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Compressible magnetoconvection in three
dimensions: pattern formation in a strongly

stratified layer

By A. M. RUCKLIDGE, N. O. WEISS, D. P. BROWNJOHN,
P. C. MATTHEWS† AND M. R. E. PROCTOR

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge, CB3 9EW, UK

(Received 7 June 1999 and in revised form 19 May 2000)

The interaction between magnetic fields and convection is interesting both because
of its astrophysical importance and because the nonlinear Lorentz force leads to an
especially rich variety of behaviour. We present several sets of computational results
for magnetoconvection in a square box, with periodic lateral boundary conditions, that
show transitions from steady convection with an ordered planform through a regime
with intermittent bursts to complicated spatiotemporal behaviour. The constraints
imposed by the square lattice are relaxed as the aspect ratio is increased. In wide
boxes we find a new regime, in which regions with strong fields are separated from
regions with vigorous convection. We show also how considerations of symmetry and
associated group theory can be used to explain the nature of these transitions and
the sequence in which the relevant bifurcations occur.

1. Introduction

Stars like the Sun have deep outer convection zones and are magnetically active.
Any attempt to explain the properties of their magnetic fields therefore requires an
understanding of the interaction between those fields and convection. Observations
reveal not only patterns of global activity, such as solar and stellar magnetic cycles,
but also individual magnetic features, including sunspots and small-scale intergranular
magnetic fields. Since the relevant parameter regimes are not accessible in the lab-
oratory, these observations have motivated extensive theoretical studies of nonlinear
magnetoconvection, which rely heavily on computation. The advent of powerful super-
computers, combined with high-resolution observations from the ground and from
space, has at last made it possible to relate numerical results to fine-scale structures on
the Sun (Title 2000). Computational studies have ranged from elaborate simulations of
stellar convection and magnetoconvection to systematic numerical experiments with a
range of idealized models. As time has advanced these models have progressed from
two-dimensional Boussinesq to three-dimensional compressible configurations and so
succeeded in reproducing many features that are actually observed. The calculations
have also revealed a rich and fascinating variety of fluid dynamical behaviour.

Magnetoconvection, along with thermosolutal convection and other double-
diffusive processes, leads to a great many different patterns of motion, some steady and

† Present address: School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham, NG7 2RD, UK.



284 A. M. Rucklidge et al.

others time-dependent, and thus provides a marvellous testbed for nonlinear dynam-
ics. The earlier two-dimensional problems generated complicated temporal behaviour
with relatively simple spatial structures (Proctor & Weiss 1982; Hurlburt et al. 1989;
Weiss et al. 1990; Proctor et al. 1994). In three dimensions there is the additional issue
of pattern selection from the various competing planforms. Moreover, a systematic
approach reveals transitions through different patterns as the system evolves from
ordered motion (in a weakly nonlinear regime) to spatiotemporal chaos. The chal-
lenge then is to construct the underlying bifurcation structure that is associated with
these transitions; it can only be met by identifying the symmetries that are broken.

This paper has three interlocking aims. Our main purpose is to explore transitions
from order to disorder in the nonlinear regime and to understand the physical
processes that are involved. To do this, we solve the governing equations in a
square box with periodic lateral boundary conditions, and proceed by isolating
specific patterns that are stable in small boxes and then expanding the box width
so as to permit more complicated behaviour to occur. Thus our second aim is
to discover how convective structures change when the aspect ratio (normalized
width) is systematically increased. In order to describe this process we emphasize
the spatiotemporal symmetries of different planforms and identify the sequences of
symmetry-breaking bifurcations that lead to more complicated forms of behaviour.
By identifying the relevant symmetry groups, together with their isotropy subgroups,
it is possible to build up a consistent description of this process (cf. McKenzie 1988;
Proctor & Weiss 1993). This taxonomic approach is an aid not only to recognizing
solutions generated by nonlinear computations but also to predicting the existence
of solutions that remain unstable. It can be underpinned by a more mathematical
treatment of symmetry and symmetry-breaking bifurcations (Golubitsky, Stewart &
Schaeffer 1988; Crawford & Knobloch 1991; Chossat & Lauterbach 2000). Our third
aim is to explain the strengths and limitations of this approach, which is unfamiliar
to many fluid dynamicists but necessary in order to understand our results. We hope
that our brief survey may also prove useful in a wider context.

In a previous paper (Matthews, Proctor & Weiss 1995, henceforth referred to
as Paper I) we considered three-dimensional behaviour in a shallow compressible
layer (thereby breaking the up–down symmetry of Boussinesq magnetoconvection)
and focused our attention on planforms for steady and oscillatory convection in
mildly nonlinear regimes. The computations supplied examples of convection in rolls,
squares and hexagons, together with travelling waves and alternating rolls, as well
as streaming instabilities and pulsating waves. In stellar convection zones there are
large variations with depth in properties such as density and (radiative) thermal
diffusivity, and so it becomes appropriate to consider a layer that is deeper and more
strongly stratified. Weiss et al. (1990) studied a range of two-dimensional behaviour
as the superadiabatic gradient (measured by a dimensionless Rayleigh number R) was
increased while the Chandrasekhar number Q (which measures the strength of the
imposed magnetic field) was held constant. Such solutions are of course liable to be
unstable to three-dimensional perturbations. For modelling solar magnetoconvection
it is more appropriate to decrease Q for fixed R and Weiss et al. (1996) noted
transitions from small-scale steady convection in strong magnetic fields to time-
dependent behaviour and then to vigorous convection with broad chaotic plumes.
Our aim here is to investigate the transitions between these different spatial patterns
by increasing R for fixed Q (Proctor, Weiss & Matthews 1996), an approach that
seems more natural in fluid dynamics.

To simplify the problem, we confine attention to a single underlying atmosphere
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(a polytrope with standard parameters), leaving three physical parameters to define
the model system. These are Q, R and the ratio ζ of the magnetic diffusivity η to the
thermal diffusivity κ. The last is significant since, for Q sufficiently large, convection
typically sets in at an oscillatory (Hopf) bifurcation when ζ ≪ 1 but at a stationary
(pitchfork) bifurcation when ζ ≫ 1. In our problem κ is inversely proportional to the
density, which varies by an order of magnitude across the layer. We therefore define ζ
at the middle of the layer in the static atmosphere and set the product ζQ = 1200 so
that the imposed field strength is independent of ζ for a given value of R. In addition,
there is a geometrical parameter, the aspect ratio λ, that defines the computational
region.

The structure of the paper is as follows. The next section presents the model system
and summarizes its linear stability. The nonlinear regime reveals a bewildering variety
of patterns and it is essential to provide a framework within which they can be
described. In § 3 we enumerate the most important planforms, together with their
symmetries and group properties. This account is extended in the Appendix, where
we describe the most relevant symmetry-breaking bifurcations and present some key
aspects of representation theory and equivariant bifurcation theory.

For reference, we need to know what forms convection takes in the kinematic
regime, when forces exerted by the magnetic field are negligible (cf. Busse & Clever
1998; Busse & Müller 1998); these solutions, which show transitions from two-
dimensional rolls through wavy instabilities to large-scale three-dimensional plumes,
are described in § 4. In subsequent sections we consider fields that are dynamically
important and exhibit patterns of motion that are much more complicated. Our
aim is not simply to display these patterns but rather to explain the sequences of
transitions that lead from one planform to another and from order into chaos. To do
so we first have to recognize the symmetries of each solution and so to identify its
spatiotemporal symmetry group. That allows us to describe the symmetry-breaking
bifurcations and hence to construct an appropriate bifurcation diagram, including
solutions that are unstable.

We follow the treatment of the two-dimensional problem (Weiss et al. 1990) by
considering three cases, with ζ = 0.6, 1.2 and 6. Most of our attention is focused
on the intermediate case with ζ = 1.2 in mid-layer, which we present in § 5: this
is the astrophysically relevant situation, with oscillations favoured near the top and
overturning convection at the bottom. First we describe behaviour in a narrow box,
with λ = 4

3
. Normally one expects the complexity of solutions to increase with

increasing R but here the stringent geometrical constraint produces an unexpected
transition from three-dimensional squares to two-dimensional rolls. The solutions
found for λ = 2 are quite different. After the initial stationary bifurcation, resonant
interactions lead to the appearance of a deformed hexagonal pattern; as R is increased,
the pattern develops by way of intermittent bursts into chaotic plumes. This transition
persists as λ is increased from 2 to 8

3
and then to 4. So this behaviour is robust,

although it does become more vigorously time-dependent in wider boxes. In § 5.4 we
describe a different effect that appears when λ = 8, as reported by Tao et al. (1998).
Long-wavelength modulation allows magnetic flux to separate from the motion, giving
regions with strong fields and small-scale convection, and clusters of large plumes in
regions that are almost field-free.

Next we turn to the case when ζ = 0.6 and there is a Hopf bifurcation from the
trivial solution: the results for λ = 2 in § 6 exhibit a variety of planforms. Once
again, there is a transition through more complicated intermittent bursts to large-
scale plumes. Thus bursting appears to characterize the transition from a magnetically
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dominated regime to one where the Lorentz force is only locally significant. Knobloch
& Moehlis (1999) describe a variety of mechanisms that can lead to bursts and
examples arise in several different fluid systems. The last case, in § 7, has ζ = 6 so that
η > κ everywhere and convection sets in at a stationary bifurcation. As R is increased
for λ = 2 there is a transition from rolls to squares, which co-exist with a particular
form of periodic oscillation (‘wobblers’) and then give way to three-dimensional
travelling waves, which eventually develop into large chaotic plumes. The squares are
replaced by intermittent hexagonal patterns when the aspect ratio is increased.

In the concluding section we emphasize both the constraints imposed by the square
lattice on the symmetries that are involved and the effects of finite aspect ratios on the
structures that appear. Then we compare the patterns we describe with those found
in other related calculations and in various fluid dynamical experiments. Finally, we
relate these results to solar magnetic fields.

2. The model problem

We consider a plane layer of depth d, referred to Cartesian axes (x, y, z) with the
z-axis pointing downwards, containing a perfect monatomic gas. The electrical and
thermal conductivities, the shear viscosity, the specific heats at constant density and
pressure, and the magnetic permeability are all assumed to be constant. The upper
and lower boundaries are held at fixed temperatures T0 and T0 + ∆T , respectively,
and, in the absence of any motion, there is an imposed magnetic field B0 that is
uniform and vertical. Then there is a uniformly stratified equilibrium solution (the
reference atmosphere) corresponding to a polytrope of index m. If the origin is chosen
so that z = 0 at the top of the layer, the temperature T (z), the density ρ(z) and the
pressure P (z) are given by

T (z) = T0(1 + θz/d), ρ(z) = ρ0(1 + θz/d)m, P (z) = R∗T0ρ0(1 + θz/d)m+1, (2.1)

where θ = ∆T/T0, ρ0 = ρ(0) and R∗ is the gas constant. For our model we adopt the
standard reference atmosphere with m = 1 and θ = 10 that has been used in previous
studies of stratified magnetoconvection (Hurlburt & Toomre 1988; Weiss et al. 1990,
1996) as well as in several related investigations (e.g. Cattaneo et al. 1991). Thus the
model problem differs from that treated in Paper I in that the layer is much more
strongly stratified. We shall also be carrying out a more ambitious survey, advancing
further into the nonlinear regime and studying behaviour in larger boxes as the aspect
ratio is increased.

As in Paper I, we scale lengths with the layer depth d, density with ρ0, temperature
with T0, magnetic fields with B0 and time with the reduced acoustic travel time
d/

√
R∗T0. Note that this scaling for time differs by a factor of

√

∆T/T0 from that
used in an astrophysical context by Weiss et al. (1990, 1996), Tao et al. (1998) and
Blanchflower, Rucklidge & Weiss (1998). To prescribe the state of the system we
introduce a dimensionless thermal diffusivity κ and F , the square of the ratio of the
Alfvén speed to the isothermal sound speed at the upper boundary. The Rayleigh
number R, the ratio β of the gas pressure to the magnetic pressure and the diffusivity
ratio ζ are all defined at the middle of the layer (z = 1

2
). With our reference atmosphere

R = 240/σκ2, β = 72/F, (2.2)

where the Prandtl number σ does not depend on z. We choose to measure the
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magnetic field strength in terms of the Chandrasekhar number

Q = 6F/σζκ2 = 9R/5βζ = RF/40ζ. (2.3)

Note therefore that F ∝ 1/R when R is varied for fixed Q.
The evolution of the velocity u and the magnetic field B, together with ρ, T and P ,

is then governed by equations (2.4)–(2.9) of Paper I. These equations are solved in the
region {0 6 x 6 λ; 0 6 y 6 λ; 0 6 z 6 1}, with periodic boundary conditions in the x-
and y-directions. At the top and bottom of the layer standard free boundary conditions
are imposed: the temperature is fixed so that T (x, y, 0) = 1, T (x, y, 1) = 1 + θ = 11
and the magnetic field is constrained to be vertical, while the vertical velocity and the
tangential components of the viscous stress all vanish, so that

Bx = By = ∂Bz/∂z = uz = ∂ux/∂z = ∂uy/∂z = 0 at z = 0, 1. (2.4)

Blanchflower et al. (1998) have investigated the effects of introducing a radiative
boundary condition and matching B to a potential field at z = 0. They found that
altering the boundary conditions in a two-dimensional version of this problem shifted
bifurcation points but made no qualitative difference to the bifurcation sequence.

Our system possesses a trivial static solution with u = 0, B = ẑ and T = ρ = 1+θz,
so that the density increases by a factor of eleven across the layer. Since the local
value of the diffusivity ratio is proportional to the density it increases from ζ/6 at the
top of the layer to 11ζ/6 at its base. If U is a typical dimensionless velocity then the
Reynolds number Re at the top of the layer and the magnetic Reynolds number Rm
are given by

Re =
U

σκ
= U

(

R

240σ

)1/2

, Rm =
6U

ζκ
=

U

ζ

(

3R

20

)1/2

. (2.5)

Following the choice of parameters for the two-dimensional problem (Weiss et al.
1990), we set the Prandtl number σ = 1 and fix the product ζQ = 1200. Then we
compare results for three different values of the mid-layer diffusivity ratio.

The stability of the trivial solution is determined by linearizing the governing
equations and calculating the growth rates of eigenfunctions that are proportional
to exp i(kxx + kyy). These growth rates depend only on the horizontal wavenumber
k = (k2

x + k2
y)

1/2, so that, for instance, large squares and transverse rolls (both with
k = 2π/λ – see § 3.1 below) become unstable at the same value of R, while small
squares and diagonal rolls (with k = 2

√
2π/λ) become unstable together at another

value. Only a nonlinear analysis can establish which of the two planforms is preferred
at each bifurcation point. In figure 1 we show the values of R at the pitchfork
bifurcation (R(e)) and, where appropriate, at the Hopf bifurcation (R(o)) as functions
of k/π for the three cases ζ = 6, 1.2 and 0.6. When ζ = 6, R(e) attains its minimum
value R(e)

c = 7910 for a wavenumber kc = 1.54π; when ζ = 1.2 – the astrophysically
relevant case – there is still only a stationary bifurcation, with R(e)

c = 28 200 and
kc = 2.10π; with ζ = 0.6, however, convection sets in at an oscillatory bifurcation
with R(o)

c = 29 800 and kc = 1.50π again.
In § § 4–8 we investigate nonlinear behaviour in square boxes that are large enough

to accommodate modes with k close to kc. The nonlinear solutions have to be obtained
numerically and we use the mixed finite difference/pseudospectral code described in
Paper I. For numerical experiments with λ = 2 we achieve sufficient accuracy with a
resolution of 32 points (16 complex Fourier modes) in each of the x- and y-directions,
and 40 mesh intervals (41 points) in the z-direction; where greater precision is needed
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Figure 1. Linear theory: R(e) and R(o) as functions of the wavenumber k/π for ζ = 6, 1.2 and 0.6.
(After Weiss et al. 1990.)

the mesh is refined to 48 × 48 × 61. Most of our calculations were carried out using
Sun, Hewlett-Packard, Silicon Graphics and DEC workstations. The runs with λ = 4
and λ = 8 used 64 nodes on a Hitachi SR-2201 massively parallel supercomputer,
with up to 256 points in the x- and y-directions.

3. Planforms and their symmetries

Throughout this paper, we shall be concerned with describing transitions between
different patterns of fluid motion. Regular structures in cellular convection, like crys-
tals, can be classified by specifying the group of symmetries (reflections, rotations, and
translations) that leave the pattern invariant (cf. McKenzie 1988). Patterns of con-
vection are often time-dependent, and this necessitates combining spatial symmetries
with a shift in time so as to form new spatiotemporal symmetry groups.

These difficulties have been tackled in two ways. An elementary approach was
put forward by Proctor & Weiss (1993) in order to analyse transitions that occur in
two-dimensional magnetoconvection. Their technique was based on the observation,
appropriate for the range of problems they studied, that when a pattern loses stability
and breaks some of its symmetries, half of the original symmetries are broken and
half are retained. By introducing a ‘half-period time shift’ symmetry, they were able
to describe transitions from steady to time-dependent behaviour, and to classify the
spatiotemporal symmetries of the new time-dependent solutions.

This straightforward and remarkably successful approach is easy to apply in simple
situations. Unfortunately, however, it can only describe a limited range of transitions
in three-dimensional convection, and a more general method is needed. Such a
method, called equivariant bifurcation theory (cf. Golubitsky et al. 1988; Crawford
& Knobloch 1991), is widely used in the nonlinear dynamics community, but is less
well known in the fluid mechanics literature, in part because of the mathematical
technicalities of group theory that are required. Equivariant bifurcation theory is a
powerful technique, capable of explaining a much wider range of phenomena than
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occurs in the present paper; in the Appendix we extract and explain those aspects that
we require. As a prelude to equivariant bifurcation theory, the Appendix discusses
aspects of group representation theory; this classifies the relations between patterns
and their symmetries. The material in the Appendix, though somewhat technical, turns
out to be invaluable in the analysis of the behaviour seen in numerical simulations
of the PDEs. In particular, these methods were used in the construction of the
bifurcation diagrams in figures 5 and 13. Such bifurcation diagrams show in what
range of parameters a particular type of solution might be found, whether or not it is
stable, and what else might be found if it becomes unstable. If a particular transition
has been observed, for example from one pattern of convection to another, we can
determine whether the transition could have happened in a single step (or whether
an intermediate pattern might be required), and also whether or not other, perhaps
unstable, patterns might have been created at the same bifurcation point. At first
glance, unstable patterns might appear to be uninteresting as they cannot be observed
directly in an experiment, but they are important for a number of reasons: first, they
might become stable at other parameter values; second, they might be only weakly
unstable, and so show up in a transient; and third, unstable patterns are implicated
in the bursting phenomenon, when the system repeatedly loses symmetries and then
regains them. All three of these effects are found in the calculations we describe.

3.1. Symmetries of plumes on a square lattice

It is essential to understand the symmetries of a solution before its possible modes of
instability can be determined. In this section we give a brief description of the groups
we shall encounter. The transitions between them are analysed in the Appendix. Since
we are concerned here with three-dimensional convection in a strongly stratified layer,
the only relevant spatial symmetries are those that correspond to the arrangement of
rising (or sinking) plumes or sheets in the (x, y)-plane. Before we proceed, it may be
helpful to recall some elementary properties of symmetry groups. A single symmetry
operation i that is its own inverse (for example, 180◦ rotation about a vertical axis)
generates the group {E, i}, where E is the identity. This group is called Z2. A rectangle
possesses three symmetries: the 180◦ rotation i as well as mx and my , corresponding
to reflections about two orthogonal planes, normal to the x- and y-axes, respectively,
so the symmetry group (called D2) is {E,mx, my , i}. Note that the point symmetry
i = mxmy = mymx. A square has these four symmetries as well as four more: md and
md′ , corresponding to reflection about the two diagonals, and ρ and ρ3, corresponding
to 90◦ and 270◦ degree rotations about the centre, so its symmetry group (called D4) is

{E,mx, my , md, md′ , ρ, i, ρ3}. (3.1)

This group has as one of its subgroups the cyclic group of four elements, Z4, given in
this case by {E, ρ, i, ρ3}. The groups D2 and Z4 each have four elements but they are
not equivalent, since Z4, unlike D2, has two elements (ρ, ρ3) of order 4.

We shall use the names Z2, D2 etc. to describe the structure of a group, so, for
example, D2 has three subgroups {E,mx}, {E,my} and {E, i} that are all different, but
which are all isomorphic to Z2. In addition, D2 can be generated by combining any
two of these three Z2 subgroups, so we write D2 = Z2 ⊗ Z2, where ⊗ indicates the
direct product of the groups, used when each element of either group commutes with
every element of the other group.

These simple groups are the building blocks out of which we construct the symmetry
groups required to describe patterns of convection. In general, the group Zn can be
thought of geometrically as the n-element rotational symmetry group of a regular
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(a) (b)

(c) (d )

Figure 2. Three-dimensional nonlinear solutions in square boxes: (a) Large squares (Q = 200,
ζ = 6, R = 30 000); (b) small squares (Q = 200, ζ = 6, R = 20 000); (c) transverse rolls (Q = 0,
R = 5 000); (d) diagonal rolls (Q = 200, ζ = 6, R = 10 000). Each panel depicts behaviour on the
boundaries of the computational box. The shading of the sidewalls indicates relative temperature
fluctuations and the arrows represent tangential velocity components. Here the shading at the top
and base correspond to the vertical temperature gradient.

n-gon, without reflections, while Dn has the rotational symmetries of Zn combined with
a reflection, and so has 2n elements. Other groups we shall require are D2h = D2 ⊗Z2,
the 8-element symmetry group of a rectangular prism, and D4h = D4 ⊗ Z2, the
16-element symmetry group of a square prism.

We illustrate these symmetry groups with reference to the convective patterns
displayed in figure 2. Here the grey-scale shading represents relative temperature
fluctuations on the sidewalls of the box, and the vertical temperature gradient on the
upper bounding surface. The superposed arrows indicate the direction and magnitude
of the tangential components of the velocity. The pattern in figure 2(a), which we call
large squares, has a single upward (and downward) plume in each cell and has the D4

symmetry of a square centred on some point (x0, y0), such that 0 < x0, y0 6
1
2
λ, where

ρ : (x, y) → (x0 + y0 − y, x − x0 + y0) corresponds to rotation by 90◦ about (x0, y0),
mx : (x, y) → (2x0−x, y) is the reflection in the plane x = x0 and my : (x, y) → (x, 2y0−y)
is the reflection in the plane y = y0. Figure 2(b) shows small squares, which have two
upward (and downward) plumes within the box; this pattern has D4 symmetry but is
in addition invariant under the translation symmetry τ : (x, y) → (x+ 1

2
λ, y + 1

2
λ) that

moves the pattern by 1
2
λ in the x- and y-directions, taking one upward plume to the

other. Combining the rotations and reflections of D4 with the translation τ (which
generates the group Z2) results in the group D4h.
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We turn now to continuous translation symmetries, which do not have analogues in
crystal structure. The initial trivial state, in which there is no motion, has D4 symmetry
arising from the square plan of the box, but it is also unchanged by any horizontal
translation, since we use periodic lateral boundary conditions. However, shifting in
space by a distance λ in the x- or y-directions will leave any pattern unchanged,
so these translations act as the identity. Any pattern occupying the box will have
symmetries that form a subgroup of the product of D4 and this group of translations.

As an example, transverse rolls (figure 2c) are unchanged after reflecting in the x-
direction or in the y-direction, and after translating by any amount in the y-direction.
Combining the y-reflection with the y-translations gives us the symmetry group O(2)
of a circle under rotations and reflections, so the symmetry group of rolls is Z2 ⊗O(2).
There is also a second solution with orthogonally oriented rolls.

Similarly, diagonal rolls (figure 2d) have the diagonal reflection symmetry md′:
(x, y) → (x0 + y0 − y, x0 + y0 − x) about the plane separating the pair of rolls, and the
O(2) symmetry of translations and reflections (md : (x, y) → (x0 − y0 + y, y0 − x0 + x))
along the axis of the rolls; they also have the symmetry τ, so their symmetry group
is Z2 ⊗ O(2) ⊗ Z2 = D2 ⊗ O(2).

The patterns described here could be formed in primary instabilities of the trivial
solution (with different wavenumbers and critical Rayleigh numbers). The transverse
roll (figure 2c) can be combined with its 90◦ rotation to give large squares (figure 2a),
while the two sets of diagonal rolls (figure 2d and its 90◦ rotation) yield the small
squares of figure 2(b). At onset, the patterns in figures 2(a) and 2(c) both have the
same wavenumber k = 2π/λ, while those in figures 2(b) and 2(d) have wavenumber
k = 2

√
2π/λ. Similarly, there are patterns of narrow rolls (not illustrated, but like

transverse rolls with half the wavelength), each with one of the additional symmetries
m′

x : (x, y) → (2x0 − 1
2
λ− x, y), m′

y : (x, y) → (x, 2y0 − 1
2
λ− y), and tiny squares, all with

wavenumber k = 4π/λ.
Finally, steady patterns are unchanged by any translation in time, but if time-

dependence is introduced through a Hopf bifurcation the new oscillatory solutions
will be periodic in time, with period Π . With this periodic time-dependence in mind,
we regard the steady solutions as invariant under a continuous symmetry S1, the
symmetry group of a circle under rotations. Thus squares and rolls have D4 ⊗ S1 and
Z2 ⊗ O(2) ⊗ S1 spatiotemporal symmetries, respectively.

The spatial symmetries of rolls or squares may be broken in secondary bifurcations,
which are described in the Appendix. For instance, there is a pitchfork bifurcation
from steady transverse rolls that leads to varicose rolls (Hirschberg & Knobloch
1993) with the reflection symmetries mx and my; similarly, breaking the 90◦ rotational
symmetry of a square in a pitchfork bifurcation gives a pair of solutions with the
same reflection symmetries. These two solutions may look different but they possess
the same D2 spatial symmetry; in fact they may form a continuous family linking
rolls to squares (cf. figure 13a below).

To take a more complicated example, involving oscillatory bifurcations, travelling
squares may appear either in a primary Hopf bifurcation (Silber & Knobloch 1991;
Clune & Knobloch 1994) or in a secondary pitchfork from steady squares, as in figure
5(a) below (Rucklidge 1997). Similarly, travelling varicose rolls may appear after a
symmetry-breaking Hopf bifurcation from rolls or, alternatively, after a pitchfork
from varicose rolls – either with the varicosity travelling parallel to the rolls or with
the rolls travelling in the perpendicular direction. Yet all four cases have the same Z2

reflection symmetry, demonstrating again that, on a branch of solutions (defined by
symmetry) the solutions may – and indeed often do – look very different at either end.
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(a) (b)

Figure 3. Three-dimensional solutions in the kinematic regime. As for figure 2, showing chaotic
plumes for Q = 0 and R = 40 000. (a) t = 66, (b) t = 73.

R Mesh 〈u2〉1/2 Figure Type of solution

1 000 322 × 41 0.00 Motion decays
2 000 322 × 41 0.34 Steady transverse rolls
5 000 322 × 41 0.55 2(c) Steady transverse rolls

10 000 482 × 61 0.64 Oscillatory instability of rolls
20 000 482 × 61 0.65 Aperiodic modulation
30 000 482 × 61 0.68 Aperiodic (single plume)
40 000 482 × 61 0.70 3(a, b) Aperiodic (large-scale plumes)

Table 1. Nonlinear runs: Q = 0, λ = 2.

4. The kinematic regime (Q = 0)

We begin by describing nonlinear behaviour in the absence of a magnetic field.
The velocity and temperature are then indistinguishable from those in the kinematic
limit, when the Lorentz force has no dynamical effect. Unless dynamo action occurs
(cf. Cattaneo 1999), we expect that for any finite value of Q the pattern of convection
will come to resemble that in the field-free case when R is sufficiently large. In order
to recognize when this happens we therefore need to establish the form of solutions
in the kinematic regime.

When Q = 0 convection sets in at a stationary bifurcation. For our reference atmo-
sphere the critical Rayleigh number R(e)

c = 1190 and the corresponding wavenumber
kc = 0.77π (Gough et al. 1976). That would correspond to an aspect ratio λ = 2.6,
which is somewhat larger than the value λ = 2 that we adopt for our computations.
The nonlinear results are summarized in table 1, which includes the r.m.s. velocity
〈u2〉1/2, averaged over space and time, as a measure of the vigour of convection. Trans-
verse rolls, with a basic wavenumber k = π, are initially preferred and the solution
for R = 5 000, which is illustrated in figure 2(c), possesses Z2 ⊗ O(2) symmetry. As R
is increased there is a secondary Hopf bifurcation and the rolls develop an oscillatory
instability, just as they do in Boussinesq convection (Busse 1972; Meneguzzi et al.
1987; Croquette & Williams 1989). For our choice of aspect ratio this develops into
a finite-amplitude periodic standing wave at R = 10 000.

As R is further increased the oscillatory modulation grows more violent until
convection becomes completely three-dimensional and aperiodic. Figure 3 shows the
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pattern for R = 40 000. The rolls have entirely disappeared and motion is dominated
by broad rising plumes whose width is limited by the size of the computational box.
Owing to the stratification these plumes expand rapidly as they impinge upon the
upper boundary. They are enclosed by a network of sinking fluid and the peak speeds
are in the downward flow. This pattern, which evolves continuously and is apparently
chaotic, is typical of highly nonlinear convection in a strongly stratified layer and has
been reproduced in various numerical experiments (e.g. Cattaneo et al. 1991).

5. The transition from order to disorder (ζ = 1.2)

Imposing a magnetic field allows a much greater variety of behaviour. In this
section we investigate nonlinear convection with Q = 1 000 and ζ = 1.2, so that the
diffusivity ratio increases from 0.2 at the top of the layer to 2.2 at the bottom. (This
choice is motivated by behaviour in the Sun: ζ ≪ 1 throughout most of its interior,
owing to the efficiency of radiative transfer, but ionization of hydrogen and helium
increases the opacity and decreases the radiative diffusivity, so that ζ > 1 at depths of
2 000–20 000 km below the photosphere.) Although ζ < 1 at the top of the box, steady
behaviour is initially preferred, and strong fields require narrower cells at onset than
in the field-free case. From figure 1, convection sets in at a stationary bifurcation
with R(e)

c = 28 200 and kc = 2.10π. In the weakly nonlinear regime we might therefore
expect to obtain steady solutions with transverse rolls or large squares in a box with
λ ≈ 1.

5.1. Spatially modulated oscillations in a narrow box
(

λ = 4
3

)

Weiss et al. (1990) studied the two-dimensional problem with λ = 4
3
. The initial

bifurcation led to steady convection with a pair of rolls in the box but as R was
increased countercells appeared and grew until the solution became periodic, with four
spatially modulated rolls. So we begin by investigating three-dimensional behaviour
with the same value of λ. After presenting the computational results we describe the
symmetries of the numerical solutions and then establish the underlying bifurcation
structure.

Table 2 lists the relevant runs. The values of 〈u2〉1/2 can be used to calculate a
magnetic Reynolds number Rm from equation (2.5). Convection sets in as a steady
pattern of small squares with k = 2.12π, which is initially stable. At R = 50 000 we
obtain travelling small squares which drift very slowly parallel to the x- or y-axis. By
R = 60 000 there are modulated travelling squares, with adjacent plumes that pulsate
periodically in antiphase with each other as they drift. As R is raised the modulation
increases in amplitude while the drift velocity declines until, at R = 70 000, there are
stationary oscillations with nearest neighbours pulsating vigorously in alternation.
Such spatially modulated oscillations are a characteristic feature of the transition
from steady to time-dependent behaviour but they appear most prominently with
this aspect ratio. In figures 4(a) and 4(b) we illustrate two opposite phases of this
periodic oscillation, now using the grey-scale to denote the variation of B2 on the
upper boundary (light regions correspond to high values of B2). Note that the x- and
y-directions are not equivalent and that the plumes are elongated in one of these
directions only. As R is increased this elongation becomes more pronounced until at
R = 100 000 we only find two-dimensional spatially modulated rolls, as illustrated
in figures 4(c) and 4(d) (cf. Weiss et al. 1996). In these solutions adjacent plumes
wax and wane alternately in strength, so that the velocity reverses at the top of the
layer but not at its base. The two-dimensional rolls are unstable to three-dimensional
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R Mesh 〈u2〉1/2 Figure Type of solution

37 000 242 × 33 0.08 Small squares
40 000 242 × 33 0.10 Small squares
45 000 242 × 33 0.10 Small squares
50 000 322 × 41 0.14 Travelling small squares
55 000 242 × 33 0.15 Travelling small squares
60 000 242 × 33 0.17 Modulated travelling small squares
60 000 322 × 41 0.17 Modulated travelling small squares
65 000 242 × 33 0.19 Modulated travelling small squares
70 000 242 × 33 0.22 Spatially modulated asymmetric squares
80 000 242 × 33 0.23 Spatially modulated asymmetric squares
80 000 322 × 41 0.23 4(a, b) Spatially modulated asymmetric squares (from

two-dimensional rolls)
85 000 242 × 33 0.24 Spatially modulated asymmetric squares
90 000 242 × 33 0.24 Spatially modulated rolls (from asymmetric squares)
90 000 322 × 41 0.24 Spatially modulated varicose rolls (from

asymmetric squares)
90 000 322 × 41 0.24 Spatially modulated rolls (from rolls)

100 000 242 × 33 0.25 Spatially modulated rolls (from asymmetric squares)
100 000 322 × 41 0.26 4(c, d) Spatially modulated rolls (from asymmetric squares)
120 000 322 × 41 0.27 Spatially modulated rolls (from rolls)
140 000 322 × 41 0.32 three-dimensional and chaotic (from rolls)

Table 2. Nonlinear runs: ζ = 1.2, Q = 1 000, λ = 4
3
. Note comparison between different meshes.

perturbations when R = 80 000 but both two-dimensional and three-dimensional
oscillations are stable for R = 90 000.

The two-dimensional spatially modulated oscillations are identical with solutions
found by Weiss et al. (1990) for a system that was constrained to be two-dimensional.
They conjectured that three-dimensional oscillations would be preferred if that con-
straint were removed (as in, for example, figures 4a and 4b) – and certainly did not
anticipate that the three-dimensional pattern would give way to two-dimensional rolls
as the Rayleigh number was increased. In fact the rolls remain stable at R = 120 000
but do finally become unstable to three-dimensional perturbations when R = 140 000.
This sequence, with squares giving way to rolls, is quite different from the patterns
found below with larger aspect ratios. When λ is too small the system apparently
prefers a two-dimensional pattern and achieves a larger effective wavenumber in the
nonlinear regime.

The power of the group-theoretic approach becomes apparent when we attempt
to establish the underlying bifurcation structure. The first stage is to clarify the
symmetries of the various patterns that are involved. As R is increased the first
bifurcation from the trivial solution gives rise to diagonal rolls and small squares
(k = 2.12π, R(e) = 28 200); this is followed by transverse rolls and large squares
(k = 1.5π, R(e) = 30 850) and then by narrow transverse rolls and tiny
squares (k = 3π, R(e) = 32 530). The steady small squares that are initially pre-
ferred have D4h spatial symmetry. When steady convection gives way to travelling
small squares, moving parallel to the y-axis (say), they only retain the symmetry
{E,mx, τ, τmx} = D2 in the stationary frame; there is, however, a uniformly moving
frame in which they are steady. The travelling small squares in turn undergo a Hopf
bifurcation in which the translational symmetry τ is broken, leading to spatially mod-
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(a) (b)

(c) (d )

Figure 4. Geometrical constraints: behaviour in a narrow box. Three-dimensional solutions
for ζ = 1.2, Q = 1 000, λ = 4/3: (a, b) spatially modulated asymmetric squares/varicose rolls
(R = 80 000); (c, d) spatially modulated two-dimensional rolls (R = 100 000). As for figure 2, but
here and henceforth with B2 plotted at the top.

ulated travelling squares with period Π in the moving frame. To describe them we
introduce the spatiotemporal symmetries te : (x, y, z, t) → (x, y, z, t + 1

2
Π) and tτ = teτ

(cf. § A.1). Then their spatiotemporal symmetry group is {E,mx, tτ, tτmx} = D2 in the
moving frame. After the next bifurcation the pattern acquires the symmetry my and
the spatially modulated stationary solution in figures 4(a) and 4(b) has the spatiotem-
poral symmetry group {E,mx, my , i, tτ, tτmx, tτmy , tτi} = D2h in the stationary frame.
This is the symmetry of spatially modulated varicose rolls and the plumes grow more
and more elongated in the y-direction until the pattern gains O(2) symmetry. The
two-dimensional spatially modulated rolls then have the spatiotemporal symmetry
D2 ⊗ O(2).

Figure 5 shows a minimal bifurcation diagram for this problem. The initial bifur-
cation (a pitchfork) gives rise to supercritical branches of diagonal rolls and small
squares, of which only the latter are stable. The next bifurcation (a pitchfork with
D4h symmetry, corresponding to a two-dimensional representation, as discussed in
§ A.2) gives rise to branches of travelling small squares moving in either direction
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Tiny squares
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SM varicose rolls

Modulated travelling squares

Travelling small squares

Diagonally travelling
small squares

Small squares Diagonal rolls

Varicose rolls
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Figure 5. Schematic bifurcation diagram for the transition via spatially modulated (SM)
behaviour to two-dimensional rolls in a narrow box (ζ = 1.2, Q = 1 000, λ = 4

3
). Small (large)

filled circles indicate pitchfork (Hopf) bifurcations. Solid (broken) lines indicate stable (unstable)
solutions.

parallel to the x-axis, the y-axis or either of the two diagonals. Of these, transversely
travelling squares are preferred. There is then a Hopf bifurcation leading to spatially
modulated travelling squares (which share the symmetry of spatially modulated trav-
elling varicose rolls). To explain the origin of the branch of spatially modulated but
stationary varicose rolls we presume that the unstable branch of steady small squares
undergoes a tertiary bifurcation at which the D4h spatial symmetry is broken (with
a one-dimensional representation), producing a branch of steady solutions with the
rectangular (D2) spatial symmetry of simple varicose rolls and the translational sym-
metry τ; the spatial symmetry group is therefore D2h again. Breaking the translational
symmetry in a Hopf bifurcation (which could, alternatively, precede the breaking of
D4h symmetry) then yields a branch of spatially modulated varicose rolls, which gains
stability from spatially modulated travelling squares in a supercritical pitchfork bi-
furcation. This stability is finally transferred to spatially modulated two-dimensional
rolls in another pitchfork bifurcation.

The spatially modulated rolls are connected to a branch of narrow rolls that
bifurcates from the trivial solution. Let us, for convenience, assume that transverse
rolls are preferred to large squares and that narrow transverse rolls are preferred to
tiny squares. Then spatially modulated rolls develop within an invariant subspace
with O(2) symmetry. In this subspace there is a pitchfork bifurcation giving rise to
narrow transverse rolls. They subsequently undergo a subcritical Hopf bifurcation that
produces spatially modulated rolls, which in turn acquire stability in a saddle-node
bifurcation, as shown in figure 5.

Note that the unstable branches may well be adorned with further bifurcations,
as in the model problem discussed by Moore & Weiss (2000), provided that those
bifurcations do not affect the stability of the solutions that are observed. There are
also other branches bifurcating from the trivial solution. Figure 5 does not include
the branch of transverse rolls (with k = 1.5π) that lies between the two branches
with k = 2.12π and k = 3π. Fortunately, the connections between that branch and
the branch of narrow transverse rolls have already been explored by Weiss et al.
(1990 – see figure 9b). Thus the bifurcation diagram needs to be augmented by adding
those details to the figure.
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R Mesh 〈u2〉1/2 Figure Type of solution

30 000 322 × 41 0.05 Irregular hexagons (4 plumes)
40 000 322 × 41 0.12 6(a) Irregular hexagons (4 plumes)
60 000 322 × 41 0.17 6(b) Asymmetric irregular hexagons
65 000 322 × 41 0.18 Asymmetric irregular hexagons
70 000 482 × 61 0.23 Intermittent
80 000 482 × 61 0.25 6(c–f) Intermittent
85 000 322 × 41 0.25 Intermittent
90 000 482 × 61 0.28 Intermittent

100 000 482 × 61 0.30 7(a, b) Large-scale plumes

Table 3. Nonlinear runs: ζ = 1.2, Q = 1 000, λ = 2.

5.2. From hexagons to chaos via intermittent bursts (λ = 2)

Next we describe results for convection in a box with λ = 2, so that the area is
doubled and patterns are less constrained by the finite aspect ratio. In the weakly
nonlinear regime we might expect to find steady solutions with small transverse rolls
or tiny squares and k = 2π.

The nonlinear results are summarized in table 3. For R = 30 000 we find a steady
solution – but the preferred pattern is one of irregular (deformed) hexagons with four
plumes in the box. At the upper boundary magnetic flux is swept out of the broad
rising plumes and confined to a network that surrounds them, with the strongest
fields at corners in this network. At the bottom there is a complementary pattern,
with strong fields at the centres of the plumes, while the field within the layer
has an intermediate structure (cf. Weiss et al. 1996, figure 3). In an infinite layer
regular hexagons would no doubt be preferred but their occurrence is precluded by
imposing a square lattice (Matthews 1998): to obtain a regular pattern one should use
a rectangular box with sides in the ratio

√
3:1 (cf. Paper I). In a stratified layer with

strong fields, hexagons appear at a transcritical bifurcation and stable up-hexagons,
with isolated rising plumes surrounded by a network of sinking material, exist below
the bifurcation point. Matthews (1998) presents the weakly nonlinear theory both
for the four-plume pattern (with D4h spatial symmetry) and for the six-plume pattern
found with Q = 2 000 and R = 100 000 (Weiss et al. 1996); a more complete treatment
would have to include resonant interactions with modes generated by the rotational
symmetry ρ of the square lattice (cf. Dionne, Silber & Skeldon 1997).

Steady solutions with irregular hexagons persist for 30 000 6 R 6 65 000. Figures
6(a) and 6(b) show the patterns for R = 40 000 and R = 60 000, respectively. In each
case the plumes appear in rows parallel to the x-axis. The plumes in each row have
a separation λ/2 and their positions shift by λ/4 from one row to the next. The
basic cell is a rectangle with sides in the ratio 1: 2, elongated parallel to the y-axis,
and there is obviously an equivalent solution obtained by rotating the whole pattern
through 90◦. The pattern in figure 6(a) has mirror symmetry about planes through
each plume together with the translational symmetry τ̃ : (x, y) → (x + λ/4, y + λ/2)
so the full spatial symmetry group is D4h:

{E,mx, my , i, τ̃, τ̃mx, τ̃my , τ̃i, τ̃
2, τ̃2mx, τ̃

2my , τ̃
2i, τ̃3, τ̃3mx, τ̃

3my , τ̃
3i}, (5.1)

the product of D4 (generated by mx and τ̃) and Z2 (generated by my). When R = 60 000,
random perturbations develop into a transient solution that retains approximate D4h

symmetry but plumes in alternate rows rapidly develop different shapes. In figure 6(b),
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(a) (b)

(c) (d )

(e) ( f )

Figure 6. For caption see facing page.
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(a) (b)

Figure 7. Large plumes for ζ = 1.2, Q = 1 000, λ = 2 and R = 100 000. This pair of images shows
time-dependent behaviour with an evolving magnetic network at the upper boundary.

which shows the final state, the plumes in alternate rows are elongated in different
directions and so the pattern only has the symmetry group

{E, i, τ̃mx, τ̃my , τ̃
2, τ̃2i, τ̃3mx, τ̃

3my} = D4. (5.2)

Apparently the translational symmetry τ̃ is broken in a bifurcation at R ≈ 50 000. It
can easily be verified that the appropriate representation of D4h is one-dimensional
and hence that this bifurcation must be a simple pitchfork.

With R = 70 000 the D4-symmetric pattern persists up to t ≈ 100 but this behaviour
proves to be intermittent. Almost symmetric patterns alternate aperiodically with
episodes when plumes migrate and amalgamate, squeezing out their intermediate
neighbours. Then a more or less symmetric four-plume pattern is restored, although
the plumes are displaced from their original positions and the rows may be rotated
through 90◦. As R is increased these bursts become more violent. Figure 6(c–f) shows
four stages during a typical episode with R = 80 000: at first there are four irregular
plumes but they evolve into a single dominant plume that almost fills the box;
this plume then decays until the four-plume pattern reappears. When R = 100 000
behaviour is chaotic, with one or two large plumes that confine magnetic flux to
narrow lanes at the top of the layer; this solution is illustrated in figure 7 and it has
already been discussed by Weiss et al. (1996 – see figure 2).

Physically, there is a transition from the tightly constrained pattern of small plumes
on an almost hexagonal lattice that prevails when the magnetic field is dominant
(28 000 6 R 6 65 000) to one of large chaotic plumes, when motion is dominated
by buoyancy and the Lorentz force only matters locally in regions with strong
fields (R > 100 000). This transition is associated with a sequence of bifurcations
in which symmetries are successively broken, and solutions becomes time-dependent
and chaotic. We have not attempted to follow this bifurcation sequence but the
intermediate regime (70 000 6 R 6 90 000) exhibits interesting features. Within the
phase space of the system there is a pair of invariant subspaces with D4 symmetry,
corresponding to the two orientations of the rows of plumes, and each of these
subspaces is itself the intersection of invariant subspaces. For a given value of R
the unstable D4-symmetric solutions lie on a pair of invariant two-tori within the

Figure 6. Three-dimensional solutions for ζ = 1.2, Q = 1 000, λ = 2: (a) irregular hexagons with
D4h symmetry (R = 40 000); (b) asymmetric irregular hexagons with D4 symmetry (R = 60 000);
(c–f) intermittent bursts (R = 80 000).
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(a) (b)

Figure 8. Irregular hexagons in a wider box: three-dimensional solutions for ζ = 1.2, Q = 1 000,
λ = 8

3
and R = 45 000: (a) 8 plumes; (b) 9 plumes.

R Mesh 〈u2〉1/2 Figure Type of solution

45 000 322 × 41 0.12 8(a) Irregular hexagons (8 plumes)
45 000 322 × 41 0.12 8(b) Irregular hexagons (9 plumes)
65 000 322 × 41 0.17 Irregular hexagons (8 plumes)
65 000 322 × 41 0.18 Time-dependent irregular hexagons (9 plumes)
70 000 322 × 41 0.19 Irregular hexagons (8 plumes)
80 000 322 × 41 0.23 Irregular hexagons, marginally stable (8 plumes)
90 000 322 × 41 0.28 Intermittent

100 000 482 × 49 0.32 Large plumes

Table 4. Nonlinear runs: ζ = 1.2, Q = 1 000, λ = 8
3
.

appropriate subspaces (since the plumes can be shifted in either direction) and
there are further tori in the other invariant subspaces. The observed intermittency is
associated with trajectories that linger in the neighbourhood of one or other of these
invariant sets and then make a brief excursion away from them before returning
either to the same neighbourhood or to that of another symmetric subspace. In this
problem there is a chaotic attractor for large R (when there are only one or two
plumes in the box). As R is progressively decreased this attractor approaches two or
more invariant sets, and trajectories spend longer and longer in their neighbourhoods,
until a pair of these sets eventually becomes attracting.

This bursting appears to be a form of on-off or in-out intermittency (Platt, Spiegel
& Tresser 1993; Ashwin, Covas & Tavakol 1999). Such behaviour is often associated
with the presence of symmetry-invariant subspaces and structurally stable heteroclinic
orbits; studies of shearing instabilities in two- and three-dimensional convection or
magnetoconvection provide specific examples of such orbits (Rucklidge & Matthews
1996; Matthews et al. 1996). There may also be chaotic attractors within the invariant
subspaces, leading to blow-out bifurcations and cycling chaos (cf. Ashwin & Rucklidge
1998).

5.3. Relaxing the geometrical constraint
(

λ = 8
3

)

We next explore the effects of doubling the area of the box again so that it can
contain twice as many plumes. Instead of setting the aspect ratio λ = 2 we therefore
take λ = 8/3, corresponding to an increase in area by a factor 16/9. We have repeated
the sequence of runs in order to test whether the approximately hexagonal pattern
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is preserved. The results are summarized in table 4. In the weakly nonlinear regime
there are steady solutions with eight plumes lying on diagonal bands. At R = 45 000
the system initially settles towards a pattern of very small squares (k = 2.12π) but
this proves to be unstable (unlike the pattern found for λ = 4/3). The plumes on
adjacent rows shift relative to each other to produce the irregular hexagonal pattern
in figure 8(a). Matthews (1998) provides a description of the associated theory. The
basic cell is a diagonally oriented rectangle with sides in the ratio 1: 2. This solution,
which is essentially the same as that in figure 6(a) but rotated through 45◦, is stable
for 45 000 6 R 6 80 000; at R = 45 000, however, we also find a stable solution with
nine plumes in the box, which is shown in figure 8(b). They are again disposed on
an irregular hexagonal lattice but the number of plumes is different and there is no
reflection symmetry. Either of these solutions can appear in a subcritical secondary
bifurcation from rolls and they have been discussed by Matthews (1998). In a large
box we should expect that two or more irregular hexagonal patterns could be stable
over a finite range of R. The nine-plume solution is delicate and has already become
time-dependent at R = 65 000 but the eight-plume hexagons persist to higher values
of R than the four-plume patterns in § 5.2. These preferences are clearly sensitive to the
precise value chosen for λ. At R = 80 000 there are still irregular hexagons with eight
plumes in the box but the plumes are markedly elongated in the direction of their
nearest neighbours, imparting a linear structure without breaking any symmetry. This
pattern, which resembles the ‘hexarolls’ described by Auer, Busse & Clever (1995),
becomes unstable by R = 90 000, when behaviour is intermittent with bursts when
plumes amalgamate and convection is aperiodic. Finally, for R = 100 000, the large-
scale plumes take over, giving a pattern similar to that found in a smaller box (see
Weiss et al. 1996).

These results confirm that the transitions found in § 5.2 are robust. The basic
sequence, starting with steady convection in an irregular hexagonal pattern and
proceeding via intermittent behaviour to chaotic large-scale plumes, is repeated. The
wider boxes also allow a greater variety of patterns and so there are more invariant
tori to be visited by trajectories in the intermittent regime – but these are only minor
complications.

5.4. Flux separation in very wide boxes (λ = 4, 8)

We have gone on to investigate behaviour in even wider boxes, and the results are
listed in table 5. With λ = 4, thereby doubling the area again, there are yet more
plumes in the box and the constraints imposed by the square lattice are further relaxed,
as shown for R = 70 000 in figures 9(a) and 9(b). The overall pattern of intermittency
is unchanged but bursting now occurs sporadically over the computational region,
while smaller plumes return locally, without the symmetry associated with an invariant
subspace. At R = 100 000, the large-scale plumes congregate into clusters from which
magnetic fields are excluded, leaving a broad magnetic network containing smaller,
weaker structures (Tao et al. 1998). This pattern of incipient flux separation is
displayed in figures 9(c) and 9(d).

The effects of a finite aspect ratio become much less significant for λ > 8. Figure
10 provides snapshots of a solution with R = 100 000 and λ = 8. The box is now wide
enough to allow long-wavelength modulation of the broad plumes in figure 7. In a
run started from weak random perturbations to the static state, small plumes initially
appear on a scale corresponding to the most unstable linear modes. These structures
amalgamate into broad plumes and groups of these large plumes gradually cluster
together, expelling magnetic flux into regions where the field is locally strong enough
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(a) (b)

(c) (d )

Figure 9. Bursting and large plumes in a wide box (λ = 4): three-dimensional solutions for ζ = 1.2,
Q = 1 000. (a, b) Intermittent bursts (R = 70 000); (c, d) large plumes (R = 100 000), showing
incipient flux separation.

λ R Mesh 〈u2〉1/2 Figure Type of solution

4 70 000 642 × 41 0.25 9(a, b) Intermittent
4 80 000 642 × 41 0.31 Intermittent
4 100 000 1282 × 64 0.36 9(c, d) Large plumes
8 100 000 2562 × 64 0.36 10(a, b) Large plumes, flux separation

Table 5. Nonlinear runs: ζ = 1.2, Q = 1 000, λ = 4, 8.

to impede convection. This new process of flux separation leads to a state where the
motion and the magnetic field are segregated from each other (Tao et al. 1998). In
regions where the field is strong, motion is restricted to slender and relatively feeble
plumes, while regions with vigorous convection are almost field-free. The difference
between values of B2 in these regions is apparent in figure 10(a), while figure 10(b)
demonstrates that there are clusters of plumes in the ‘field-free’ regions.

In the patches where the field is weak patterns should be similar, locally, to those
for convection with R = 100 000 and Q ≪ 1 000. Hence we expect to find a more
vigorous version of the plumes in figure 3. The time-dependent results show that
plumes within the clusters are continually splitting and evolving (Tao et al. 1998),
as in various other simulations of compressible convection in the absence of a
magnetic field (e.g. Cattaneo et al. 1991; Stein & Nordlund 1998). Where the field
is strong we expect to see local patterns that are similar to those that would be
obtained with R = 100 000 and, say, Q ≈ 2 000. The plumes are small and ineffective
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(a)

(b)

Figure 10. Flux separation in a very wide box (λ = 8): snapshots of a three-dimensional solution
for ζ = 1.2, Q = 1 000 and R = 100 000, showing (a) the square of the magnetic field strength, and
(b) the vertical temperature gradient on the upper and lower boundaries. The broad and vigorous
plumes assemble into clusters and succeed in expelling magnetic flux into a region where the field
is locally so strong that only small-scale convection can occur. The cool sinking plumes impinging
on the lower boundary show that the field-free regions have a complicated structure.
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(a) (b)

Figure 11. Three-dimensional oscillatory solutions for ζ = 0.6, Q = 2 000, λ = 2 and R = 30 000.
Diagonal alternating rolls for (a) t = 1409.2, (b) t = 1410.9.

at transporting heat, as is apparent from figure 10(b). At any instant the spatial
pattern is irregular and video sequences show that individual plumes grow, decay and
disappear aperiodically. This pattern of spatiotemporal disorder can be related to
the ordered but aperiodic oscillations found, for instance, in a run with R = 100 000
and Q = 1 400 when activity is constrained by setting λ = 2 (Weiss et al. 1996 – see
figure 1c). In that case the basic hexagonal pattern persists but undergoes spatially
modulated oscillations which are a three-dimensional version of the two-dimensional
oscillations found for λ = 4

3
and exhibited in figure 4(c, d). When the aspect ratio is

increased these oscillations become wilder and increasingly disordered. Nevertheless,
the periodic modulation found first in two-dimensional runs (Weiss et al. 1990) and
then in narrow boxes serves as a guide to interpreting the behaviour seen in patches
where the fields are strong in figure 10.

6. Oscillatory convection (ζ = 0.6)

When the diffusivity ratio is less than unity over most of the layer, convection sets
in at an oscillatory bifurcation for Q sufficiently large. Then there are five possible
stable patterns on a square lattice (Silber & Knobloch 1991; Clune & Knobloch
1994; Paper I). These include travelling rolls and travelling squares, with O(2) and Z2

spatial symmetry, respectively; standing rolls and standing squares, with Z2 ⊗ O(2)
and D4 spatial symmetry, respectively; and alternating rolls, with D2 symmetry. These
solutions also possess additional spatiotemporal symmetries. Both in the Boussinesq
regime (Clune & Knobloch 1994) and in a shallow stratified layer (Paper I) there is
a wide parameter range over which both travelling and alternating rolls are stable.
With ζ = 0.6 and Q = 2 000 the Hopf bifurcation first occurs for R(o)

c = 29 800 and
kc = 1.50π.

In a square box with λ = 2 we therefore expect to find time-dependent diagonal
alternating rolls and small squares, with k =

√
2π, near the initial bifurcation. Table 6

lists the nonlinear results. There is a hint of subcritical behaviour leading to diagonal
travelling rolls for R < R(o) but by R = 30 000 the rolls are replaced by small standing
squares, which develop on an extremely long timescale into diagonal alternating rolls.
This pattern is displayed in figures 11(a) and 11(b). By R = 37 000 the diagonal rolls
are supplanted by weakly modulated transverse alternating rolls which in turn give
way to large standing squares that are asymmetric and irregularly modulated. When
R = 40 000 the pattern shifts erratically from one oscillatory state to another: intervals
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R Mesh 〈u2〉1/2 Figure Type of solution

30 000 322 × 41 0.027 11(a, b) Diagonal alternating rolls
37 000 322 × 41 0.055 Modulated standing squares
40 000 322 × 41 0.060 Intermittent
50 000 482 × 61 0.11 Large plumes

Table 6. Nonlinear runs: ζ = 0.6, Q = 2 000, λ = 2.

of regularity with asymmetric alternating rolls or standing squares are interrupted by
bursts of disordered behaviour. Finally, when R = 50 000 the system settles down to
a pattern that is wildly irregular in both space and time, with motion dominated by
broad rising plumes; magnetic flux is confined to a network at the top and to isolated
flux tubes at the base.

With a lower magnetic diffusivity the field is more closely tied to the fluid and
behaviour is dynamically more active. We have not attempted to establish the relative
stability of different oscillatory patterns in the weakly nonlinear regime. What the
solutions show is again a transition from magnetically dominated behaviour – which
is now oscillatory – to a regime where the magnetic structure accommodates itself
to the pattern of large-scale convective plumes. As in § 5, the intermediate regime
exhibits intermittent bursts. However, a greater variety of behaviour is now possible.
Not only may the patterns change in scale and orientation but the chaotic trajectory
may also approach any of the oscillatory solutions. So an interval with alternating
rolls may be followed by one with standing squares, and there is scope for chaotic
behaviour within any of the invariant subspaces.

7. Patterns forced by a square lattice (ζ = 6)

In this section we investigate nonlinear convection with Q = 200 and ζ = 6; thus
the diffusivity ratio increases from unity at the top of the layer to 11 at the bottom,
and the initial bifurcation leads to steady convection. From figure 1, convection sets
in with a wavenumber k ≈ 1.5π, which is significantly greater than that for ζ = 1.2 in
§ 5. Thus solutions are more sensitive to the choice of aspect ratio.

7.1. Rolls, squares, waves and wobblers (λ = 2)

Following the treatments in the previous two sections, we start by considering a box
with aspect ratio λ = 2, where we expect to find either small squares or diagonal rolls,
with k =

√
2π. Table 7 summarizes the results of these numerical experiments, which

reveal a fascinating sequence of transitions. We first describe the computational results
and then discuss the symmetries of the numerical solutions in order to establish the
underlying bifurcation structure. In this process the strength of the group-theoretic
approach is clearly demonstrated.

For R = 10 000, just above the onset of convection, a random perturbation develops
rapidly into an apparently steady pattern of small squares, with D4h symmetry. The
squares survive up to t = 100 but then gradually give way to diagonal rolls for
t > 200. The final state, shown in figure 2(d), has approximate D2 ⊗ O(2) symmetry.
Close inspection of the solution actually reveals slight deviations from O(2) symmetry
that persist at least up to t = 500, indicating that varicose rolls are the only stable
pattern for this value of R. This is an example of a symmetry-breaking bifurcation, as
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(a) (b)

(c) (d )

(e) ( f )

Figure 12. Three-dimensional solutions for ζ = 6, Q = 200: (a) Large squares and (b) travelling
waves (both for R = 60 000); (c, d) wobblers for R = 55 000 (t = 130, 140); (e, f) chaotically
modulated TW for R = 100 000 (t = 134, 159).

mentioned above in § 3.1; a similar transition was described in Paper I. By R = 20 000
the small squares are stable and the resulting pattern is displayed in figure 2(b). When
that solution is used to provide initial conditions for a run at R = 30 000 the two
plumes merge and the small squares develop into large squares, with a single plume
in the box (cf. Proctor & Matthews 1996): the solution displayed in figure 2(a) has
D4 symmetry. By using solutions obtained at lower values of R as initial conditions it
is possible to obtain stable large-square patterns up to R = 65 000. In figure 12(a) we
illustrate the solution for R = 60 000. When R = 70 000 the squares become unstable
and develop into travelling waves.

Figure 12(b) shows a solution for the same value of R as that in figure 12(a)
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R Mesh 〈u2〉1/2 Figure Type of solution

10 000 322 × 41 0.09 2(d) Varicose diagonal rolls
20 000 322 × 41 0.21 2(b) Small squares
30 000 322 × 41 0.23 2(a) Large squares (from R = 20 000)
30 000 322 × 41 0.23 Large squares (from wobblers at R = 50 000)
40 000 322 × 41 0.28 Large squares (from R = 30 000)
40 000 322 × 41 0.28 Weakly wobbling (from wobblers at R = 50 000)
50 000 322 × 41 0.28 Large squares (from R = 40 000)
50 000 322 × 41 0.28 Wobblers (from scratch)
55 000 322 × 41 0.30 12(c, d) Wobblers (from scratch)
60 000 482 × 61 0.34 12(a) Large squares (from R = 40 000)
60 000 482 × 61 0.32 12(b) Travelling waves (from scratch)
65 000 482 × 61 0.35 Large squares (from R = 60 000)
65 000 322 × 41 0.32 Travelling waves (from R = 60 000)
70 000 482 × 61 0.34 Weakly modulated travelling waves (from scratch)
70 000 482 × 61 0.34 Weakly modulated travelling waves (from squares)
80 000 482 × 61 0.34 Aperiodically modulated travelling waves

(from scratch)
100 000 482 × 61 0.38 12(e, f) Wildly modulated travelling waves (from scratch)

Table 7. Nonlinear runs: ζ = 6, Q = 200, λ = 2.

but started this time from a random perturbation to the static reference state.
The attracting solution is a travelling wave (with a weak decaying modulation).
Adjacent plumes have merged to give a structure that is elongated in the direction
of propagation, with strong magnetic fields in an irregular strip between the rising
plumes at the top, and beneath them at the base. Decreasing R leads to periodic
oscillations that are stationary in space. Figures 12(c) and 12(d) show opposite phases
of the time-dependent solution at R = 55 000. The rising plumes swing to and fro and
the upper flux concentration moves between them. We shall refer to these standing
wave solutions as ‘wobblers’, to distinguish them from the ‘breathers’ discussed e.g.
by Hirschberg & Knobloch (1993). Wobblers persist as R is further reduced down to
R = 40 000 though the periodic variations decrease in amplitude. When R = 30 000 a
run started from a wobbler at higher R develops into steady squares.

When R > 70 000 the travelling waves are modulated. Over the range 80 000 6 R 6

100 000 the modulation is chaotic, growing wilder and more erratic with increasing R.
In figures 12(e) and 12(f) we show two different states for R = 100 000: the pattern
still drifts but changes aperiodically as it moves. From a physical point of view there
is a competition between the Lorentz force, which favours travelling waves, and the
effects of buoyancy, which lead to broad upwelling plumes. If R were yet further
increased the latter would eventually predominate and the pattern would come to
resemble that in figure 3.

The challenge now is to assemble these transitions into a sensible and coherent
structure. Planform changes in the mildly nonlinear regime (R(e) < R 6 30 000) are
comparatively straightforward and the corresponding bifurcation structure is shown
schematically in figure 13(a). Behaviour near the onset of convection is described
by the normal form equations (A 6), where a1, a2 now represent the amplitudes of
diagonal rolls with symmetries md, md′ , respectively; the (a, 0) and (0, a) fixed points
correspond to steady diagonal rolls, while the (a,±a) solutions represent small squares.
The latter do not show the strong up–down asymmetry that appeared at low β in a
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Figure 13. Schematic bifurcation diagrams for ζ = 6, Q = 200, λ = 2: (a) the mildly nonlinear
regime, showing transitions from rolls to squares; (b) the fully nonlinear regime, showing the origin
of the wobblers.

shallow layer (see Paper I). The solution branches apparently bifurcate supercritically
and rolls are initially preferred; a secondary symmetry-breaking bifurcation (also
supercritical) leads to a mixed-mode branch of asymmetric solutions with D2 symmetry
(cf. figure 2d) and stability is transferred to small squares. As R is further increased,
together with β, modes with smaller wavenumbers bifurcate from the trivial solution.
The first to appear are transverse rolls and large squares, with k = π. They are
initially unstable to perturbations with k =

√
2π but stability is transferred from small

squares to large squares by R = 30 000; the transient behaviour suggests that this is
an abrupt transition. Small squares possess the D4 symmetry of (3.1) together with
the translational symmetry τ : (x, y) → (x + λ/2, y + λ/2), so their spatial symmetry
group is D4h. Breaking the symmetry τ in a pitchfork bifurcation gives rise to a pair
of solution branches with the D4 symmetry of large squares (cf. Proctor & Matthews
1996). Our results suggest that the pitchfork is subcritical and that the solutions
acquire stability in a saddle-node bifurcation (with associated hysteresis), as indicated
in figure 13(a), while the large-square branch that bifurcates from the trivial solution
never gains stability. (It is not possible for the latter branch to acquire stability from
small squares through an intermediate branch.)

Subsequent behaviour grows more complicated. Large squares remain stable up to
R ≈ 65 000, when there is an abrupt transition to transverse travelling waves. This
clearly requires a subcritical bifurcation. Although travelling waves can appear after
a single bifurcation from stationary squares (as explained in § A.3) that does not
readily account for the wobblers that exist for 40 000 6 R 6 55 000. The solution
illustrated in figures 12(c) and 12(d) possesses the point symmetry i together with the
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λ R Mesh 〈u2〉1/2 Figure Type of solution

8/3 20 000 482 × 41 0.19 tiny rolls (slightly varicose)
8/3 30 000 482 × 41 0.24 14(a–d) intermittent squares
8/3 40 000 482 × 41 0.28 intermittent squares
10/3 30 000 482 × 41 0.24 intermittent squares

4 30 000 642 × 64 0.25 14(e, f) intermittent hexagons

Table 8. Nonlinear runs: ζ = 6, Q = 200, λ = 8
3
, 10

3
, 4.

spatiotemporal symmetry ty , corresponding to an advance of half a period in time
plus reflection about a vertical plane parallel to the y-axis. The symmetry group of
wobblers is therefore {E, i, tx, ty} = D2 and so there are analogies between them and
pulsating waves in two-dimensional Boussinesq magnetoconvection (Matthews et al.
1993; Rucklidge & Matthews 1996).

The existence of wobblers, with D2 spatiotemporal symmetry, can only be explained
by recourse to the arguments developed in the Appendix. As explained there, the
wobblers cannot lie on a solution branch that bifurcates directly either from a
branch of large squares (with D4 spatial symmetry) or from one of travelling waves
(with Z2 spatial symmetry). The route from squares involves a symmetry-breaking
pitchfork bifurcation to a steady pattern with the rectangular D2 spatial symmetry as
in figure 15(d′), followed by a Hopf bifurcation. That from travelling waves requires
a Hopf bifurcation to modulated waves followed by a reverse pitchfork bifurcation.
To determine what happens here we inspect the transient behaviour before and
after the subcritical bifurcation from large squares. The run at R = 30 000 that was
started from a wobbler solution rapidly settled to a pattern with D2 symmetry before
eventually gaining the full D4 symmetry of large squares. That implies that the most
slowly decaying mode corresponds to a symmetry-breaking perturbation, and hence
that there is a subcritical pitchfork bifurcation at R ≈ 67 000 to steady solutions with
D2 spatial symmetry. These undergo a Hopf bifurcation yielding a branch of wobblers,
which gain stability in a saddle-node bifurcation around R ≈ 35 000, as sketched in
figure 13(b). The remaining bifurcations in the figure are a saddle-node on the steady
branch with D2 spatial symmetry, followed by a supercritical pitchfork bifurcation
to travelling waves with Z2 spatial symmetry. The travelling waves eventually gain
stability from the wobblers via an intermediate branch of modulated travelling waves
(with tx or ty symmetry in a moving frame). This branch links a Hopf bifurcation
from travelling waves to a pitchfork bifurcation from the wobblers. Then, as R is
further increased, there is a final Hopf bifurcation at which the Z2 symmetry of the
travelling waves is broken, followed by a transition to chaotic modulation as magnetic
effects become progressively less important.

The two bifurcation diagrams in figure 13 then summarize the disparate results of
these numerical experiments. The transfer of stability from large squares to wobblers
is made through an intermediate D2-symmetric branch of transversely asymmetric
squares, which never itself gains stability. Once again, these diagrams are minimal,
though fortunately all representations at the bifurcation points are one-dimensional.
It is abundantly clear from our discussion that it would not be possible to con-
struct such a diagram without establishing the symmetries of the numerical solutions
and then considering the constraints on transitions from one symmetry group to
another.
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(a) (b)

(c) (d )

(e) ( f )

Figure 14. Increasing the aspect ratio: three-dimensional solutions for ζ = 6, Q = 200, R = 30 000.
Time dependence for λ = 8/3: (a) small squares; (b) symmetry breaking; (c) fragmenting rings; (d)
asymmetric tiny squares. (e, f) Chaotic hexagons for λ = 4.

7.2. From squares to hexagons as the aspect ratio is increased
(

λ = 8
3
, 10

3
, 4
)

We have also repeated some of the runs for ζ = 6 and Q = 200 in wider boxes
in order to discover whether the square patterns described in § 7.1 persist as λ is
increased. These results are listed in table 8. With λ = 8

3
we find for R = 20 000 that

small disturbances initially develop into a pattern of tiny squares with four plumes in
the box and k = 1.5π (virtually the same as the small squares with k =

√
2π that are

stable when λ = 2) – but eventually the squares give way to slightly varicose tiny rolls
(similar to those found for R = 10 000 when λ = 2). Apparently the bifurcation that
breaks the O(2) symmetry of rolls has been displaced to a higher value of R.

The effects of relaxing the constraints imposed by narrow boxes become more
apparent as the Rayleigh number is increased. The steady squares found at R = 30 000
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when λ = 2 (with k = π and a single plume in the box) are replaced by time-dependent
behaviour, illustrated in figure 14(a–d). Almost perfect small squares (with k = 1.06π

and two plumes in the box) are formed but they lose their translational symmetry and
the square symmetry is then broken by a rectangular perturbation. Next, alternate
plumes develop an annular structure with a sinking core and then split apart to form
imperfect tiny squares (with five plumes). Thereafter the solution cycles aperiodically
between these states. Similar, though less regular, behaviour persists with R = 40 000.

Raising the aspect ratio to λ = 10
3

allows more vigorous time-dependence for
R = 30 000 but there are still intermittent squares. However, the influence of the square
lattice is markedly reduced when λ = 4 (a fourfold increase over the original area).
Convection is strongly aperiodic but the plumes now tend to be disposed in patterns
that are roughly hexagonal. Figures 14(e) and 14(f) show different arrangements,
each with five plumes in the box. As time progresses, one or other of the plumes
expands and splits, while one of its neighbours gets squeezed out of existence, so
that the five-plume pattern is restored. This behaviour differs from that found with
ζ = 1.2, where plumes merge in the regime where bursts appear.

Comparing the four runs with R = 30 000 we see that as the aspect ratio is increased
steady convection gives way to time-dependent behaviour. The number of plumes in
the box increases approximately in proportion to its area but steady square patterns
become unstable to symmetry-breaking perturbations and are eventually replaced
by roughly hexagonal arrays. Increasing R would no doubt lead to intermittent
behaviour and the development of larger plumes. We do not, however, expect to see
flux separation when η > κ throughout the layer.

8. Discussion

In trying to extract generic patterns of behaviour from specific model calculations
our principal concern has been to investigate transitions from order to disorder as
a control parameter is increased. The results quoted, which are based on a total
of over 90 separate runs, make it possible to contrast the various patterns that
are found, and show how important it is to discover the effects of varying all the
key parameters in a numerical investigation. As the Rayleigh number is raised the
planform evolves from ordered states to ones with irregular arrangements of broad
aperiodic plumes. These broad expanding plumes reappear whenever magnetic fields
are dominated by the motion. In a system with symmetries the initial instability gives
rise to several different planforms, one or other of which may be preferred in the
weakly nonlinear regime. We have found both steady and periodic solutions, involving
rolls, squares and hexagons. There is then a transition, involving a complex sequence
of bifurcations, to spatiotemporal chaos and we have focused on pattern formation
in this intermediate regime. The transition is typically associated with intermittent
bursts, which may involve spatially modulated oscillations and merging or splitting
of individual plumes. The behaviour found depends on the diffusivity ratio: for ζ
sufficiently small we expect to see oscillations when the Lorentz force is dominant,
and flux separation when convection is extremely vigorous.

The structures found in numerical experiments are obviously sensitive to the im-
posed lattice structure. It is convenient to choose a square box and then to vary the
geometrical parameter λ. In the nonlinear regime the pattern adapts itself to the size
of the box in order to attain an appropriate horizontal scale: an extreme example is
the appearance of two-dimensional rolls in § 5.1. The square lattice also favours square
planforms as opposed to hexagons. In general we expect to find stable hexagons near
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the onset of convection in a stratified layer, or whenever the up–down symmetry is
broken (cf. Hoyle 1998). A deformed hexagonal pattern requires the presence of at
least four plumes in the box (Matthews 1998), so a pattern of small squares (with two
plumes) or large squares (with a single plume) may well be superseded by hexagons
if λ is doubled or quadrupled, as happened in § § 5.2 and 7.2. Furthermore, patterns
that are steady in small boxes may become time-dependent when the aspect ratio is
increased, as in § 7.2. Fortunately the cell size is reduced when the magnetic field is
dynamically important. With ζ = 1.2 an aspect ratio λ = 2 is generally adequate in
the weakly linear and intermediate regimes, though much larger boxes are needed in
order to represent the long-wavelength modulation that leads to flux separation.

By classifying symmetries and detecting symmetry breaking, it is possible not only
to describe planform changes but also to provide a model of the bifurcation structure
even in comparatively complicated situations. Our results demonstrate the power and
also the limitations of a group-theoretic approach. The most interesting bifurcation
sequences appear when transitions are constrained by imposing a small aspect ratio, as
in § § 5.1 and 7.1, and the approach based on symmetries is most effective when there
are only a few unstable modes. That is the case near the critical Rayleigh number for
a small box, where the lattice imposes discrete wavenumbers that are sparsely spaced.
For instance, the wavenumbers for small squares and large squares in § 7.1 differ only
by

√
2; no other wavenumbers are involved and many symmetries are shared. As

the aspect ratio is increased, more and more unstable modes appear, together with
the possibility of long-wavelength modulation. So the method fails as λ → ∞, when
the system becomes more nearly homogeneous and isotropic. Nevertheless, careful
interpretation of results obtained in relatively small boxes can illuminate behaviour
with much larger aspect ratios.

The general theory of symmetry-breaking transitions has been available for some
time (e.g. Golubitsky et al. 1988; Rucklidge & Silber 1998) but is often couched
in technical terminology. The theory is essential in explaining transitions that we
have observed, and we attempt to present it accessibly in the Appendix. The simple
groups (Z2, D2) can readily be dealt with directly; the same approach can also be
applied to D4, as in § A.1, though there are subtleties that are easy to overlook;
but representations and equivariant bifurcation theory (§ § A.2 and A.3) form the
only option once more complicated groups are involved. Although we confine our
attention here to patterns with square symmetry, the same approach can also be
applied to hexagons.

Much of the original motivation for developing the theory of bifurcations with
symmetry came from fluid mechanical experiments in the laboratory. Experimental
observations of spatially periodic square patterns have been reported in many dif-
ferent systems, for both small and large boxes. The most obvious examples include
Rayleigh–Bénard convection (Oliver & Booker 1983), binary fluid convection (Moses
& Steinberg 1991), rotating convection (Bajaj et al. 1998), and Faraday surface wave
experiments (Edwards & Fauve 1994). Hexagonal patterns are also widely observed.
As the level of forcing is increased, these ordered patterns become unstable by a
variety of mechanisms (Busse & Clever 1998); as well as instabilities that preserve
some spatial periodicities there are others that involve long-wavelength modulations.

In many cases, the symmetry groups involved are straightforward. Interactions of
modes with different symmetries in small square boxes, in which only a few modes are
excited, allow close connections to be made between experiment and theory. A good
example of this is Bénard–Marangoni convection, where the first convective pattern
found by Ondarçuhu et al. (1993) had the full D4 symmetry of the container and subse-
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quently lost stability to form a new state that was invariant under diagonal reflections.
At higher Rayleigh number, the pattern oscillated periodically, acquiring a spatiotem-
poral symmetry that has been observed in large boxes too (Eckert, Bestehorn & Thess
1998). Another clear example involves sextupling of the spatial period of a pattern of
hexagons in a large aspect ratio Faraday wave experiment (Kudrolli, Pier & Gollub
1998). The analysis of this transition requires a 288-element group (Tse et al. 2000).

Another feature of our numerical experiments is the appearance of intermittent
bursts. These occur in many other situations (Knobloch & Moehlis 1999), often
involving slow–fast dynamics, and are frequently associated with symmetry breaking
and transitions between patterns with different scales (Moehlis & Knobloch 1998).
Examples of bursting arise in binary convection (Sullivan & Ahlers 1988), as well
as in Kolmogorov and Taylor–Couette flows (Armbruster et al. 1996; Coughlin &
Marcus 1996). For all the sequences with different values of ζ in § § 5–7, bursting is a
characteristic feature of the transition from small-scale motion dominated by magnetic
fields to broad irregular plumes where the Lorentz force is only locally important.
This transition is associated with intermittent behaviour, related to trajectories that
approach invariant subspaces corresponding to symmetrical solutions, as in figure
6(c–f). The dynamics displayed in figure 14(a–d) shows clear parallels with a recent
experiment on convection in nematic liquid crystals (Peacock, Mullin & Binks 1999),
where an ordered pattern of squares persists for a while before evolving into a weakly
turbulent flow, which then reverts back into the original square pattern.

The computational results presented here as R is increased for fixed Q can be
contrasted with those obtained previously by varying Q for fixed R. Weiss et al.
(1996) set ζ = 1.2, R = 100 000 and λ = 2, and then decreased Q from a value strong
enough to halt convection. They found transitions from irregular hexagons (with
four plumes in the box) for Q = 2 000 to aperiodic spatially modulated oscillations
at Q = 1 500 and then to broad chaotic plumes at Q = 1 000 (identical with those
described in § 5.2). With Q = 500 convection was more vigorous; instead of the broad
magnetic network in figure 7 there were intense local concentrations linked by narrow
sheets, and the pattern evolved rapidly with flux moving as a ‘magnetic fluid’.

Given adequate computing power, it is preferable to obtain solutions in much larger
boxes in order to minimize geometrical constraints. Computations with λ > 8 reveal
patterns that are qualitatively different. We have already seen in § 5.4 that the flow can
organize itself so that there are two phases (one magnetic and the other convective)
separated by fronts. Within the almost field-free regions the broad and vigorous
plumes are able to expand and split to form a cluster, in a manner reminiscent
of exploding granules in the solar photosphere (Spruit, Nordlund & Title 1990;
Rast 1995; Tao et al. 1998). Similar effects occur in two-dimensional configurations
(Matthews & Cox 2000), where flux separation has been studied systematically for
aspect ratios up to λ = 16 by Blanchflower et al. (1998). With ζ = 1.2, R = 100 000 and
the same standard atmosphere, but with slightly more realistic boundary conditions,
they found that flux separation appears over a wide range of field strengths. For
4 000 > Q > 1750 there are steady two-dimensional rolls, followed by spatially
modulated oscillations for 1 500 > Q > 750. Flux separated solutions exist for
Q 6 3 000 so there is a wide range with bistability. It is even possible to find isolated
convective rolls from which magnetic flux has been expelled (convectons) for values
of Q greater than that for the linear onset of convection (Blanchflower 1999). Results
obtained from a systematic study of the three-dimensional problem with similar
boundary conditions indicate that flux separation only occurs for an intermediate
range of field strengths (Weiss, Proctor & Brownjohn 2000).
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Taken together, these investigations have extended our understanding of interac-
tions between photospheric convection and magnetic fields in the Sun (Title 2000).
To be sure, the numerical experiments involve idealized configurations, with relatively
modest values of Rm, but the results can still be used to interpret the effects of
different field strengths on convection. At one extreme, in the umbrae of sunspots
and pores, where the imposed field is strong and almost vertical, normal convection is
substantially inhibited. Within an umbra (with a field of 0.2–0.3 T) there is a popula-
tion of short-lived bright features (umbral dots) whose number density increases with
decreasing size (Sobotka, Brandt & Simon 1997a, b). The brightest structures resemble
isolated plumes, embedded in a sea of weaker spatially modulated oscillations (Weiss
et al. 1996, 2000; Blanchflower et al. 1998). Where there are no magnetic fields, con-
vection cells are responsible for the solar granulation. High-resolution observations
are now revealing the fine structure of intergranular magnetic fields (Title et al. 1992;
Berger et al. 1995; Berger & Title 1996; Title 2000). There is a clear distinction
between granules in regions that are magnetically quiet and those in plage regions,
where the average field strength exceeds a critical value of about 0.015 T. Where
there are plages, the granules are smaller and the fields are confined to a perforated
network. These patches are surrounded by regions that are relatively field-free, where
larger granules are able to swell and split. This is a clear example of flux separation
(Tao et al. 1998), as shown in figure 10. Where the mean field is weak, magnetic flux
moves rapidly through a network, as has been demonstrated in both compressible
and Boussinesq configurations (Weiss et al. 1996, 2000; Cattaneo 1999). Thus the
observed structures can indeed be related to computational results.
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Appendix. Symmetry breaking on a square lattice

A.1. Symmetry breaking: an elementary approach

We first outline the approach developed by Proctor & Weiss (1993) to describe the
symmetries and instabilities of two-dimensional rolls, with motion confined to the
(x, z)-plane. In a stratified layer the eigenfunctions of the linear problem develop into
two-dimensional roll solutions that are periodic in x, with mx reflection symmetry
about a fixed plane. These solutions have the Z2 spatial symmetry group generated
by this reflection (figure 2c shows the three-dimensional analogue of these rolls). An
instability may preserve or break the reflection symmetry of the rolls. A saddle-node
bifurcation, such as occurs at a turning point on a solution branch, does not involve
any change of symmetry. Alternatively if mx is broken (in a pitchfork bifurcation),
two new asymmetric solutions are formed, one being a leftward travelling wave, and
the other a rightward travelling wave, each of which is steady in a uniformly moving
frame (cf. Landsberg & Knobloch 1991; Matthews et al. 1993).

Consider now a Hopf bifurcation from the rolls. The reflection symmetry may be
preserved, leading to periodic vacillations. Breaking this symmetry leads to pulsating
waves, which have the spatiotemporal symmetry of an mx reflection combined with
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Broken symmetries Symmetry group Type of bifurcation New solution

None {E,mx, tx, te} Saddle-node Steady rolls
mx, tx {E, te} Pitchfork Steady travelling waves
te, tx {E,mx} Hopf Vacillations
mx, te {E, tx} Hopf Pulsating waves

Table 9. Solutions that bifurcate from two-dimensional rolls.

Broken symmetries Symmetry group Type of bifurcation New solution (figure)

1 None D4 Saddle-node Large squares (15a′)
2 mx,my ,md,md′ {E, ρ, i, ρ3} Pitchfork Pinwheel (15b′)
3 ρ, ρ3,mx,my {E,md, md′ , i} Pitchfork Asymmetric squares (15c′)
4 ρ, ρ3,md,md′ {E,mx, my , i} Pitchfork Asymmetric squares (15d′)
5(i) ρ, ρ3,md,md′ ,my , i {E,mx} ‘Double-zero’ Drifting squares
5(ii) ρ, ρ3,md,md′ ,mx, i {E,my} ‘Double-zero’ Drifting squares (15e′)
5(iii) ρ, ρ3,md,mx,my , i {E,md′ } ‘Double-zero’ Drifting squares
5(iv) ρ, ρ3,md′ ,mx,my , i {E,md} ‘Double-zero’ Drifting squares (15f′)

Table 10. Stationary bifurcations from large squares: note that the last four solutions generically
bifurcate at the same point.

an advance of one-half of the period of the new time-dependent solution (Lands-
berg & Knobloch 1991; Matthews et al. 1993). Introducing a symmetry operation
te : (x, y, t) → (x, y, t + 1

2
Π), which advances a half-period in time (Proctor & Weiss

1993), we can express the possibilities in terms of the symmetry group {E,mx, te, tx},
isomorphic to Z2 ⊗ Z2 = D2, where tx = temx. The different solutions that arise are
listed in table 9.

In the Boussinesq approximation there is an additional up–down symmetry that is
lacking in a stratified layer, and the original eigenfunctions in the two-dimensional
problem have D2 spatial symmetry. Thus the fundamental steady solution has
D2 ⊗ Z2 = D2h spatiotemporal symmetry; this leads to a wider variety of possi-
ble bifurcations (cf. Proctor & Weiss 1993; Moore, Weiss & Wilkins 1991).

This approach can be extended to the three-dimensional problem with periodic
boundary conditions. It gives a convincing description of the possibilities for stationary
bifurcations from the large square pattern whose basic symmetry group is given
by (3.1), though it is not immediately clear that this description is exhaustive;
representation theory, described below, confirms that we have in fact covered all
possibilities. Table 10 shows all the possible secondary patterns that can generically
arise and most of these planforms are illustrated in figure 15. Note that the drifting
solutions can also be reached after pitchfork bifurcations from solutions with D2

symmetry; however, the Z2-symmetric solution with symmetry {E, i} can only appear
after two successive bifurcations from D4 symmetry. Similarly, solutions lacking all
symmetry are only attainable after several bifurcations.

Hopf bifurcations are considerably more complicated. To understand all transitions
we must introduce an additional time-shift symmetry t̂e : (x, y, t) → (x, y, t+ 1

4
Π), where

Π is the minimal period, which generates the group {E, t̂e, te, t̂3e} = Z4. So the full
spatiotemporal symmetry group is D4 ⊗ Z4 with 32 elements. (The theory of the next
subsection explains why the quarter period is appropriate for all transitions.) Next
we define the spatiotemporal symmetries tx = temx, tρ = teρ, etc. and t̂x = t̂emx,
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Figure 15. Stationary bifurcations from large squares with D4 symmetry. The schematic plots in
the left-hand panels show perturbations with different symmetries: (a) D4; (b) Z4 (pinwheel); (c)
D2 (diagonal); (d) D2 (transverse); (e) Z2 (travelling squares, x-direction); (f) Z2 (travelling squares,
y-direction). The right-hand panels show the perturbations from the left-hand panels added to large
squares to give: (a′) D4 (large squares); (b′) Z4 (pinwheel); (c′) D2 (diagonal asymmetric squares); (d′)
D2 (transversely asymmetric squares); (e′) Z2 (transversely travelling squares); (f′) Z2 (diagonally
travelling squares). The patterns in (a′), (b′), (c′), (d′) and (e′) correspond to (a), (b), (c), (d) and (e),
while (f′) corresponds to the sum of figures (e) and (f).

t̂ρ = t̂eρ, etc. Table 11 lists the spatiotemporal oscillations that we may expect to
find, together with the spatial symmetries that are broken. For instance, case 3
oscillates between the pattern in figure 15(c′) and its reflection half a period later. The
pulsating or direction-reversing travelling wave solutions (Landsberg & Knobloch
1991; Matthews et al. 1993) have D2 spatiotemporal symmetry so that e.g. in case
5(ii) the pattern in figure 15(e′) might move alternately to left and right, while case
5(i) involves a similar pattern moving up and down. Combining these two solutions
with phase differences 0 or π yields cases 5(iii) and 5(iv) but if they are out of
phase by 1

2
π they combine to give the alternating pulsating waves (Matthews et al.

1996; Rucklidge 1997) of cases 5(v) and 5(vi). These are the counterparts of the
alternating rolls that appear in a primary Hopf bifurcation with D4 symmetry (Clune
& Knobloch 1994). Note again that the wobbler solutions, introduced in § 7.1, which
have D2 symmetries {E, i, tx, ty}, {E, i, td, td′ } or Z4 symmetry {E, i, tρ, tρ3}, can only
appear after two successive bifurcations from the original D4-symmetric state. This
statement can be confirmed by the more formal treatment that follows, which provides
an abstract but straightforward way of classifying possible transitions.
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Broken symmetries Symmetry group New solution

1 None {E, ρ, i, ρ3, mx, my , md, md′ } Vacillation
2 mx,my ,md,md′ {E, ρ, i, ρ3, tx, ty , td, td′ } Oscillation
3 ρ, ρ3,mx,my {E,md, md′ , i, tx, ty , tρ, tρ3 } Oscillation
4 ρ, ρ3,md,md′ {E,mx, my , i, td, td′ , tρ, tρ3 } Oscillation
5(i) ρ, ρ3,md,md′ ,my , i {E,mx, ty , ti} Pulsating wave
5(ii) ρ, ρ3,md,md′ ,mx, i {E,my , tx, ti} Pulsating wave
5(iii) ρ, ρ3,md,mx,my , i {E,md′ , td, ti} Pulsating wave
5(iv) ρ, ρ3,md′ ,mx,my , i {E,md, td′ , ti} Pulsating wave
5(v) ρ, ρ3,md,md′ ,mx,my , i {E, t̂ρ, ti, t̂3ρ3 } Alternating pulsating wave

5(vi) ρ, ρ3,md,md′ ,mx,my , i {E, t̂ρ3 , ti, t̂
3
ρ} Alternating pulsating wave

Table 11. Oscillatory bifurcations from large squares: if any of 5(i)–(vi) appears then all appear;
other possible solutions may exist for certain parameter values (cf. Swift 1988).

A.2. Linear theory: representations

In this subsection, we discuss representations of groups, which describe the ways in
which the marginally stable eigenfunctions at a bifurcation point are affected when
symmetries are applied. As a parameter (say µ) is varied, a known steady solution
might change from being stable to unstable. At the bifurcation point (µ = 0), there are
a number of marginally stable eigenfunctions ξ1, . . . , ξn, and the nonlinear dynamics
near the bifurcation point can be described by evolution equations for the amplitudes
a1(t), . . . , an(t) of these eigenfunctions:

ȧ = f(a; µ) (A 1)

where a = (a1, . . . , an). If the underlying solution is time-periodic the ODE (A 1) is
replaced by a map, giving the amplitude of the perturbation after each period of the
underlying solution.

The known solution is supposed to be invariant under all elements γ in the symmetry
group Γ . This means that acting on a marginally stable eigenfunction with one of
these symmetry elements will generate another marginally stable eigenfunction, so an
operation γ takes a to Rγa, where Rγ is an n×n matrix. The set of matrices RΓ = {Rγ}
form a group called a representation of Γ , which depends on the symmetries of
the eigenfunctions. Whenever γ1γ2 = γ3, the corresponding matrices obey Rγ1

Rγ2
=

Rγ3
, though the converse may not hold. Clearly, RE is the unit matrix I in all

representations. Note that the dimension n, which is the number of independent
eigenfunctions, is not known in advance. Since the underlying solution is unchanged
by γ ∈ Γ we have the condition

f(Rγa) = Rγf(a), (A 2)

for all γ ∈ Γ . When this holds, the system is said to be equivariant under Γ . Linearizing
this equation we have the relation

LRγ = RγL; L ≡ ∂f

∂a
(a = 0, µ = 0), (A 3)

so that each Rγ commutes with L.
We apply these ideas to secondary steady-state bifurcations from steady large

squares, which are invariant under Γ = D4 = {E,mx, my , md, md′ , ρ, i, ρ3}, supposed
to occur when a parameter µ = 0. First consider one-dimensional representations,
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Figure RE Rmx Rmd
Rmy Rmd′ Rρ Rρ3 Ri

1 15(a) 1 1 1 1 1 1 1 1
2 15(b) 1 −1 −1 −1 −1 1 1 1
3 15(c) 1 −1 1 −1 1 −1 −1 1
4 15(d) 1 1 −1 1 −1 −1 −1 1

5 15(e, f)
[

1
0

0
1

] [−1
0

0
1

] [

0
1

1
0

] [

1
0

0
−1

] [

0
−1

−1
0

] [

0
1

−1
0

] [

0
−1

1
0

] [−1
0

0
−1

]

Table 12. The five irreducible representations of D4, for stationary bifurcations from squares. The
numbers in the first two columns correspond to those in tables 10 and 11.

in which the matrices Rγ are just numbers. There is always a trivial representation,
with Rγ = 1 for all γ. In this case, the eigenfunction is unchanged by any symmetry
operation in D4; an example of such a function is illustrated in figure 15(a).

There are three other one-dimensional representations. Taking mx first, for example,
we note that m2

x = E, so R
2
mx

= 1, or Rmx
= ±1. In other words, either the eigenfunction

is left unchanged by the reflection mx, or it is sent to minus itself by the reflection.
Similarly we have Rmd

= ±1; so there are four possible combinations of the signs of
Rmx

and Rmd
. Once these are specified, all the others follow, since all group elements

can be generated by mx and md. For example, ρ = mxmd so we have Rρ = Rmx
Rmd

.
The other possibilities are given in table 12.

Note that the representations of D4 in the table are consistent with the group
multiplication of D4 and that all new eigenfunctions obtained by acting on a marginal
eigenfunction with an operation γ ∈ Γ are multiples of the eigenfunction itself, so
the symmetries do not in these cases force new linearly independent eigenfunctions.
Thus there is only one eigenfunction associated with each of the instabilities we have
been discussing. This is consistent with the assumption that the representation and
the amplitude a are one-dimensional. We now suppose that there is more than one
independent marginally stable eigenfunction ξ1, ξ2, . . . , and that the marginally stable
eigenfunction ξ1 changes sign under mx but is left invariant under my , as illustrated
in figure 15(e). Reflecting this eigenfunction in the diagonal leads to a new, linearly
independent, eigenfunction ξ2 = mdξ1 (figure 15f). This eigenfunction must also be
marginally stable, since the underlying large squares are unchanged by this reflection.
Further reflections and rotations lead to no new eigenfunctions, so the representations
are 2 × 2 matrices and a is two-dimensional.

We have described five possible representations of D4, which are summarized in
table 12 (cf. Matthews 1999, who discusses these representations in the context of
dynamo theory). There are group-theoretic results that guarantee that these are the
only (absolutely, i.e. real) irreducible representations, characterized by the condition
that the only matrices that commute with every matrix in the representation are
multiples of the identity. This requirement guarantees that the marginal eigenvalues
have the same multiplicity n as the dimension of the representation. Similar general
results hold for every symmetry group. For a given finite group Γ , it is a straight-
forward matter to find the absolutely irreducible representations (see for example
Riley, Hobson & Bence 1997).

A.3. Nonlinear theory

The dynamics near a bifurcation point µ = 0 is governed by the dynamics of the
amplitudes (A 1) of the marginally unstable modes at the bifurcation point (Centre
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Manifold Theorem; cf. Guckenheimer & Holmes 1983). We expand f(a; µ) as a
power series in a and µ, and use the equivariance condition (A 2) to eliminate terms
in the expansion. The resulting normal form will depend on which representation
arises at the bifurcation point. We illustrate with the steady-state D4 problem above.
Representations are referred to by their numbers in table 12.

1. No restrictions on the dynamics at the bifurcation point. Expanding f and
changing coordinates yields the normal form for a saddle-node bifurcation:

ȧ = µ + Ca2 + · · · , (A 4)

where C is a constant. This corresponds to a pair of large square solutions (figure
15a′), with the same symmetries, colliding and annihilating.

2,3,4. Here we have some Rγ = −1. These force f to be an odd function of (a), so,
truncated to cubic order, we obtain the normal form for a pitchfork bifurcation:

ȧ = µa + Ca3 + · · · . (A 5)

The new solutions are left unchanged by those symmetry elements γ that are repre-
sented by 1. This subgroup of Γ is called the isotropy subgroup (or the symmetry
group) of the new branch of solutions. The symmetry groups of the various branches
are given in table 9.

The two-dimensional representation (5 in table 12) results in the second-order
normal form

ȧ1 = µa1 + Ca3
1 + Da1a

2
2 + · · · ,

ȧ2 = µa2 + Ca3
2 + Da2a

2
1 + · · · ,

}

(A 6)

where C and D are constants. Typically, |C| 6= |D|, and the equilibrium points of
this set of ODEs are (a, 0) and (0, a), with a2 = −µ/C , and (a, a) and (a,−a), with
a2 = −µ/(C + D). The solution of type (a, 0) with isotropy subgroup Z2 = {E,my} is
illustrated in figure 15(e′); figure 15(f′) shows a solution of type (a, a) with isotropy
subgroup Z2 = {E,md}. The isotropy subgroups are made up of the symmetry elements
that leave (a, 0) and (a, a) unchanged, that is, E and my in the first case, and E and
md in the second.

These new solutions break enough symmetries that the pattern (in a periodic box)
is now free to drift: the first drifts along the x-axis (since left is no longer equivalent
to right), and the second along the diagonal (Rucklidge 1997). We can show that
these travelling squares (either transverse or diagonal but not both) are stable only if
both branches bifurcate supercritically.

The advantage of the group-theoretic approach is to enumerate all possibilities
systematically, so that we know that the above five types are the only possible
simple stationary bifurcations. We have thus confirmed (for instance) that not all
subgroups of D4 are possible symmetry groups of bifurcating solutions: in particular,
{E, i} is not an isotropy subgroup of any bifurcating solution. An alternative way
of obtaining this information is to invoke the Equivariant Branching Lemma, for
which we refer the interested reader to Golubitsky et al. (1988). This lemma greatly
simplifies the calculations required to work out the bifurcating solutions and their
isotropy subgroups. It is interesting to note that Bergeon, Henry & Knobloch (2000)
find numerically four of the five representations as secondary instabilities of Bénard–
Marangoni convection in a square container with no-slip sidewalls.

Similar considerations apply in the case of the Hopf bifurcation (with pure imag-
inary eigenvalues); here we invoke the Equivariant Hopf Theorem – see Golubitsky
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et al. (1988) for more details. We summarize the main results in the situation where a
Hopf bifurcation breaks a reflection symmetry in the simplest possible way. Suppose
that at such a Hopf bifurcation there are two marginally stable eigenfunctions ξ and ξ̄
with eigenvalues iω and −iω, and that the eigenfunction ξ has complex amplitude a.
As above, symmetry operations γ act on a (and its complex conjugate ā) by multipli-
cation by Rγ , which in this discussion we take to be +1 or −1. In addition, advancing
by time t takes a to aeiωt. The combination of these two actions (Rγ and eiωt) defines
a representation of the group Γ ⊗ S1, where S1 is the circle group corresponding to
advances in time. As in the steady case, the symmetry group of the new, time-periodic
solution created in the Hopf bifurcation is exactly the group of symmetry operations
that are represented by +1. These will be purely spatial symmetries, with Rγ = +1, as
well as spatiotemporal symmetries, with Rγ = −1 combined with a half-period (π/ω)
time shift (since eiπ = −1). This justifies the introduction of the half-period time
advance operation te by Proctor & Weiss (1993) when the relevant representation is
made up entirely of +1 and −1.

To take a specific example, suppose that, in a Hopf bifurcation from a large square
solution with Γ = D4 spatial symmetry, the effect of the symmetry operations on
the marginally stable eigenfunctions gives us representation 2 in table 12. Then the
new time-periodic solution created in the Hopf bifurcation would have symmetry
group {E, ρ, i, ρ3, tx, ty , td, td′ }, where the last four elements combine reflections with a
half-period time advance. This solution would have the appearance of an oscillation
between the pattern in figure 15(b′) and a reflection of that pattern. Similar consid-
erations yield solutions that oscillate between figure 15(c′) and its 90◦ rotation, and
between figure 15(d′) and its 90◦ rotation. As before, the trivial representation occurs
when no symmetry is broken, and the amplitude of large squares (figure 15a′) would
merely vacillate. Matters are considerably more complicated when the representation
of Γ is complex or of greater dimension than unity; see Golubitsky et al. (1988).
The specific case of a Hopf bifurcation from large squares was treated by Rucklidge
(1997; see also Swift 1988), and the transverse pulsating squares, diagonal pulsating
squares and alternating pulsating waves described in § A.1 are recovered. In this
case, 90◦ rotations can be represented by ±i, and so to obtain unit spatiotemporal
representations for the periodic solutions it is necessary (and sufficient) to combine
rotations with quarter-period time shifts (e±iπ/2). In the general case, as for the sta-
tionary bifurcation, not all subgroups of D4 ⊗S1 occur as possible isotropy subgroups
of bifurcating solutions; in particular, the wobblers, with symmetry group {E, i, tx, ty},
cannot arise in a direct bifurcation from large squares.
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