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Stabilization of a Cascaded DC Converter System via Adding a Virtual Adaptive
Parallel Impedance to the Input of the Load Converter
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Abstract—Connecting converters in cascade is a basic config-
uration of dc distributed power systems (DPS). The impedance
interaction between individually designed converters may make
the cascaded system become unstable. The previous presented sta-
bilization approaches not only need to know the information of the
regulated converter, but also have to know the characteristics of
the other converters in the system, which are contradictory to the
modularization characteristic of dc DPS. This letter proposes an
adaptive-input-impedance-regulation (AIIR) method, which con-
nects an adaptive virtual impedance in parallel with the input
impedance of the load converter, to stabilize the cascaded system.
This virtual impedance can adaptively regulate its characteristic
for different source converters. Therefore, with the AIIR method,
all the load converters can be designed to a fixed standard mod-
ule to stably adapt various source converters. In addition, at any
cases, the AIIR approach only changes the load converter’s input
impedance in a very small frequency range to keep the load con-
verter’s original dynamic performance. The requirements on the
AIIR method are derived and the control strategies to achieve the
AIIR method are proposed. Finally, considering the worst stability
problem that often occurs at the system whose source converter is
an LC( filter, a load converter cascaded with two different LC input
filters is fabricated and tested to validate the effectiveness of the
proposed AIIR control method.

Index Terms—Adaptive-input-impedance-regulation, cascaded
system, input impedance regulator, load converter, modulariza-
tion, stability, virtual impedance.

I. INTRODUCTION

HE dc distributed power systems (DC DPS) have been
T widely used in space stations, shipboard, hybrid vehicles,
and renewable energy systems in the last few decades, thanks
to their flexible system configurations, high efficiency, and high
density power delivery capability [1]-[3]. One of the DC DPS’
attractive characteristics is modularity design [4], in which each
subsystem is first designed individually as a module, and then all
subsystems are integrated to form DC DPS. The modularization
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Fig. 1. Typical cascaded system.

characteristic of DC DPS considerably cuts down the system’s
development cycles and costs.

In DC DPS, there are various ways to connect subsystems,
and a typical connection style is the cascaded configuration.
Fig. 1 shows a typical cascaded system, which is composed
of a source converter and a load converter. Though both the
source and load converters can work well individually, their
interactions may cause the instability of the whole system [5]—
[7]. This stability problem is not really a new problem and
was first reported and researched in op-amps in 1930s [8], [9].
Generally speaking, in a cascaded system, if Z,5/Z;;, satisfies
the Nyquist criterion [10], [11], the system will be stable, where
Z,s 1s the output impedance of the source converter and 2, is
the input impedance of the load converter.

In order to meet the Middlebrook criterion, various solutions
have been proposed, and they can be classified into two types:
passive [12], [13] and active [14]-[16] methods. For passive
methods, passive components, such as resistors, capacitors, and
inductors, are employed. In [12] and [13], RC and RL dampers
were introduced to reduce the output impedance resonant peak
of the source converter, so that Z,g is less than Z; in the entire
frequency range and, thus, the system stability is guaranteed.
However, the adoption of passive components might lead to
significant power losses. As aresult, active methods, which were
based on advanced control of the source converter [14] and/or
the load converter [15], or adding a power buffer between the
source and load converters [16], were proposed.

However, compared to the stability solutions by changing the
source converter’s output impedance, the methods of regulating
the load converter’s input impedance are more difficult. This
is because the load converter’s input impedance is preferred to
be regulated as a negative resistor for good dynamic perfor-
mance [17], but this negative resistor characteristic constitutes
a major problem for the stability of a cascaded system [18]. Ac-
cordingly, it is a big challenge to regulate the load converter’s
input impedance when ensuring the stability of the cascaded
system and good dynamic performance of the load converter
simultaneously. In [19], one solution to this contradictory issue
was presented by developing the regulation signal maps of the
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Fig. 2. Load converter’s: (a) instability reason, (b) improvement.

source converter into the regulation loop of the load converter.
However, this method may be unachievable in some applica-
tions. For instance, if the source converter is a simple LC filter,
there do not exist regulation signals of the source converter, and
as a result, the load converter’s input impedance cannot be reg-
ulated to stabilize the cascaded system. Moreover, if the source
converter is an LC filter, its output impedance is higher than that
of other types of source converters and the system’s stability
problem is more likely to appear [20]. In order to overcome this
shortage, a more general stability solution was proposed in [21]
to improve the stability of the cascaded system via shaping the
input impedance of the load converter with a parallel or series
virtual impedance.

In addition, all the above-mentioned solutions not only need
to know the information of the regulated converter, but also have
to know the characteristics of the other converters in the system,
leading to the redesign of the regulated converters with different
source/load converters. This contradicts with the objective of
the modularity design of DC DPS and, hence, increases the
system’s development cycles.

This letter introduces an AIIR method to connect a self-
regulated virtual impedance in parallel with the load converter’s
input impedance. Thanks to this virtual impedance, the load con-
verter can change its input impedance adaptively with different
source converters to stabilize the whole system. Therefore, the
AIIR method can help all the load converters to achieve modular-
ization stably in different DC DPS. Furthermore, the proposed
method only modifies the load converter’s input impedance
in a very small frequency range to keep the original dynamic
performance of the load converter.

The other parts of this letter are organized as follows: In Sec-
tion II, the instability reason of the cascaded system is reviewed
and the improvement of the load converter’s input impedance is
discussed. Then, the AIIR control strategy is presented in Sec-
tion III. After that, two different cascaded systems as numerical
examples, which are composed of two different LC input filters
and the same load converter, are designed and experimentally
implemented to verify the effectiveness of the proposed AIIR
method in Section IV. Finally, Section V concludes this letter.

II. INSTABILITY REASON AND IMPROVEMENT OF THE INPUT
IMPEDANCE OF THE LOAD CONVERTER

Fig. 2(a) shows the bode plots of Z,5 and Z;; at a typical
instability case. Here, if the source converter is a switching-

1827

1o

4 bus lin

i

Source - Y- Load
i Converter *]] r "’Conver‘ter

I
Zs Zy 3

V.
o

Fig. 3. Cascaded system with parallel-connected virtual impedance.

mode power supply, fcgs is the cutoff frequency of its voltage
loop; if the source converter is an LC' input filter, fog is the
filter’s resonant frequency. Besides, fcr, is the cutoff frequency
of the load converter’s voltage loop. Z, ¢ p is defined as the peak
value of Z,s. According to Fig. 2(a), the cause of the instability
can be summarized as follows. If Z,¢ is intersected with Z, .,
and if fcg is less than fop, the cascaded system is unstable
even if the subsystems can work well individually [22]. The
—180° phase resulted by the load converter’s negative resistor
characteristic is the main factor that causes the instability of the
cascaded system [23]. According to Fig. 2(a), the worst case of
instability problem of a cascaded system occurs at full load and
with an LC filter as the source converter.

According to Fig. 2(a), there is nothing more desirable than
changing Z;;, only in the vicinity of the intersection frequen-
cies (f1 and f5) of |Z,s| and |Z;1 |, to stabilize the cascaded
system while keeping a better dynamic performance of the load
converter. Therefore, as shown in Fig. 2(b), this letter only com-
pensates the phase of Z,; during [f1, f2], which can ensure
|o(Zos) — @(Z;i1)| < 180° at the intersection frequency range.
Here, the improved input impedance of the load converter Z; 1 ;
can be expressed as

—\Ziale" felh, fl
Ziri = (1)
ZiL f ¢ [fh fQ]

where Z;, is the original input impedance of the load converter,
|Z:11| and 6 are the magnitude and phase of the improved input
impedance of the load converter within [f1, f2], respectively.
In order to ensure |p(Z,5) — @(Ziri)| < 180°, 6 should meet
6 € (—90°, 90°). Since |p(Zos) — ¢(Ziri)| < 180°at[f1, fa].
| Z; 11| can be any values. In order to minimize the resulting effect
on the load converter, |Z;11| is designed to be equal to |Z; |
[see Fig. 2(b)].

III. AIIR CONTROL STRATEGY
A. Adaptively Regulated Virtual Impedance Z;,

As shown in Fig. 3, if a virtual impedance Z,; is added
in parallel with the input port of the load converter, the load
converter’s input impedance is changed to

Zit, = Zip | Zvi = (Ziy - Zui) | (Zi + Z0i) ()

where Z/; is the original input impedance of the load converter
and if f < f.p, its expression is —V{2 /P,.

According to (1) and (2), if Z;;, = Z;1;, Z,; can be selected
as

(Vb2us/P0) : [6‘79/(1 + ej@)} f S [fh f2]
Zyi = (3)
+o0 félf Lol
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As seen from (3), within [fi, f2], Z,; is a constant
value, which is determined by the load converter, otherwise,
Z,; = 400. Since fi and f5 are very close to fcg [see Fig. 2(a)],
the frequency characteristics of Z,; are also affected by the
source converter. In other words, for a particular load converter,
if its source converter is changed, its Z,;’s frequency charac-
teristics are needed to be accordingly changed. However, if Z,;
can be changed according to the source converter adaptively, as
shown in Fig. 4, the load converter is not required to be changed
anymore. Therefore, the adaptively regulated virtual impedance
Zyia 1s the main aim of the proposed AIIR control strategy.

B. Concept of AIIR Control Strategy

Fig. 5 shows the small-signal control block of the original
load converter. Its variables and transfer functions are described
in Table L. If Z;, is required to be added in parallel with the
input port of the load converter, one intuitive way is to intro-
duce 1/Z,;, to the control block between the input voltage and
input current (as shown with dashed lines in Fig. 5). However,
this method cannot be achieved by control directly. In order to
address this issue, the output of 1/Z,;, is moved to the output
voltage reference and, hence, the transfer function to G, ()
can be equivalently adjusted, as shown with the dot-dashed lines.
Fig. 5 is the concept of the proposed AIIR control strategy, and
Gina(s) is expressed as

1 1+ 7T,(s)

Gzina(s) = Zeia(s) Go(s) - Gpwm(s) - Gia(s)

“

where T, (s) = H,(s)G,(s)Gpw (s)Gpa(s) is the loop gain
of the voltage closed-loop of the load converter.
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TABLE I
VARIABLES AND TRANSFER FUNCTIONS OF LOAD CONVERTER
5 Disturbance of the ; Disturbance of the input
s bus voltage i current
3 Disturbance of the ; Disturbance of the
° output voltage 2 output current
J Disturbance of the 3 Disturbance of the
duty cycle o output voltage reference
Transfer function of Sampling coefficient of
Grmd(s) the modulator Hs) the output voltage
Transfer function of Open-loop input
& the voltage regulator Zinor(s) impedance
Open-loop output Control to input current
Zools) impedance Gids) transfer function
Control to output ;
_ Open-loop load to input
Guds) voltglgrfcgﬁnnsfer Giio(s) current transfer function
Geor(s) Open-loop input to output voltage transfer function
Adaptive
-
|Gana| : : .
o 2 .
0 : > f
N Jes f2
Fig. 6.  Adaptive characteristic of |G ipa ()]

C. Realization of Gyina(s)

Substituting (3) into (4), the adaptive regulator G, (s) can
be further derived as

P,(1+e %) [1+T,(s)]
‘/EHSG’U(S)GPWI\{ (S)Gid(s) f € [flan}

0 f ¢ [fl ) fQ] .

(5)

As seen from (5), Gyina(s) is an adaptive frequency-based

piecewise function, which is shown in Fig. 6, where |Gina(s)]

is anonzero value within [ f1, f2] and zero outside[f, f>]. Since

f1 and f5 are very close to fcs, an adaptive bandpass filter

Ggpra(s), whose center frequency is fcg, can be used to realize
Gzina (8), ie.

GZina (3) =

GZina(S) == GZinl (5) : GBPF(), (5) (6)
where
P, (1+e /) [1+T,(s)]
G in - 7
i (5) Vins Go(8)Grw (5)Gia(s) @
2
Grpra(s) = s2nfes/@) ®)

82 +5(2mfes/Q) + (2 fos)’

where () is the quality factor of the bandpass filter, whose initial
value is recommended as 0.707 and can be changed manually if
needed; fcg is changed adaptively according to different source
converters. By [24], the numerator degree of G, () is always
lower than its denominator degree for all dc/dc converters. As
a result, G,i,.(s) is a proper transfer function that can be fully
implemented by digital processors.
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According to (7), (8) and the dot-dashed line in Fig. 5,
G ina(s) can be realized by Fig. 7. As shown in Fig. 7, in subcir-
cuit A, vy first goes through a high-pass filter - +810 to remove
the dc component and to extract Awvyys, and then |Awy,, is
obtained by an absolute value block. After that, this is compared
with zero, and the error is amplified by a PI controller. If the sys-
tem is unstable, the output of the controller would be increased
from zero and regulate the center frequency of Gppr, (). Be-
sides, if the output of the controller arrives at fog, Zyin Would
find its right frequency characteristics, stabilize the cascaded
system, and make |Auvp,s| = 0. At this moment, S; and Sy
would lock fcg as the final center frequency of Gppr, (s) im-
mediately and not change it during the left running time. After
that, any disturbances in the v,,5 voltage level do not affect the
parameters of G, (s). Here, the logic of 51, Sz, and Relay is
given in Fig. 7. In addition, vy, is also sent to subcircuit D to
realize the function of Gi,1(s) in (7). The output of subcircuit
D is sent to the adaptive bandpass filter Ggpr, (s) ( see subcir-
cuit E), whose center frequency is determined by the output of
subcircuit C, to obtain the output of Gy, (s) in (6). Fig. 7 is the
realization method of the adaptive input impedance regulator
Gzina (S ) .

Note, though G,ina(s) can lock fog as the final center fre-
quency of Ggpr,(s) after finding it, too large K, and K; pa-
rameters should be avoided in the design of the PI controller in
the Section B of Fig. 7. As shown in Fig. 8(a), it is because,
if K, and K; are too large, it may make the output of the PI
controller increase so much during the first sampling period
after the system is started and, hence, fcg is skipped. As a re-
sult, small K, and K; are preferred for the PI controller [see
Fig. 8(b)]. The only compromise is that the G, (s) may spend
a slightly longer time before the right fcg is found. However, if

Fig. 9 gives the operation flow of the AIIR control method.
First, check both source and load converters to make sure they
can work well individually. Then, if the cascaded system is
unstable, the AIIR controller will be utilized. For the AIIR
controller, the initial value of @ is set as 0.707. It is because QQ =
0.707 can ensure a relatively narrow passband for Ggpr,(s),
and if 0.707 is also suitable for @, the AIIR controller not only
can stabilize the cascaded system, but also can keep the original
dynamic performance of the load converter. However, if the
system is still unstable, it means that 0.707 is too larger than Q)
and the bandwidth of Ggpp, (s) is smaller than (fo — fi), then,
@ should be reduced and the above procedures should be done
again until the suitable @ is found.

It is worth pointing out that, though the type of the typical
input voltage feed-forward control loop seems similar with the
proposed AIIR control block, they are totally different. The
purpose of the typical input voltage feed-forward control loop
is to regulate the input impedance of the load converter as a pure
negative resistor within the whole frequency range. However, the
purpose of the AIIR control method is to remove the negative
resistor characteristic out of the input impedance of the load
converter. As a result, the proposed AIIR control method can
stabilize the cascaded system, but the typical input voltage feed-
forward method cannot.

IV. EXPERIMENTAL VERIFICATION

Since the worst instability phenomenon is most likely to hap-
pen at the cascaded system whose source converter is an LC
filter, the AIIR control strategy is applied into two such unstable
100-W cascaded systems. As shown in Fig. 10, the two cascaded
systems utilize the same load stage, which is a 48-24 V buck
converter with 20-kHz switching frequency. If the load stage is
connected to the source stage 1, which is an input filter formed
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by a 6-mH inductor and a 150-uF capacitor, the first unstable
system is formed. On the other hand, if the load converter is
connected to the source stage 2, which is an input filter whose
inductor and capacitor are 6 mH and 60 uF, respectively, the
second unstable system is then formed.

Fig. 11 shows the bode plots of the example systems, where
Zys1, 4052, and Z;1 are the output impedance of source stage
1, source stage 2, and the input impedance of the load converter
at full load, respectively. It can be seen that both the cascaded
systems are unstable.

According to Figs. 5 and 7, an adaptive input impedance
regulator G, (s) is introduced to the load converter. Here, ¢
is selected as 0. Then, as shown in Fig. 11, Z;; is modified
into Z; 1,1 in the first cascaded system and Z; ;o in the second
cascaded system adaptively. In this case, |¢(Z,5) — ¢(Ziri)| <
180° at the intersection frequencies in both cases. Therefore,
the modified cascaded system with the AIIR control method is
stable and the design of G, (s) is appropriate. In addition,
Fig. 11 also shows that G,,in, ($) can achieve the modified input
impedance in Fig. 2(b), i.e., only changing the input impedance’s
phase without changing its magnitude, which can minimize the
resulting effect on the load converter.

The experimental results of the first example system are given
in Fig. 12, where the waveforms of v},,5 and v,, are their ac com-
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Fig. 12. Experimental waveforms with the source stage 1: (a) steady-state

waveforms with rated input voltage and rated load, (b) dynamic waveforms
when the input voltage stepped down from 100% rated to 80% rated voltage at
full load, (c) dynamic waveforms when the load increased from 10% rated to
100% rated load at rated input voltage.

ponents to clearly show the oscillation (¢7,, Vpys, 1.1, and v, are
illustrated in Fig. 10). As seen from Fig. 12(a), this cascaded
system is unstable without the AIIR control strategy. After the
AIIR control strategy was applied, it spent about 45.56 ms to
adjust the parameters of G, () and to stabilize the cascaded
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waveforms with rated input voltage and rated load, (b) dynamic waveforms
when the input voltage stepped down from 100% rated to 80% rated voltage at
full load, (c) dynamic waveforms when the load increased from 10% rated to
100% rated load at rated input voltage.

system automatically. Fig. 12(b) shows dynamic waveforms of
the modified system with the AIIR control strategy when its
input voltage stepped down from 100% rated to 80% rated volt-
age at the full load. It is clear that the AIIR control strategy can
work well during an input voltage change. Fig. 12(c) shows dy-
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namic waveforms of the modified system with the AIIR control
strategy when its load increased from 10% rated to 100% rated
load at the rated input voltage. It is demonstrated that the AIIR
control strategy can also work well during a load change.
Similarly, Fig. 13(a)—(c) gives the steady-state waveforms, in-
put voltage, and load dynamic waveforms of the second example
system. Again, it is verified that the AIIR control strategy not
only can adaptively solve the instability problem of the cascaded
system, but also can work well during dynamic process.

V. CONCLUSION

In order to solve the instability problem of the cascaded sys-
tem, and also to facilitate the modularization of DC DPS, AIIR
control strategy has been proposed in this letter. It has been
theoretically demonstrated that the proposed strategy can adap-
tively regulate the input impedance of the load converter for
different source converters. Therefore, the load converter can be
designed as a standard module connected to any source convert-
ers. Additionally, since the AIIR method only modifies the input
impedance of the load converter in a small range of frequen-
cies, the original dynamic performance of the load converter
is well maintained. Finally, the AIIR control strategy has been
experimentally verified on two cascaded systems.
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