10 250

‘ #

. # v
1T T TTTT T TTTT T i

0 50 100 150 200 250

(b)

Figure 3: Deadline Monotonic priority ordering is not optimal for tasks with
arbitrary deadlines.

In 1996, George et al. [59] showed that Deadline
Monotonic priority ordering is not optimal for constrained-
deadline periodic tasks under fixed priority non-pre-emptive
scheduling, as illustrated in Figure 4 for the set of tasks in
Table III below. In this case, with the tasks in DMPO, the
second job of task 7. in the priority level-i busy period
misses its deadline (Figure 4 (a)). However, if the priority
ordering of tasks 7 and 7 is reversed, then all jobs meet
their deadlines (Figure 4 (b)). Note that here similar to the
task set with arbitrary deadlines, the second job of the lowest
priority task has a longer response time than the first.
Thereby emphasizing that in these cases, it is not sufficient
to only check that the first job in the busy period meets its
deadline.

LR
200 250

o —

7]

TABLE III: TASK PARAMETERS

Task C D T
Ty 4 10 10
Tp 4 12 16
Tc 4 13 14

In 1995, Davis and Burns [43] showed that the optimal
priority assignment for Aperiodic’ jobs (with firm deadlines)
arriving in a system with hard deadline sporadic or periodic
tasks is to assign each aperiodic job the highest priority such
that no task with an earlier next absolute deadline has a

3 Aperiodic jobs may arrive at any time and have a relative deadline that is
referred to as firm, that is either the job must be completed by this deadline
or it is of no value to the system.

higher priority (effectively a hybrid between DMPO and
Earliest Deadline First (EDF) scheduling).

T
16 24

B

o —4T—>»oO0

Tc

a Tr

—
16 24

! | —
16 24

| m
(b)

Figure 4: Deadline Monotonic priority ordering is not optimal for fixed
priority non-pre-emptive scheduling.

c

B

o4——>oc4+——>o
oo

IV. PROVING THE OPTIMALITY OF PRIORITY ASSIGNMENT
POLICIES

The optimality of a priority assignment policy such as
Deadline Monotonic priority ordering derives from
schedulability analysis. Below, we recapitulate response
time analysis for sporadic tasks with constrained deadlines
under fixed priority pre-emptive scheduling. Based on this
analysis, the optimality of DMPO is shown using a standard
technique for proving the optimality of priority assignment
policies.

The worst-case response time R; for task z; corresponds
to the length of the priority level-i busy period starting with
synchronous release, and where all higher priority tasks are
then released again as soon as possible. The length of the
busy period w; , can be calculated using the following
recurrence relation [11], [64], where the summation term
gives the total interference over the busy period due to the
set of higher priority tasks.

m

w:
wt =+ Y |2 (1)

vie| T
Iteranon starts with an initial value for w; , typically
w! = C, , and ends either when w/™*' =w/" in Wthh case the

m+1

worst-case response time R; is given by w;"", or when

*I'> D, in which case the task is unschedulable. The
fixed point iteration is guaranteed to converge provided that
the overall task set utilisation is less than or equal to 1.

The standard technique for proving that a priority
assignment policy is optimal is as follows:

To show that priority assignment policy P is optimal,
we must prove that any task set (that complies with the task
model) that is schedulable (under the scheduling algorithm
considered) using some priority assignment policy Q is also
schedulable using priority ordering P.

Proof is obtained by transforming priority order Q
(which is known to be schedulable) into priority order P
while ensuring that no tasks become unschedulable during
the transformation. The proof is bgl induction.

Bave case: Priority order Q" is schedulable, since we
set O =Q and Q is the schedulable priority ordering
assumed in the theorem.

Inductive step: A pair of tasks that are at adjacent
priorities in priority ordering 0", but in the opposite
relative priority order under policy P are chosen and thelr
priorities swapped to produce a new priority order Q
(see Figure 5). It is then demonstrated that there is no loss of
schedulability, 1e all the tasks remain schedulable under
priority order Q

At most k= n(n—l)/2 such steps are needed to
complete the reordering (effectively a bubble sort) such that
Q' =P, and since there is no loss of schedulability on any
step, that proves the task set is also schedulable under
priority ordering P. Hence there can be no task sets that are
schedulable under some other priority ordering Q that are
not also schedulable under the priority ordering given by
policy P, which proves that P is an optimal priority
ordering.

Priority order O Priority order 0%/
............)
............)
T4 — 7 B
B - T4
............)
............)

Figure 5: Swapping the priorities of tasks at adjacent priority levels.

We now demonstrate the use of this technique using the
exact analysis given in (1) and so provide a standard proof
(derived from that given in [67]) of optimality for DMPO.

Theorem 1: DMPO is an optimal priority assignment policy
for sporadic tasks with constrained deadlines under fixed
priority pre-emptive scheduling on a single processor.

Proof: We show that any task set compliant with the model
that is schedulable under some priority order Q is also
schedulable under priority order P (= DMPO).

Base case: The task set is schedulable with priority
order Q.

Inductive step: We select a pair of tasks that are at
adjacent pr10r1t1es (i and j where j = i + 1) in priority
ordering 0" , but out of Deadline Monotonic relative

priority order. Let these tasks be 7, and 75, with 7,
having the higher priority in o (see Figure 5). Note that
D, > Dy as the tasks are out of Deadline Monotomc
relative order. Let i be the priority of task 7, in Q" andj jbe
the prlorlty of task 75. We need to prove that all of the
tasks remain schedulable with priority order Q . There
are four groups of tasks to consider:

hp(i) : tasks in th1s set have hlgher priorities than both
7, and 7 in both Q" and O“'. Since the schedulability
of these tasks is unaffected by the relative pr10r1ty ordering
of 7, and 75, they remain schedulable in o

Task 74: Let ¥y =Ry be the response time of task s in
priority order 0" . Since task 7p is schedulable in Q we
have y=Ry <Dy <D, <T,, hence in (1), the contrlbutlon
to interference from r, within the response time of 7 is
exactly one job (i.e. C,), and there is also a contribution of
Cp from 75 itself. Now consider the response time of task
7, under priority order Q" . This response time is R, =y,
as there is exactly the same contribution from tasks 7,, 7
and all the higher priority tasks. Since y<D,, task 7,
remains schedulable.

Task 7y : as the priority of |75 has 1ncreased its
response time is no greater in Q than in Q , since the
only change to the response time calculation for 7 is the
removal of the interference from task 7, . Hence 7,
remains schedulable.

Ip(j): tasks in th1s set have lower priorities than both
7,4 and 7 in both Q" and 0"

Since the schedulability of these tasks is unaffected by
the relative priority ordering of 7, and 7, they remain
schedulable.

All tasks therefore remain schedulable in Qk !

At most k =n(n—1)/2 steps are required to transform
priority ordering @ into P without any loss of
schedulability o

We note that DMPO remains optimal [26] when tasks
are permitted to share resources according to the Stack
Resource Policy (SRP) [15] or the Priority Ceiling Protocol
(PCP) [82], and that Deadline Minus Release lJitter
Monotonic Priority Order is optimal for sporadic tasks with
constrained deadlines and release jitter [96]. As previously
noted; however, it only takes some minor changes to the
task model or scheduling algorithm to undermine the
optimality of DMPO. Examples of such changes include,
offset release times [67], non-pre-emptive scheduling [59],
arbitrary deadlines [66], and deadlines prior to completion
[30].

V. AUDSLEY’S OPTIMALITY PRIORITY ASSIGNMENT
(OPA) ALGORITHM

To address the non-optimality of DMPO for tasks with
offset release times, Audsley developed a more
sophisticated approach to priority assignment. This
approach, now commonly referred to as Audsley’s Optimal
Priority Assignment (OPA) Algorithm, solves the problem

of priority assignment for all of the four cases cited above
where DMPO is no longer optimal. It was first published in
a technical report in 1991 [10] and formally published some
10 years later in [13].

for each priority level k, lowest first
for each unassigned task ©

if T is schedulable at priority k according to
schedulability test S with all unassigned tasks assumed
to have higher priorities
{

assign T to priority k

break (continue outer loop)

return unschedulable
1

5
return schedulable

Algorithm 1: Audsley’s Optimal Priority Assignment Algorithm

The pseudo code for Audsley’s algorithm, using some
compatible schedulability test S is shown in Algorithm 1.
For n tasks, Audsley’s algorithm (Algorithm 1) makes at
most n(nt+1)/2 calls to a compatible schedulability test S.
The algorithm is guaranteed to find a priority assignment
that is schedulable according to test S, if such an assignment
exists. The complexity of Audsley’s algorithm is a
significant improvement over checking all n/ possible
priority orderings. For n = 25, a maximum of 325
schedulability tests are required, instead of >10%. Note that
the OPA algorithm does not specify the order in which the
schedulability of unassigned tasks should be checked at
each priority level.

Audsley’s algorithm has been proven to be applicable
in a variety of different situations, including the following:

e Periodic tasks with offset release times [10].

e Sporadic tasks with arbitrary deadlines — see section 7
of [89]

e Sporadic task sets under non-pre-emptive scheduling —
see Theorem 17 in [59].

e Tasks with mixed criticalities and an execution time
budget per criticality level [90].

e Generalised Multi-frame tasks, where jobs of a task
follow a fixed sequence with different worst-case
execution times, deadlines and inter-arrival times
between the different types of job — see section 7.1 of
[97].

e The Diagraph Real-time Task (DRT) model [85]. In
this case, Stigge and Yi [86] showed that Audsley’s
algorithm can effectively be applied to both the
problem of assigning Static Priorities (SP) to tasks, and
the problem of assigning Static Job-type Priorities (SJP)
to the job types (vertices) that characterise each task.

e Periodic tasks with worst-case execution times
described by random variables [71].

We note that Audsley’s algorithm is also applicable to the

(m-k) firm task model [75] as can easily be shown by

considering the three conditions for applicability discussed
below.

In 2009, Davis and Burns [49] proved an important
result about the applicability of Audsley’s OPA algorithm.
They showed that three simple Conditions are both sufficient
and necessary for Audsley’s algorithm to provide optimal
priority assignment with respect to a given schedulability test
S. This is a powerful result since it enables the OPA
algorithm to be applied in a wide range of scenarios, while
lowering the burden of proof of optimality to one of showing
compliance with the three Conditions, something that is
typically easily proved or disproved.

The three Conditions are reproduced below from [49] .
They refer to properties of a task that are independent of its
assigned priority. For example the worst-case execution time,
deadline, and minimum inter-arrival time of a task are
typically independent of its priority. By contrast a task’s
worst-case response time is typically highly dependent on its
relative priority.

Condition 1: “The schedulability of a task 7, may,
according to test S, depend on any independent properties of
tasks with priorities higher than k, but not on any properties
of those tasks that depend on their relative priority ordering.”

Condition 2: “The schedulability of a task 7, may,
according to test S, depend on any independent properties of
tasks with priorities lower than k, but not on any properties
of those tasks that depend on their relative priority ordering.”

Condition 3: “When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower priority.
(As a corollary, the task being assigned the lower priority
cannot become schedulable according to test S, if it was
previously unschedulable at the higher priority).”

Detailed proof that these conditions are sufficient and
necessary for the applicability of the OPA algorithm is given
in [49].

A. Applying Audsley’s OPA Algorithm to Global Fixed
Priority Scheduling on a Multiprocessor

Davis and Burns [49] used the above three Conditions to
categorise schedulability tests for global fixed priority
scheduling on identical multiprocessors (with m processors)
according to their compatibility or otherwise with Audsley’s
algorithm.
The following schedulability tests were shown to be
incompatible with OPA:
e Any exact test for global fixed priority pre-emptive
scheduling [7] such as those for periodic task sets given
by Cucu and Goossens [39], [40].
e Response time analysis (RTA test) of Bertogna and
Cirinei [20].
e Improved RTA-LC test of Guan et al. [61].
While the following tests were shown to be compatible:
e Deadline Analysis (DA test) of Bertogna et al. [21].

e Improved DA-LC test (based on the RTA-LC test) [49].
e Response Time test of Andersson and Jonsson [7].
Below we give the schedulability equations for the DA test
[21]; by simple inspection of the terms in these equations, it
is clear that the three Conditions hold, since there is only a
dependency on the set of higher priority tasks, but not on
their relative priority order, and the interference becomes
strictly smaller with increasing priority.

1
D, 2Cp+|— Y IP (D, C) ©)
M ichp (k)

where:
1(Dy,C) = minW,” (D), D, —C; +1)
w2 (L)=NP(L)C; + min(C;,L+ D, —C; - NP (L)T})
L+D,; -C;
=]

NP (L) = {
1

By contrast, inspection of the equations given below for the

RTA test [20] shows that this test is incompatible with

Audsley’s algorithm. This is because there is a dependency

on the upper bound response times (R) of higher priority

tasks which in turn depends on their relative priority

ordering.

RV Co+|~ SIRRP.Cp) 3)
M ichp(k)

where:
I}RYE,C,) = minWS (RY®),RYE —C, +1)
WA (L) = NF(L)C; +min(C,, L+ R - C; - N} (L)T)

L+R” -,
T

N (L) {
1

The incompatibility of the stronger schedulability tests
for global fixed priority scheduling (the RTA test strictly
dominates the DA test) raises the interesting question,
which is more powerful, better priority assignment or a
better schedulability test. In other words, when faced with
the choice, should we use a weaker schedulability test for
which we can determine an optimal priority assignment or a
stronger test where priority assignment can only be
accomplished by using a heuristic.

120%

—o—DA (OPA)
= = -RTA (DKC)
—=te=DA (DKC)
-&- RTA (DCMPO)
—8—DA (DCMPO)
= e -RTA (DMPO)
—e— DA (DMPO)

100%

80%

60%

40%

Percentage of tasksets schedulable

0%

N4 "D,bﬁ,b‘b,b@ b‘b«ﬁ'p@e&,\b‘buépge@\tmv%mbp bl‘b‘;o

Utilisation

Figure 6: The effect of priority assignment on task set schedulability for
global fixed priority scheduling.

Figure 6 shows the success ratio (percentage of schedulable
task sets) for a 16 processor system, with 80 tasks
reproduced from [49]. Results for the RTA test are shown as
dashed lines, while those for the DA test are shown as solid
lines. What is striking from the graph is that the difference
between the two schedulability tests is small, but the
difference between the different priority assignment
heuristics (DMPO, DCMPO, DkC) and optimal priority
assignment (OPA) is large. In particular, DMPO is shown to
be a poor heuristic for global fixed priority scheduling,
while the DKC heuristic (based on TkC [6] — see later in this
section) has much better performance. The best performance
was obtained using the weaker DA schedulability test
combined with optimal priority assignment, rather than the
stronger RTA test and the DkC priority assignment
heuristic.

The above findings raise the question, what to do if we
have a schedulability test that is effective (like the RTA
test), but is not compatible with Audsley’s algorithm?
Clearly a brute force approach, searching all n! distinct
priority orderings is intractable. One viable approach is to
direct a backtracking search by identifying partial priority
orderings that are definitely schedulable (using a weaker
OPA-compatible test) and others that are definitely
unschedulable (using an OPA-compatible necessary
condition). This approach, introduced in [48] has
subsequently been applied in the analysis of real-time flows
over a wireless network [84].

A different approach to obtain improvements to the
joint schedulability / priority assignment problem for global
fixed priority scheduling was taken by Pathan and Jonsson
[73] in 2011. Their Hybrid Priority Assignment (HPA)
method takes account of the parameters of particular tasks
and the intrinsic pessimism in the RTA-LC and DA-LC
tests. It assigns the highest priority to a subset of k tasks
with high density (execution time divided by deadline) so
that they effectively occupy a processor each, and then

applies the DA-LC or RTA-LC tests to the remaining tasks
on (m-k) processors using Audsley’s algorithm and a
heuristic priority assignment policy respectively. The
approach results in better schedulability by effectively
trading a small increase in interference due to assuming that
k heavy tasks each utilize a complete processor, for a larger
reduction in interference due to a decrease in the number of
tasks considered as causing carry-in interference from m-1
to m-k-1. This approach dominates DA-LC+OPA and RTA-
LC + heuristic priority assignment.

In 2012, Chwa et al. [38] noted that the state-of-the-art
schedulability tests for global fixed (task) priority
scheduling appeared to outperform those for global fixed
job priority scheduling (for example gEDF). They remarked
that this was most likely due to ineffective approaches to
assigning job priorities in the latter case. They adapted
Audsley’s OPA algorithm to the problem of assigning job
priorities in the form of pseudo deadlines, a task-level
parameter used along with the job release times to determine
job-level priorities. The resulting Optimal Pseudo Deadline
Assignment algorithm, and a heuristic adaptation of it,
provide substantially improved schedulability compared to
schedulability tests for gEDF, and also compared to the DA-
LC / OPA test for global fixed priority scheduling.

The work of Pathan and Jonsson [73] effectively
combined ideas from earlier research into priority
assignments aimed at combatting the so called “Dhall
Effect” [54] with the more sophisticated schedulability tests
and Audsley’s algorithm applied to a subset of tasks As an
aside, we now give a brief summary of that early work.

In 1978, Dhall and Liu [54] showed that with Rate
Monotonic priority order (RMPO), the utilisation bound for
implicit deadline periodic tasks under global fixed priority
scheduling on m processors is 1+ ¢, for arbitrarily small &.
Hence RMPO and similarly DMPO can be poor priority
assignments to use with global fixed scheduling on an
identical multiprocessor system. In 2000, Andersson and
Jonsson [6] designed the TkC priority assignment policy to
avoid the Dhall effect which results in the poor performance
of RMPO. TkC assigns priorities based on 7; —kC; where k
depends on the number of processors. Via an empirical
investigation, Andersson and Jonsson [6] demonstrated the
effectiveness of their TkC priority assignment policy for
implicit deadline periodic tasksets. (Note the DkC heuristic
used in Figure 6 is a simple extension of TkC using D; — kC;
to determine the priority order).

Andersson et al. [8] also proposed the RM-USJ ¢ |
priority assignment algorithm. This algorithm assigns the
highest priority to tasks with utilisation greater than the
threshold ¢ and otherwise assigns priorities in RMPO.
They showed that RM-US[m/(3m—2)] has a utilisation
bound of m?/(3m—2) . In 2005, Bertogna et al. [23] proved
an improved bound of (m+1)/3 for RM-US[1/3].
Subsequently, in 2008, Andersson [9] proposed a ‘slack
monotonic’ algorithm, called SM-US that works in the same
way as RM-US but assigns priorities according to the slack

(T; - C;) of each task (DCMPO in Figure 6 similarly uses
D;-C;). SM-US has a utilisation bound of
2/(3+\/§)m ~0.382m . This bound is better than the
corresponding one for RM-US[1/3] when m>7.

B. Minimising the number of priority levels

So far, we have only considered systems where each task
has a unique priority; however, in practice, there may be
good reasons for minimising the number of priority levels
used. For example an RTOS may support only a limited
number of priority levels (e.g. 8 or 16 in OSEK [1]), or there
may be many priority levels available, but the system
designer may want to minimise the number of priority levels
used to reduce the overall stack usage.

for each priority level i, lowest first {
Z = empty set
for each unassigned task 7 {
if 7is schedulable at priority / assuming all
unassigned tasks have higher priorities {
add 7to Z
}

if no tasks are schedulable at priority i {
return unschedulable

else {
assign all tasks in Z to priority i
!

if no unassigned tasks remain {
break (exit outer loop)

return schedulable

Algorithm 2: Audsley’s Algorithm modified to minimize the number of
priority levels required

Audsley’s algorithm permits a simple adaptation (see
Algorithm 2 above) described in [13] that minimises the
number of priority levels required.

We note that Algorithm 2 remains an optimal priority
assignment algorithm, since it finds a schedulable priority
ordering whenever one exists; however, it also has the
useful side effect of minimising the number of priority
levels required.

C. Minimising lexicographical distance

Audsley’s OPA algorithm can also be used to minimise
the perturbation needed to obtain a schedulable priority
ordering from any specified desired ordering. Such
perturbations can be measured in terms of either
lexicographical distance or reverse lexicographical
distance. To illustrate these terms, let us assume that a set of
tasks have been labelled (A, B, C) representing the desired
priority ordering from highest to lowest priority. The set of
all possible orderings in lexicographical (dictionary) order is
given by: (A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,AB),
(C,B,A). Thus the lexicographical distance between the
desired ordering (A,B,C) and the ordering (B,A,C) is 2. In
reverse lexicographical order, we have instead: (C,B,A),
(B,C,A), (C,AB), (A,C,B), (B,A,C), (AB,C). This

dictionary is constructed by reversing the letters in each
word, sorting them in normal (lexicographical) dictionary
order and then reversing the letters again. Note the reverse
lexicographical distance between the desired ordering
(A,B,C) and the ordering (B,A,C) is 1. (This illustrates that
lexicographical distance and reverse lexicographical
distance are different).

Minimising lexicographical distance is typically the most
useful, since optimising this metric is a way of placing the
most important tasks at the highest priority levels while still
maintaining schedulability. This provides a simple means of
ensuring that should an overload occur, then the most
important tasks will still meet their deadlines.

In 2008, Chu and Burns [37] showed that Audsley’s
algorithm minimises the reverse lexicographical distance to
the desired priority ordering if the unassigned tasks are
always examined in the reverse of the desired order. In other
words, if the desired priority order is (A,B,C), then the task
labelled C is the first to be examined at the lowest priority
level, followed by task B and so on.

Minimising lexicographical distance is a more difficult
problem that was initially addressed by Soto and Bernat [3]
in 2006. They used a branch and bound approach to search a
tree of possible priority orderings, starting by assigning
tasks at the highest priority, and then checking if a branch
was schedulable by assuming DMPO for all of the lower
priority (unassigned) tasks in that branch. We note that this
approach only works when DMPO provides an optimal
priority ordering.

Below, we introduce a more general algorithm which
minimises the lexicographical distance, we refer to this as the
OPA-MLD algorithm.

The OPA-MLD algorithm (Algorithm 3) works as
follows: For each priority level i, highest first, the algorithm
tries to assign the highest importance unassigned task (i.e.
the first such task in lexicographical order) to that priority
level. It checks if the task itself is schedulable at priority i
and if so, uses the OPA algorithm to determine if there exists
a schedulable priority ordering for the other unassigned tasks
at lower priority levels. If this is the case, then the trial task is
assigned to priority level i, otherwise the algorithm continues
with the task of next highest importance and so on until it
finds a task to assign, or the system has been found to be
unschedulable. Assuming that a task is assigned then the
algorithm continues with the next highest priority level.

for each priority level i, highest first {
for each unassigned task 7 in lexicographical
order {
if a schedulable ordering exists for the
unassigned tasks by using the OPA
algorithm on them, assuming that 7t is
assigned priority i and the other
previously assigned tasks have priorities
higher than i
if so {
assign 1 priority i
break (continue outer loop)

}
}
if no tasks schedulable at priority i {
return unschedulable
}
}

return schedulable

Algorithm 3: Optimal Priority Assignment Minimising Lexicographical
Distance (OPA-MLD)

Since each task is only assigned if there exists some
schedulable ordering for the unassigned tasks at lower
priority levels, then it is easy to see that the algorithm is
optimal (i.e. it always finds a schedulable priority ordering if
such an ordering exists). Further, the algorithm constructs an
ordering that minimises lexicographical distance. This is the
case because it assigns the task with the highest importance
(i.e. first in the lexicographical order) whenever there exists
a schedulable partial ordering for the unassigned tasks, and it
does so in order, highest priority first.

The worst-case complexity of the MLD algorithm can
be determined as follows. Let n be the number of tasks, p of
which are currently unassigned. Consider the (n — p + 1)th
iteration of the algorithm. There are p tasks each of which is
itself schedulable at priority n — p + 1. (This is the case, since
for the first iteration, every task is valid and therefore
schedulable at the highest priority; further on each
subsequent iteration it is known from the previous iteration
that a schedulable priority order exists for those tasks that
remain unassigned, which implies that each of unassigned
task must be schedulable at the highest unassigned priority
level). For each of the p tasks, there are p — 1 other
unassigned tasks that need their schedulability checked using
the OPA algorithm. Hence the number of single task
schedulability tests required on this iteration of the algorithm
is given by:

2

3
p(p—l)p/Zsz—pT 4

Hence the overall complexity of the algorithm is given by:
n 3 2
p p
—— 5
555 ©
Using the standard formulae for sums of squares and cubes,
we have:

n(pd p?
e
=n?(n+1)%/8+n(n+1)2n+1)/12 (6)
=Bt —n?)+2(n® -n))/ 24
The overall complexity of the MLD algorithm is therefore
on*) single task schedulability tests, compared to o(n*)
such tests required to find the reverse lexicographical
ordering or simply any schedulable ordering using Audsley’s
algorithm. We note that this higher complexity remains
tractable for reasonable sized task sets. For example, for n =
10 tasks, 1320 schedulability tests would be required,
compared to n! = 3,628,800 combinations of possible
priority orderings. For n = 100 tasks, 1.25x10” schedulability
tests would be required, which remains viable, compared to
n! = 10"* combinations of possible priority orderings, which
certainly is not.

We note that when the class of task set being considered
has a simple optimal priority assignment, for example
DMPO, then that partial ordering can be used in place of the
OPA algorithm in the inner loop. This reduces the
complexity of each iteration to:

p(p-D=p’>-p @)
And hence overall complexity to 2(n® —n)/6 single task
schedulability tests, or 0(n3) : This reduction transforms the
OPA-MLD algorithm into the equivalent of the algorithm
given by Soto and Bernat [3].

D. Task importance and period transformation

Audsley’s OPA algorithm focuses on achieving
schedulability for all of the tasks in a system under
assumptions of normal operation. In some applications;
however, there are tasks that are of much higher importance
than others, which require preferential treatment under
overload conditions. These important tasks should not be
impacted by execution time overruns in less important tasks.
Appropriate run-time monitoring and budget enforcement is
one way to achieve this behaviour, however, in simple
systems fixed priority scheduling alone may be sufficient
assuming a priority assignment that reflects task importance,
with tasks of higher importance given higher priority. We
have already seen that the OPA-MLD algorithm provides a
means of constructing such a priority assignment when it is
viable without compromising schedulability. However, if the
important tasks have long execution times relative to the
deadlines of other tasks then this may not be possible. In
such systems, one simple technique that may be used is
period transformation [81]. Here, important tasks with long
periods are subdivided e.g. into two parts each with half the
execution time and half the period. While this subdivision
has the disadvantage that it requires changes to the code and
increases scheduling overheads, it has the advantage that the
task may then be represented as having a shorter period (and
deadline) and thus becomes amenable to being given a

higher priority without compromising the schedulability of
other tasks.

VI. ROBUST PRIORITY ASSIGNMENT

While Audsley’s OPA algorithm can be applied in a broad
range of cases, it has one significant drawback. It makes an
arbitrary choice of which schedulable task to assign at each
priority level. Such an arbitrary assignment can easily leave
the system only just schedulable, and thus fragile to any
minor changes in task parameters or under estimations of
interference or execution budgets. This is a problem in
practice, since tasks may be subject to additional
interference in the form of execution time budget overruns,
interrupts occurring at ill-defined rates, ill-defined RTOS
overheads, ill-defined critical sections, and cycle stealing by
peripheral devices (e.g. DMA). What is really needed is a
robust priority ordering that is able to tolerate the maximum
amount of such additional interference.

This problem was addressed by Davis and Burns in their
work on Robust Priority Assignment [45]. They assumed a
general additional interference function E(a,w,i), where o
is a scaling factor, used to model variability in the amount of
interference, w is the length of the time interval over which
the interference occurs and i is the priority level affected by
the interference. The function E(«,w,i) is required to be a
monotonically non-decreasing function of its parameters. In
practice, this represents little restriction, since almost all
sources of interference are (i) greater in longer intervals of
time than shorter ones, (ii) affect lower priority tasks if they
also affect higher priority ones, and (iii) are in any case
guaranteed to be monotonic in & since that is the scaling
factor.

Robust Priority Assignment is defined as follows:

Definition (from [45]): robust priority assignment policy:
“For a given system model and additional interference
function, a priority assignment policy P is referred to as
robust if there are no systems, compliant with the system
model, that are both schedulable and can tolerate additional
interference characterized by a scaling factor o using
another priority assignment policy Q that are not also both
schedulable and can tolerate additional interference
characterized by the same or larger scaling factor using
priority assignment policy P.”

Stated otherwise, of all schedulable priority orderings,
the robust priority ordering tolerates the most additional
interference (i.e. largest value of).

The Robust Priority Assignment (RPA) algorithm (see
Algorithm 4) is based on Audsley’s OPA algorithm and
requires exactly the same three Conditions to be applicable.
(Since the additional interference function is monotonically
non-decreasing in its parameters, if the three Conditions
hold for OPA, then they continue to do so when additional
interference is considered in RPA). This means that the
RPA algorithm is compatible with any schedulability test
that is compatible with OPA. The RPA algorithm provides a

priority ordering that is both optimal (easily seen by
equivalence to Audsley’s algorithm) and robust, as proven
in [45].

for each priority level i, lowest first {
for each unassigned task t {
determine the largest value of o for which task 7 is
schedulable at priority i assuming that all unassigned
tasks have higher priorities

if no tasks are schedulable at priority i {
return unschedulable
¥

else {
assign the schedulable task that tolerates the max o at
priority i to priority i

return schedulable

Algorithm 4: Robust Priority Assignment (RPA) Algorithm

It is instructive to compare the robust priority ordering

with both DMPO and that generated by OPA on an example.

The following example taken from [45] considers robust
priority assignment for the tasks in Table IV assuming fixed
priority non-pre-emptive scheduling (FPNS) and the
simplest possible additional interference function
E(a,w,i)=a . Such an interference function might
represent the unknown execution time of an interrupt
handler that runs infrequently (at most once in any busy
period).

TABLE IV: TASK PARAMETERS

Task C T D
Ty 125 450 450
Tx 125 550 550
T 65 600 600
T 125 1000 1000
g 125 2000 2000

Table V gives the values of & computed* by the RPA
algorithm as it iterates from the lowest to the highest
priority level. (‘NS’ indicates that a task was not
schedulable at that particular priority even without any
additional interference). The values highlighted in bold
indicated the task that tolerated the maximum value of « at
a particular priority level, and hence was assigned that
priority. The robust priority ordering for this example is
therefore (7,,7c,7p,7p, 7y) Which tolerates a maximum
amount of additional interference of 110 time units. By
comparison, DMPO (7,,75,7.,7p,7g) results in values
of a of (200, 175, 74, 120, 354) and hence tolerates a

maximum amount of additional interference of 74 time units.

As a number of priority orderings are schedulable without
additional interference, the ordering chosen by the OPA
algorithm depends upon the order in which the tasks are
checked. If this order is 7,4,75,7¢,7p, g then the priority
ordering produced by OPA would be (7.,75,74,7p,7f)

* Via binary search down to a granularity of 1 time unit.

which tolerates a maximum amount of additional
interference of just 10 time units. This example serves to
illustrate the practical importance of not just selecting any
schedulable priority ordering, but one that is robust.

TABLE V: COMPUTED VALUES OF o,

Task
Priority Ty Tp T [g
5 NS NS NS 120 354
4 NS NS NS 120 -
3 10 110 74 - -
2 135 - 199 - -
1 200 - - - -

Davis and Burns [45] proved the negative result that in
general, the robust priority ordering depends on the form of
the additional interference function and can therefore only be
precisely determined if o is the only unknown in the
function E(a,w,i)). Nevertheless, this is often the case, and
in practice, it can be instructive to use a simple additional
interference function such as E(a,w,i)=« to obtain a
robust priority assignment. Further, they showed that in the
case of systems where the scheduling policy (e.g. FPPS) and
task parameters (e.g. constrained deadlines, resource
accesses according to SRP or PCP, no offset release times),
are such that DMPO is optimal, then DMPO is also the
robust priority ordering irrespective of the form of the
additional interference function, provided only that it is
monotonically non-decreasing in its parameters.

Classifying tasks into those whose parameters are
compatible with DMPO being optimal, so called DM tasks,
and tasks whose parameters do not meet those criteria (non
DM tasks), Davis and Burns proved the following result’ for
fixed priority pre-emptive scheduling.

Theorem 3: (from Theorem 4 in [45]). For a system of DM
and non DM tasks, where a schedulable priority ordering
exists, there is a robust priority ordering P with the DM tasks
in Deadline Monotonic partial order.

Theorem 3 effectively says that we may always place DM
tasks in Deadline Monotonic order and only need to
determine how the non-DM tasks should be interleaved
among them.

This result can be used to improve the efficiency of
Audsley’s algorithm and the RPA algorithm. Theorem 3 tells
us that of all the DM tasks, the task with the longest deadline
is the one that is able to tolerate the most additional
interference at any given priority level, hence in the OPA
and RPA algorithms, only one DM task need be checked at
each priority level, the one with the longest deadline of all
unassigned DM tasks. This reduces the number of single task
schedulability tests needed from n(n+1)/2 to
(n(n+1)—k(k—1))/2 when there are n tasks in total, of

> This also applies to tasks with release jitter and Deadline minus Jitter
Monotonic Priority Ordering. We state the simpler form here.

which k are DM tasks. For example, in a system with n = 50
sporadic tasks, 46 of which have constrained deadlines, and k
= 4 of which have arbitrary deadlines, a maximum of 240
schedulability tests are needed instead of 1275.

Robust Priority Assignment has been extended to
messages on Controller Area Network [47], showing how the
RPA algorithm can be used to maximise the number of
errors that could be tolerated on the network before any
messages missed their deadlines, or to maximise the delay
(bus unavailability) that could be tolerated. Schmidt [80] also
used RPA as the basis for an algorithm which assigns
message priorities (IDs) on CAN when a subset of the IDs
are already fixed.

Prior to the work on Robust Priority Assignment, related
research by Lehoczky et al. [68], Katcher et al. [65],
Punnekkat et al. [74], and Regehr [76] used the critical
scaling factor as a metric for determining task set
schedulability. (The critical scaling factor was defined by
Lehoczky et al. [68] as the largest scaling factor by which the
worst-case execution time of every task could be increased
without the task set becoming unschedulable). Regehr
showed that for task sets where DMPO is the optimal
priority assignment policy, it also maximises the critical
scaling factor.

A. Priority assignment in Mixed Criticality Systems

Theorem 3 has subsequently been used to achieve a
significant simplification of the problem of priority
assignment in mixed criticality systems scheduled using
fixed priorities [17].

In the standard task model for mixed criticality systems,
introduced by Vestal in 2007 [90], tasks have different
criticality levels (e.g. HI and LO) equating to the level of
assurance required for their correct and timely operation. HI-
criticality tasks have different execution time bounds
C;(LO) and C;(HI) for these criticality levels, representing
estimates of the WCET of the task with different levels of
assurance. For example a certification authority may require
that highly conservative WCET estimates are used for
C;(HI) for the flight-control software of a Unmanned
Aerial Vehicle (UAV), whereas the system designer may use
less conservative methods perhaps based on measurements to
find C;(LO) for the same software (C;(HI) = C;(LO)).

Mixed criticality systems operate in different criticality
modes: In LO-criticality mode, all tasks must meet their
deadlines, assuming LO-criticality execution times for all
tasks. In HI-criticality mode, all Hl-criticality tasks must
meet their deadlines assuming Hl-criticality execution times,
while LO-criticality tasks may be abandoned to ensure
timely operation of the Hl-criticality tasks.

The system starts in LO-criticality mode and transitions
to HI-criticality mode when a Hl-criticality task exceeds its
LO-criticality execution budget. (Transition back to LO-
criticality mode may take place when the processor becomes
idle).

The analysis for Adaptive Mixed Criticality (AMC)
scheduling based on fixed priorities [17] is formulated in the
equations below:

R (LO)=C/(LO)+ | {

VjehpH (i)

%10 wcj (LO)

J

VkehpL(i) k
where hpL(i) (hpH(i)) is the set of LO-criticality (HI-
criticality) tasks with priorities higher than that of task z; .

R, (HI)

> {R" (wﬂck (LO) ®)

VjehpH (i) j

R, (HN)=C,(HD)+ Y. {]Cj(HI)+

R; (LO)

VkehpL(i)’r k
For LO-criticality tasks, the LO-criticality response time
R; (LO) computed via (8) must be no greater than the task’s
deadline. For Hl-criticality tasks, the Hl-criticality response
time computed via (9) must also be no greater than the
deadline. Notice that in (9) the interference term for higher
priority LO-criticality tasks is limited to releases within
R; (LO), since that is an upper bound on the time that can
be spent in LO-criticality mode since task z; was released
(otherwise task z; would itself cause a transition to HI-
criticality mode).

Given the previous discussion about robust priority
assignment, (8) and (9) can be interpreted in a different way.
For LO-criticality tasks, the first summation term in (8) can
be considered as additional interference and the LO-
criticality tasks, as a set of DM tasks. Similarly for the HI-
criticality tasks the second summation term in (9) can be
interpreted as additional interference, and the Hl-criticality
tasks considered as a set of DM tasks. (Note that for a HI-
criticality task, (9) is always a stricter test than (8)). It
follows from Theorem 3 that a robust priority ordering exists
that has the LO-criticality tasks in DM partial order, and also
the HI-criticality tasks in DM partial order. Thus robust
priority assignment reduces to a merge between the two sets,
each sorted in DM order, as shown in [17]. This merge is
accomplished by a variant of the OPA or RPA algorithms
which checks only the longest deadline, unassigned HI-
criticality task and the longest deadline, unassigned LO-
criticality task at each priority level. Thus the maximum
number of schedulability tests required is reduced from
quadratic (n(n+1)/2) to linear (2n—1).

An alternative simple approach to scheduling mixed
criticality systems is to partition the priorities, such that all
HI-criticality tasks have higher priorities than all the LO-
criticality tasks. This approach, referred to as Criticality
Monotonic Priority Ordering (CrMPO) has the advantage
that run-time policing of LO-criticality execution budgets
may not be required, and there is no need to abandon LO-
criticality tasks (or prevent new releases) when a HI-
criticality task executes for its C(LO) execution time budget

—|Ck (LO) &)

without signalling completion. Figure 7, reproduced from
[17], shows the performance of CrMPO in relation to AMC-
rtb which uses the analysis embodied in (8) and (9), along
with a modified version of Audsley’s algorithm for priority
assignment.

Observe that the performance of CrMPO is relatively
poor, due to the priority inversion inherent in giving short
deadline LO-criticality tasks low priorities. We note that this
issue can be addressed in part by Period Transformation
techniques [81] that divide the periods of Hl-criticality tasks
so that they have shorter periods and deadlines than any LO-
criticality tasks; however, this method creates additional
overheads and loses its effectiveness with more criticality
levels [57]. The relatively poor performance of CrMPO
shows the importance of appropriate priority assignment in
mixed criticality systems.

Note that the lines in Figure 7 labelled SMC-NO, SMC,
and AMC-max, represent other fixed priority mixed
criticality scheduling schemes and analyses, while UB-H&L
represents an upper bound on the performance of any such
scheme that uses fixed priorities, for full details see [17].

120%

100% -

80%

e UB-H&L
=== AMC-max
e=tr= AMC-rtb
o SMC
40% «=i==SMC-NO
= CrMPO

60%

Schedulable Tasksets

20%

0%

005 015 025 035 045 055 065 075 085 0.95

Utilisation

Figure 7: Poor performance of Criticality Monotonic Priority Ordering
(CtMPO).

VII. OPTIMAL FIXED PRIORITY SCHEDULING WITH
DEFERRED PRE-EMPTION

In the previous section on robust priority assignment, we saw
how Audsley’s optimal priority assignment algorithm can be
augmented to also optimise an additional criterion, in that
case robustness in terms of maximising the amount of
additional interference that the system can tolerate before a
deadline is missed. Davis and Bertogna [52] showed that
Audsley’s algorithm can be adapted in a similar way to
optimise fixed priority scheduling with deferred pre-emption
(FPDS) [31].

Recall that with FPDS, each task has a final non-pre-
emptive region of length F; . If for all tasks, this region is of

the minimum possible length i.e. F; =1, then FPDS equates
to fixed priority pre-emptive scheduling (FPPS), whereas if
for all tasks, it is equal to the task’s worst-case execution
time i.e. F; =C;, then FPDS equates to fixed priority non-
pre-emptive scheduling (FPNS). Thus FPDS subsumes and
strictly dominates both FPPS and FPNS, since it can
schedule any task set that is schedulable according to either
of those policies.

TABLE VI: TASK PARAMETERS

Task C D T
Ty 100 175 250
Tp 100 300 400
Tc 100 325 350

v v
Task A
T 1 117>
0 200 400 600
T v v
Task B !
| T L
0 200 400 600
Task C T !7 ﬁ
T I L L L
0 200 400 600
(@)
v T v
Task A r
1 — T >
0 200 400 600
Task C T !
| | |
0 200 400 600
Task B T T
T —T T >
0 200 400 600

(b)

Figure 8: Deadline Monotonic priority ordering is not optimal for fixed
priority non-pre-emptive scheduling.

The dominance of FPDS is illustrated by the example set
of tasks in Table VI (reproduced from [52]) and the
schedule of their execution shown in Figure 8. It is
interesting to consider the different possible priority
orderings and scheduling policies for this example. With
any form of fixed priority scheduling (FPPS, FPNS, or
FPDS), then the short deadline of 175 for task 7, means
that it must necessarily be assigned the highest priority,
otherwise it will be unschedulable. (Assigning task 7, a
lower priority would result in a response time of at least 200

due to interference from whichever of tasks 7 or 7. was
given the highest priority).

Considering fully non-pre-emptive scheduling (FPNS),
there is clearly no schedulable priority ordering since task
7, cannot tolerate blocking of 100 from either of tasks 7z,
or 7. . Considering fully pre-emptive scheduling (FPPS),

we know that deadline monotonic priority order (DMPO) i.e.

(74,75,7¢) is optimal [67]; however, in this case task 7.
would miss its deadline at time 325 due to interference from
the second job of task 7, released at time 250. Similarly, if
task 7, were placed at the lowest priority, it would miss its
deadline at time 300, hence there is no schedulable priority
ordering for FPPS.

Considering FPDS, we might try either task z5 or 7. at
the lowest priority. Figure 8(a) illustrates what happens with
deadline monotonic priority order (DMPO) i.e. with task 7
at the lowest priority. In this case, the best possible
schedulability for task 7. is obtained if it has the longest
possible final non-pre-emptive region, i.e. Fo =C, =100
even so, the second job of task 7. still misses its deadline at
time 675. Hence the system is unschedulable under FPDS
with DMPO. Finally, we consider priority ordering (7,4, 7.,
7p) and thus task 7, at the lowest priority. In this case,
with a final non-pre-emptive region of length Fj; =51, both
jobs of task 7 in the busy period meet their deadlines, as
illustrated in Figure 8(b). Assuming the minimum non-pre-
emptive region lengths (i.e. Fy =1, F, =1) for tasks 7,
and 7., then all three tasks are schedulable under FPDS,
with worst-case response times of 150, 250, and 300
respectively. This example serves to show the strict
dominance of FPDS over both FPPS and FPNS, and also the
non-optimality of DMPO for fixed priority scheduling with
deferred pre-emption. It also shows that to obtain the best
possible performance from FPDS then it is necessary to
determine an appropriate assignment of both task priorities
and final non-pre-emptive region lengths.

Building upon exact schedulability analysis for FPDS
derived by Bril et al. [24], Davis and Bertogna [52] modified
Audsley’s algorithm to assign both priorities and final non-
pre-emptive region lengths. They proved that the Final Non-
pre-emptive Region and Priority Assignment (FNR-PA)
algorithm (Algorithm 5) is optimal for FPDS, stating that “it
is guaranteed to find a combination of priority assignment
and final non-pre-emptive region lengths that result in a
schedulable system under FPDS whenever such a
schedulable combination of these parameters exists”.

for each priority level k, lowest first {
for each unassigned task t {

determine the smallest value for the final
non-pre-emptive region length F(k) such that task t is
schedulable at priority k, assuming all other
unassigned tasks have higher priorities.
Record as task Z the unassigned task with the
minimum value for the length of its final
non-pre-emptive region F(k).

if no tasks are schedulable at priority k {
return unschedulable

else {
assign priority k to task Z and use the value of F(k) as
the length of its final non—pre-emptive region.

}

return schedulable
Algorithm 5: FNR-PA Algorithm

Figure 9 (reproduced from [52]) illustrates the
comparative performance in terms of the proportion of
schedulable task sets for using the optimal FNR-PA
Algorithm (red line), FPPS assuming deadline monotonic
priority (blue line), and FPNS assuming an optimal priority
ordering found using Audsely’s algorithm (green line).
Comparison is also made against Fixed priority Pre-emption
Threshold Scheduling (FPTS) (dashed orange line) [91], [79].

The difference between FPDS(OPT) — solid red line —and
the dashed red line which shows the performance of FPDS
using DMPO [22] highlights the improvement that jointly
optimizing both priority assignment and final non-pre-
emptive region lengths brings.

o

0.9 \‘:\

" N

07 \ % %

06 .\\ \
\

o
8
w 0.5 x A
L L= SV
S 04 | | —w—EDF , T
2o 3
~—+—FPDS(OPT) \ \ * \
0.3 —| —s ~FPDS(DM) LY
- -FPTS %\

| - LY

02 —a—FPPS K \\
\

04 4L ——FPNS | A :\ \

0

0.6 0.63 0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Utilisation

Figure 9: Success ratio forn=10,D=T

Research into fixed priority scheduling with deferred
pre-emption has one of its practical applications in
automotive systems. The automotive RTOS standards
OSEK [1] and AUTOSAR [2] mandate fixed priority
scheduling, and support co-operative scheduling of tasks
made up of multiple non-pre-emptive regions. According to
Buttle [35] in automotive systems there are often large

numbers of separate functions (or runnables) that execute
one after another within relatively few tasks (typically 50-
300 functions per task). To avoid issues with access to
global variables and to reduce stack usage, these functions
need to be executed non-pre-emptively with re-scheduling
only permitted between them. Davis and Bertogna [52]
showed how the FNR-PA algorithm can be adapted to
optimise task priorities and final non-pre-emptive region
lengths, taking into account the constraints on when pre-
emption is permitted due to the separate functions that make
up each task. Thus FPDS provides an approach that can be
implemented in automotive systems that use an OSEK [1]
or AUTOSAR [2] compliant RTOS, improving upon the
performance of FPPS and FPNS.

Other methods of limiting pre-emption include Pre-
emption Thresholds (FPTS) [91], [79] and Non-pre-emption
Groups [44], which were implemented as internal resources
in the OSEK [1] and AUTOSAR [2] automotive RTOS
standards. Here, each task has a base priority at which it
initially competes for the processor; however, once it starts
to execute, then it assumes a threshold or dispatch priority.
This limits pre-emption to those tasks that have a base
priority higher than the threshold. Recent research by Bril et
al. in 2012 [25] generalises the concepts of pre-emption
thresholds and deferred pre-emption, providing a scheme
whereby pre-emption thresholds apply between a set of
functions or sub-jobs that execute non-pre-emptively within
each task. For further information on limited pre-emption
scheduling the reader is referred to the survey by Buttazzo
et al. [34].

VIII. PRIORITY ASSIGNMENT IN PROBABILISTIC REAL-

TIME SYSTEMS

In the previous section on fixed priority scheduling with
deferred pre-emption, we saw how Audsley’s algorithm
could be adapted to simultaneously optimise both priority
assignment and final non-pre-emption region length. In this
section we see how a similar adaptation is useful in the
domain of probabilistic real-time systems.

In probabilistic real-time systems, we are interested in the
probability that tasks or messages will miss their deadlines,
rather than an absolute guarantee that they will never do so.
These probabilities arise from random events that affect the
timing behaviour of the system. These events may be
external, for example errors on a Controller Area Network
(CAN) bus modelled as a Poisson distribution [72], [47], or
internal, for example due to the behaviour of a cache that
uses a random replacement policy [19]. In the latter case, the
worst-case execution times of tasks may be expressed as a
Probability Mass Function (PMF) (referred to as a
probabilistic WCET distribution or pWCET), rather than a
single value. These distributions may be found using either
static [36], [5], or measurement-based [41] probabilistic
timing analysis. Provided that the random variables
representing the pWCET of each job of a task are

independent® [42], then these values can be combined using
probabilistic response time analysis, based on the
convolution operator, to obtain a distribution for the worst-
case response time for each task [55].

An example of tasks with worst-case execution times
expressed as independent random variables is given in Table
VII.

TABLE VII: TASK PARAMETERS

Task C D T DMR threshold ¥
Ty 2 3 5 10 0.5
0.7 03
Ty 3 4 6 10 0.05
0.8 0.2

Here, a job of task 7, has a probability of 0.7 that it will
not execute for more than 2 time units, and a probability of
1.0 (=0.7 + 0.3) that its execution time will not exceed 3.
Similarly a job of task 7 has a probability of 0.8 that it will
execute for no longer than 3 time units, and a probability of
1.0 (=0.8 + 0.2) that its execution time will not exceed 4.

In probabilistic real-time time systems, deadlines may be
missed providing the probability of this occurring is suitably
small, and so we need to redefine what we mean by
“schedulable”. Maxim et al. [71] use the Deadline Miss
Ratio’ (DMR) for this purpose, since it can be mapped to a
failure rate per hour that may be specified for a task by
multiplying by the number of jobs per hour. In this way, a
task is deemed “schedulable”, if it’s DMR does not exceed
the specified threshold ¥ . (As usual, a task set is
schedulable if all of its tasks are schedulable).

A

1.0

0.8

0.6

0.2 4

Probability
o
N
]

v:"’-

ITTTTTTTT

012345678
Deadline

v

Figure 10: Exceedance function (1-CDF)

The DMR, of a task 7; is computed over some time
interval [a,b], typically the hyperperiod or least common
multiple of task periods. It is given by the sum of the

% Note independence of the pWCETs of jobs is different from the
independence of their execution times as explained in [42].

7 We note that the DMR is a failure rate as distinct from a probability.

probabilities of each job of task z; that runs in that interval
missing its deadline, divided by the number of jobs:
1 el
D P(R,;>D)
Map) j=1
Where P(R; ; > D;) is the probability that the response time
of job j of task 7; exceeds its deadline. Note R, ;is a
random variable representing the response time distribution
of the job. P(R; ; > D;) may be assessed by inspecting the
Probability Mass Function of the response time and
comparing it with the deadline. Figure 10 illustrates this via a
1-CDF (Complementary Cumulative Distribution Function).

The thresholds ¥ equating to the maximum permitted
Deadline Miss Ratios are given for tasks 7, and 75 in Table
VII. Maxim et al. [71] showed that for task sets where
computation times are described by independent random
variables, but periods and deadlines are deterministic (i.e.
single) values, and deadlines are constrained, then DMPO is
not an optimal priority assignment policy for FPPS. This is
illustrated by the tasks in Table VIL.

With priority ordering (7,, 75), i.e. DMPO, then we
have PR, >D,)=0 and P(Rgz > Dg)=0.06 (which is
the probability that 7, executes for 3 time units and 7
executes for 4 time units). Note we dropped the job index
since in this example there is just one job of each task in the
hyperperiod. Since P(Ry > D) >'¥; the task set does not
meet its timing requirements, in effect it is unschedulable.
However, if we change the priority order to (75, 74), then

DMR, =

(10)

we have PR, >D,)=044<Y, and
PRy >Dy)=0<¥, which meets the timing
requirements.

Maxim et al. [71] showed that Audsley’s algorithm can
be used to determine an optimal priority assignment that
meets constraints on the Deadline Miss Ratio of each task.
We note that with a suitable definition of what is meant by
schedulable, then the same three Conditions, stated in
Section V are sufficient to determine if a schedulability test
for a probabilistic real-time system is compatible with
Audsley’s algorithm.

Maxim et al. [71] also showed that the maximum DMR
of any task can be minimised at the same time as finding an
optimal priority assignment by choosing the task to assign at
each priority level from the set of unassigned tasks by
selecting the schedulable one with the smallest DMR. This
approach used similar techniques to those employed by
Davis and Burns in their work on Robust Priority assignment
for messages on Controller Area Network [47]. They
examined the schedulability of networks subject to errors
according to a random process (Poisson distribution). In this
case, the key criterion to optimise was the worst-case
deadline failure probability (WCDFP) of each message.

Davis and Burns [47] adapted Audsley’s algorithm to
form a Probabilistic Robust Priority Assignment Algorithm
(Algorithm 6), with the WCDFP computed according to
analysis given by Broster et al. [28], [29]. They gave an
interesting example of the impact of priority assignment on
the WCDFP as shown in Figure 11 (reproduced from [47]).

for each priority level m, lowest first
{

for each unassigned message M

{
}

if no messages are schedulable at priority m
return unschedulable

else
assign the message with the smallest
WCDFP at priority m to priority m

Compute the WCDFP of message M at priority m

return schedulable

Algorithm 6: Probabilistic Robust Priority Assignment (PRPA) Algorithm

These results are for a system of 5 messages labelled A, B,
C, D, E and hence 120 distinct priority assignments. The
graph shows the WCDFP on a log scale against the set of
120 distinct priority orders (in lexicographical, i.e.
dictionary, order) where the first priority order (A,B,C,D,E)
corresponds to Deadline minus Jitter Monotonic Priority
Order (DJMPO).

01
o “”w 9 » " » » ” » oMo e o
[T
8 0.01
= T Jompo
£
PP R annd 000 S
E 0.0 4 s W% W % % w’t oM N RIS
é [Ruhust Priority Assignment|
0.0001
6/ ”»
0.00001 T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110 120
Priority Order

Figure 11: WCDFP as a function of Priority Ordering

It is notable that the robust priority orders have a maximum
WCDFP that equates to a failure rate of 1 in 28,500,
whereas there are 62 priority orderings with failure rates in
the range of 1 in 500 to 1 in 1000, with the remaining 54
priority orderings corresponding to failure rates of 1 in 20.
This illustrates the importance of appropriate priority
assignment in obtaining a robust system that is less likely to
result in missed deadlines in the event of errors on the bus.

IX. PROBLEMS NOT AMENABLE TO OPA

In the previous sections, we described Audsley’s algorithm
for Optimal Priority Assignment (OPA), and discussed the
three Conditions required for a schedulability test to be
compatible with it. We also saw how Audsley’s algorithm
has been adapted to optimise other criteria, such as the
number of priority levels, the robustness of the system to
additional interference or delays, the lengths of final non-
pre-emptive regions for systems using FPDS, and also the
maximum probability of deadline failure in probabilistic
real-time systems.

In this section, we list a number of interesting problems
where Audsley’s algorithm is not obviously applicable, and
so it is an open problem whether optimal priority assignment
can be achieved via an algorithm that is tractable. The
problems themselves are not open since one could in theory
try all n! priority orderings; however, that is clearly not
tractable even for moderate values of n.

e FPDS: Minimising the number of pre-emptions through
maximising the length of non-pre-emptive regions. This
can be done from highest priority down, rather than
lowest priority up, but then requires a pre-defined
priority ordering as shown by Bertogna et al. [22].
Minimising the number of pre-emptions in this way can
improve schedulability by reducing overall context
switch costs including Cache Related Pre-emption
Delays (CRPD), thus solutions to this problem are
important for single processor systems that use cache to
speed up memory accesses.

e Pre-emption thresholds: Assignment of base priorities
and pre-emption thresholds [91]. This is problematic
since appropriate pre-emption threshold assignment
depends on the relative priority ordering of higher
priority tasks. Pre-emption threshold scheduling is an
effective means of improving schedulability, that can
reduce context switch costs including CRPD and also
reduce stack usage, thus solutions to this problem are
again useful for single processor systems that use cache
to speed up memory accesses.

e Probabilistic: Minimising the total probability of
deadline failure across all tasks in a probabilistic real-
time system. Swapping tasks at adjacent priorities may
decrease this total, even if the larger of the two
probabilities of deadline failure for the individual tasks
increases as shown by Maxim et al. [71]. This problem
is interesting since in assessing the behaviour of a
system as a whole, it is the failure rate of the ensemble

of tasks implementing a particular function that is

important rather than the failure rate of a single

component task.

e Network-on-Chip (NoC) wormhole communication:
Assigning priorities to network flows. Here, the
response time of a network flow depends on the
response times of higher priority flows as shown by
Zheng and Burns [93]. Achieving optimal priority
assignment for this problem would improve
schedulability, enabling more real-time traffic to be
supported on the network.

e Abort-and-restart: This task model is used in Functional
Reactive Programming [14]. When a task is pre-empted
by a higher priority task, then it is aborted and has to be
restarted once the higher priority tasks finish executing.
Here, task response times depend on the relative priority
ordering of higher priority tasks as shown by Wong and
Burns [92]. Solutions to this problem would improve the
schedulability of systems implemented using FRP.

e Polling Periods and Event Deadlines: In this task
model, the system is defined by event deadlines, which
must be met by polling tasks which check for
occurrence of the event [32]. Hence each task’s period is
determined by its event deadline minus its worst-case
response time. Here, task response times depend on the
relative priority ordering of higher priority tasks and so
Audsley’s algorithm is not applicable. (For the restricted
case where all tasks share the same execution time, then
Event Deadline Monotonic priority ordering is optimal
[32]). Solutions to this priority assignment problem
would improve the schedulability of systems built using
this model.

The integration and analysis of overheads due to Cache

Related Pre-emption Delays (CRPD) into fixed priority pre-

emptive scheduling [4] also leads to an interesting and

difficult to solve problem of priority assignment. This is
illustrated in Figure 12, which shows the interaction between
priority assignment and CRPD.

Task 7, has Useful Cache Blocks (UCBs) that are
evicted by task 7, (i.e. the same blocks are Evicted Cache
Blocks (ECBs) of 75), but not vice-versa. Thus if task 7, is
given higher priority, then there is no CRPD on task 7 as
shown in Figure 12(a); however, if we swap priorities, then
when task 7, pre-empts task 7,4, task 7, incurs a CRPD re-
loading the cache blocks that it uses that were evicted by task
7. This has a knock-on effect on the schedulability of task
7o (see Figure 12(b)). This means that the schedulability of
task 7. depends on the relative priority ordering of the two
higher priority tasks 7, and zg, breaking Condition 1
required for Audsley’s algorithm to be applicable. Thus
when CRPD is integrated with schedulability analysis for
FPPS as in [4], then the schedulability tests are no longer
compatible with Audsley’s OPA algorithm.

Solutions to this priority assignment problem would
improve the schedulability of single processor systems that
use cache to speed up memory accesses.

Task A
0 8 16 24
Task B ! T
T —T >
0 8 16 24
Task C T /
T T T 1
0 8 16 24
(a)
Task B
T T T >
0 8 16 24
Task A

Task C

o4+—>»o
X

8 16 24
(b)

Figure 12: Interaction between priority assignment and CRPD.

A. Distributed Systems: Allocation and Assignment

All of the priority assignment policies and algorithms
discussed so far rely for their operation on the existence of
well-defined deadlines that apply to a single operation, for
example the execution of a task or the transmission of a
message. In simple systems, directly connected to sensors
and actuators, such deadlines can be defined based on the
required behaviour (maximum time allowed from stimulus to
response) or the designed behaviour (e.g. the periods of
control algorithms) as well as requirements to avoid
buffering or other I/O issues. The latter often leading to
deadlines that are either implicit or constrained.

In complex, distributed real-time systems such as those
found in automotive applications, the timing requirements on
the system typically come from end-to-end deadlines
imposed on functionality that is implemented by tasks
distributed across a number of processors that communicate
via messages sent over one or more networks e.g. CAN.
Here, division of the end-to-end deadline into sub-deadlines
on individual tasks and messages can provide a way of
achieving schedulability for the larger problem [78], [58].
Such a divide and conquer approach enables the use of the
priority assignment policies discussed in this review for

individual processors and networks; however, such
subdivision can also potentially lead to sub-optimal
solutions.

An alternative approach is to use holistic techniques [88],
to analyse the system as a whole while taking into account
propagation delays along the end-to-end flows. The problem
then becomes one of determining an appropriate allocation
of tasks to processors, (signals to messages® on CAN) and
priority assignment for both tasks and messages that meet all
of the time constraints. Since this problem is NP-hard,
solutions proposed include the wuse of search and
optimisation techniques such as: Branch and Bound [77],
Simulated Annealing (SA) [87], [18], SA and geometric
programming [63], genetic algorithms [62], and Mixed
Integer Linear Programming (MILP) [94], [95]. These
techniques are typically capable of optimising other metrics,
such as different forms of extensibility or robustness [18],
[95], as well as schedulability.

X. SUMMARY AND CONCLUSIONS

This tutorial-style survey and review examined the
importance of priority assignment in systems scheduled
using fixed priorities. We started with a graphic example
based on Controller Area Network (CAN) showing how
ignoring appropriate priority assignment techniques can
reduce achievable bus utilisation from around 80% down to
below 35%. This is one of the reasons for the current myth in
some parts of the Automotive industry that CAN is only able
to operate at around 35% utilisation without missing
deadlines.

We provided a guided tour of early work on priority
assignment, showing how Deadline Monotonic priority
assignment is optimal for some simple systems; however,
small changes to the assumptions (for example allowing
offset release times, deadlines greater than periods, non-pre-
emptive, or deferred pre-emption scheduling) break this
optimality. In many cases, Audsley’s Optimal Priority
Assignment (OPA) algorithm is applicable. There are three
Conditions which schedulability tests must meet in order for
Audsley’s algorithm to apply. These conditions greatly
reduce the burden of proof required to show that a particular
schedulability test is compatible with OPA.

We also described how Audsley’s algorithm can be
modified to minimise the number of priority levels required
or to minimise the reverse lexicographical distance from any
desired priority ordering. Further, we introduced a new
variant of Audsley’s algorithm, OPA-MLD which can be
used to minimise the lexicographical distance from any
desired priority ordering, enabling important tasks to be
placed at high priority levels.

There is one significant drawback with Audsley’s
algorithm that is it only finds schedulable systems, and thus
does not care if the priority assignment results in a system
that is on the brink of unschedulability. To combat this
problem, the Robust Priority Assignment (RPA) algorithm
was introduced in [45]. RPA is also optimal, in that it is

8 Signals are small pieces of information transferred between tasks that
need to be packed into messages.

guaranteed to find a schedulable priority ordering whenever
one exists; however, it also simultaneously maximises the
amount of additional interference that the system can tolerate
without missing a deadline, thus providing robust rather than
fragile priority assignment solutions.

The concepts used in deriving the RPA algorithm have
been successfully applied to priority assignment in mixed
criticality systems (minimising the number of schedulability
tests required), in probabilistic real-time systems
(minimising the worst-case deadline failure probability and
the deadline miss ratio), and also in systems using fixed
priority scheduling with deferred pre-emption, (optimising
schedulability via final non-pre-emptive region length
assignment).

There remains a number of interesting problem areas
where OPA and RPA are not obviously applicable. These
include examples from fixed priority scheduling with
deferred pre-emption (maximising the length of final non-
pre-emptive regions to reduce the amount of pre-emption),
probabilistic real-time systems (minimising the overall
probability of deadline failure), worm-hole routing in
Network-on-Chip, the assignment of thresholds as well as
priorities in fixed priority scheduling with pre-emption
thresholds, and finally fixed priority pre-emptive scheduling
accounting for Cache Related Pre-emption Delays.

In conclusion, appropriate priority assignment is of great
importance in systems that use fixed priority scheduling.
Here, effective priority assignment can ensure that a system
is schedulable when otherwise deadlines would be missed,
that the system is robust to changes and provides headroom
for new functionality to be added without the need to
upgrade to more expensive hardware. Further, it can provide
enhanced robustness to errors [47] and resilience to failures
[70].

Returning to the frequently asked question, “How should
I assign priorities?” As a simple rule of thumb, Deadline
Monotonic priority assignment i.e. assigning priorities on the
basis of deadlines (the shorter the deadline, the higher the
priority) or Deadline minus Jitter Monotonic priority
assignment is typically effective for single processor systems
and for Controller Area Network. Somewhat surprisingly it
is however a poor heuristic to use for global fixed priority
scheduling in multiprocessor systems.

The Robust Priority Assignment (RPA) algorithm,
derived from Audsley’s OPA algorithm, is highly effective
in many cases and when applicable, this is the method we
would recommend. It uses a form of sensitivity analysis to
ensure that the priority assignments produced result in a
system that is as robust as possible to any additional
interference or timing delays.

In more complex distributed real-time systems, for
example those prevalent in the automotive domain, where
timing requirements apply to functionality that is
implemented by tasks distributed across a number of
processors communicating via messages sent over one or
more networks, priority assignment still plays a crucial role.

With these systems a divide and conquer approach may be
taken at the design stage, partitioning the overall problem
into a set of simpler ones by setting intermediate deadlines.
Such a separation of concerns means that the priority
assignment techniques discussed in this review can be
applied to each sub-problem consisting of the set of tasks on
one processor or the set of messages on a single network.
This approach has practical advantages to do with
composability, when different sub-suppliers are responsible
for different components of the system (e.g. different
Electronic Control Units or ECUs). However, the quality of
the overall solution obtained depends on the intermediate
deadlines chosen. The alternative is to take a holistic
approach and use techniques such as Simulated Annealing,
Genetic Algorithms or Mixed Integer Linear Programming to
allocate tasks and assign priorities with the aim of optimising
schedulability as well as extensibility or robustness to
change.

Finally, we note that when designing and implementing
hard real-time systems that require guarantees of timing
correctness, it is essential that the implemented system
behaviour precisely matches the system model assumed by
the schedulability analysis. Otherwise such analysis can give
no valid guarantees about the timing correctness of the actual
system. In some application areas, for example automotive,
standards such as those for CAN [27], and the OSEK [1] and
AUTOSAR [2] real-time operating systems aid in building
predictable real-time systems. They do so by mandating
functionality with which it is possible to implement
analysable systems; however, such an outcome is far from
certain, rather the system needs to be carefully designed and
engineered to comply with an appropriate, analysable system
model so that its timing behaviour can be guaranteed. Choice
of a corresponding, robust and optimal priority assignment
policy then flows from the system model chosen.

While the last two decades have seen significant progress
in priority assignment techniques, many interesting and
important problems remain. We hope that this review will
encourage other researchers to tackle some of these
problems. As a challenge, we point to a 20+ year old
conjecture and open problem in priority assignment
regarding fixed priority pre-emptive systems where each task
has two priorities and switches between them at a fixed time
(the promotion time) after it is released. The conjecture states
that the utilisation bound for an implicit deadline periodic
task system with an appropriate priority and promotion time
assignment is 100%, the same as EDF. Currently this
remains a conjecture, neither proved nor disproved. Full
details are given in [33].

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC MCC
project (EP/K011626/1), the French BGLE Departs and
LEOC Capacites projects, the EU FP7 grants P-SOCRATES
(611016) and PROXIMA (611085), and the Inria
International Chair program. EPSRC Research Data

Management: No new primary data was created during this
study

(1]

[2]
[3]

(4]

(3]

(6]

(7

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

OSEK/VDK operating system specification, version 2.2.3.
http://portal.osek-vdx.org/files/pdf/specs/0s223.pdf, OSEK/VDK,
2007.

AUTOSAR specification of operating
http://www.autosar.org/, AUTOSAR, 2010.

A. Aguilar-Soto, G. Bernat, “Bi-criteria fixed-priority scheduling
in hard real-time systems: Deadline and importance”. In
Proceedings Real-Time and Network Systems (RTNS), 2006.

S. Altmeyer, R.I. Davis, C. Maiza “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems” . Real-Time Systems, Volume 48, Issue 5,
Pages 499-526, Sept 2012.

S. Altmeyer, L. Cucu-Grosjean, R.I. Davis. 2015. "Static
probabilistic timing analysis for real-time systems using random
replacement caches”. Real-Time Systems, Volume 51, Issue 1,
pages 77-123.

B. Andersson, J. Jonsson, “Fixed-priority preemptive
multiprocessor scheduling: to partition or not to partition”, In
Proceedings Real-Time Computing Systems and Applications
(RTCSA), 2000

B. Andersson, J. Jonsson, “Some insights on fixed-priority pre-
emptive non-partitioned multiprocessor scheduling”. In
Proceedings Real-Time Systems Symposium (RTSS) — Work-in-
Progress Session, Nov. 2000.

system v4.10.

B. Andersson, S. Baruah, J. Jonsson. Static-priority scheduling on
multiprocessors. In Proceedings Real-Time Systems Symposium
(RTSS), pp. 193-202, 2001.

B. Andersson, “Global static-priority preemptive multiprocessor
scheduling with utilization bound 38%.” In proceedings
International Conference on Principles of Distributed Systems,
2008.

N.C. Audsley, "Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times", Technical Report
YCS 164, Dept. Computer Science, University of York, UK,
1991.

N.C. Audsley, A. Burns, M. Richardson , A.J. Wellings.,
“Applying new Scheduling Theory to Static Priority Pre-emptive
Scheduling”. Software Engineering Journal, 8(5), pp 284-292,
1993.

N.C. Audsley, A. Burns, R.I. Davis, K. W. Tindell and A. J.
Wellings, “Fixed Priority scheduling an Historical perspective”.
Real-Time Systems 8(3). pp. 173-198. 1995.

N.C. Audsley, “On priority assignment in fixed priority
scheduling”, Information Processing Letters, 79(1): 39-44, May
2001.

F. Balarin. “ Priority Assignment for Embedded Reactive Real-
Time Systems”. In Proceedings of Languages, Compilers, and
Tools for Embedded Systems (LCTES), pp.146-155, 1998.

T.P. Baker, “Stack-based Scheduling of Real-Time Processes.”
Real-Time Systems Journal (3)1, pp. 67-100. 1991.

S. Baruah, “The limited-preemption uniprocessor scheduling of
sporadic task systems,” In Proceedings Euromicro Conference on
Real-Time Systems (ECRTS), pp. 137-144, 2005.

S.K. Baruah, A. Burns, R.I. Davis “Response Time Analysis for
Mixed Criticality Systems” . In proceedings Real-Time Systems
Symposium (RTSS) , pp 34-43, 2011.

1. Bate, P. Emberson, “Incorporating scenarios and heuristics to
improve flexibility in real-time embedded systems”. In

Proceedings Real-Time and embedded Technology and
Applications Symposium (RTAS), pp. 221-230, 2006.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78-101, 1966.

M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In proceedings
Real-Time Systems Symposium (RTSS), pp. 149-158, 2007.

M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of
global scheduling algorithms on multiprocessor platforms”. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566.
April 2009.

M. Bertogna, G. Buttazzo, G. Yao. "Improving Feasibility of
Fixed Priority Tasks using Non-Preemptive Regions", In
Proceedings Real-Time Systems Symposium (RTSS), 2011.

M. Bertogna, M. Cirinei, G. Lipari, "New schedulability tests for
real-time task sets scheduled by Deadline Monotonic on
multiprocessors", In Proceedings of the International Conference
on Principles of Distributed Systems (OPODIS 2005), Pisa, Italy,
December 2005.

R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption. Real-Time Systems, 42(1-3):63-119, 2009.

R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, J.J. Lukkien,
“Generalized fixed-priority =~ scheduling ~ with limited

preemptions”, In proceedings Euromicro Conference on Real-
Time Systems (ECRTS), pp. 209-220., 2012.

K Bletsas, N Audsley, “Optimal priority assignment in the
presence of blocking” Information Processing Letters 99 (3), 83-
86, 2006.

Bosch. 1991. “CAN Specification version 2.0”. Robert Bosch
GmbH, Postfach 30 02 40, D-70442 Stuttgart.

I. Broster, A. Burns , G. Rodriguez-Navas, “Probabilistic
Analysis of CAN with Faults”, In Proceedings Real-Time
Systems Symposium (RTSS), pp. 269-278, 2002

1. Broster, A. Burns and G. Rodriguez-Navas, “Timing Analysis
of Real-time Communication under Electromagnetic
Interference”, Real-Time Systems, 30(1-2) pp. 55-81, May 2005.

A. Burns, K. Tindell, A.J. Wellings, "Fixed priority scheduling
with deadlines prior to completion" In proceedings Euromicro
Workshop on Real-Time Systems. pp.138-142, 1994.

A. Burns. “Preemptive priority based scheduling: An appropriate
engineering approach”. S. Son, editor, Advances in Real-Time
Systems, pp. 225-248, 1994.

A. Burns, R.I. Davis, “Choosing Task Periods to Minimise
System Utilisation in Time Triggered Systems”. Information
Processing Letters, Vol. 58, pp. 223 - 229, Elsevier. 1996.

A. Burns, “Dual Priority Scheduling: Is the Processor Utilisation
bound 100%” In proceedings Real-Time Scheduling Open
Problems Symposium (RTSOPS), 2010.

G.C. Buttazzo, M. Bertogna, G. Yao. "Limited Preemptive
Scheduling for Real-Time Systems: A Survey". IEEE
Transactions on Industrial Informatics. In press. Downloadable
from http://retis.sssup.it/~marko/publi.html

D. Buttle, “Real-Time in the Prime Time” Keynote talk at
Euromicro Conference on Real-Time Systems (ECRTS) 2012.
Presentation: http://ecrts.eit.uni-kl.de/index.php?id=69.

F. Cazorla, E. Quinones, T. Vardanega, L. Cucu, B. Triquet, G.
Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “Proartis: Probabilistically
analysable real-time systems,” Transactions on Embedded
Computing Systems, 2013.

Y. Chu and A. Burns, “Flexible hard real-time scheduling for
deliberative Al systems”, Real-Time Systems 40(3), pp241-263,
2008.

H. S. Chwa, H. Back, S. Chen, J. Lee, A. Easwaran, 1. Shin, L.
Lee, "Extending Task-level to Job-level Fixed Priority
Assignment and Schedulability Analysis Using Pseudo-

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

deadlines," In proceedings Real-Time Systems Symposium
(RTSS), pp.51-62, 2012.

L. Cucu, J. Goossens, "Feasibility Intervals for Fixed-Priority
Real-Time Scheduling on Uniform Multiprocessors”, In
Proceedings Emerging Technologies and Factory Automation,
(ETFA),. 2006.

L. Cucu, J. Goossens, "Feasibility Intervals for Multiprocessor
Fixed-Priority Scheduling of Arbitrary Deadline Periodic
Systems ", In Proceedings Design Automation and Test in Europe
(DATE), pp. 1635-1640, 2007.

L. Cucu-Grosjean, L. Santinelli M. Houston, C. Lo, T.
Vardanega, L. Kosmidis, J. Abella, E. Mezzetti, E. Quiones, and
F. J. Cazorla, “Measurement-based probabilistic timing analysis
for multi-path programs.” In Proceedings Euromicro Conference
on Real-Time Systems (ECRTS), pp. 91-101, 2012.

L. Cucu-Grosjean, “Independance - a misunderstood property of
and for probabilistic real-time systems,” in Alan Burns 60th
Anniversary workshop, University of York, 2013.

R.I. Davis and A. Burns, “Optimal Priority Assignment for
Aperiodic Tasks with Firm Deadlines in Fixed Priority Pre-
emptive Systems”. Information Processing Letters 53(5). 10"
March 1995.

R.I. Davis, N. Merriam, N.J. Tracey, “How Embedded
Applications Using an RTOS can stay within On-chip Memory
Limits”. In proceedings Work in Progress and Industrial
Experience Sessions, Euromicro Conference on Real-Time
Systems (ECRTS), 2000.

R.I. Davis, A. Burns. "Robust Priority Assignment for Fixed
Priority Real-Time Systems”. In proceedings Real-Time Systems
Symposium (RTSS), pp. 3-14. 2007.

R.I. Davis, A. Burns, R.J. Bril, and J.J. Lukkien. “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and
Revised”. Real-Time Systems, Volume 35, Number 3, pages 239-
272, April 2007.

R.I. Davis and A. Burns "Robust priority assignment for
messages on Controller Area Network (CAN)”. Real-Time
Systems, Volume 41, Issue 2, pages 152-180, February 2009.

R.I. Davis and A. Burns, “On Optimal Priority Assignment for
Response Time Analysis of Global Fixed Priority Pre-emptive
Scheduling in Multiprocessor Hard Real-Time Systems”.
University of York, Department of Computer Science Technical
Report, YCS-2009-451, April 2010.

R.I. Davis and A. Burns "Improved Priority Assignment for
Global Fixed Priority Pre-emptive Scheduling in Multiprocessor
Real-Time Systems”. Real-Time Systems, Vol. 47, No. 1, pp.1-
40,2011.

R.I. Davis and A. Burns "A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems." ACM Computing
Surveys, 43, 4, Article 35 (October 2011), 44 pages.

R.I. Davis, S. Kollmann, V. Pollex, F. Slomka, "Schedulability
Analysis for Controller Area Network (CAN) with FIFO Queues
Priority Queues and Gateways. ”. Real-Time Systems, Volume
49, Issue 1, Pages 73-116, Jan 2013.

R.I. Davis, M. Bertogna "Optimal Fixed Priority Scheduling with
Deferred Pre-emption” . In proceedings Real-Time Systems
Symposium (RTSS) pp. 39-50, 2012.

R.I. Davis "A Review of Fixed Priority and EDF Scheduling for
Hard Real-Time Uniprocessor Systems . ACM SIGBED Review
- Special Issue on the 3rd Embedded Operating Systems
Workshop (Ewili 2013). , Volume 11, Issue 1, pp. 8-19, 2014.
DOI: 10.1145/2597457.2597458.

S. K. Dhall, C. L. Liu, “On a Real-Time Scheduling Problem”,
Operations Research, vol. 26, number 1, pp. 127-140, 1978.

J. Diaz, D. Garcia, K. Kim, C.-G. Lee, L. Lo Bello, J. Lopez, S.-
L. Min, and O. Mirabella, “Stochastic analysis of periodic real-

time systems,” In proceedings Real-Time Systems Symposium
(RTSS), pp. 289-300, 2002.

[56]

[57]

[58]

[59]

[60]

[e1]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

M.S. Fineberg and O. Serlin, “Multiprogramming for hybrid
computation”, In proceedings AFIPS Fall Joint Computing
Conference, pp 1-13, 1967.

T. Fleming and A. Burns. Extending mixed criticality scheduling.
In Proceedings 1% International Workshop on Mixed Criticality
Systems (WMC), pp. 7-12, 2013.

J.J.G. Garcia, M.G. Harbour. Optimized priority assignment for
tasks and messages in distributed real-time systems. In
Proceedings Workshop on Parallel and Distributed Real-Time
Systems, 1995.

L. George, N. Rivierre, M. Spuri, “Preemptive and Non-
Preemptive Real-Time UniProcessor Scheduling”, INRIA
Research Report, No. 2966, September 1996.

J. Goossens, R. Devillers, “The Non-Optimality of the
Monotonic Priority Assignments for Hard Real-Time Offset Free
Systems”, Real-Time Systems, Volume 13, Issue 2, pp 107-126,
1997.

N. Guan, M. Stigge, W.Y1i, G. Yu, “New Response Time Bounds
for Fixed Priority Multiprocessor Scheduling”. In proceedings of
the Real-Time Systems Symposium, pp. 388-397, 2009.

A. Hamann, M. Jersak, K. Richter, R. Emst “Design Space
Exploration and System Optimization with SymTA/S - Symbolic
Timing Analysis for Systems” In Proceedings Real-Time Systems
Symposium (RTSS), 2004.

X. He, W. Gu, Y. Ahum “Task allocation and optimization of
distributed embedded systems with simulated annealing and
geometric programming”. Computer J. 2009.

M. Joseph, P.K. Pandya, “Finding Response Times in a Real-time
System”. The Computer Journal, 29(5), pages 390-395, 1986.

D.I. Katcher, H. Arakawa, J.K. Strosnider, ”Engineering and
analysis of fixed priority schedulers”. IEEE Transactions on
Software Engineering, 19(9):920-934, September 1993.

J. Lehoczky, “Fixed priority scheduling of periodic task sets with
arbitrary deadlines”. In Proceedings Real-Time Systems
Symposium (RTSS), pp. 201-209, 1990.

J.Y.-T. Leung, J. Whitehead, "On the complexity of fixed-priority
scheduling of periodic real-time tasks". Performance Evaluation,
2(4), pp. 237-250, 1982.

J.P. Lehoczky, L. Sha, Y. Ding, “The rate monotonic scheduling
algorithm: Exact characterization and average case behaviour”. In
Proceedings Real-Time Systems Symposium (RTSS), pp. 166—
171, 1989.

C.L. Liu, JW. Layland, "Scheduling algorithms for
multiprogramming in a hard-real-time environment", Journal of
the ACM, 20(1) pp. 46-61, 1973.

G. de A Lima, A. Burns. An optimal fixed-priority assignment
algorithm for supporting fault-tolerant hard real-time systems.
IEEE Trans. Comput. 52, 10, pp. 1332-1346, 2003..

D. Maxim, O. Buffet, L. Santinelli, L. Cucu-Grosjean, R. I. Davis
“Optimal Priority Assignment Algorithms for Probabilistic Real-
Time Systems” . In proceedings Real-Time and Network Systems
(RTNS), pp.129-138 2011.

N. Navet, Y-Q. Song, F. Simonot. “Worst-case Deadline Failure
Probability in Real-time Applications distributed over controller
area network”. Journal of Systems Architecture Volume 46
Number 1. pp. 607-617. 2000.

R.M. Pathan, J. Jonsson "Improved Schedulability Tests for
Global Fixed-Priority Scheduling," In Proceedings Euromicro
Conference on Real-Time Systems (ECRTS), pp.136,147, 2011

S. Punnekkat, R. Davis, A. Burns, “Sensitivity analysis of real-
time task sets”. In Proceedings of the Asian Computing Science
Conference, pp72—-82, Nepal, December 1997.

P. Ramanathan, "Overload management in real-time control
applications using (m, k)-firm guarantee" In IEEE Transactions
on Parallel and Distributed Systems, vol.10, no.6, pp.549-559,
Jun 1999

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

J. Regehr, “Scheduling tasks with mixed pre-emption relations
for robustness to timing faults”. In proceedings Real-Time
Systems Symposium (RTSS), pp. 315-326, 2002.

M. Richard, P. Richard, F. Cottet. "Task and message priority
assignment in automotive systems." In proceedings 4th FeT IFAC
conference on fieldbus systems and their applications, pp. 105-
112.2001.

M. Saksena, S. Hong, "An engineering approach to decomposing
end-to-end delays on a distributed real-time system," In
Proceedings of the International Workshop on Parallel and
Distributed Real-Time Systems, pp.244,251, 1996.

M. Saksena and Y. Wang. “Scalable real-time system design
using preemption thresholds”. In Proceedings Real-Time Systems
Symposium (RTSS), 2000.

Schmidt, K.W., "Robust Priority Assignments for Extending
Existing Controller Area Network Applications," Industrial
Informatics, IEEE Transactions on , vol.10, no.l, pp.578,585,
Feb. 2014 doi: 10.1109/T11.2013.2266636

L. Sha, J.P. Lehoczky, R. Rajkumar. Solutions for some practical
problems in prioritizing preemptive scheduling. In Proceedings
Real-Time Sytems Symposium (RTSS), 1986.

L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization”, IEEE
Transactions on Computers, Vol. 39, No. 9, 1990.

L. Sha, T. Abdelzaher, K.-E. Arzen, A. Cervin, T. Baker, A.
Burns, G. Buttazzo, M. Caccamo, J. Lehoczky and A. Mok 2004:
“Real-Time Scheduling Theory: A Historical Perspective” Real-
Time Systems, Vol. 28, No. 2-3, pp. 101-155.

A. Saifullah, Y. Xu, C. Lu, Y. Chen, “Priority Assignment for
Real-Time Flows in WirelessHART Networks”, In proceedings
Euromicro Conference on Real-Time Systems (ECRTS) 2011.

M. Stigge, W. Yi, “Combinatorial Abstraction Refinement for
Feasibility Analysis”, In Proceedings Real-Time Systems
Symposium (RTSS), pp. 340-349, 2013.

M. Stigge, W. Yi, “Combinatorial abstraction refinement for

feasibility analysis of static priorities”, Real-Time Systems Vol.
51, Number 6, pp.1573-1383, 2015.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

K.W. Tindell, A. Burns, A. J. Wellings. “Allocating hard real-
time tasks: an NP-hard problem made easy”. Real-Time Syst. 4,
2, pp. 145-165, 1992.

K.W. Tindell, J. Clark. “Holistic schedulability analysis for
distributed hard real-time systems”. Microprocess.
Microprogram. 40, 2-3, pp. 117-134, 1994.

K.W.Tindell, A. Burns, A.J.Wellings, “An extendible approach
for analyzing fixed priority hard real-time tasks”. Real-Time
Systems. Volume 6, Number 2, pp. 133-151, 1994.

S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In Proceedings of
Real-Time Systems Symposium (RTSS), pp. 239-243, 2007.

Y. Wang and M. Saksena. Scheduling fixed-priority tasks with
pre-emption threshold. In Proceedings Real-Time Computing
Systems and Applications (RTCSA), 1999.

H. C. Wong and A. Burns. “Schedulability Analysis for the
Abort-and-Restart (AR) Model”. In Proceedings International
Conference on Real-Time Networks and Systems (RTNS) 2014.

S. Zheng, A. Burns, “Priority Assignment for Real-Time
Wormhole Communication in On-Chip Networks”. In
Proceedings Real-Time Systems Symposium (RTSS), pp. 421-
430, 2008.

Q. Zhu, H. Zeng, W. Zheng, M. Di Natale, A. Sangiovanni-
Vincentelli. “Optimization of task allocation and priority
assignment in hard real-time distributed systems”. ACM Trans.
Embed. Comput. Syst. 11, 4, Article 85 (January 2013).

Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, A. Sangiovanni-
Vincentelli. “Optimizing Extensibility in Hard Real-Time
Distributed Systems”. In Proceedings Real-Time and Embedded
Technology and Applications Symposium (RTAS) 2009.

A. Zuhily, A. Burns, “Optimality of (D-J)-monotonic priority
assignment”. Information Processing Letters, Vol. 103 No. 6,
2007.

A. Zuhily, A. Burns: “Exact scheduling analysis of non-
accumulatively monotonic multiframe tasks”. Real-Time Systems
43(2): 119-146 (2009)

