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Submitted to the Annals of Applied Probability

BRANCHING BROWNIAN MOTION AND SELECTION IN

THE SPATIAL Λ-FLEMING-VIOT PROCESS

By Alison Etheridge∗, Nic Freeman, Sarah

Penington† and Daniel Straulino‡

University of Oxford, University of Sheffield and Heilbronn Institute for
Mathematical Research

We ask the question “when will natural selection on a gene in a
spatially structured population cause a detectable trace in the pat-
terns of genetic variation observed in the contemporary population?”.
We focus on the situation in which ‘neighbourhood size’, that is the
effective local population density, is small. The genealogy relating
individuals in a sample from the population is embedded in a spa-
tial version of the ancestral selection graph and through applying a
diffusive scaling to this object we show that whereas in dimensions
at least three, selection is barely impeded by the spatial structure,
in the most relevant dimension, d = 2, selection must be stronger
(by a factor of log(1/µ) where µ is the neutral mutation rate) if we
are to have a chance of detecting it. The case d = 1 was handled in
Etheridge et al. (2015).

The mathematical interest is that although the system of branch-
ing and coalescing lineages that forms the ancestral selection graph
converges to a branching Brownian motion, this reflects a delicate
balance of a branching rate that grows to infinity and the instant
annullation of almost all branches through coalescence caused by the
strong local competition in the population.

1. Introduction. Our aims in this work are two-fold. On the one hand,
we address a question of interest in population genetics: when will the action
of natural selection on a gene in a spatially structured population cause a
detectable trace in the patterns of genetic variation observed in the con-
temporary population? On the other hand, we investigate some of the rich
structure underlying mathematical models for spatially evolving populations
and, in particular, the systems of interacting random walks that, as dual
processes (corresponding to ancestral lineages of the model), describe the
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genetic relationships between individuals sampled from those populations.
Since the seminal work of Fisher (1937), a large literature has developed

that investigates the interaction of natural selection with the spatial struc-
ture of a population. Traditionally, the deterministic action of migration and
selection is approximated by what we now call the Fisher-KPP equation and
predictions from that equation are compared to data. However, many im-
portant questions depend on how selection and migration interact with a
third force, the stochastic fluctuations known as random genetic drift, and
this poses significant new mathematical challenges.

For the most part, random drift is modelled through Wright-Fisher noise
resulting in a stochastic PDE as a model for the evolution of gene frequencies
w:

∂w

∂t
= m∆w − sw(1− w) +

√

γw(1− w)Ẇ

(for suitable constants m, s and γ), where W is space-time white noise.
This stochastic Fisher-KPP equation has been extensively studied, see, for
example, Mueller et al. (2008) and references therein. However, from a mod-
elling perspective it has two immediate shortcomings. First, it only makes
sense in one spatial dimension. This is generally overcome by artificially
subdividing the population, and thus replacing the stochastic PDE by a
system of stochastic ordinary differential equations, coupled through migra-
tion. The second problem is that, in deriving the equation, one allows the
‘neighbourhood size’ to tend to infinity. We shall give a precise definition
of neighbourhood size in Section 2. Loosely, it is inversely proportional to
the probability that two individuals sampled from sufficiently close to one
another had a common parent in the previous generation and small neigh-
bourhood size corresponds to strong genetic drift. It is understanding the
implications of dropping this (usually implicit) assumption of unbounded
neighbourhood size that motivated the work presented here.

Our starting point will be the Spatial Λ-Fleming-Viot process with selec-
tion (SΛFVS), which (along with its dual) was introduced and constructed
in Etheridge et al. (2014). The dynamics of both the SΛFVS and its dual
are driven by a Poisson Point Process of ‘events’ (which model reproduction
or extinction and recolonisation in the population) and will be described
in detail in Section 2. The advantage of this model is that it circumvents
the need to subdivide the population in higher dimensions. However, since
our proof is based on an analysis of the branching and coalescing system of
random walkers that describes the ancestry of a sample from the popula-
tion, it would be straightforward to modify it to apply to, for example, an
individual based model in which a fixed number of individuals reside at each
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point of a d-dimensional lattice.
In classical models of population genetics, in which there is no spatial

structure, we generally think of population size as setting the timescale of
evolution of frequencies of different genetic types. Evidently that makes no
sense in our setting. However (even in the classical setting), as we explain
in more detail in Section 3, if natural selection is to leave a distinguishable
trace in contemporary patterns of genetic variation, then a sufficiency of
neutral mutations must fall on the genealogical trees relating individuals
in a sample. Thus, in fact, it is the neutral mutation rate which sets the
timescale and, since mutation rates are very low, this leads us to consider
scaling limits.

In Etheridge et al. (2014), scaling limits of the (forwards in time) SΛFVS
were considered in which the neighbourhood size tends to infinity. In that
case, the classical Fisher-KPP equation and, in one spatial dimension, its
stochastic analogue are recovered. The dual process of branching and coa-
lescing lineages converges to branching Brownian motion, with coalescence
of lineages (in one dimension) at a rate determined by the local time that
they spend together. In this article we consider scaling limits in the (very
different) regime in which neighbourhood size remains finite. In this context
the interaction between genetic drift and spatial structure becomes much
more important and, in contrast to Etheridge et al. (2014), it is the dual
process which proves to be the more analytically tractable object.

We shall focus on the most biologically relevant case of two spatial dimen-
sions. The case of one dimension was discussed in Etheridge et al. (2015).
The main interest there is mathematical: the dual process of branching and
coalescing ancestral lineages, suitably scaled, converges to the Brownian net.
However, the scaling required to obtain a non-trivial limit reveals a strong
effect of the spatial structure. Here we shall identify the corresponding scal-
ings in dimensions d ≥ 2. Whereas in Etheridge et al. (2014), the scaling
of the selection coefficient is independent of spatial dimension and, indeed,
mirrors that for unstructured populations, for bounded neighbourhood size
this is no longer the case. In d = 1 and d = 2 the scaling of the selection
coefficient required to obtain a non-trivial limit reflects strong local compe-
tition.

Our main result, Theorem 2.7, is that under these (dimension-dependent)
scalings, the scaled dual process converges to a branching Brownian motion.
For d ≥ 3 this is rather straightforward, but in two dimensions things are
much more delicate. The mathematical interest of our result is that in d = 2,
under our scaling, the rate of branching of ancestral lineages explodes to in-
finity but, crucially, all except finitely many branches are instantaneously
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annulled through coalescence. That this finely balanced picture produces a
non-degenerate limit results from a combination of the failure of two dimen-
sional Brownian motion to hit points and the strong (local) interactions of
the approximating random walks, which cause coalescence.

From a biological perspective, the main interest is that, in contrast to
the infinite neighbourhood size limit, here we see a strong effect of spatial
dimension in our results. When neighbourhood size is very big, the proba-
bility of fixation for an advantageous genetic type, i.e. the probability that
the genetic type establishes and sweeps through the entire population, is
not affected by spatial structure. When neighbourhood size is small, in (one
and) two spatial dimensions, selection has to be much stronger to leave a
detectable trace than in a population with no spatial structure. Indeed, local
establishment is no longer a guarantee of eventual fixation.

The rest of the paper is laid out as follows. In Section 2 we describe the
SΛFVS and the dual process of branching and coalescing random walks,
state our main result and provide a heuristic argument that explains our
choice of scalings. In Section 3 we place our findings in the context of previous
work on selective sweeps in spatially structured populations and in Section 4
we prove our result.
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2. The model and main result.

2.1. The model. To motivate the definition of the SΛFVS, it is conve-
nient to recall (a very special case of) the model without selection, intro-
duced in Etheridge (2008); Barton et al. (2010). We shall call it the SΛFV to
emphasize that selection is not acting. We proceed informally, only carefully
specifying the state space and conditions that are sufficient to guarantee
existence of the process when we define the SΛFVS itself in Definition 2.3.
The interested reader can find much more general conditions under which
the SΛFV exists in Etheridge and Kurtz (2014).

We restrict ourselves to the case of just two genetic types, which we
denote a and A, and we suppose that the population is evolving in R

d. It is
convenient to index time by the whole real line. At each time t, the random
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function {wt(x), x ∈ R
d} is defined, up to a Lebesgue null set of Rd, by

(2.1) wt(x) := proportion of type a at spatial position x at time t.

The dynamics are driven by a Poisson point process Π on R×R
d×R+×(0, 1].

Each point (t, x, r, u) ∈ Π specifies a reproduction event which will affect
that part of the population at time t which lies within the closed ball Br(x)
of radius r centred on the point x. First the location z of the parent of the
event is chosen uniformly at random from Br(x). All offspring inherit the
type α of the parent which is determined by wt−(z); that is, with probability
wt−(z) all offspring will be type a, otherwise they will be A. A portion u of
the population within the ball is then replaced by offspring so that

wt(y) = (1− u)wt−(y) + u1{α=a}, ∀y ∈ Br(x).

The population outside the ball is unaffected by the event. We sometimes
call u the impact of the event.

Under this model, the time reversal of the same Poisson Point Process of
events governs the ancestry of a sample from the population. Each ancestral
lineage that lies in the region affected by an event has a probability u of being
among the offspring of the event, in which case, as we trace backwards in
time, it jumps to the location of the parent, which is sampled uniformly from
the region. In this way, ancestral lineages evolve according to (dependent)
compound Poisson processes and lineages can coalesce when affected by the
same event. All lineages affected by an event inherit the type of the parent
of that event.

Remark 2.1. In Etheridge and Kurtz (2014), the SΛFV and its dual are
constructed simultaneously on the same probability space, through a lookdown
construction, as the limit of an individual based model, and so the dual
process just described really can be interpreted as tracing the ancestry of
individuals in a sample from the population.

We are now in a position to define the neighbourhood size.

Definition 2.2. Write σ2 for the variance of the first coordinate of the
location of a single ancestral lineage after one unit of time and η(x) for
the instantaneous rate of coalescence of two lineages that are currently at a
separation x ∈ R

d. Then the neighbourhood size, N is given by

N =
2dCdσ

2

∫

Rd η(x)dx
,

where Cd is the volume of the unit ball in R
d.
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Neighbourhood size is used in biology to quantify the local number of
breeding individuals in a continuous population; see Barton et al. (2013b)
for a derivation of this formula. If we assume that the impact is the same for
all events, then the impact is inversely proportional to the neighbourhood
size, see Barton et al. (2013b).

There are very many different ways in which to introduce selection into
the SΛFV. Our approach here is a simple adaptation of that adopted in
classical models of population genetics. The parental type in the SΛFV is
a uniform pick from the types in the region affected by the event. We can
introduce a small advantage to individuals of type A by choosing the parent
in a weighted way. Thus if, immediately before reproduction, the proportion
of type a individuals in the region affected by the event is w, then the
offspring will be type a with probability w/(1 + s(1− w)). We say that the
relative fitnesses of types a and A are 1 and 1 + s respectively and refer to
s as the selection coefficient. We are interested only in small values of s and
so we expand

w

1 + s(1− w)
= w{1− s(1− w)}+O(s2) = (1− s)w + sw2 +O(s2).

We shall regard s2 as being negligible. We can then think of each event, inde-
pendently, as being a ‘neutral’ event with probability (1−s) and a ‘selective’
event with probability s. Reproduction during neutral events is exactly as
before, but during selective events, we sample two potential parents; only if
both are type a will the offspring be of type a.

Let us now give a more precise definition of the SΛFVS. We retain the
notation of (2.1). A construction of an appropriate state space for x 7→ wt(x)
can be found in Véber and Wakolbinger (2015). Using the identification
∫

Rd×{a,A}
f(x, κ)M(dx, dκ) =

∫

Rd

{

w(x)f(x, a) + (1− w(x))f(x,A)
}

dx,

this state space is in one-to-one correspondence with the space Mλ of mea-
sures on R

d × {a,A} with ‘spatial marginal’ Lebesgue measure, which we
endow with the topology of vague convergence. By a slight abuse of notation,
we also denote the state space of the process (wt)t∈R by Mλ.

Definition 2.3 (SΛFV with selection (SΛFVS)). Fix R ∈ (0,∞). Let µ
be a finite measure on (0,R] and, for each r ∈ (0,R], let νr be a probability
measure on (0, 1]. Further, let Π be a Poisson point process on R × R

d ×
(0,R]× (0, 1] with intensity measure

(2.2) dt⊗ dx⊗ µ(dr)νr(du).
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The spatial Λ-Fleming-Viot process with selection (SΛFVS) driven by (2.2)
is the Mλ-valued process (wt)t∈R with dynamics given as follows.

If (t, x, r, u) ∈ Π, a reproduction event occurs at time t within the closed
ball Br(x) of radius r centred on x. With probability 1−s the event is neutral,
in which case:

1. Choose a parental location z uniformly at random within Br(x), and
a parental type, α, according to wt−(z), that is α = a with probability
wt−(z) and α = A with probability 1− wt−(z).

2. For every y ∈ Br(x), set wt(y) = (1− u)wt−(y) + u1{α=a}.

With the complementary probability s the event is selective, in which case:

1. Choose two ‘potential’ parental locations z, z′ independently and uni-
formly at random within Br(x), and at each of these sites ‘potential’
parental types α, α′, according to wt−(z), wt−(z

′) respectively.
2. For every y ∈ Br(x) set wt(y) = (1− u)wt−(y) + u1{α=α′=a}. Declare

the parental location to be z if α = α′ = a or α = α′ = A and to be z
(resp. z′) if α = A,α′ = a (resp. α = a, α′ = A).

This is a very special case of the SΛFVS introduced in Etheridge et al.
(2014).

We are especially concerned with the dual process of the SΛFVS. Whereas
in the neutral case we can always identify the distribution of the location
of the parent of each event, without any additional information on the dis-
tribution of types in the region, now, at a selective event, we are unable
to identify which of the ‘potential parents’ is the true parent of the event
without knowing their types. These can only be established by tracing fur-
ther into the past. The resolution is to follow all potential ancestral lineages
backwards in time. This results in a system of branching and coalescing
walks.

As in the neutral case, the dynamics of the dual are driven by the same
Poisson point process of events, Π, that drove the forwards in time process.
The distribution of this Poisson point process is invariant under time reversal
and so we shall abuse notation by reversing the direction of time when
discussing the dual.

We suppose that at time 0 (which we think of as ‘the present’), we sample
k individuals from locations x1, . . . , xk and we write ξ1s , . . . , ξ

Ns
s for the lo-

cations of the Ns potential ancestors that make up our dual at time s before
the present.

Definition 2.4 (Branching and coalescing dual). The branching and
coalescing dual process (Ξt)t≥0 driven by Π is the

⋃

m≥1(R
d)m-valued Markov
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process with dynamics defined as follows: at each event (t, x, r, u) ∈ Π, with
probability 1− s, the event is neutral:

1. For each ξit− ∈ Br(x), independently mark the corresponding lineage
with probability u;

2. if at least one lineage is marked, all marked lineages disappear and are
replaced by a single lineage, whose location at time t is drawn uniformly
at random from within Br(x).

With the complementary probability s, the event is selective:

1. For each ξit− ∈ Br(x), independently mark the corresponding lineage
with probability u;

2. if at least one lineage is marked, all marked lineages disappear and are
replaced by two lineages, whose locations at time t are drawn indepen-
dently and uniformly from within Br(x).

In both cases, if no lineages are marked, then nothing happens.

Since we only consider finitely many initial individuals in the sample, and
the jump rate of the dual is bounded by a linear function of the number of
potential ancestors, this description gives rise to a well-defined process.

This dual process is the analogue for the SΛFVS of the Ancestral Selection
Graph (ASG), introduced in the companion papers Krone and Neuhauser
(1997); Neuhauser and Krone (1997), which describes all the potential ances-
tors of a sample from a population evolving according to the Wright-Fisher
diffusion with selection. Perhaps the simplest way of expressing the duality
between the SΛFVS and the branching and coalescing dual process is to
observe that all the individuals in our sample are of type a if and only if all
potential ancestral lineages are of type a at any time t in the past. This is
analogous to the moment duality between the ASG and the Wright-Fisher
diffusion with selection. However, to state this formally for the SΛFVS,
we would need to be able to identify E[

∏n
i=1wt(xi)] for any choice of points

x1, . . . , xn ∈ R
d. The difficulty is that, just as in the neutral case, the SΛFVS

wt(x) is only defined at Lebesgue almost every point x and so we have to
be satisfied with a ‘weak’ moment duality.

Proposition 2.5. [Etheridge et al. (2014)] The spatial Λ-Fleming-Viot
process with selection is dual to the process (Ξt)t≥0 in the sense that for
every k ∈ N and ψ ∈ Cc((R

d)k), we have

Ew0

[
∫

(Rd)k
ψ(x1, . . . , xk)

{ k
∏

j=1

wt(xj)

}

dx1 . . . dxk

]
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=

∫

(Rd)k
ψ(x1, . . . , xk)E{x1,...,xk}

[ Nt
∏

j=1

w0

(

ξjt
)

]

dx1 . . . dxk.(2.3)

2.2. The main result. Our main result concerns a diffusive rescaling of
the dual process of Definition 2.4 and so from now on it will be convenient
if

forwards in time refers to forwards for the dual process.
We shall take the impact parameter, u, to be a fixed number in (0, 1]

(i.e. νr = δu for all r). In fact, the same arguments work when u is allowed

to be random, as long as
∫R
R′

∫ 1
0 uνr(du)µ(dr) > 0 for some 0 < R′ < R, but

this would make our proofs notationally cumbersome.
Let us describe the scaling more precisely. Suppose that µ is a finite

measure on (0,R]. We shall assume for convenience that R is defined in
such a way that for any δ > 0, µ((R − δ,R]) > 0. For each n ∈ N, define
the measure µn by µn(B) = µ(n1/2B), for all Borel subsets B of R+. It will
be convenient to write Rn = R/√n. At the nth stage of the rescaling, our
rescaled dual is driven by the Poisson point process Πn on R×R

d × (0,Rn]
with intensity

(2.4) ndt⊗ nd/2 dx⊗ µn(dr).

This corresponds to rescaling space and time from (t, x) to (n−1t, n−1/2x).
Importantly, we do not scale the impact u. Each event of Πn, independently,
is neutral with probability 1− sn and selective with probability sn, where

(2.5) sn =

{

logn
n d = 2,

1
n d ≥ 3.

In Etheridge et al. (2015) it was shown that in d = 1, one should take
sn = 1/

√
n.

Although not obvious for the SΛFVS itself, when considering the dual
process it is not hard to understand why the scalings (2.4) and (2.5) should
lead to a non-trivial limit.

If we ignore the selective events, then a single ancestral lineage evolves as
a pure jump process which is homogeneous in both space and time. Write
Vr for the volume of Br(0). The rate at which the lineage jumps from y to
y + z can be written

(2.6) mn(dz) = nu

∫ Rn

0
nd/2

Vr(0, z)

Vr
µn(dr) dz,
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where Vr(0, z) is the volume of Br(0) ∩ Br(z). To see this, by spatial homo-
geneity, we may take the lineage to be at the origin in R

d before the jump,
and then, in order for it to jump to z, it must be affected by an event that
covers both 0 and z. If the event has radius r, then the volume of possible
centres, x, of such events is Vr(0, z) and so the intensity with which such
a centre is selected is nnd/2Vr(0, z)µ

n(dr). The parental location is chosen
uniformly from the ball Br(x), so the probability that z is chosen as the
parental location is dz/Vr and the probability that our lineage is actually
affected by the event is u. Combining these yields (2.6).

The total rate of jumps is

∫

Rd

mn(dz) =

∫ Rn

0
nund/2

1

Vr

∫

Rd

∫

Rd

1|x|<r1|x−z|<rdx dz µ
n(dr)

=

∫ Rn

0
nund/2Vrµ

n(dr)

= nuV1

∫ R

0
rdµ(dr) = Θ(n),(2.7)

and the size of each jump is Θ(n−1/2) and so in the limit a single lineage
will evolve according to a (time-changed) Brownian motion.

Now, consider what happens at a selective event. The two new lineages
are created at a separation of order 1/

√
n. If we are to see both lineages

in the limit then they must move apart to a separation of order 1 (before,
possibly, coalescing back together). Ignoring possible interactions with other
lineages, the probability that a pair of lineages makes such an excursion is of
order 1 in d ≥ 3, order 1/ log n in d = 2 and order 1/

√
n in d = 1. Therefore,

in order to have a positive probability of seeing branching in the scaling
limit, in d ≥ 3 we only need that there are a positive number of selective
events in unit (rescaled) time, and, for this, it is enough that sn is order
1/n. However, for d = 2, we need order log n branches before we expect to
find one that is visible to us, hence the choice sn = log n/n.

Remark 2.6. Our scaling mirrors that described in Durrett and Zähle
(2007) for a model of a hybrid zone (by which we mean a region in which
we see both genetic types) which develops around a boundary between two
regions, in one of which type a individuals are selectively favoured and in
the other of which type A individuals are selectively favoured. In contrast to
our continuum setting, their model is a spin system in which exactly one
individual lives at each point of Zd.

Before formally stating our main result, we need some notation. We shall



BBM AND SELECTION IN THE SΛFV PROCESS 11

denote by BBM(p, V ) binary branching Brownian motion started from the
point p ∈ R

d, with branching rate V and diffusion constant given by

(2.8) σ2 = 1
d

∫

Rd

|z|2mn(dz) = 1
d

∫

Rd

∫ ∞

0
|z|2uVr(0, z)

Vr
µ(dr) dz

where mn(dz) is defined in (2.6). In other words, during their lifetime,
which is exponentially distributed with parameter V , individuals follow d-
dimensional Brownian motion with diffusion constant σ2, at the end of which
they die, leaving behind at the location where they died exactly two off-
spring. We view BBM(p, V ) as a set of (continuous) paths, each starting
at p, with precisely one path following each possible distinct sequence of
branches.

Similarly, we write P(n)(p) for the dual process of Definition 2.4, rescaled
as in (2.4) and (2.5), started from a single individual at the point p ∈ R

d

and viewed as a collection of paths. Each path traces out a ‘potential an-
cestral lineage’, defined exactly as the ancestral lineages in the neutral case
except that at each selective event, if a lineage is affected then it jumps to
the location of (either) one of the ‘potential parents’. Precisely one poten-
tial ancestral lineage follows each possible route through the branching and
coalescing dual process.

We define the events

Dn(ǫ, T ) =

{

∀l ∈ P(n)(p), ∃l′ ∈ BBM(p, V ) : sup
t∈[0,T ]

|l(t)− l′(t)| ≤ ǫ

}

,

D′
n(ǫ, T ) =

{

∀l ∈ BBM(p, V ), ∃l′ ∈ P(n)(p) : sup
t∈[0,T ]

|l(t)− l′(t)| ≤ ǫ

}

.

(2.9)

Theorem 2.7. Let d ≥ 2. There exists V ∈ (0,∞) such that the follow-
ing holds. Let T < ∞, p ∈ R

2; then given ǫ > 0, there exists N ∈ N such
that, for all n ≥ N there is a coupling between BBM(p, V ) and P(n)(p) with
P [Dn(ǫ, T ) ∩ D′

n(ǫ, T )] ≥ 1− ǫ.

We will give a proof of Theorem 2.7 only for d = 2. The case d ≥ 3 follows
from a simplified version of the 2-dimensional proof presented here.

2.3. Sketch of proof. Consider a pair of potential ancestral lineages, ξn,1

and ξn,2, created in some selective event which, without loss of generality, we
suppose happens at time zero. Suppose that we forget about further branches
and when ξn,i is affected by a neutral event it jumps to the location of the
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parent; when it is affected by a selective event it jumps to the location of one
of the potential parents (picked at random). Thus ξn,1 and ξn,2 are compound
Poisson processes which interact when (and only when) |ξn,1 − ξn,2| ≤ 2Rn.

We choose a large constant c > 0. We begin by showing that ξn,1 and
ξn,2 have probability Θ(1/ log n) of reaching a distance 1/(log n)c from each
other without coalescing (we then say they have diverged). We also show
that the probability that ξn,1 and ξn,2 have not diverged or coalesced by time
1/(log n)c is o(1/(log n)), so coalescence will be instantaneous in the limit.
Moreover, once they are 1/(log n)c apart, they won’t get within distance
2Rn of each other again on a timescale of O(1). Hence from the point of
view of our scaling they stay apart and evolve essentially independently of
each other.

We exploit this observation by coupling the whole rescaled dual process
with a process in which diverged lineages move independently. We use an
object that we call a caterpillar which is defined in the same way as the
rescaled dual process, except that selective events only result in branching
if at least time 1/(log n)c has elapsed since the previous branching. We stop
the caterpillar at the first time a pair of lineages has either diverged or
failed to coalesce in time 1/(log n)c after branching. We then start two new
independent caterpillars at the positions of the pair of lineages, and continue
in the same way, giving a ‘branching caterpillar’.

The branching caterpillar can be coupled with the rescaled dual process
by piecing together the independent Poisson point processes of events which
drive each caterpillar into a single driving Poisson point process. We show
that under the coupling, the branching caterpillar and the rescaled dual
process coincide with high probability, using the result that lineages at a
separation of at least 1/(log n)c are unlikely to interact again. Each individ-
ual caterpillar converges in an appropriate sense to a segment of a Brownian
path run for an exponentially distributed lifetime, so we can couple the
branching caterpillar with the limiting branching Brownian motion.

This programme is carried out in Section 4.

3. Biological background. In this section, we shall set our work in
the context of the substantial biological literature. The reader concerned
only with the mathematics can safely skip to Section 4.

The interplay between natural selection and the spatial structure of a pop-
ulation is a question of longstanding interest in population genetics. Fisher
(1937) studied the advance of selectively advantageous genetic types through
a one-dimensional population using the deterministic differential equation
now known as the Fisher-KPP equation. This equation also makes sense in
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higher dimensions, but ignores genetic drift (the randomness due to repro-
duction in a finite population). Work incorporating genetic drift has been
restricted to either one spatial dimension (see Barton et al. (2013a) and ref-
erences therein) or, more commonly, to subdivided populations. Maruyama
(1970) studied the probability of fixation of an advantageous genetic type
(the probability that eventually the whole population carries this genetic
type) in a subdivided population. The assumptions made in that article
are rather strong: if we think of the population as living on islands (or in
colonies), then each island has constant total population size and its con-
tribution to the next generation is in proportion to that size. Under these
assumptions, the probability of fixation is not affected by the population
structure: it is the same as for a gene of the same selective advantage in
an unstructured population of the same total size. Much subsequent work
retained Maruyama’s assumptions, and so it is often assumed that spatial
structure has no influence on the accumulation of favourable genes. However,
Barton (1993) showed that the extra stochasticity produced by the intro-
duction of local extinctions and colonisations could significantly change the
fixation probability. This work was extended in, for example, Cherry (2003)
and Whitlock (2003).

A fundamental problem in genetics is to identify which parts of the
genome have been the target of natural selection. The random nature of
reproduction in finite populations means that some genetic types (alleles)
will be carried by everyone in the population, even though they convey no
particular selective advantage. However, if a favourable mutation arises in
a population and ‘sweeps’ to fixation (i.e. increases in frequency until ev-
erybody carries it), we expect the genealogical trees (that is the trees of
ancestral lineages) relating individuals in a sample from the population to
differ from those that we observe in the absence of selection. In particular,
they will be more ‘star-shaped’. Of course we cannot observe the genealog-
ical trees directly, and so, instead, geneticists exploit the fact that genes
are arranged on chromosomes: the ancestry at another position on the same
chromosome will be correlated with that at the part of the genome that is
the target of selection. In order to detect selection one therefore examines
the patterns of variation at other points on the same chromosome, so-called
linked loci.

In order for this approach to work, we require sufficient variability at the
linked loci that we see a signal of the distortion in the genealogical tree. This
means that we must consider the genealogy of a sample from the population
on the timescale set by the neutral mutation rate. If selection is too strong,
the genealogy will be very short and we see no mutations and so we can
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recover no information about the genealogical trees; if selection is too weak,
we won’t be able to distinguish the patterns from those seen under neutral
evolution.

Since neutral mutation rates are rather small, this means that we are
interested in long timescales. Without selection, ancestral lineages in our
model follow symmetric random walks with bounded variance jumps and
so we expect a diffusive scaling to capture patterns of neutral variation.
Since we are looking for deviations from those patterns due to the action of
selection, it makes sense to consider a diffusive rescaling in the selective case
too. Thus, if the neutral mutation rate is µ, then we look at the rescaled
dual process with n = 1/µ. If the branches produced by selection persist long
enough to be visible at this scale, then there is positive probability that the
pattern of (neutral) variation we see in a sample from the population will
look different from the pattern we’d expect without selection.

Our results in this paper are relevant to populations evolving in spatial
continua. The question they address is ‘When can we hope to detect a signal
of natural selection in data?’. Whereas in the classical models of subdivided
populations it is typically assumed that the population in each ‘island’ is
large, so that neighbourhood size is big, by fixing the ‘impact’ parameter u
in our model, we are assuming that neighbourhood size is small. As a result,
reproduction events are somewhat akin to local extinction and recolonisation
events, in which a significant proportion of the local population is replaced
in a single event. Our main result shows that our ability to detect selection is
then critically dependent on spatial dimension. For populations living in at
least three spatial dimensions (of which there are very few), spatial structure
has a rather weak effect. However, in two spatial dimensions, selection must
be stronger and in one spatial dimension (as appropriate for example for
populations living in intertidal zones) much stronger, before we can expect
to be able to detect it. The explanation is that in low dimensions, it is
harder for individuals carrying the favoured gene to escape the competition
posed by close relatives who carry the same gene. In our mathematical work,
this is reflected in the vast majority of branches in our dual process being
cancelled by a coalescence event on a timescale which is negligible compared
to the timescale set by the neutral mutation rate so that no evidence of these
branches having occurred will be seen in the pattern of neutral mutation.

4. Proof of Theorem 2.7. Our proof is broken into two steps. First
in Subsection 4.1 we consider how the pair of potential ancestral lineages
created during a selective event interact with each other. In particular we
find asymptotics for the probability that they diverge in a short time. This
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will allow us to identify the branching rate in the limiting Brownian motion.
Then in Subsection 4.2 we define the caterpillar and show how to couple
the dual of the SΛFVS to a system of branching caterpillars. With this
construction in hand, Theorem 2.7 follows easily.

4.1. Pairs of paths. In this subsection we are interested in the behaviour
of a pair of potential ancestral lineages in the rescaled dual. In order that
they be uniquely defined, if either is hit by a selective event then we (ar-
bitrarily) declare that it jumps to the location of the first potential parent
sampled in that event. In particular, if they are both affected by the same
event, then they will necessarily coalesce. We write ξn,1 and ξn,2 for the
resulting potential ancestral lineages and

ηn = ξn,1 − ξn,2

for their separation.
Throughout this subsection, we use the notation P[r,r′] to mean that |ηn0 | ∈

[r, r′] and we adopt the convention that estimates of P[r,r′][B] hold uniformly
for all initial laws with mass concentrated on [r, r′]. We extend this notation
to open intervals in the obvious manner. We will also write Pr = P[r,r].

We are concerned with the behaviour of two potential ancestral lineages
created during a selective event which, without loss of generality, we suppose
to happen at time 0. We shall then refer to ηn as an excursion. In this case
|ηn0 | ≤ 2Rn and we wish to establish whether or not |ηnt | ever exceeds

(4.1) γn =
1

(log n)c
,

where, in this section, we suppose that c ≥ 3.

Remark 4.1. We will, eventually, set c = 4, although any larger con-
stant c would give the same result; for now we keep the dependence on c
visible in our estimates.

For reasons that will soon become apparent, it is convenient to assume
that n is large enough that 7Rn < γn.

The picture of an excursion ηn that we would like to build up is, loosely
speaking, as follows.

1. With probability κn = Θ( 1
logn), |ηn| reaches displacement γn within

time 1/(log n)c and then ξn,1 and ξn,2 will not interact again before
a fixed time T > 0. Consequently the displacement between them be-
comes macroscopic and we see two distinct paths in the limit. More-
over, κn log n→ κ ∈ (0,∞) as n→ ∞.
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2. With probability 1−Θ( 1
logn), |ηn| does not reach displacement γn, and

ξn,1 and ξn,2 coalesce within time 1/(log n)c. In this case the difference
between them is microscopic and we see only one path in the limit.

3. All other outcomes have probability O
(

1
(logn)c−3/2

)

, which means that

we won’t see them in the limit.

Much of the work in making this rigorous results from the fact that ξn,1,
ξn,2 only evolve independently when their separation is greater than 2Rn.
Our strategy is similar to that in the proof of Lemma 4.2 in Etheridge and
Véber (2012), but here we require a stronger result: rather than an estimate
of the form κn ≥ C/ log n we need convergence of κn log n.

4.1.1. Inner and outer excursions. We shall characterise the behaviour
of ηn using several stopping times. Set τ out0 = 0 and define inductively, for
i ≥ 0,

τ ini = inf{s > τ outi : |ηns | ≥ 5Rn},(4.2)

τ outi+1 = inf{s > τ ini : |ηns | ≤ 4Rn}.

We refer to the interval [τ outi , τ ini ) (and also to the path of ηn during it) as
the ith inner excursion and similarly to [τ ini−1, τ

out
i ) (and corresponding path)

as the ith outer excursion.
Since a jump of ηn has displacement at most 2Rn, although the initial

(0th) inner excursion starts in (0, 2Rn], for i ≥ 1 we have |ηn
τ ini

| ∈ [5Rn, 7Rn]

and |ηn
τouti

| ∈ [2Rn, 4Rn].

Definition 4.2. We define the stopping times

τ coal = inf{s > 0 : |ηns | = 0},
τdiv = inf{s > 0 : |ηns | ≥ γn},

τ over =
1

(log n)c
.

We shall say that the ith inner excursion coalesces if τ coal ∈ [τ outi , τ ini ).
Similarly, the ith outer excursion diverges if τdiv ∈ [τ ini−1, τ

out
i ).

We define τ type = min(τ coal, τdiv, τ over) and say that ηn

1. coalesces if τ type = τ coal,
2. diverges if τ type = τdiv,
3. overshoots if τ type = τ over.
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Since almost surely ηn only jumps a finite number of times before time
(log n)−c, almost surely τ type occurs during either an inner or an outer ex-
cursion, whose index we denote by i∗.

We use ζn to denote the distribution of the distance between the two
potential parents sampled during a selective event.

Lemma 4.3. There exists α ∈ (0, 1) such that, uniformly in n, Pζn [i
∗ > m] ≤

αm.

Lemma 4.4. As n→ ∞, Pζn [η
n overshoots] = O

(

1
(logn)c−3/2

)

.

Lemma 4.5. As n→ ∞, Pζn [η
n diverges] = Θ

(

1
logn

)

.

Lemma 4.6. As n→ ∞, Pζn [η
n coalesces] = 1−Θ

(

1
logn

)

.

Thus, overshoots are relatively unlikely, and typically ηn consists of a
finite number of inner/outer excursions until either (1) it coalesces, with
probability 1−Θ( 1

logn), or (2) the two lineages separate to distance γn, with

probability Θ( 1
logn).

The remainder of this Section 4.1.1 is devoted to the proof of Lemmas 4.3-
4.5. Lemma 4.6 then follows immediately, since c ≥ 3.

We will need two more stopping times:

τr = inf{s > 0 : |ηns | ≤ r},
τ r = inf{s > 0 : |ηns | ≥ r}.(4.3)

Note that τ0 = τ coal.
Note that the random variables τ type, τ r and so on depend implicitly on

n; throughout this section these random variables refer to the stopping times
for the process ηn.

Proof. (Of Lemma 4.3.) First consider a single inner excursion of ηn. It
is easily seen that there exists some α′ > 0 such that, for all n:

(†) For any x ∈ (0, 5Rn), if |ηnt | = x then the probability that ηn will hit
0 but not exit B5Rn(0) within its next three jumps is at least α′.

In particular, the probability that the first three jumps of an inner excursion
result in a coalescence is bounded away from 0 uniformly for any |ηn

τouti
| ∈

[2Rn, 4Rn]. If i
∗ > m then at least m inner excursions must occur without
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a coalescence. The strong Markov property applied at the time τ outi means
that, conditionally given ηn

τouti
, the ith inner excursion is independent of

(ηnt )t<τouti
. Repeated application of this fact, coupled with (†), shows that the

probability of seeing at least m inner excursions without a single coalescence
is at most (1− α′)m. This completes the proof. �

We will shortly require a tail estimate on the supremum of the modulus
of two dimensional Brownian motion W , which we record first for clarity.
We write Wt = (W 1

t ,W
2
t ) and note

P

[

sup
s∈[0,t]

|Ws −W0| ≥ x

]

≤ 2P

[

sup
s∈[0,t]

|W 1
s −W 1

0 | ≥ x/2

]

≤ 4P

[

sup
s∈[0,t]

(W 1
s −W 1

0 ) ≥ x/2

]

≤ 4e−x2/8t.(4.4)

In the first line of the above we use the triangle inequality and the fact
that W 1 and W 2 have the same distribution. To deduce the second line,
we note that W 1 and −W 1 have the same distribution. For the final line,
we use the (standard) tail estimate P[sups∈[0,t](Bs − B0) ≥ x] ≤ e−x2/2t for
a one dimensional Brownian motion B, which can be deduced via Doob’s
martingale inequality applied to the submartingale (exp(xBs/t))s≥0.

During an outer excursion, ηn is the difference between two independent
walkers and so we can use Skorohod embedding to approximate its behaviour
using elementary calculations for two-dimensional Brownian motion. The
next lemma exploits this to bound the duration of the outer excursion and
the probability that it diverges.

Lemma 4.7. As n→ ∞,

(4.5) P[5Rn,7Rn]

[

τγn ∧ τ4Rn > (log n)−c−1
]

= O
(

1

(log n)c−1

)

,

and

(4.6) P[5Rn,7Rn] [τ
γn < τ4Rn ] = Θ

(

1

log n

)

.

Proof. For i = 1, 2 let ξ̂n,i be a pair of independent processes such that
ξ̂n,1 has the same distribution as ξn,1 and ξ̂n,2 has the same distribution
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as ξn,2. The process ξ̂n,1 − ξ̂n,2 is a compound Poisson process with a rota-
tionally symmetric jump distribution and a maximum displacement of 2Rn

on each jump. Moreover (essentially by Skorohod’s Embedding Theorem,
see e.g. Billingsley (1995)), we can construct a process η̂n with the same
distribution as ξ̂n,1 − ξ̂n,2 as follows.

Let (rm, Jm)m≥1 denote a sequence distributed as the jump magnitudes
and jump times of ξ̂n,1− ξ̂n,2. LetW be a two-dimensional Brownian motion
with W0 = ξ̂n,10 − ξ̂n,20 , independent of (rm, Jm)m≥1. Now set

η̂nt =WT (S(t)) where T (0) = 0, J0 = 0,(4.7)

T (m+1) = inf{s > T (m) : |Ws −WT (m) | ≥ rm},
S(t) = sup {i ≥ 0 : Ji ≤ t} .

We may then couple
η̂n = ξ̂n,1 − ξ̂n,2.

We define τ̂ r and τ̂r analogously to τ r and τr, as stopping times of the
process η̂n.

Note that since (ξn,1t , ξn,2t )t≤τ4Rn
has the same distribution as (ξ̂n,1, ξ̂n,2)t≤τ4Rn

,
we may couple them so that they are almost surely equal during this time.
Thus

{τ̂γn < τ̂4Rn} = {τγn < τ4Rn}.
Let T r and Tr be the analogues of τ r and τr for W (not to be confused

with T (m) in (4.7)). By the definition of the Skorohod embedding in (4.7)
we have

P[5Rn,7Rn] [τ̂
γn < τ̂4Rn ] ≥ P[5Rn,7Rn]

[

T γn+2Rn < T4Rn

]

≥ P5Rn

[

T γn+2Rn < T4Rn

]

.(4.8)

The right hand side concerns only the modulus of two-dimensional Brownian
motion and so can be expressed in terms of the scale function for a two-
dimensional Bessel process:

P5Rn

[

T γn+2Rn < T4Rn

]

=
log(5Rn)− log(4Rn)

log(γn + 2Rn)− log(4Rn)
= Θ

(

1

log n

)

,(4.9)

which proves the lower bound in (4.6). Similarly, to see the upper bound we
note that

P[5Rn,7Rn] [τ̂
γn < τ̂4Rn ] ≤ P[5Rn,7Rn][T

γn < T2Rn ]

≤ P7Rn [T
γn < T2Rn ]
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=
log(7Rn)− log(2Rn)

log(γn)− log(2Rn)

= Θ

(

1

log n

)

.

It remains to prove (4.5). We have

τγn ∧ τ4Rn = τ̂γn ∧ τ̂4Rn ≤ τ̂γn .

Remark 4.8. The above inequality is a very crude estimate, but will be
enough to prove (4.5), which in turn will be enough to give useful bounds on
the duration of excursions due to the freedom in the choice of c.

Hence
(4.10)

P[5Rn,7Rn]

[

τγn ∧ τ4Rn > (log n)−c−1
]

≤ P[5Rn,7Rn]

[

|η̂n(logn)−c−1 | ≤ γn

]

.

The remainder of the proof focuses on bounding the right side of (4.10). To
do so, we must relate our compound Poisson process to another Brownian
motion.

For j ≥ 1, let Xj = η̂nj/n − η̂n(j−1)/n. Then (Xj)j≥1 are i.i.d. and since ξ̂n,1

and ξ̂n,2 are independent, E
[

|X1|2
]

= 2E
[

|ξ̂n,11/n − ξ̂n,10 |2
]

.

Recall from (2.6) that the rate at which ξ̂n,1 jumps from y to y + z is
determined by the intensity measure mn(dz) so that

(4.11) E
[

|X1|2
]

=
2

n

∫

R2

|z|2mn(dz) =
4σ2

n
,

where σ2 was defined in (2.8). Now recall the definition of S(t) in (4.7);
the rate at which ξ̂n,1 jumps is

∫

R2 m
n(z)dz = Θ(n) by (2.7), so S(n−1) is

bounded by the sum of two Poisson(Θ(1)) random variables. Hence since
each jump of η̂n is bounded by 2Rn,

E
[

|X1|4
]

≤ (2Rn)
4
E
[

S(n−1)4
]

= O(n−2).(4.12)

Once again (since the distribution of X1 is rotationally symmetric) we may
use Skorohod’s Embedding Theorem to couple (Xi)i≥1 to a two-dimensional
Brownian motion B started at ηn0 and a sequence υ1, υ2, . . . of stopping times
for B such that setting υ0 = 0, (υi − υi−1)i≥1 are i.i.d. and

Bυi −Bυi−1 = Xi,(4.13)
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E[υi − υi−1] =
1
2E[|X1|2] = 2σ2

n

and E[(υi − υi−1)
2] = O(n−2).

It follows that E[υ⌊tn⌋] =
2σ2⌊tn⌋

n and Var(υ⌊tn⌋) = O(tn−1). Hence by Cheby-
chev’s inequality,

P[|υ⌊tn⌋ − 2σ2t| ≥ n−1/3] ≤ O(tn−1/3).

Applying this result with t = tn := (log n)−c−1, since η̂n⌊tnn⌋/n = Bυ⌊tnn⌋
we

have

P[5Rn,7Rn]

[

|η̂ntn | ≤ γn
]

≤ P

[

inf
{

|Bt −B0| : t ∈ [2σ2tn − n−1/3, 2σ2tn + n−1/3]
}

(4.14)

≤ γn + n−1/8 + 7Rn

]

+ P

[

∣

∣η̂ntn − η̂n⌊tnn⌋/n
∣

∣ ≥ n−1/8
]

+O(tnn
−1/3).

(4.15)

For the first term on the right hand side we have for n sufficiently large

P

[

inf
{

|Bt −B0| : t ∈ [2σ2tn − n−1/3, 2σ2tn + n−1/3]
}

≤ γn + n−1/8 + 7Rn

]

≤ P

[

|B2σ2tn −B0| ≤ γn + 3n−1/8
]

+ P

[

sup
t∈[0,2n−1/3]

|Bt −B0| ≥ 1
2n

−1/8

]

= O(γ2nt
−1
n ) +O(e−

1
64

n1/12
)

= O((log n)1−c),

(4.16)

For the second inequality, we use that the density of Bt is bounded by
(2πt)−1 for the first term and we apply (4.4) for the second term.

Moving on to the second term on the right hand side of (4.15), since

from (4.11) we have E

[

|η̂ntn − η̂n⌊tnn⌋/n|
2
]

= O(n−1), by Markov’s inequality

(4.17) P

[

|η̂ntn − η̂n⌊tnn⌋/n| ≥ n−1/8
]

= O(n−3/4).

Putting (4.16) and (4.17) into (4.15) we have

P[5Rn,7Rn]

[

|η̂ntn | ≤ γn
]

= O((log n)1−c).

In view of (4.10), this completes the proof. �
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Proof. (Of Lemma 4.4.) First consider a single inner excursion. Evi-
dently there exists β > 0 such that, for all n:

(‡) For any x ∈ (0, 5Rn), if |ηnt | = x then the probability that ηn will
either exit B5Rn(0) or hit 0 within its next three jumps is at least β.

Let (Jl)l≥0 be the (a.s. finite) sequence of jump times of our inner ex-
cursion, and let Bk be the event that the excursion either coalesces or exits
B5Rn(0) at one of {J3k+1, J3k+2, J3k+3}. By the strong Markov property (ap-
plied at J3k) and (‡), inf{k ≥ 0 : 1Bk

= 1} is stochastically bounded above
by a geometric random variable G with success probability β.

Moreover, for as long as ηn is not at 0, the rate at which it jumps is
bounded below by the rate at which ξn,1 jumps, which is

∫

R2 m
n(dz) = Θ(n)

where mn is given by (2.6). Hence for each l ≥ 0, Jl+1 − Jl is stochastically
bounded above by El where the (Ei)i≥0 are i.i.d. exponential random vari-
ables of this rate.

Combining these observations,

P(0,5Rn)

[

τ5Rn ∧ τ0 > n−1/2
]

≤ P

[

J⌈3n1/3+3⌉ ≥ n−1/2
]

+ P

[

G > n1/3
]

(4.18)

= O(n−1/6) + (1− β)n
1/3

= O(n−1/6)

where the last line follows by Markov’s inequality.
We are now in a position to complete the proof. Recall that ηn overshoots

if it has neither coalesced nor diverged by time (log n)−c. Let n be sufficiently
large that

(log n)1/2(n−1/2 + (log n)−c−1) ≤ (log n)−c.

Thus, if ηn overshoots and i∗ < (log n)1/2, then at least one inner excursion
must have lasted longer than n−1/2 or at least one outer excursion must
have lasted longer than (log n)−c. Hence,

Pζn [η
n overshoots] ≤ (log n)1/2

(

P(0,5Rn)

[

τ5Rn ∧ τ0 > n−1/2
]

+ P[5Rn,7Rn]

[

τγn ∧ τ4Rn > (log n)−c−1
]

)

+ Pζn

[

i∗ > (log n)1/2
]

.

Using (4.18), (4.5) and Lemma 4.3 to bound the right hand side of the above
equation, we obtain

Pζn [η
n overshoots] ≤ (log n)1/2(O(n−1/6) +O((log n)1−c)) + α(logn)1/2
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= O((log n)3/2−c),

which completes the proof. �

Proof. (Of Lemma 4.5.) We note that the probability that ηn diverges
is bounded above by the probability that a divergent outer excursion occurs
before a coalescing inner excursion occurs. Let us write ηn,i,in for the ith inner
excursion and ηn,i,out for the ith outer excursion and let us write τ r,i,in, τr,i,in
and τ r,i,out, τr,i,out for the associated equivalents of τ r and τr. Thus,

Pζn [η
n diverges]

≤ Pζn
[

inf
{

i ≥ 1 : τγn,i,out < τ4Rn,i,out} ≤ inf{i ≥ 0 : τ0,i,in < τ5Rn,i,in
}]

.

By the strong Markov property (applied successively at times τ outi and τ ini ),
along with (4.6) and (†), the right hand side of the above equation is bounded
above by the probability that a geometric random variable with success prob-
ability Θ( 1

logn) is smaller than an (independent) geometric random variable

with success probability α′ > 0. With this in hand, an elementary calculation
shows that

Pζn [η
n diverges] = O

(

1

log n

)

.

It remains to prove a lower bound of the same order.
In similar style to (†) and (‡), it is easily seen that there exists δ > 0 such

that for all n:

(⋆) For any x ∈ [Rn, 4Rn], if |ηn0 | = x, the probability that ηn will exit
B5Rn(0) without coalescing is at least δ.

We note also that ζn is equal to n−1/2ζ1 in distribution, so since we assumed
that µ((34R,R]) > 0, there exists ǫ > 0 such that P[ζn ≥ Rn] ≥ ǫ for all n.
Thus, applying the strong Markov Property at time τ in0 and using (⋆), we
obtain

Pζn [η
n diverges] ≥ ǫδP[5Rn,7Rn] [τ

γn < τ4Rn ]− Pζn [η
n overshoots]

= Θ

(

1

log n

)

as required, where the final statement follows from Lemma 4.7 and Lemma 4.4
(since c ≥ 3). �
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4.1.2. Production of branches. The next step of the proof of Theorem 2.7
involves further analysis of pairs of potential ancestral lineages: first we need
to check that once a pair has separated to a distance γn they won’t come
back together again before a fixed time K; second we need to see that
log n times the divergence probability actually converges (c.f. Lemma 4.5)
as n → ∞, since this will determine the branching rate in our branching
Brownian motion limit. These two statements are the object of the next two
lemmas.

Lemma 4.9. Fix K ∈ (0,∞). Then

P[(logn)−c,∞) [τ4Rn ≤ K] = O
(

log log n

log n

)

.

Lemma 4.10. There exists κ ∈ (0,∞) such that (log n)Pζn [η
n diverges] →

κ as n→ ∞.

The remainder of this subsection is occupied with proving Lemmas 4.9
and 4.10.

Proof. (Of Lemma 4.9.) We use the Skorohod embedding of η̂ into the
Brownian motionW , as defined in (4.7), to reduce the claim to an equivalent
statement about a two-dimensional Bessel process.

Recall that ηn0 = η̂n0 = W0 and recall τr from (4.3), and that τ̂r and Tr
are the analogues of τr for η̂ and W respectively. We have that ηns = η̂ns for
all s ≤ τ4Rn so

P[(logn)−c,∞) [τ4Rn ≤ K] = P[(logn)−c,∞) [τ̂4Rn ≤ K]

≤ P[(logn)−c,∞)

[

T4Rn ≤ T (S(K))
]

,(4.19)

where we used the Skorohod embedding given in (4.7) in the last line. For
all K̃, C > 0, since T (k) is increasing in k we have

(4.20) P

[

T (S(K)) ≥ K̃
]

≤ P [S(K) ≥ Cn] + P

[

T (Cn) ≥ K̃
]

.

By its definition in (4.7), S(K) is bounded by the sum of two Poisson random
variables with parameter χ = K

∫

R2 m
n(dz), where mn is given by (2.6). In

particular, χ = Θ(n). Recall that if Z ′ is Poisson with parameter χ, then
(using a Chernoff bound argument) for k > χ,

(4.21) P[Z ′ > k] ≤ e−χ(eχ)k

kk
.
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Hence, for C sufficiently large, there exists δ1 > 0 such that

(4.22) P [S(K) ≥ Cn] ≤ O(e−δ1n).

Now by the definition of (T (m))m≥1 in (4.7), and since rm ≤ 2Rn for each
m,

P

[

T (Cn) ≥ K̃
]

≤ P

[

Cn
∑

i=1

Ri ≥ K̃n

]

,

where (Ri)i≥1 is an i.i.d. sequence with R1
d
= inf{t ≥ 0 : |Wt| ≥ 2R}. Since

P [R1 ≥ k] ≤ P [R1 ≥ k − 1]P [|Wk −Wk−1| ≤ 4R] ≤ P [|W1 −W0| ≤ 4R]k ,

there exists λ > 0 such that E
[

eλR1
]

<∞. Hence by Cramér’s theorem, for

K̃ a sufficiently large constant, there exists δ2 > 0 such that

(4.23) P

[

T (Cn) ≥ K̃
]

= O(e−δ2n).

By (4.19) and (4.20) together with (4.22) and (4.23), we now have for K̃
sufficiently large
(4.24)

P[(logn)−c,∞) [τ4Rn ≤ K] ≤ P[(logn)−c,∞)

[

T4Rn ≤ K̃
]

+O(e−δ1n) +O(e−δ2n).

To finish, we note that

P[(logn)−c,∞)

[

T4Rn ≤ K̃
]

≤ sup
x≥(logn)−c

(

Px

[

T4Rn ≤ T x+logn
]

+ Px

[

T x+logn ≤ K̃
])

≤ sup
x≥(logn)−c

(

log(x+ log n)− log x

log(x+ log n)− log(4Rn)

)

+ P

[

sup
t≤K̃

|Wt −W0| ≥ log n

]

= O
(

log log n

log n

)

+O(e−(8K̃)−1(logn)2),

where the second line uses the scale function for a two-dimensional Bessel
process, and the third line uses (4.4). Substituting this into (4.24), we have
the required result. �

Proof. (Of Lemma 4.10.) Let pn := Pζn [τ
γn < τ0]. Note that by Lemma 4.4,

(4.25) |pn − Pζn [η
n diverges] | = O

(

1

(log n)c−3/2

)

.
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Hence by Lemma 4.5, there exist 0 < d ≤ D <∞ such that for all n ≥ 2,

d ≤ (log n)pn ≤ D.

It follows that (pn)n≥1 has a subsequence (pnk
)k≥1 such that (log nk)pnk

→
κ ∈ (0,∞). Let ǫ > 0 and let N ∈ N be such that N ≥ 1/ǫ and |(logN)pN −
κ| ≤ ǫ. By rescaling, noting that ζn

d
= ζN (Nn )

1/2, and similarly for ηn, we
have

(4.26) pN = Pζn

[

τγN (Nn−1)1/2 < τ0

]

.

Recall, for clarity, that here (as throughout this section) τ r and τ0 refer to
the stopping times for the process ηn.

Define Xn,N := |ηn
τγN (Nn−1)1/2

|. Increasing N , we may assume that 7Rn <

γN (Nn−1)1/2 ≤ γn for n ≥ N . Thus,

pn = Pζn

[

τγN (Nn−1)1/2 ≤ τγn < τ0

]

= Eζn

[

1
τγN (Nn−1)1/2<τ0

PXn,N [τγn < τ0]
]

.(4.27)

Here, the first line holds since ζn < γN (Nn−1)1/2 ≤ γn, and the second
line follows from the first by applying the Strong Markov Property at time
τγN (Nn−1)1/2 .

To estimate (4.27), note that

Xn,N ∈ [ln,N , rn,N ] := [γN (Nn−1)1/2, γN (Nn−1)1/2 + 2Rn].

Using the Skorohod embedding defined in (4.7),

P[ln,N ,rn,N ] [τ
γn < τ0] ≥ inf

x≥γN (Nn−1)1/2
Px [τ

γn < τ7Rn ]

≥ inf
x≥γN (Nn−1)1/2

Px

[

T γn+2Rn < T7Rn

]

=
log(γN (Nn−1)1/2)− log(7Rn)

log(γn + 2Rn)− log(7Rn)

=
1
2 logN +O(log logN)
1
2 log n+O(log log n)

.(4.28)

Note that, in the above, we (again) use the scale function for a two-dimensional
Bessel process to deduce the third line.

We require slightly more work to establish an upper bound. We have
(4.29)
P[ln,N ,rn,N ] [τ

γn < τ0] ≤ P[ln,N ,rn,N ] [τ
γn < τ7Rn ]+P[ln,N ,rn,N ] [τ7Rn < τγn < τ0] .
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We begin by controlling the second term on the right hand side of (4.29).
By the Strong Markov Property at time τ7Rn ,

P[ln,N ,rn,N ] [τ7Rn < τγn < τ0] = E[ln,N ,rn,N ]

[

1τ7Rn<τγnP|ηnτ7Rn
| [τ

γn < τ0]
]

≤ E[ln,N ,rn,N ]

[

P|ηnτ7Rn
| [τ

γn < τ0]
]

.

Since
∣

∣ηnτ7Rn

∣

∣ ∈ [5Rn, 7Rn], using (4.6) in the same way as in the proof of
Lemma 4.5,

(4.30) P[ln,N ,rn,N ] [τ7Rn < τγn < τ0] = O
(

1

log n

)

.

Next, we control the first term on the right hand side of (4.29), again using
the Skorohod embedding (4.7):

P[ln,N ,rn,N ] [τ
γn < τ7Rn ] ≤ P[ln,N ,rn,N ] [T

γn < T5Rn ]

≤ log(γN (Nn−1)1/2 + 2Rn)− log(5Rn)

log(γn)− log(5Rn)

=
1
2 logN +O(log logN)
1
2 log n+O(log log n)

.(4.31)

Combining (4.28), (4.29), (4.30) and (4.31),

P[ln,N ,rn,N ] [τ
γn < τ0] =

logN +O(log logN)

log n+O(log log n)
+O

(

1

log n

)

.

Hence by (4.27),

pn = Pζn

[

τγN (Nn−1)1/2 < τ0

]

(

logN +O(log logN)

log n+O(log log n)
+O

(

1

log n

))

=
(logN)pN

log n

(

1 +O
( log logN

logN

)

1 +O
( log logn

logn

) +O
(

1

logN

)

)

,

where we used (4.26) in the last line. Since |(logN)pN − κ| ≤ ǫ we obtain
for n ≥ N

(log n)pn ≥ (κ− ǫ)

(

1 +O( log logNlogN )

1 +O( log lognlogn )
+O

(

1

logN

)

)

and (log n)pn ≤ (κ+ ǫ)

(

1 +O
( log logN

logN

)

1 +O
( log logn

logn

) +O
(

1

logN

)

)

.

Letting ǫ → 0 and hence N → ∞, limn→∞(log n)pn = κ. The result follows
by (4.25). �
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4.2. Convergence to branching Brownian motion. In this subsection we
identify particular subsets of the dual process that we couple with ob-
jects that we call ‘caterpillars’. The caterpillars play the rôle of individual
branches in the limiting branching Brownian motion. Our (eventual) goal
is to write down a system of ‘branching caterpillars’ and couple it to the
SΛFVS dual. Establishing these couplings is greatly simplified by viewing
the branching and coalescing dual as a deterministic function of an aug-
mented driving Poisson point process and so our first task is to recast the
SΛFVS dual in this way.

Recall that we have a fixed impact parameter u ∈ (0, 1]. We define, re-
cursively, a sequence of subsets of [0, 1] as follows:

A1
u = [0, u], and for k ≥ 1, Ak+1

u = uAk
u ∪ (u+ (1− u)Ak

u).

Then if U ∼ Unif[0, 1], (1Ak
u
(U))k≥1 is an i.i.d. sequence of Bernoulli(u)

random variables (see Lemma 3.20 in Kallenberg (2006) for a proof in the
case u = 1

2 , where (1Ak
u
(U))k≥1 is the binary expansion of U ; the general

case is an easy extension of this).
Let

X = R× R
2 × R+ × B1(0)

2 × [0, 1]2.

Definition 4.11 (The dual as a deterministic function of a driving point
process). Given a simple point process Π on X , and some p ∈ R

2, we
define (Pt(p,Π))t≥0 as a process on ∪∞

k=1(R
2)k as follows.

For each t ≥ 0, Pt(p,Π) = (ξ1t , . . . , ξ
Nt
t ) for some Nt ≥ 1. We refer to i as

the index of the ancestor ξit. We begin at time t = 0 from a single ancestor
P0(p,Π) = ξ10 = p and proceed as follows.

At each (t, x, r, z1, z2, q, v) ∈ Π with v ≥ sn, a neutral event occurs:

1. Let ξn1
t−, . . . , ξ

nm
t− denote the ancestors in Br(x) which have not yet co-

alesced with an ancestor of lower index, with n1 < . . . < nm. For
1 ≤ i ≤ m, mark the ancestor ξni

t− iff q ∈ Ai
u. Let ξ

r1
t−, . . . ξ

rl
t− denote

the marked ancestors.
2. If at least one ancestor is marked, we set ξrit = x+ rz1 for each i and

call this the parental location for the event. We say that the ancestor
ξrit has coalesced with the ancestor ξr1t , for each i ≥ 2.

At each (t, x, r, z1, z2, q, v) ∈ Π with v < sn, a selective event occurs:

1. Let ξn1
t−, . . . , ξ

nm
t− denote the ancestors in Br(x) which have not yet co-

alesced with an ancestor of lower index, with n1 < . . . < nm. For
1 ≤ i ≤ m, mark the ancestor ξni

t− iff q ∈ Ai
u. Let ξ

r1
t−, . . . ξ

rl
t− denote

the marked ancestors.
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2. If at least one ancestor is marked, we set ξrit = x + rz1 for each i

and add an ancestor ξ
Nt−+1
t = x + rz2. We call x + rz1 and x + rz2

the parental locations of the event. We say that the ancestor ξrit has
coalesced with the ancestor ξr1t , for each i ≥ 2.

For each l ∈ N, if ξlτ has coalesced with an ancestor ξkτ of lower index at
time τ , we set ξlt = ξkt for all t ≥ τ .

In the same way as for the definition of P(n)(p) before the statement of
Theorem 2.7, we shall view (Pt(p,Π))t≥0 as a collection of potential ancestral
lineages. Given a realization of Π, we say that a path that begins at p is a
potential ancestral lineage if (1) at each neutral event that it encounters, it
moves to the (single) parent and (2) at each selective event it encounters, it
moves to one of the parents of that event.

Note that if Π is a Poisson point process on X with intensity measure

(4.32) ndt⊗ ndx⊗ µn(dr)⊗ π−1dz1 ⊗ π−1dz2 ⊗ dq ⊗ dv

then as a collection of potential ancestral lineages, (Pt(p,Π))t≥0 has the
same distribution as P(n)(p).

When Π takes this form, the result is that the driving Poisson Point
Process in (2.4) has been augmented by components that determine the
nature of each event (neutral or selective), the parental locations of each
event and which lineages in the region of the event are affected by it. We
have abused notation by retaining the notation Π for this augmented process.

4.2.1. The caterpillar. We now introduce the notion of a caterpillar,
which involves following a pair of potential ancestral lineages in the dual. We
stop the caterpillar if the pair of lineages reaches displacement of (log n)−c,
or if the pair does not coalesce within time (log n)−c after last branching.
While doing so, we suppress the creation of the second potential parent at
any selective events that occur within time (log n)−c of the previous (unsup-
pressed) selective event.

Let Π be a Poisson point process on X with intensity measure (4.32).
We write (Pt(p,Π))t≥0 = (ξ1t , . . . , ξ

Nt
t )t≥0 as defined in Definition 4.11.

Definition 4.12 (Caterpillar). For p ∈ R
2, we define a lifetime h(p,Π) >

0, and a process (ct(p,Π))0≤t≤h(p,Π) on (R2)2, which we shall refer to as a
caterpillar. For each t ≥ 0, we write

ct(p,Π) =
(

c1t (p,Π), c
2
t (p,Π)

)

,
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dropping the dependence on (p,Π) from our notation, when convenient. As
part of the definition, we will also define k∗(p,Π) ∈ N and a sequence
(τ brk )k≤k∗ of stopping times.

Set τ br0 = 0 and let τ br1 be the time of the first selective event after (log n)−c

to affect ξ1. For t ≤ τ br1 , let c1t = c2t = ξ1t .
Then, for k ≥ 1, suppose we have defined (τ brl )l≤k; let m(k) = Nτbrk

.

For t ∈ [τ brk , τ
br
k + (log n)−c], define c1t (p,Π) = ξ1t and c2t (p,Π) = ξ

m(k)
t .

In analogy with Definition 4.2, define

τdivk = inf{t ≥ τ brk : |c1t − c2t | ≥ (log n)−c},
τ coalk = inf{t ≥ τ brk : c1t = c2t },
τoverk = τ brk + (log n)−c,(4.33)

and let τ typek = min(τdivk , τ coalk , τoverk ). If τ typek 6= τ coalk then set k∗(p,Π) = k

and h(p,Π) = τ typek∗ . The definition is then complete. If not, we proceed as
follows.

Let τ brk+1 be the time of the first selective event occurring strictly after

τ brk + (log n)−c to affect ξ1. For t ∈ [τ brk + (log n)−c, τ brk+1), let c1t (p,Π) =
c2t (p,Π) = ξ1t .

We then continue iteratively for each k ≤ k∗(p,Π).

We refer to (τbrk )k≤k∗ , the times at which a selective event results in
branching, as branching events. We shall abuse our previous terminology
and say that a branching event diverges, coalesces or overshoots when the
same is true of the excursion corresponding to the pair (c1, c2).

Remark 4.13. Note that (ct)t≥0 is not a Markov process with respect to
its natural filtration, since c1 and c2 are not allowed to branch off from each
other within (log n)−c of the previous branching event. However, for i = 1, 2,
(cit(p,Π))0≤t≤h(p,Π) is a Markov process with the same jump rate and jump
distribution as a single potential ancestral lineage in the rescaled SΛFVS
dual. Moreover for each 1 ≤ k ≤ k∗, (c1t , c

2
t )τbrk ≤t≤τ typek

is an excursion as

defined in Section 4.1.

Recall the definition of mn(dz) from (2.6) and let

(4.34) κn = (log n)P[τ type1 6= τ coal1 ] and λ = n−1

∫

R2

mn(dz) = Θ(1).

By combining Lemma 4.10 and Lemma 4.4,

(4.35) κn → κ
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as n→ ∞.
By the strong Markov property of Π, and since τ typek ≤ τbrk + (log n)−c ≤

τbrk+1 for each k, the types of the selective events, ({τ typek = τdivk })k≥1,

({τ typek = τ coalk })k≥1 and ({τ typek = τoverk })k≥1 are each i.i.d. sequences. Thus,

(4.36) k∗(p,Π) ∼ Geom(κn(log n)
−1).

By (4.35), there exist constants 0 < a ≤ A <∞ such that κn ∈ [a,A] for all
n sufficiently large, so

(4.37) P[k∗ ≥ (log n)9/8] = (1− κn
logn)

(logn)9/8 = O(e−δ(logn)1/8)

for some δ > 0.

Lemma 4.14. We can couple h(p,Π) with H ∼ Exp(κnλ) in such a way

that for some δ > 0, with probability at least 1−O(e−δ(logn)1/8)

|h(p,Π)−H| ≤ 3(log n)−1/4.

Proof. Recall the definition of λ in (4.34). Since the total rate at which
c1 jumps is given by λn, and each jump is from a selective event indepen-
dently with probability sn = logn

n , by the strong Markov property of Π we
have that

(4.38) Ek := τbrk − (τbrk−1 + (log n)−c) ∼ Exp(λ log n)

and (Ek,1{τ typek 6=τcoalk })k≥1 is an i.i.d. sequence.

Since (for example) {τ typek 6= τ coalk } is not independent of the radius
of the event at τbrk , we note that Ek and 1{τ typek 6=τcoalk } are not indepen-

dent; therefore (Ek)k≥1 is not independent of k∗. However, we can couple
(Ek,1{τ typek 6=τcoalk })k≥1 with a sequence (E′

k)k≥1 which is independent of k∗

as follows.
First sample the sequence (1{τ typek 6=τcoalk })k≥1, and then independently sam-

ple a sequence (E′
k, Ak)k≥1 with the same distribution as (Ek,1{τ typek 6=τcoalk })k≥1.

Then, for each k ≥ 1, if Ak = 1{τ typek 6=τcoalk } set Ek = E′
k, and if not sample

Ek according to its conditional distribution given 1{τ typek 6=τcoalk }.

We now have a coupling of (Ek,1{τ typek 6=τcoalk })k≥1 and (E′
k)k≥1 such that

(E′
k)k≥1 is an i.i.d. sequence, independent of k∗, with E′

1 ∼ Exp(λ log n).
Also, since P[τ typek 6= τ coalk ] = Θ((log n)−1), we have that independently for
each k, Ek = E′

k with probability at least 1−Θ((log n)−1).
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We write
k∗
∑

k=1

Ek =

k∗
∑

k=1

E′
k +

k∗
∑

k=1

Dk,

where Dk = Ek − E′
k and, by (4.36),

∑k∗

k=1E
′
k ∼ Exp(λκn).

Our next step is to bound
∑k∗

k=1Dk. Firstly, applying a Chernoff bound
to the binomial distribution yields

P

[∣

∣

∣

{

k < (log n)9/8 : Dk 6= 0
}

∣

∣

∣
≥ (log n)1/4

]

= P

[

Bin
(

(log n)9/8,Θ((log n)−1)
)

≥ (log n)1/4
]

= O
(

exp(−δ′(log n)1/4)
)

(4.39)

for some δ′ > 0. Secondly,

P

[

|D1| ≥ (log n)−1/2
]

≤ P

[

E1 ≥ 1
2(log n)

−1/2
]

+ P

[

E′
1 ≥ 1

2(log n)
−1/2

]

= 2 exp(−λ(log n)1/2/2).(4.40)

Combining (4.37), (4.39) and (4.40), we have that

(4.41) P

[

k∗
∑

k=1

Dk ≥ (log n)−1/4

]

= O
(

e−δ′′(logn)1/8
)

,

for some δ′′ ∈ (0, δ).
Note that

k∗
∑

k=1

Ek = τbrk∗ − k∗(log n)−c = h− k∗(log n)−c − (τ typek∗ − τbrk∗ ),

with 0 ≤ τ typek∗ − τbrk∗ ≤ (log n)−c. Let H =
∑k∗

k=1E
′
k. Then by (4.37) and

(4.41), we have

P

[

|h(p,Π)−H| ≥ (log n)9/8−c + (log n)−c + (log n)−1/4
]

= O
(

e−δ′′(logn)1/8
)

.

The result follows since c ≥ 3. �

Our next step is to show that a caterpillar is unlikely to end with an
overshooting event.

Lemma 4.15. As n→ ∞, P
[

τ typek∗ = τoverk∗

]

= O
(

(log n)
21
8
−c
)

.
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Proof. By Lemma 4.4, for k ≥ 1

(4.42) P[τ typek = τoverk ] = O((log n)
3
2
−c).

Moreover,

{τ typek∗ = τoverk∗ } ⊂ {k∗ ≥ (log n)9/8} ∪
(logn)9/8
⋃

k=1

{τ typek = τoverk }.

It follows, using (4.37), that

P[τ typek∗ = τoverk∗ ] = O(e−δ(logn)1/8) +O((log n)
3
2
+ 9

8
−c) = O((log n)

21
8
−c).

This completes the proof. �

We now show that a single caterpillar can be coupled to a Brownian mo-
tion in such a way that the caterpillar closely follows the Brownian motion,
during time [0, h(p,Π)].

Recall that the rate at which ξ1 jumps from y to y+z is given by intensity
measure mn(dz), defined in (2.6). Thus for (ct)t≥0 started at p, E[c1t ] = p
and the covariance matrix of c1t is σ2tId since by (2.8),

σ2 = 1
2

∫

R2

|z|2mn(dz).

Armed with this, the following lemma is no surprise.

Lemma 4.16. Let (Wt)t≥0 be a two-dimensional Brownian motion with
W0 = p. We can couple (ct(p,Π))t≤h(p,Π) with (Wt)t≥0, in such a way that

(Wt)t≥0 is independent of (τ brk )k≥1 and k∗(p,Π), and for any r > 0, with
probability at least 1−O((log n)−r), for t ≤ h(p,Π),

|c1t (p,Π)−Wσ2t| ≤ (log n)
9
8
− c

3 .

Remark 4.17. By the definition of the caterpillar in Definition 4.12,
for all t ≤ h(p,Π), |c2t − c1t | ≤ (log n)−c. Hence under the coupling of
Lemma 4.16, with probability at least 1 − O((log n)−r), |c2t (p,Π) −Wσ2t| ≤
2(log n)

9
8
− c

3 .

Proof. The proof is closely related to the second half of the proof of
Lemma 4.7. Note for k ≥ 0, on the time interval [τ brk + (log n)−c, τ brk+1),
c1t is a pure jump process with rate of jumps from y to y + z given by
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(1− sn)m
n(dz). Let (c̃t)t≥0 be a pure jump process with c̃0 = 0 and rate of

jumps from y to y + z given by (1− sn)m
n(dz). For i ≥ 1, let

Xi = c̃i/n − c̃(i−1)/n.

Then (Xi)i≥1 are i.i.d., and as in (4.11) and (4.12), we have E[|X1|2] =
2σ2(1−sn)

n and E[|X1|4] = O(n−2).
By the same Skorohod embedding argument as for (4.13), there is a two-

dimensional Brownian motion W started at 0 and a sequence υ1, υ2, . . . of
stopping times for W such that for i ≥ 1, Wυi = c̃i/n and

P[|υ⌊tn⌋ − σ2(1− sn)t| ≥ n−1/3] ≤ O(tn−1/3).

Fix t > 0. Since sn = logn
n , for n sufficiently large,

P[|υ⌊tn⌋ − σ2t| ≥ 2n−1/3] ≤ O(n−1/3).

Then by a union bound over j = 1, . . . , ⌊n1/4t⌋,

P

[

∃j ≤ ⌊n1/4t⌋ : |υ⌊jn3/4⌋ − σ2jn−1/4| ≥ 2n−1/3
]

≤ (n1/4t)O(n−1/3)

(4.43)

= O(n−1/12).

Again by a union bound over j,

P

[

∃j ≤ ⌊n1/4t⌋ : sup
{

|Wσ2jn−1/4 −Wu|

: u ∈ [σ2jn−1/4 − 2n−1/3, σ2(j + 1)n−1/4 + 2n−1/3]

}

≥ n−1/10

]

≤ (n1/4t)2P
[

sup{|Ws −W0| : s ∈ [0, 4n−1/3]} ≥ 1
2n

−1/10
]

≤ 4n1/4t exp(−n2/15/128) = o(n−1/12).

(4.44)

Here, the last line follows by (4.4).
Under the complement of the event of (4.43), for all j < ⌊n1/4t⌋,

|υ⌊jn3/4⌋ − σ2jn−1/4| ≤ 2n−1/3 and |υ⌊(j+1)n3/4⌋ − σ2(j + 1)n−1/4| ≤ 2n−1/3,

which implies that for i such that jn−1/4 ≤ in−1 ≤ (j + 1)n−1/4,

υi ∈
[

σ2jn−1/4 − 2n−1/3, σ2(j + 1)n−1/4 + 2n−1/3
]

.
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Hence combining (4.43) and (4.44),

P

[

∃i ≤ ⌊tn⌋ : |c̃i/n −Wσ2i/n| ≥ 2n−1/10
]

= O(n−1/12).

Our next step is to control |c̃s − c̃i/n| during the interval s ∈ [i/n, (i +
1)/n]. The distribution of the number of jumps made by c̃ on an interval
[i/n, (i + 1)/n] is Poisson with parameter (1 − sn)λ, where λ is given by
(4.34), and the maximum jump size is 2Rn; using (4.21) with χ = (1−sn)λ
and k = log n gives that

P

[

∃i ≤ ⌊tn⌋ : sup
s∈[i/n,(i+1)/n]

|c̃s − c̃i/n| ≥ (log n)2Rn

]

= o(n−1).

Hence for n large enough that (log n)2Rn ≤ n−1/10, using (4.44) again to
bound |Ws −Wσ2i/n| during the interval [σ2i/n, σ2(i+ 1)/n] we have

(4.45) P

[

sup
s≤t

|c̃s −Wσ2s| ≥ 4n−1/10

]

= O(n−1/12).

We now apply this coupling to (c1t )τbrk +(logn)−c≤t≤τbrk+1
for each k ≥ 0, and

let the caterpillar evolve independently of the Brownian motion on each
interval [τbrk , τ

br
k + (log n)−c].

More precisely, let (c̃k)k≥0 be an i.i.d. sequence of pure jump processes
with c̃k0 = 0 and rate of jumps from y to y+ z given by (1− sn)m

n(dz). Let
(W k)k≥0 be an i.i.d. sequence of 2-dimensional Brownian motions started at
0 and for each k ≥ 0, couple W k and c̃k in the same way as above, so that
for fixed t > 0, for each k ≥ 0,

(4.46) P

[

sup
s≤t

|c̃ks −W k
σ2s| ≥ 4n−1/10

]

= O(n−1/12).

Then by the Strong Markov property for the process c1, we can couple
(c̃k,W k)k≥0 and c1 in such a way that for k ≥ 0 and s ∈ [0, τ brk+1 − (τ brk +
(log n)−c)),

c1
s+τbrk +(logn)−c − c1

τbrk +(logn)−c = c̃ks .

and (c̃k,W k)k≥0 is independent of
(

τbrk , (c
1
t − c2t )|[τbrk ,τbrk +(logn)−c)

)

k≥0
.

Let B be another independent 2-dimensional Brownian motion started at
0. We now define a single Brownian motionW by piecing together increments
of B and (W k)k≥0. For s < σ2(log n)−c, let Ws = Bs + p. Then for k ≥ 0,
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define the increments ofW on the time interval [σ2(τ brk +(log n)−c), σ2(τ brk+1+

(log n)−c)) as follows. For s ∈ [0, σ2(τ brk+1 − τ brk )), let

Ws+σ2(τbrk +(logn)−c) −Wσ2(τbrk +(logn)−c) =W k
s .

ThenW is a Brownian motion independent of
(

τbrk , (c
1
t−c2t )|[τbrk ,τbrk +(logn)−c)

)

k≥0
,

which implies that W is independent of both k∗ and (τbrk )k≥1.
We now check that Wt is close to c1t for t < h. By (4.38),

P

[

τbrk+1 − τbrk ≥ 1 + (log n)−c
]

≤ n−λ.

Hence applying (4.46) with t = 1 + (log n)−c for each k ≤ (log n)9/8 and

using (4.37), we have that with probability at least 1 − O(e−δ(logn)1/8), for
0 ≤ k ≤ k∗ and t ∈ [τbrk + (log n)−c, τbrk+1),

(4.47)
∣

∣

∣

(

c1t − c1
τbrk +(logn)−c

)

−
(

Wσ2t −Wσ2(τbrk +(logn)−c)

)∣

∣

∣
≤ 4n−1/10.

For each k, by (4.4),

P

[

sup
{

|Wσ2t −Wσ2τbrk
| : t ∈ [τbrk , τ

br
k + (log n)−c]

}

≥ 1
3(log n)

−c/3
]

≤ 4 exp(−(log n)c/3/72σ2)

= o
(

(log n)−r− 9
8

)

,(4.48)

for any r > 0. Hence, using (4.37) again,

P

[

k∗
∑

k=1

sup
{

|Wσ2t −Wσ2τbrk
| : t ∈ [τbrk , τ

br
k + (log n)−c]

}

≥ 1
3(log n)

9
8
− c

3

]

≤ P

[

k∗ ≥ (log n)9/8
]

+ (log n)9/8o((log n)−r− 9
8 )

= o((log n)−r).
(4.49)

For k ≥ 0, on the time interval [τbrk , τ
br
k + (log n)−c] the process c1t is a pure

jump process with rate of jumps from y to y + z given by mn(dz). Hence
using the same Skorohod embedding argument as for (4.45), we can couple
(c1

s+τbrk

− c1
τbrk

)s≤(logn)−c with a Brownian motion W ′ started at 0 in such a

way that

P

[

sup
s≤(logn)−c

|(c1
s+τbrk

− c1
τbrk

)−Wσ2s| ≥ 4n−1/10

]

= O(n−1/12).
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Applying (4.49) and (4.37), it follows that

P

[ k∗
∑

k=1

sup
{

|c1t − c1
τbrk

| : t ∈ [τbrk , τ
br
k + (log n)−c]

}

≥ 1
3(log n)

9
8
− c

3 + 4n−1/10(log n)9/8
]

= O((log n)−r).

The stated result follows by combining the above equation with (4.47),
(4.37) and (4.49). �

4.2.2. The branching caterpillar. We now construct a branching process
of caterpillars. We start from a single caterpillar and allow it to evolve until
the time h. We start two independent caterpillars from the locations of c1h
and c2h. Now iterate. The independent caterpillars defined in this way will
be indexed by points of U = {∅} ∪⋃∞

k=1{1, 2}k. More formally:

Definition 4.18 (Branching caterpillar). Let (Πj)j∈U be a sequence of
independent Poisson point processes on X with intensity measure (4.32).
For p ∈ R

2, we define (Ct(p, (Πj)j∈U ))t≥0 as a process on ∪∞
k=1(R

2)k as
follows. For s > 0, let

Πs
j = {(t− s, x, r, z1, z2, q, v) : (t, x, r, z1, z2, q, v) ∈ Πj}.(4.50)

Define (pj , tj , hj) inductively for j ∈ U by p∅ = p, t∅ = 0 and

hj = tj + h(pj ,Π
tj
j )

t(j,1) = t(j,2) = hj

p(j,1) = c1hj−tj
(pj ,Π

tj
j )

p(j,2) = c2hj−tj
(pj ,Π

tj
j ).

Finally, define U(t) = {j ∈ U : tj ≤ t ≤ hj} and

Ct(p, (Πj)j∈U ) = (ct−tj (pj ,Π
tj
j ))j∈U(t).

In words, U(t) is the set of indices of the caterpillars that are active at time
t, and Ct is the set of (positions of) those caterpillars. Note that we translate
the time coordinates in (4.50) to match our definition of a caterpillar, which
began at time 0. The jumps in Ct occur at the time coordinates of events in
∪j∈UΠj .
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We now show that for any constant a > 0, with high probability, the
longest ‘chain’ of caterpillars has length at most a log log n + 1. For k ∈ N,
let Uk = {∅} ∪⋃k

j=1{1, 2}j .

Lemma 4.19. Fix T > 0; then for any r > 0, a > 0, P[U(T ) 6⊆
U⌊a log logn⌋] = o((log n)−r).

Proof. Fix v ∈ {1, 2}⌊a log logn⌋+1. Then by a union bound,

(4.51) P

[

∃w ∈ {1, 2}⌊a log logn⌋+1 s.t. tw ≤ T
]

≤ 2⌊a log logn⌋+1
P[tv ≤ T ].

Note that by Lemma 4.14, tv =
∑⌊a log logn⌋+1

i=1 Hi + R where (Hi)i≥1 are
i.i.d. with H1 ∼ Exp(λκn) and

P

[

R ≥ 3(a log log n+ 1)(log n)−1/4
]

= O((log log n)e−δ(logn)1/8).

Hence (if n is sufficiently large that 3(a log log n + 1)(log n)−1/4 ≤ T/2), if
Z ′ is Poisson with parameter λκnT/2,

P[tv ≤ T ] ≤ P[Z ′ ≥ a log log n+ 1] +O
(

(log log n)e−δ(logn)1/8
)

.

We use (4.21) and combine with (4.51) to deduce that, for any r > 0,

P[U(T ) 6⊆ U⌊a log logn⌋] = P

[

∃w ∈ {1, 2}⌊a log logn⌋+1 s.t. tw ≤ T
]

= o((log n)−r).

This completes the proof. �

The next task is to couple the branching caterpillar to the rescaled dual
of the SΛFVS. Since we have expressed the dual as a deterministic function
of the driving point process of events in Definition 4.11, it is enough to find
an appropriate coupling of the driving events for the branching caterpillar
and those of a SΛFVS dual.

The idea, roughly, is as follows. Each ‘branch’ of the branching caterpillar
is constructed from an independent driving process. For each of these we
should like to retain those events that affected the caterpillar, but we can
discard the rest. If two or more caterpillars are close enough that the events
affecting them could overlap, to avoid having too many events in these re-
gions we have to arbitrarily choose one caterpillar and discard the events
affecting the others. We then supplement these with additional events, ap-
propriately distributed to fill in the gaps and arrive at the driving Poisson
point process for a SΛFVS dual, with intensity as in (4.32). We will then
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check that the SΛFVS dual corresponding to this point process coincides
with our branching caterpillar, with probability tending to one as n→ ∞.

To put this strategy into practice we require some notation. Let U0 =
U ∪ {0}. For V ⊂ U0 let max(V ) refer to the maximum element of V with
respect to a fixed ordering in which 0 is the minimum value (it does not
matter precisely which ordering we use, but we must fix one). Given a se-
quence (Πj)j∈U0 of independent Poisson point processes on X with intensity
measure (4.32), define a simple point process Π as follows. Let
(4.52)

j(t, x) = max
({

k ∈ U(t) : ∃i ∈ {1, 2} with |cit−tk
(pk,Π

tk
k )− x| ≤ Rn

}

∪ {0}
)

.

Note that j(t, x) = 0 corresponds to regions of space-time that are not near
a caterpillar, so that for (t, x, r, z1, z2, q, v) ∈ Π0, Br(x) does not contain a
caterpillar. Then we define

(4.53) Π =
⋃

k∈U0

{(t, x, r, z1, z2, q, v) ∈ Πk : j(t, x) = k} .

Lemma 4.20. Π is a Poisson point process with intensity measure given
by (4.32).

Remark 4.21. We defined the coupling (4.53) for each n ∈ N. As such,
in the proof of Lemma 4.20 we regard n as a constant and we will not include
it inside O(·), etc.

Proof. Let ν(dt, dx, dr, dz1, dz2, dq, dv) be the intensity measure given
in (4.32).

Let B0 be the set of bounded Borel subsets of R+×R
2×R+×B1(0)

2×[0, 1]2;
for B ∈ B0, let N(B) = |Π ∩ B| and for j ∈ U0, let Nj(B) = |Πj ∩ B|.
Suppose B = ∪k

i=1Bi ∈ B0 where for each i, Bi = [ai, bi] × Di for some
a = a1 < b1 ≤ a2 < . . . < bk = b. Let BR ⊂ B0 denote the collection of
such sets B. Note that Π is a simple point process, and that therefore Π is
a Poisson point process with intensity ν if and only if

(4.54) P [N(B) = 0] = e−ν(B)

for all B ∈ BR. (See e.g. Section 3.4 of Kingman (1992).)
For some δ > 0, assume that bi − ai ≤ δ, ∀i (by partitioning the Bi

further if necessary). Since B is bounded, ∃ d < ∞ s.t. |x| ≤ d for all
(t, x, r, z1, z2, q, v) ∈ B. We can write

P[N(B) = 0] = P[∩k
i=1{N(Bi) = 0}]
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= E

[

k−1
∏

i=1

1{N(Bi)=0}P

(

N(Bk) = 0

∣

∣

∣

∣

(Πj(ak))j∈U0

)

]

(4.55)

where Πj(t) := Πj |[0,t]×R2×R+×B1(0)2×[0,1]2 .

For j ∈ U0, let D
j
k = {(x, r, z1, z2, q, v) ∈ Dk : j(ak, x) = j} and Bj

k =

[ak, bk]×Dj
k. Also let

B̃k = [ak, bk]× Bd+3Rn(0)× R+ × B1(0)
2 × [0, 1]2,

and let V(t) = ∪s≤tU(s).
For t ∈ [ak, bk], if none of the caterpillars in Bd+3Rn(0) move during

the time interval [ak, t] then j(ak, x) = j(t, x) ∀x ∈ Bd(0); thus a point
(t, x, r, z1, z2, q, v) in Π∩Bk must be a point in Πj ∩Bj

k for some j, and vice

versa. We can use this observation to relate {N(Bk) = 0} and ∩j∈U0{Nj(B
j
k) =

0}, as follows.
If N(Bk) = 0 and Nj(B

j
k) 6= 0 for some j ∈ U0, then Dj

k 6= ∅ so j ∈
V(ak) ∪ {0} (either j = 0 or the caterpillar indexed by j is alive at time
ak). Also after ak and before the point in Πj ∩Bj

k, one of the caterpillars in

Bd+3Rn(0) must have moved, so there must be a point in Πl ∩ B̃k for some
l ∈ V(bk). Conversely, if Nj(B

j
k) = 0 ∀j ∈ U0 and N(Bk) 6= 0, then there

must be a point in Πl ∩ B̃k followed by either a point in Π0 ∩Bk or a point
in Πl′ ∩Bk for some l, l′ ∈ V(bk). Hence

{N(Bk) = 0}△(∩j∈U0{Nj(B
j
k) = 0}) ⊂







N0(Bk) +
∑

l∈V(bk)

Nl(B̃k) ≥ 2







.

(4.56)

Note that by the definition of a caterpillar in Definition 4.12, for each

j ∈ U , h(pj ,Πtj
j ) ≥ (log n)−c. It follows that V(bk) ⊆ ⋃⌈bk(logn)

c⌉
m=0 {1, 2}m.

Also if J ⊂ U0 with |J | = K then
∑

j∈J Nj(B̃k) has a Poisson distribu-

tion with parameter Kν(B̃k), and since bk − ak ≤ δ, ν(B̃k) ≤ n2π(d +
3Rn)

2µ((0,R])δ. Hence for Z ′ a Poisson random variable with parameter
(22+bk(logn)

c
+ 1)ν(B̃k) = O(δ),

P



N0(Bk) +
∑

j∈V(bk)

Nj(B̃k) ≥ 2

∣

∣

∣

∣

(Πj(ak))j∈U0



 ≤ P
[

Z ′ ≥ 2
]

= O(δ2).

By (4.56), we now have that

P[N(Bk) = 0|(Πj(ak))j∈U0 ] = P[∩j∈U0{Nj(B
j
k) = 0}] +O(δ2)
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=
∏

j∈U0

exp(−ν(Bj
k)) +O(δ2)

= exp(−ν(Bk)) +O(δ2).

Substituting this into (4.55) and then repeating the same argument for k−
1, k − 2, . . . , 1,

P[N(B) = 0] =
k
∏

i=1

exp(−ν(Bk)) +
k
∑

i=1

O(δ2)

= exp(−ν(B)) + kO(δ2).

By partitioning B further, we can let δt → 0 with k = Θ(1/δ). It follows
that P[N(B) = 0] = exp(−ν(B)). By (4.54), this completes the proof. �

It follows immediately from Lemma 4.20 that the collection of potential
ancestral lineages in (Pt(p,Π))t≥0 has the same distribution as P(n)(p), the
rescaled SΛFVS dual. We now show that under this coupling the rescaled
SΛFVS dual and branching caterpillar coincide with high probability.

We consider (Ct(p, (Πj)j∈U ))0≤t≤T as a collection of paths as follows. The
set of paths through a single caterpillar (ct(p,Π))t≤h(p,Π) with k

∗(p,Π) = k∗

is given by {li}i∈{1,2}k∗ , where li(t) = c1t (p,Π) for t ∈ [0, (log n)−c] and for

each 1 ≤ k ≤ k∗, li(t) = cikt (p,Π) for t ∈ [τbrk−1+(log n)−c, (τbrk +(log n)−c)∧
h(p,Π)]. Then the collection of paths through (Ct(p, (Πj)j∈U ))0≤t≤T is given
by concatenating paths through the individual caterpillars, i.e. paths l :
[0, T ] → R

2 such that for some sequence (um)m≥0 ⊂ U with um+1 = (um, im)
for some im ∈ {1, 2} for eachm, for t ∈ [tum , hum ], l(t) follows a path through
(ct−tum (pum ,Π

tum
um ))t with l(hum) = pum+1 .

Lemma 4.22. Fix T > 0. Let (Πj)j∈U0 be independent Poisson point
processes with intensity measure (4.32) and let Π be defined from (Πj)j∈U0

as in (4.53). Then (Ct(p, (Πj)j∈U ))0≤t≤T and (Pt(p,Π))0≤t≤T , viewed as col-
lections of paths, are equal with probability at least 1−O((log n)−1/4).

Proof. We shall use Lemma 4.19 with a = (16 log 2)−1. Writing, for

j ∈ U , k∗(j) = k∗(pj ,Π
tj
j ), the number of branching events in ct−tj (pj ,Π

tj
j )

before hj , by a union bound over U⌊a log logn⌋ and (4.37),

P[∃j ∈ U⌊a log logn⌋ : k
∗(j) ≥ (log n)9/8] ≤ 22+a log lognO(e−δ(logn)1/8)

= O(e−δ(logn)1/8/2).(4.57)
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Let (τbrk (j))k≥1 denote the sequence of branching events in ct−tj (pj ,Π
tj
j ), and

similarly define (τ typek (j))k≥1 and (τoverk (j))k≥1 as in (4.33). Note that (Ct)t≤T

and (Pt)t≤T only differ as collections of paths if either a selective event affects
a caterpillar during a time interval in which it ignores branching, or if two
different caterpillars are simultaneously within Rn of some x ∈ R

2 and so
one of them is not driven by the pieced together Poisson point process Π.
More formally, if (Ct)t≤T and (Pt)t≤T differ as collections of paths then one
or more of the following events occurs.

1. U(T ) 6⊆ U⌊a log logn⌋ or k∗(j) ≥ (log n)9/8 for some j ∈ U⌊a log logn⌋.

2. For some j ∈ U⌊a log logn⌋ and k ≤ (log n)9/8, the event E1(j, k) occurs:

one of the lineages c1t−tj (pj ,Π
tj
j ) and c2t−tj (pj ,Π

tj
j ) is affected by a

selective event in the time interval [τbrk (j), τbrk (j) + (log n)−c].
3. For some w 6= v ∈ U⌊a log logn⌋, the event E2(v, w) occurs: there are

i1, i2 ∈ {1, 2} with |ci1t−tw(pw,Π
tw
w ) − ci2t−tv(pv,Π

tv
v )| ≤ 2Rn for some

t ≤ T .

Recall from (4.34) and (2.6) that selective events affect a single lineage with
rate λ log n. Hence for k ∈ N and j ∈ U , P[E1(j, k)] = O((log n)1−c).

We now consider the event E2(v, w). For w 6= v ∈ U , let i = min{j ≥ 1 :
wj 6= vj}. Then let

w ∧ v =

{

(w1, . . . , wi−1) if i ≥ 2

∅ if i = 1.

At time hw∧v, either τ
type
k∗(w∧v)(w ∧ v) = τoverk∗(w∧v)(w ∧ v) or τ typek∗(w∧v)(w ∧ v) =

τdivk∗(w∧v)(w ∧ v), in which case |p(w∧v,1) − p(w∧v,2)| ≥ (log n)−c. Conditional

on |p(w∧v,1) − p(w∧v,2)| ≥ (log n)−c, for i1, i2 ∈ {1, 2},
(

ci1t−tw(pw,Π
tw
w ), ci2t−tv(pv,Π

tv
v )
)

t∈[tw,hw]∩[tv ,hv ]∩[0,T ]

is part of the pair of potential ancestral lineages of an excursion started at
time hw∧v with initial displacement at least (log n)−c. Hence by Lemmas 4.9
and 4.15,

P[E2(w, v)] = O
(

log log n

log n

)

+O
(

(log n)
21
8
−c
)

= O
(

(log n)−3/8
)

since c ≥ 3. By a union bound, and using Lemma 4.19 and (4.57) it follows
that

P [(Ct)t≤T 6= (Pt)t≤T ]
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≤ o((log n)−1) + 4(log n)a log 2+9/8
P[E1(j, k)] + 16(log n)2a log 2P[E2(w, v)]

= O
(

(log n)a log 2+
9
8
+1−c

)

+O
(

(log n)2a log 2−3/8
)

= O
(

(log n)−1/4
)

,

by our choice of a = (16 log 2)−1 and since c ≥ 3. �

We are now ready to complete the proof of Theorem 2.7.

Proof. (Of Theorem 2.7) Set c = 4. By Lemmas 4.20 and 4.22, we have
a coupling of the rescaled SΛFV dual and the branching caterpillar under
which the two processes are equal (as collections of paths) with probability
at least 1−O((log n)−1/4).

We now couple (Ct(p, (Πj)j∈U ))0≤t≤T to a branching Brownian motion

with branching rate λκn. Let ((W
j
t )t≥0, Hj)j∈U be an i.i.d. sequence, where

(W j
t )t≥0 is a Brownian motion starting at 0 andHj ∼ Exp(λκn) independent

of (W j
t )t≥0. For each j ∈ U , we couple (ct−tj (pj ,Π

tj
j ))t∈[tj ,hj ] to ((W

j
t )t≥0, Hj)

as in Lemmas 4.14 and 4.16.
For j ∈ U , let A1(j) be the event that both |(hj − tj)−Hj | ≤ 3(log n)−1/4

and for i = 1, 2 and t ∈ [tj , hj ],

∣

∣

∣
(cit−tj (pj ,Π

tj
j )− pj)−W j

σ2(t−tj)

∣

∣

∣
≤ 2(log n)

9
8
− c

3 = 2(log n)−5/24.

By Lemmas 4.14 and 4.16, for any r > 0, for each j ∈ U , P[A1(j)] ≥
1−O ((log n)−r). Hence, taking a union bound over j ∈ U⌊log logn⌋,

P[∩j∈U⌊log logn⌋
A1(j)] ≥ 1−O((log n)log 2−r).

Also, for j ∈ U , define the event

A2(j) =

{

sup
t∈[0,3(logn)−1/4]

|W j
σ2t

|

+ sup
t∈[Hj−3(logn)−1/4,Hj ]

|W j
σ2t

−W j
σ2Hj

| ≤ (log n)−1/9

}

.

Then by another union bound over U⌊log logn⌋, since for a Brownian motion

(Wt)t≥0 started at 0, P
[

supt∈[0,3(logn)−1/4] |Wt| ≥ 1
2(log n)

−1/9
]

= o((log n)−r),

we have that

P[∩j∈U⌊log logn⌋
A2(j)] ≥ 1−O((log n)log 2−r).
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By Lemma 4.19, P[U(T ) 6⊆ U⌊log logn⌋] = o((log n)−r).
Define a branching Brownian motion starting at p with diffusion constant

σ2 from ((W j
t )t≥0, Hj)j∈U by letting the increments of the initial particle be

given by (W ∅
σ2t

)t≥0 until time H∅, when it is replaced by two particles which
have lifetimes H1 and H2 and increments given by (W 1

σ2t)t≥0, (W
2
σ2t)t≥0 and

so on.
If U(T ) ⊆ U⌊log logn⌋ and A1(j) ∩ A2(j) occurs for each j ∈ U⌊log logn⌋,

each path in the branching caterpillar stays within distance 2(log log n +
1)(log n)−1/9+2(log log n+1)(log n)−5/24 of some path through the branch-
ing Brownian motion and vice versa.

Setting r = log 2+1/4 gives us a coupling between the branching caterpil-
lar and branching Brownian motion (with diffusion constant σ2 and branch-
ing rate κnλ) such that with probability at least 1 − O((log n)−1/4), up
to time T each path in the rescaled SΛFVS dual stays within distance
2(log log n)(log n)−1/9 + 2(log log n)(log n)−5/24 of some path through the
branching Brownian motion and vice versa. Finally, we need to couple this
branching Brownian motion up to time T with a branching Brownian mo-
tion with branching rate κλ. By (4.35), κn → κ as n→ ∞, so this follows by
straightforward bounds on the difference between the branching times and
the increments of a Brownian motion during such a time. �
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