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ABSTRACT 

Better methods for interpreting grain size spectra will enhance current understanding of 

past transport–depositional processes. A high-resolution inorganic grain-size dataset has been 

measured from a freeze core extracted from ‘Alberta Lake E’ a boreal fresh water lake 40 km 

east of the Athabasca Oil Sands in north-eastern Alberta, Canada. The grain-size spectra are 

remarkably consistent throughout the core, exhibiting a structure comprising six persistent grain-

size distributions below ca 250 µm, plus a rare medium-sand distribution. Automated 

deconvolution of the grain-size spectra produced poor results. Constraining the modes of two of 

the distributions produced deconvolution solutions that were statistically excellent and consistent 

with the structure of each spectrum. Statistical analysis of the ‘constrained’ solutions indicates 

that deconvolution successfully extracted independent grain-size populations. Conversely, the 

multimodal spectra generate traditional measures (for example, mean grain size) that are 

inconsistent combinations of different individual populations, and thus are poor proxies of 

transport–depositional processes. Alberta Lake E is situated in a boreal wetland landscape where 

sediment delivery is dominated by overland flow transport during spring melt. This context 

means that the Alberta Lake E grain-size spectra can be interpreted to reflect: (i) a bedload 

component transported during short-duration high discharge events that reflect the intensity of 

the melt; and (ii) a finer suspended load component representing material whose magnitude is 

controlled by the volume of the spring melt. Stratigraphically, bedload and suspended load 

populations demonstrate different short-wavelength and long-wavelength cyclicity, suggesting 

that spring melt is likely to be driven by cyclic external forcing factors. The links between the 

grain-size spectra and spring melt have potential for generating proxy records that better capture 

the external controls over spring melt in boreal systems, and the risks associated with these 
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energetic hydrodynamics. This is exemplified by the coarsest Alberta Lake E distributions, 

which indicate that more intense spring melt dynamics occurred in pre-historical times. 

 

Keywords: Boreal lake, grain-size analysis, parametric curve fitting, sedimentology, 

spring melt, stratigraphy 

 

INTRODUCTION 

A focus of palaeoenvironmental research is the development of high-resolution 

palaeoenvironmental reconstructions spanning the last few thousand years 

(PAGES_2k_Consortium, 2013). High-resolution studies generally require large numbers of 

analyses of samples that capture, generally via a proxy relationship, an environmental variable of 

interest. The advent of laser particle analysers (Syvitski, 1991) and microtomes (Macumber et 

al., 2011) now makes it possible to rapidly generate high-resolution grain-size datasets from fine 

slices of unconsolidated sediment cores. However, the use of grain-size data as a temporal proxy 

for environmental processes remains controversial (Dietze et al., 2012; Flemming, 2007; Le 

Roux & Rojas, 2007; Middleton, 1976; Weltje & Prins, 2007; Xiao et al., 2012). Less 

controversial, although rarely utilized in palaeoenvironmental time series, is the recognition that 

most grain-size spectra are composites of  multiple overlapping grain-size populations 

(Bartholdy et al., 2007; Dietze et al., 2013; Le Roux & Rojas, 2007; Qin et al., 2005; Sheridan et 

al., 1987; Xiao et al., 2012). In such spectra the identification of individual populations is reliant 

on statistical deconvolution. The most common methods proposed for deconvolving grain-size 

spectra are: (i) full discrete parametric curve-fitting (e.g. Qin et al., 2005; Sheridan et al., 1987; 

Xiao et al., 2012); (ii) end-member mixing analysis (EMMA; e.g. Dietze et al., 2012; Dietze et 
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al., 2013; Ijmker et al., 2012; Weltje & Prins, 2007); and (iii) sediment trend analysis (STA; e.g. 

Bartholomä & Flemming, 2007; Le Roux & Rojas, 2007; Poizot et al., 2008). Both EMMA and 

STA have been used mostly to investigate grain-size distributions within a horizontal (single 

temporal timeframe) two-dimensional context, such as sedimentary facies distributions and their 

underlying generalized transport–depositional processes. Both of these geostatistical techniques 

assume that the grain-size distributions of different samples are a reflection of the transport–

depositional processes within an area, i.e. the samples are assumed to be in a dynamic 

relationship and the algorithm employed seeks to uncover that relationship. This assumption is 

not necessarily valid in temporal studies, where the vertical 1D stratigraphy can capture diverse, 

unrelated sedimentological processes. Nevertheless, EMMA has been utilized in the analysis of 

the environmental processes linked to ancient sediments (Dietze et al., 2013; Weltje & Prins, 

2003).  

 

In contrast to EMMA and STA, deconvolution via parametric curve fitting is based on 

the principle that any individual grain-size spectrum represents an amalgam of discrete grain-size 

populations, each of which was generated by an erosional–depositional–transport mechanism 

(Ashley, 1978; McCave & Hall, 2006; McLaren & Bowles, 1985; Tanner, 1964; Xiao et al., 

2012). Deconvolution procedures aim to identify all of the individual populations within each 

spectrum. The relative merits of a variety of parametric curve-fitting approaches have been 

debated at length (for example, tanh, log-normal, log-hyperbolic, Weibull functions, etc.; 

Bagnold & Barndorff-Nielsen, 1980; Barusseau, 2011; Hajek et al., 2010; Leys et al., 2005; 

Påsse, 1997; Sun et al., 2002) and it is likely that the best parametric curve fitting approximation 

is context-specific. Barusseau (2011) summarized the debate well by differentiating between the 
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end uses of grain size deconvolution: (i) for disciplines such as hydraulic engineering and coastal 

geomorphology, the grain-size populations need to be deconvolved as accurately as possible 

because the defined population(s) will be used in subsequent models of sediment dynamics and 

engineering solutions. Given the complexities of real systems the choice of parametric function 

for deconvolution needs to be carefully examined (Barusseau, 2011; Flemming, 2007; Molinaroli 

et al., 2009); (ii) studies that compare grain-size populations (for example, sedimentary facies 

analysis or time series) are more concerned with variability within and between samples and, 

consequently, the choice of parametric curve type probably introduces at worst an internal and/or 

systematic error. The populations derived are therefore inferred to be internally consistent with a 

qualitative relationship to environmental processes. Nevertheless, some studies have further 

attributed the deconvolved populations to specific environmental processes (Ashley, 1978; 

Bartholomä & Flemming, 2007; McCave & Hall, 2006; McLaren & Bowles, 1985; Molinaroli et 

al., 2009; Tanner, 1964). 

 

Relatively few time-series studies have utilised deconvolved individual grain-size 

populations (Chen et al., 2013). Instead, time-series studies of grain-size data commonly utilise 

traditional grain-size summary statistics or specific components (for example, median or mean 

grain size, percent clay and/or silt and/or sand, end member mixing proportions, etc.) and 

interpret these as proxy data for the general sediment dynamics (Chen et al., 2013; Dietze et al., 

2012; Johnson & McCave, 2008; Wang et al., 2006; Weltje & Prins, 2007). The implicit 

assumption when using these types of grain-size proxies is that they adequately represent 

environmental processes.  
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This study utilizes a novel deconvolution and peak-fitting procedure, which includes 

constraints on solutions, to extract unimodal log-normal grain-size populations for a subset of the 

grain-size spectra analysed from a sediment freeze core extracted from ‘Alberta Lake E’ (ALE); 

an informally-named lake situated ca 40 km north-east of Fort McMurray, Alberta, Canada (Fig. 

1). This sample subset is subsequently used as a training set to extend some deconvolved 

population parameters across the complete ALE grain-size data. The quantitative grain-size 

proxy data is then combined with a detailed understanding of the sedimentological and 

physiographic context of ALE to generate a stratigraphic profile of specific bedload and 

suspended load transport-deposition processes. The deconvolved populations are also compared 

against traditional proxy data measures such as mean grain size.  

 

METHODS 

Sediment collection 

A 1.45 m freeze core was collected from Alberta Lake E (ALE) at 3.75 m water depth in 

September 2010 (latitude 56.87933º; longitude -110.5678º). The coring location was chosen 

based on water depth, location within the lake, surrounding landscape and substrate type. For 

further physiographic information on ALE see Supplementary Information. The massive black 

gyttja sediment remained frozen until sectioning prior to grain-size and other analyses. The core 

has a 210Pb age model that indicates that the top 30 cm represents the last 150 years (Jautzy et al., 

2013). 
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Grain-size measurements 

 A purpose-built freeze-core microtome was used to section the ALE core (mostly 2 mm 

resolution), starting with the 0 to 1 mm surface sample (slice 1) to slice 1451 (n = 701 analyses). 

Detailed information regarding pre-analysis strategy and treatment methods are documented in 

the Supplementary Information. Briefly, sediment samples were digested in a heated water bath 

with 10% v/v% H2O2 to remove organics (van Hengstum et al., 2007). Grain-size analysis of 

digested samples was performed in triplicate with a Beckman Coulter LS 13 320 Laser 

Diffraction Analyzer (Beckman Coulter Inc., Brea, CA, USA) fitted with a Universal Liquid 

Medium (ULM) sample chamber. The samples were run in distilled water with an obscuration 

level of 10 ± 3%, over a measurement range of 0.4 to 2000 ȝm (Murray, 2002). The laser 

diffraction data were initially converted to equivalent spherical grain-size volume using the 

Fraunhofer and Mie diffraction models, and then size-class data were averaged for the triplicate 

analyses. Gradistat software (Blott & Pye, 2001) was used to extract the mean grain size, 

medium silt, total silt and fine sand volume percentages from the equivalent spherical grain-size 

diffraction data. 

 

Grain-size data analysis 

 Multiple deconvolution methods were trialled (detailed in both the Results section below 

and Supplementary Information). The final deconvolution protocol used was: 

1) All grain-size spectra were visually examined to determine the general structure of the 

spectra (Fig. 2) and to identify any spectra that did not conform to the general spectral 

structure (Fig. 3). See also SI Notes 1 and 2. 
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2) A subset of 50 samples was chosen for testing different deconvolution and peak fitting 

combinations. These samples were spaced approximately every 200 mm down core, with at 

least three contiguous samples chosen from each 200 mm segment. The contiguous samples 

were specifically chosen to capture the grain-size spectral variability for that 200 mm 

portion of the core (Fig. 2). This selection method ensured that the sample subset included 

grain-size spectra that were broadly representative of both the whole core and the most 

important aspects of grain-size variability, including potential cyclic sedimentation 

processes. 

3) The second-order and fourth-order derivatives of each spectrum within the subset were 

calculated (Fig. 4) to help identify the positions of populations that are represented by either 

unambiguous peaks (i.e. peaks with two downward-sloping sides) or changes in slope 

(inflection points) that are likely to be indicative of the existence of subordinate grain-size 

populations within the spectrum (cf. Bartholdy et al., 2007; Flemming, 2007; Qin et al., 

2005; Xiao et al., 2012). The derivative plots also identify the approximate mode for each of 

the log-normal distributions, which was noted and used in later steps in the analytical 

process. 

4) The PeakFit® software package (SeaSolve Software Inc.; www.seasolve.com) was used to 

deconvolute each spectrum in the 50 sample subset. Initial trials used 2, 3, 4 … to 9 log-

normal distributions. This trial and error aimed to determine the most suitable number of 

distributions for each spectrum, an approach also commonly employed in automated log-

normal fitting (Xiao et al., 2012) and EMMA (Weltje & Prins, 2007).  

5) Optimization of the log-normal distributions within each deconvolution model (termed peak 

fitting) was also conducted via PeakFit® software. PeakFit uses an iterative ‘peak 
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sharpening’ (derivative-based) algorithm whereby a solution is derived and then tested to 

determine whether any further ‘sharpening’ produces better or worse least-squares criteria. 

The iterations were continued until the chi-squared goodness of fit criteria attained values 

unchanging in the sixth decimal place. Once completed, the fit between the model and 

measured spectra can be evaluated via the coefficient of determination (r2), Standard Error 

(SE), and F-statistic goodness of fit measures (Figs 2 and 3). Overall each deconvolution and 

subsequent peak optimisation (steps 4 and 5) procedure is similar to methods used by other 

authors undertaking log-normal deconvolution (Ashley, 1978; Flemming, 2007; Qin et al., 

2005; Sheridan et al., 1987; Sun et al., 2002; Xiao et al., 2012).  

6) Peak fitting can generate incorrect results by migrating distributions to unrealistic values 

(Seasolve, 2003) which did occur in these peak fitting models. To correct this problem the 

mode of distribution 2 was constrained to between 5.0 to 6.5 µm, and that of distribution 5 

to >80 µm (the reasons for this are detailed in SI Note 3). 

7) The reproduction of the basic spectrum structure (i.e. main spectral peaks and troughs align 

with the main distributions within a solution) was used as a qualitative criterion for 

acceptance or rejection of different deconvolution models.  

8) The deconvolved and peak-fitted model generates the following statistics for each identified 

log-normal distribution within a spectrum: area, maximum amplitude, modal grain size and 

the full-width at half the height of the maximum amplitude (FWHH, which is a similar 

measure to the standard deviation of a distribution). 
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Extending the deconvolution to the other grain size spectra  

To extend the deconvolution analysis across the whole dataset, the 50 deconvolved 

samples were used as a training set to generate, via least-squares fitting, a polynomial that could 

estimate, using the size-class data of each grain-size analysis, the area and amplitude statistics for 

the remainder of the samples (using STATA® statistical software; www.stata.com). Algorithms 

were generated for the distribution 3 (D3) Area and distribution 6 (D6) Amplitude parameters 

(SI; Appendix 1). These two examples were then compared to other grain-size measures, such as 

mean grain size.  

 

RESULTS AND INTERPRETATION 

Spectral Deconvolution 

Grain-size spectral structure 

The grain-size spectra from ALE are exceptionally consistent in their overall structure (Figs 

2, SF4 and SF5). From the finest grain size measured (0.4 µm) to ca 3 to 4 µm there is a broad 

low amplitude shoulder or unambiguous peak observed in all spectra (Fig. 2). The area of fine 

grain sizes between 3 to 4 µm and ca 30 µm either contains a single broad peak with a mode 

between 7 µm and 14 µm Fig. 2A and C), or two clearly distinguished peaks with modes 

between ca 5.0 to 6.5 µm and ca 17 to 20 µm (Fig. 2B and D). Generally, samples characterized 

by overall coarser-grained spectra are those with two clearly distinguished peaks. Between ca 30 

µm and ca 120 µm there is generally a single peak centred around 50 µm. The peak is either 

approximately symmetrical if it is of high amplitude (Fig. 2D), or it has unequal-sloped sides if 

of low amplitude (Fig. 2B). In some of the overall finest-grained spectra (i.e. spectra where the 3 

to 30 µm area is relatively large), this peak can be reduced to an inflection beside a large finer-
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grained peak at 3 to 30 µm (Fig. 2A and C). In these finest grained spectra a small distinct peak 

occurs at ca 90 to 100 µm. However, in most spectra this peak is generally represented by either 

a broad plateau or shoulder in the ca 70 to 120 µm grain size range (Fig. 2B to D). The coarsest 

grained peak that is common to all of these spectra is centred at ca 150 µm. The finer-grained 

side of this peak is coincident with the ca 70 to 120 µm plateau/shoulder and is generally a low-

angle slope. The coarser-grained side of the 150 µm peak has an exponential decay slope in 

virtually all spectra.  

Visual examination had previously identified three spectral types (total of eight samples) 

that diverge from the above structure (Fig. 3). The most common difference (five samples) is the 

presence of a broad, low-amplitude medium to coarse sand sized population (the ‘237 mm’ 

sample type; Fig. 3, solid line). The 237 mm sample itself has 7.7% of its total grain-size 

population in this peak, while the other four samples within this group have <1% of their total 

population in this peak. Samples with a medium sand peak otherwise exhibit all of the common 

spectral structural characteristics listed above. The medium sand distribution does not overlap 

any of the finer-grained distributions. Consequently, it is both easily distinguished and too minor 

to have been included in the spectral deconvolution and peak fit modelling. 

The 691 mm sample has virtually no sand, but otherwise follows the general spectral 

structure above. This leaves only two spectra (‘985 mm’ type spectra in Fig. 3) out of the total 

701 spectra that substantially diverge from the general spectral structure. These two adjacent 

samples, at 985 mm and 987 mm, exhibit no fine silt peak, but rather a single coarse silt peak at 

ca 35 µm, a grain size region that is either a spectral low or a shoulder to the ca 50 µm silt peak 

in all other spectra.  
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Grain-size spectral structure - interpreting the number of distributions  

The second-order and fourth-order derivative plots are good indicators of the smallest 

number of log-normal distributions present (Fig. 4; see also SI Notes 1 and 2). For example, in 

the most fine-grained spectra examined, there is generally an unambiguous peak indicative of a 

small very fine sand-sized population (mode 80 to 110 µm; Figs 2A and 4A). In coarser-grained 

spectra this minor population can only be inferred on the basis of an inflection and/or shoulder 

and/or plateau in this region (compare Fig. 2A to 2D). Second-order and fourth-order derivative 

plots yield a weak to moderate peak in the very fine sand region (Fig. 4B and C), indicating the 

presence of a very fine sand-sized population that is essentially hidden by the larger amplitude 

peaks on either side in coarser-grained samples. The six common distributions observed in the 

spectral structure are therefore consistent with the six peaks observed within the derivative plots 

(Table 1).  

The trial and error deconvolution and peak fitting procedure used generated fitting statistics 

that reached their maxima (r2, F-statistic) or minima (standard error) with a total of six 

distributions (Fig. 5). Any increase in the number of distributions modelled did one or more of 

the following: (i) not result in any significant improvement of the fit statistics, and sometimes 

resulted in a decline; (ii) PeakFit generated near-zero or sometimes negative amplitudes for one 

or more of the distributions, indicating that the solution does not require those distributions to 

model the measured data; or (iii) one or more distributions was both wholly within and a minor 

component of another distribution, indicating that only one single distribution was required in 

that grain-size region (Figs SF4B and SF4C).  

The general spectral structure (Fig. 2), derivative plots (Fig. 4) and deconvolved-peak 

fitted models (Fig. 5) all indicate that there are seven discrete log-normal grain-size distributions 
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within these grain-size spectra. The subsequent modelling of this data utilized a six distribution 

structure to the PeakFit modelling (the six illustrated in Fig. 2, minus the rare ‘237 mm’ type 

medium sand mode distribution shown in Fig. 3). From smallest to largest these distributions are 

termed D1 to D6 (see Table 1 for basic statistics). Similarly, the modes of these distributions are 

labelled M1 to M6, respectively.  

Distributions D1 and D6, the finest and coarsest grain populations, respectively, are 

easily distinguished in virtually all spectra. Of the D2 to D5 distributions the very fine sand 

distribution (D5) has unambiguous peaks in 45 (6.4%) of the spectra, the other three distributions 

all have unambiguous peaks in more than 20% of spectra; i.e. all of these distributions are 

common within the data. The only unambiguous peak excluded from the data is that at 35 µm in 

the two contiguous anomalous samples at 985 mm and 987 mm down core (0.3% of samples; 

Fig. 3).  

 

Peak Fitting 

Results: Peak fitting generates the best statistical model without considering other constraints, 

such as spectral structure or derivative plots, and in an automated mode has a known tendency to 

migrate distributions (Seasolve, 2003). Peak fitting of the ALE grain-size data without any 

constraints on the distributions encountered this problem (see SI Note 3 for unconstrained peak 

fitting results). To resolve this problem, without unduly limiting the potential peak fitting 

solutions, required two constraints: (i) to force PeakFit to distinguish between the coarse silt and 

very fine sand distributions the M5 (very fine sand mode) was constrained to >80 µm, consistent 

with the minimum M5 of 83.2 µm observed in the derivative plots (Fig. 4); and (ii) to force 

solutions to better approximate the bimodal structure of the 3 to 30 µm range, M2 was 
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constrained to 5.0 to 6.5 µm. This range matched that observed in the derivative plots (Fig. 4). 

The alternative of constraining the range of the M3 was trialled but found to be less successful, 

as gauged by generally poorer fitting statistics found with finer-grained samples. This was 

probably due to the best M3 estimate of 17 to 20 µm being derived from coarser-grained 

samples, which was probably an inappropriate M3 constraint for finer-grained spectra (Fig. 2; 

Table 1). Both the D2/D3 and D5 migration related issues are essentially a product of trying to 

find the best statistical model for strongly overlapping distributions, which is not a problem 

restricted to PeakFit or grain-size data, and usually requires additional information to be fully 

successful (Bah et al., 2009; Flemming, 2007). A statistical comparison between the 

unconstrained and constrained results is given in SI Note 4. 

Area and peak amplitude are measures of the overall size of the distribution (Hartmann, 

2007), and the basic statistics for the constrained peak fits indicate that D2, D3 and D4 are the 

most important grain-size populations in these spectra (Table 1). In contrast the mode and 

FWHH are measures that reflect the position and shape, respectively, of each distribution within 

a spectrum (Hartmann, 2007). Hence the combined basic statistics of the deconvolution peak fit 

models (Table 1) are a representation of the position, shape and size of each distribution. These 

characteristics combined reflect the general spectral structure; i.e. strongly overlapping D2 and 

D3; weakly overlapping D3 and D4; strongly overlapping D4 and D5; D1 and D6 weakly 

overlapping D2 and D5, respectively (Figs 2, 3 and SF4). Both the FWHH and Aspect Ratio 

(mode-normalised FWHH) are measures of the distribution width and both demonstrate the 

generally poor sorting for D1 to D3, moderate sorting for D5 and D6 and moderate to moderately 

well-sorted D4 (Table 2; Friedman, 1962).  

Spearman rank correlation analysis of the area, amplitude, mode and FWHH measures 
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for the constrained model solutions provide an indication of how these parameters co-vary across 

the sample suite (Table 2). There are two striking features of the correlations between the size 

parameters of the distribution (Table 2A and 2B): (A) area and amplitude for D1 to D3 are 

negatively correlated with those of D4 to D6; and (B) area and amplitude for D4 to D6 are all 

strongly positively correlated with one another. D1 to D3 exhibit no consistent cross-correlations 

with the only substantial correlation being a strong negative one between D2 and D3 areas. The 

position (mode) and width (FWHH) of most distributions are generally uncorrelated (Table 2C 

and 2D). A notable exception to this is the positive correlation between mode and FWHH for D3 

and D4. 

 

Interpretation:  Understanding the impact of constrained peak fitting is clearly important to the 

overall interpretation of these spectra. Constrained–unconstrained correlations indicate that the 

solutions for D4 and D6 are relatively robust irrespective of constraints, whilst all other solutions 

are variably impacted, D2 being the most impacted (see SI Note 3 for detailed discussion).  

Log-normal distributions have long been recognized as an approximation of the 

individual grain-size populations, in that each log-normal distribution essentially reflects the 

transport-deposition processes that controlled that population (Ashley, 1978; Flemming, 2007; 

Le Roux & Rojas, 2007; Middleton, 1976; Middleton, 1990; Xiao et al., 2012). The strong 

positive and negative correlations between area and amplitude indicate fundamental scale-based 

relationships between the different populations within these spectra (Table 2). Scale parameters 

reflect the magnitudes of the different transport–depositional processes represented by the 

individual distributions (Hartmann, 2007), suggesting there are important magnitude 

relationships revealed by this deconvolution methodology.  
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In contrast to the scale parameters, the position (mode) and shape (FWHH) parameters 

are a reflection of the hydraulic processes that govern the grain-size populations (Hartmann, 

2007; Kranck et al., 1996a; Kranck et al., 1996b; Middleton, 1976; Påsse, 1997; Sheridan et al., 

1987). The general non-correlation, with a notable exception of the D3 to D4 mode-FWHH 

relationships, of the position and shape parameters of these distributions indicates that for the 

most part these populations are not generally linked at the hydrodynamic process level (Table 2). 

This suggests that the deconvolution and peak fitting procedure used herein did successfully 

separate discrete grain-size populations that were each controlled by a distinctive set of erosion–

transport–depositional processes (this is further examined in the Discussion). Overall the area, 

amplitude, mode and FWHH parameters of grain-size distributions are important evidence for 

understanding the relationships between the different parameters, but are generally little used in 

stratigraphic studies utilising grain-size data. 

 

Extending the deconvolution to non-deconvolved grain size spectra 

The deconvolved and peak-fitted spectra represent a subset of the grain-size spectra 

measured in the study that are assumed to capture the spectral variability The original grain-size 

frequency-class measurements were used  as a training set against which the D6 amplitude and 

D3 area parameters were regressed as dependent variables to yield polynomial equations that 

approximate the deconvolution statistic (Fig. 6; SI Appendix 1). The polynomial equations were 

used to extend the D6 Amplitude and D3 Area parameters across all samples except the two 

anomalous ‘type 985 mm’ spectra. The Spearman rank correlation coefficients between the 

original deconvolution statistics and their polynomial approximations were 0.97 and 0.98 for D3 

Area and D6 Amplitude, respectively.  
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DISCUSSION 

Spectral deconvolution and peak fitting 

The deconvolution of ALE grain-size spectra into seven distributions was relatively 

straightforward due to the consistent stratigraphic spectral structure for all but two adjacent 

samples (Fig. 4). Conversely, peak fitting D1 to D6 of the spectra was not straightforward due to 

the degree of overlap between D1 to D3 and D4 to D5 distributions (Figs 2 and SF4). As noted 

by many authors, there is no single solution when deconvolving and peak fitting strongly 

overlapping distributions within a spectrum, as also demonstrated by the excellent fit-statistics 

for both constrained and unconstrained solutions (Ashley, 1978; Bagnold & Barndorff-Nielsen, 

1980; Bah et al., 2009; Flemming, 2007; Middleton, 1990; Påsse, 1997; Sun et al., 2002; Weltje 

& Prins, 2007). Most grain-size deconvolution studies lack independent data for determining 

which peak fitting solution is best, as is the case for ALE. Consequently, choosing a preferred 

peak fit is a subjective judgment based upon a prioritization of the accuracy and importance of 

the different pieces of quantitative information within one or more spectra. The preferred 

solution is that which most accurately recreates the highest priority piece of quantitative 

information (Leys et al., 2005). For the overlapping D1 to D3 and D4 to D5 grain-size ranges in 

the ALE spectra, the preferred solution was the one that reproduced the D2 and D5 modes 

exhibited in spectra hosting unambiguous D2 and D5 peaks. There is considerable 

sedimentological support for using the mode as the determining factor for anchoring grain-size 

population positions (Bah et al., 2009; Barusseau, 2011; Kranck et al., 1996b; Påsse, 1997; 

Sheridan et al., 1987; and the many references therein). There is also mathematical support for 

prioritizing the distributional mode as the most accurate quantitative information when 

deconvoluting grain-size data (Hajek et al., 2010; Leys et al., 2005; Lwin, 2003; Weltje & Prins, 



 

This article is protected by copyright. All rights reserved. 

2007). Both of these lines of support highlight the mode as the single positioning parameter 

within both log-normal and other parametric curve-fitting approaches. In relation to peak fitting 

and the potential migration of modes to unrealistic values, the best summary encountered is: “It 

is therefore especially important that centre values be constrained and not be permitted unlimited 

freedom of movement.” (the term ‘centre’ indicates mode; Seasolve, 2003). Many grain-size 

deconvolution and peak fitting studies do not constrain the modal position, although the capacity 

to constrain modes in EMMA is a notable exception (Dietze et al., 2012; Weltje & Prins, 2007).  

 

Conceptual sedimentological context for Alberta Lake E (ALE) 

An understanding of the sedimentological context of ALE is required to assess the 

significance of both the observed grain-size populations and their stratigraphic variation. The 

first-order factors controlling ALE sedimentology include: (A) the hydrological regime 

controlling the run-off volume and intensity; (B) the climatic regime, which for this area is 

primarily the distribution of water through the seasonal cycle; (C) the landscape surrounding 

ALE, which controls the erosion-transport parameters; (D) the current action within the lake, 

which controls the internal distribution and/or redistribution of the grains entering the lake; (E) 

bioturbative mixing – being massive black gyttja, the ALE core would ordinarily be assumed to 

be pervasively bioturbated. However, there is a lack of fine-grained sand in the ‘691 mm’ type 

sample, even though there are normal amounts of fine sand in the spectra of samples at 689 mm 

and 693 mm. Similarly, 2 mm spaced samples either side of the five ‘237 mm’ type samples 

contain no medium sand. This suggests a bioturbation mixing depth <2 mm; and (F) the grain-

size distribution and mineralogy of the source regions, which controls what grain sizes are 

available for erosion–transport–deposition. Specific grain-size data for the source regions within 
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the Fort McMurray area are limited to coarse size-class data, which indicates that all class sizes 

are available (Appendix 4 of Andriashek, 2003; see also McLaws, 1980). The surficial geology 

of the area is primarily comprised of tills, which in general contain a wide variety of grain sizes. 

It is therefore considered unlikely that there is a deficiency in any particular grain size class 

within the source region, and criterion ‘(vi)’ is not considered to have been a controlling factor in 

the ALE grain size spectra. 

The hydrological record indicates the ALE region hosts a typical hydrological cycle for a 

boreal region (see Physiography section in SI). The ALE coring site is also fully surrounded by 

wetlands (see SI), and run-off of all types will have first traversed the wetlands before entering 

ALE. In boreal wetland environments the seasonal hydrological pattern is markedly partitioned 

(Fang et al., 2010; Pomeroy et al., 2007; Shook et al., 2013). Spring melting generates overland 

flow due to frozen subsurface organic soils that prevent or severely inhibit infiltration of the 

large volumes of snow melt water that is delivered over relatively short time spans (Carson et al., 

1973; Gibson et al., 1993; Gray et al., 2001; Metcalfe & Buttle, 1999; Shook et al., 2013). 

Sedimentological measurements of spring run-off indicate that the discharge volume generally 

controls the volume of sediment delivery (Cockburn & Lamoureux, 2008a; Cockburn & 

Lamoureux, 2008b; Laudon et al., 2007; Metcalfe & Buttle, 1999; Metcalfe & Buttle, 2001), 

whilst the run-off ‘intensity’ (i.e. velocity and run-off rate) controls the delivered grain size 

(McDonald & Lamoureux, 2009; McDonald et al., 2010). Combined, these studies demonstrate 

that the spring melt is a heterogeneous period that is mostly comprised of short peak-flow time 

periods, interspersed within and succeeded by recessional streamflow of significantly lower 

discharge volume and velocity. Commonly the peak flow events during spring melt are short-

duration high discharge events driven by a rain and/or high temperature event (see figure 5 of 
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McDonald & Lamoureux, 2009). 

In contrast, the summer–autumn–winter period is dominated by plant evapotranspiration 

and/or ongoing subsurface flow. During summer, boreal slope soils are mostly dry and take 

considerable wetting before they export water (Gibson et al., 1993; Redding & Devito, 2008), 

whilst the wetlands act as a sink for precipitation (Kværner & Kløve, 2008; Lyon et al., 2012; 

McNamara et al., 2005; Redding & Devito, 2008). Nevertheless, summer thunderstorms are a 

component of northern boreal summers and represent a potential mechanism for overwhelming 

the holding capacity of the wetland and thereby initiating surface run-off (Kværner & Kløve, 

2008). Redding & Devito (2008) estimated that for northern Albertan hill slopes, such as those of 

the Firebag Hills Uplands near ALE, the return period for summer storms capable of generating 

>1 mm of surface run-off (i.e. very minor flow) from the soil was ca 25 years. Wetlands would 

probably further attenuate the volumes and velocities of storm-generated summer–autumn run-

off, thereby extending this return periodicity significantly (i.e. even anomalously large summer 

storm streamflow events would be strongly attenuated and not produce significant run-off into a 

wetland-surrounded lake such as ALE). Overall it is highly likely that summer surface run-off to 

ALE is negligible for the majority of years. However, if summer run-off were to occur, the 

wetlands surrounding ALE would probably preferentially capture bedload and thus skew the 

sediment delivery to suspended load material. A grain-size spectrum similar to that of the ‘691 

mm type’ sample in Figure 3 may reflect such a situation.  

 

Easterly winds greater than 15 m/s over the 1 km fetch between the eastern shore of ALE 

and the coring site could conceivably generate high frequency wind waves ca 10 cm high 

(Hamilton & Mitchell, 1996; Young & Verhagen, 1996). However, the wind record for the 
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region indicates that easterly winds of speeds above 8 m/s are rare for the area. Case studies of 

lake high-frequency wind waves indicate a lack of reworking in benthic sediments at 3.5 m water 

depth (Hofmann et al., 2008; Jin & Ji, 2004; Luettich et al., 1990). Combined flow in lakes is 

generally generated via the coupling of inflow, outflow and wind. Much of the non-wave current 

activity is secondary effects of the waves and inflow regimes themselves (for example, reflected 

waves and coriolis circulation, Jin & Ji, 2004; Soulsby et al., 1993). The limited fetch and 

seasonally-restricted run-off period of ALE make it unlikely that combined flow is significant 

outside of the spring melt run-off period. The floating riparian fen that rims the ALE shoreline 

attests to the lack of significant wave and current activity in the lake. Factor ‘D’ is therefore 

considered insignificant for a small lake, such as ALE, which is consistent with findings 

elsewhere. 

The physiography surrounding ALE indicates that inorganic sediment will be derived 

from the northern hills and southern margins, plus potentially from the west, and delivered via 

the inlet channel (see SI, Fig. SF1). The stream channels entering ALE are all either well north-

east (downstream and across the lakebed subaquatic channel) of the coring site, or discontinuous 

wetland channels. The single inlet channel to ALE, which is near the coring site, and thus 

potentially an important sediment delivery system, is both discontinuous and embedded within 

extensive aquatic vegetation (reeds). It is probably a sink rather than a conduit, certainly for 

bedload particles. Overall, the lack of effective streams near the coring site means that focused 

point-source sediment delivery via stream channels is likely an insignificant method of bedload 

sediment delivery to the ALE coring site. Spring-melt overland flow, which has been 

demonstrated to be the predominant method of surface water flow across frozen wetlands 

(Gibson et al., 1993; Metcalfe & Buttle, 1999; Shook et al., 2013), is considered the most 
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important sediment delivery mechanism to ALE.  

As they apply to ALE, hydrology (factor A above), seasonal climate (factor B) and 

landscape characteristics (factor C) can be mostly considered to predominantly reflect the 

sediment delivery associated with the spring melt as has been found for other boreal lakes 

(Carson et al., 1973; Fang et al., 2010; Gray et al., 2001; Laudon et al., 2007; Lyon et al., 2012; 

McNamara et al., 2005; Metcalfe & Buttle, 1999; Redding & Devito, 2011; Redding & Devito, 

2008). Thus, the grain-size parameters identified within these spectra can be considered to be 

indicators or proxies for spring melt sediment dynamics.  

 

Alberta Lake E  grain-size populations – interpretation of processes 

The ALE grain-size spectral structure is consistent throughout the entire core (Figs 2 and 

SF5), suggesting that the seven log-normal distributions (six consistent, one rare) represent a 

suite of independent grain-size populations and processes that were persistent throughout the 

time period represented by the core. However, associating individual grain-size populations with 

specific processes is difficult and prone to error without corroborating process-based data. 

Nonetheless, the conceptual sedimentological framework above provides some limits as to what 

the grain-size analysis herein may represent (see also SI Note 5). Distribution D1 is consistent 

with clay-sized suspended load material. The unique sedimentological properties of clay enable 

some confidence in its definition (Johnson & McCave, 2008; McCave et al., 1995a; Xiao et al., 

2012). Distribution D2 is probably inorganic long-term suspended load material (Chang et al., 

2007; Chang et al., 2006; Law et al., 2008; Slattery and Burt, 1997).The D1 and D2 distributions 

are both likely to be influenced by dissociation of aggregated flocs or particles during laboratory 

analysis, although the pre-treatment methods used here were designed to minimize this effect 
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(see SI; McConnachie & Petticrew, 2006). The strong positive correlation between D1 and D2 

amplitudes (but not areas) indicates there is some correspondence between the magnitudes of 

these two populations (Table 2). However, the non-significant mode correlation and strong 

negative correlation for D1 and D2 FWHHsuggest that these populations do represent different 

suspension processes (for example, low density clay flocs versus mineral grains kept in 

suspension via turbulence).  

Distribution D3 covers the size range for ‘sortable silts’ which have received 

considerable research attention (see Hamm & Dade, 2013). These are thought to be silt-sized 

grains that travel close to the bed under relatively low shear stress (Chang et al., 2007; Hamm & 

Dade, 2013; Johnson & McCave, 2008; Law et al., 2008; McCave et al., 1995b; Molinaroli et al., 

2009). Turbulence in the bed boundary layer keeps these particles in suspension and they 

undergo progressive sorting as flow decelerates (McCave et al., 1995b; Middleton, 1976). The 

moderate mode and FWHH correlations between D2 and D3 indicate that a portion of the D2 

grains were potentially travelling as sortable silt-sized aggregates that were disaggregated post-

deposition, as has been observed elsewhere (Table 2; SI; Chang et al., 2006).  

Distribution D4 is moderately to moderately well-sorted, suggesting that these grains 

were probably influenced by progressive sorting and are therefore likely to be bedload 

transported particles. It is the most consistent of all the populations with a relatively narrow 

range of modes, aspect ratios and FWHH statistics (Table 1). The strong spectral minimum 

between D3 and D4 probably demarcates the boundary between suspension and bedload 

sedimentology. Process-based studies indicate that the finest-grained bedload population is 

generally related to saltation processes (Ashley, 1978; Barusseau, 2011; Chang et al., 2006; 

Hamm & Dade, 2013; Law et al., 2008; Middleton, 1976; Sheridan et al., 1987; Singer & 
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Anderson, 1984). Distributions D3 and D4 have significant positive correlations between their 

position and shape parameters (mode and FWHH; Table 2C and 2D), suggesting that the 

sedimentological processes controlling these two populations are related. This is consistent with 

both being related to benthic boundary layer turbulence, which strongly controls the transport 

and progressive sorting of both sortable silt and saltating particles (Hamm & Dade, 2013; Singer 

and Anderson, 1984).  

Singer & Anderson (1984) documented four populations within bedload transport that in 

order of increasing grain size were: (i) ‘intermittent suspension’ (equivalent to what nowadays 

would be considered suspended load sortable silt rather than bedload); (ii) saltation; (iii) finer-

grained traction population; and (iv) coarser-grained traction population. These authors 

demonstrated that the relative magnitude of these bedload populations varies dependent upon the 

transport conditions, but for bedload sediment undergoing progressive sorting in a decelerating 

flow the relationship is saltation > coarser-grained traction population > finer-grained traction 

population. The relative abundance of the bedload populations at ALE is similar with D4 > D6 > 

D5. It is consistent with bedload delivery to the ALE coring site probably being decelerating 

nepheloid layers (discussed further below; Best et al., 2005; Chambers & Eadie, 1981; Cockburn 

& Lamoureux, 2008b; Singer & Anderson, 1984). In this context D5 and D6 are both likely to be 

traction processes (for example, perhaps rolling versus sliding).  

Alberta Lake E grain-size record 

The sedimentological context of ALE indicates that the ALE situation is a relatively 

simple particle delivery system dominated by the hydrological dynamics of spring melt. This 

simplicity is probably a primary reason why the spectral structure is so remarkably uniform 

throughout the core. 
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Bedload delivery of inorganic sediment (D4 to D6, plus medium sand D7) predominantly 

occurs during the higher-energy events within the spring melt, which generally occur during the 

earlier portions of the nival period (McDonald & Lamoureux, 2009; McDonald et al., 2010). 

Therefore the D4, D5 and D6 spectral measures (mode, amplitude, area and FWHH) can 

conceptually be considered as proxy measures of different aspects of the spring thaw intensity. 

For example, the magnitude parameters area and amplitude of log-normal grain-size populations 

are generally interpreted as a proxy for the sum energy of the process (or processes) that gave 

rise to that grain-size distribution (Ashley, 1978; Kranck et al., 1996a; Middleton, 1976; 

Molinaroli et al., 2009; Syvitski, 1991; Tanner, 1983). The year 1990 hosted a high nival peak 

streamflow (Fig. SF2B), which by this conceptual framework should equate to a relatively high 

D6 Amplitude in contrast to 1991, which should conceptually equate to a relatively low D6 

Amplitude. The 210Pb age model for ALE (Jautzy et al., 2013) does indeed suggest that this is the 

case (Fig. 6A). The age model also indicates that the regional floods of 1979 and 2007 seem to 

be represented by anomalously high D6 Amplitude values (maximum streamflows at the 

Clearwater above Christina station of 366 m3/s and 299 m3/s, respectively). However, the highest 

values for D6 Amplitude occur deep in the core, suggesting that for the oil sands area there is the 

potential for higher intensity spring melt conditions than captured by current instrumental 

records.  

The finer-grained suspended load populations (D1 to D3) are probably deposited 

throughout the overland-flow period (Cockburn & Lamoureux, 2008a; Cockburn & Lamoureux, 

2008b; Laudon et al., 2007; Metcalfe & Buttle, 1999; Metcalfe & Buttle, 2001). Overland flow 

occurs in both the nival run-up and through the earliest portions of the recession, eventually 

ceasing as the wetlands change from being a zone of bypass to a zone of attenuation for overland 
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flow. Conceptually there should be a relationship between run-off volumes and D1 to D3 

population parameters. However, there is no difference between the D3 Area values for 1990 

versus 1991, and these values are only slightly lower than that of the 1979 flood year (Fig. 6E). 

Given the conceptual framework and the recessional curves (Fig. SF2B), the similarity of the D3 

Area between these three years could qualitatively be assessed as due to similar volumes of run-

off occurring in each of those years. The changing wetland dynamic, from sediment bypass to 

sink, is a function of wetland thaw rate and can be highly variable from year to year (Fang et al., 

2010). This change is not captured by any instrumental record, hence an accurate calibration of 

the D1 to D3 parameters against instrumental run-off volumes is not currently possible. It would 

require quantitative data on the mechanics and timing of the wetland bypass to sink transition. 

Nonetheless, the correlations between the D1 to D3 population measures do suggest that these 

are proxy measures of spring thaw discharge volume, and their stratigraphic series thus provide a 

succession of relative spring thaw discharge volume variation.  

The consistency of the spectral structure, plus the observed correlations between the 

distributions, indicates that the stratigraphic succession of D1 to D6 parameters reflects relative 

changes in the spring melt depositional processes in ALE. As examples, Figure 6 plots D6 

Amplitude and D3 Area measures, as approximated using the polynomial equations, through the 

whole core (Appendix 1). These two parameters vary differently throughout the core (as also 

indicated by their non-correlation; Table 3). For example, the nine-point average value of D6 

Amplitude decreases substantially down core from 0 mm to ca 600 mm, whilst there is 

essentially no change in D3 Area over the same interval. Conversely, there are substantial 

increases and decreases in the moving average of D3 Area (a relative proxy for spring melt 

volume) in the bottom half of the core, an interval where D6 Amplitude (which represents nival 
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peak flow) is relatively stable. This suggests that these two proxies include long-wavelength 

oscillations. 

Superimposed on the longer wavelength oscillations are distinct shorter-wavelength 

oscillations (for example, ca 300 to 600 mm down core; Figs 6 and SF5), which, indicates that 

spring melt processes are considerably more variable in times past than for the more recent upper 

ca 200 cm (Fig. SF5). This can also be seen in Figure 2B to D, which demonstrates three 

adjacent grain-size spectra that represent a single high amplitude and frequency cycle at ca 500 

mm down core (see also Fig. SF5). The variability in both short-wavelength and long-

wavelength cyclicity of these spring melt proxy measures probably reflect an overarching 

climatic control on the spring melt dynamics, as has been found in other studies (e.g. Anderson, 

2012; Campbell, 1998; Cockburn & Lamoureux, 2007; Dietze et al., 2013; Fisher, 2011; Holz et 

al., 2007). If so, this would imply that the climate mechanisms that control the spring melt are 

important for understanding the hydrological cycle of the area, including the environmental risks 

that the high-frequency oscillations and long-term average changes of these proxy data pose to 

the region. 

 

Grain-size populations versus traditional grain-size measures at Alberta Lake E 

In depth or time series analysis of grain size proxy data it is implicitly assumed that the 

grain-size measure used is related to the depositional environment in a systematic relationship. 

For example, a common measure used is mean grain size, which is inferred to be the average of 

the depositional processes for the time period encompassed by the sample (two of many 

examples are Chen et al., 2013; Sonnenburg et al., 2013). Stratigraphic variation of the proxy 

data is further inferred to be a measure of the variation of the depositional processes over time. 
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The process variables generated through the deconvolution and peak fitting, and their subsequent 

approximations across the whole dataset, can be compared against more traditional grain-size 

proxy measures such as mean grain size, total silt, etc. The grain-size range of the D6 population 

closely corresponds to that of the fine sand population, and there is minimal overlap of the D6 

population with D5 and D4 populations. This somewhat unlikely coincidence means that the fine 

sand component of the original grain-size data should correlate well with D6 amplitude, which it 

does (Table 3; Figs 6A, 6B and 7A).  

The grain-size range of D3 approximates that of fine plus medium silt (8 to 32 µm), plus 

a small contribution from very fine silt. There are no traditional grain-size measures that 

approximate this range, the closest being fine or medium silt measures. A more nuanced but still 

traditional approach could be to sum the size-class data for 8 to 32 µm, although the fine silt 

region of strong overlap between D2 and D3 means the size-class data in this region is inherently 

a multi-distributional composite. Taking medium and total silt as standard traditional summary 

measures is clearly insufficient as both of these correlate relatively poorly with D3 Area at the 

individual sample level, and only modestly using a nine point smoothing average (Table 3, Figs 

6D, 6E, 6F and 7C). Comparing D3 against fine plus medium silt does considerably worse than 

just medium silt, primarily because of the strong overlap with D2 in the fine silt range. 

Interestingly, total silt correlates better, but in a negative sense, with D6 Amplitude. This is 

probably an effect of the statistical closure of the raw class-size data (sensu Atkinson, 1986), 

whereby the sand component (mainly D6 because D5 is small) plus the total silt component (D2 

to D4) sum to near 100% (the D1 clay population being, like D5, a relatively small component of 

the system).  
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There is a relatively high correlation between mean grain size and D6 Amplitude, and a 

weak, but statistically significant, correlation between mean grain size and D3 Area (Table 3, 

Figs 6A, 6C, 6E and 7B). The D6 population, despite having lower amplitude than D3, occurs 

across a much broader range of grain sizes (a range of ca 125 µm for D6 compared to ca 30 µm 

for D3). Therefore, D6 is generally the larger of the two populations with a commensurately 

higher impact on the mean grain size. Nonetheless, the correlation to D3 mean grain size is 

influenced by both bedload and suspended load components. The bedload:suspended load ratio 

changes on a sample to sample basis, and consequently mean grain size has no consistent 

relationship to the depositional processes that operated at ALE.  

With careful selection, traditional grain-size class distinctions can provide proxy data that 

reflects depositional processes (for example, at ALE the fine sand measure is a good 

approximation for the D6 bedload population; Fig. 7A; Table 3). However, if the goal of using a 

grain-size measure is to generate a proxy measure for depositional processes, then traditional 

summary measures are commonly a composite of different portions of one or more depositional 

processes. In stratigraphic or time-series studies, such a composite grain-size measure will yield 

proxy data points that contain variable and non-uniform proportions of different transport–

depositional processes. Essentially this is introducing error into the proxy measure. Whether this 

error is sufficient to mask the overarching controls within the system, such as climatic forcing, 

will probably be context-specific.  
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CONCLUSIONS 

A high-resolution grain-size dataset has been obtained from a 1.45 m freeze core 

collected from a boreal lake (termed Alberta Lake E ‘ALE’) in north-eastern Alberta, Canada. A 

novel approach to deconvolving this data into individual log-normal grain-size populations 

demonstrates: 

1) Automated deconvolution and peak fitting failed to yield sedimentologically realistic 

results. Combining second and fourth derivative-derived modal constraints with an 

iterative deconvolution and peak fitting procedure yielded realistic solutions that were 

consistent with the structure of the grain-size spectra. 

2) Statistical analysis of the magnitude (area and amplitude), position (mode) and shape 

(FWHH) parameters of the deconvolved log-normal distributions can assist in determining 

the validity of the procedure and relationships between the different distributions. In this 

study positive correlations between the magnitude parameters in the data suggest 

overarching environmental controls on the processes; whilst non-correlations between the 

position (mode) and shape (FWHH) parameters suggest that independent transport–

depositional processes are reflected by the extracted log-normal distributions. 

3) Overall, given that there are an infinite number of solutions when deconvolving grain-size 

spectra, and that most stratigraphic grain-size series lack independent data to verify the 

best solution, this method delivers a more objective and explicit method for prioritizing 

which spectral parameters deliver the most consistent, statistically defensible and 

sedimentologically realistic solutions. In this study the priority information was the modes 

of the different distributions and the basic spectral structure exhibited throughout the 

dataset.  
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Alberta Lake E is situated in a sub-humid, boreal, flat, wetland environment. Sediment 

delivery to ALE occurs via surface overland flow run-off during spring melt, a function of a flat, 

frozen, impermeable subsurface that essentially bypasses the high melt volumes. In contrast, the 

wetlands act as a precipitation and sediment particle sink during the summer growing season. 

This means: 

4) The consistent grain-size spectral structure throughout the core is probably a reflection of 

this relatively simple sedimentological context; whereby inorganic grains are only 

delivered by overland flow during spring snow melt. 

5) Conceptually the grain-size spectra can be interpreted as measures of both the intensity of 

spring melt (bedload component) and the volume of spring melt (suspended load 

component).Thus the discrete and consistent deconvolved grain-size populations can be 

qualitatively linked to specific environmental processes throughout the stratigraphic series. 

6) Comparison of the deconvolved grain-size populations against traditional measures of 

grain size (for example, mean grain size, total silt) demonstrate that the traditional 

measures are generally composites of different grain-size populations that therefore contain 

a component of random error.  Deconvolved populations probably yield better proxy data 

for time-series and stratigraphic analysis. 

7) Stratigraphic series using two parameters from the deconvolved populations demonstrate 

that ALE has undergone both long-wavelength and short-wavelength oscillations for both 

spring melt intensity and spring melt volume. Further research could perhaps calibrate and 

quantify how well these populations capture these spring melt dynamics. 
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FIGURE CAPTIONS 

 

Figure 1 Map of Canada with the province of Alberta (AB) and the approximate location 

of Alberta Lake E (ALE; arrowed black square). For details see figure SF1.  

 

Figure 2 Constrained deconvolved and peak fitted grain-size spectra for the ALE freeze 

core. In each panel the upper portion represents the actual distribution (dotted line) and its 

approximation (solid line) as the sum of the different log-normal distributions D1 to D6. Also 
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noted are the modes of each peak, and the goodness of fit statistics [regression least squares 

coefficient of determination (r2), standard error (SE), and F-statistic, respectively]. (A) This 

sample has one of the finest grain-size distributions, with a single fine silt peak at ca 11 µm. (B) 

to (D) medium-grained (B), fine-grained (C) and coarse-grained (D) distributions in three 

contiguous samples. Similar grain-size spectral variation is present at all levels within the core. 

 

Figure 3 Distributions of the three types of atypical grain-size spectra. The sample depth 

(in millimetres) refers to the core depth of the figured sample, whilst the bracketed number 

depicts how many of these spectra occur within the dataset. 

 

Figure 4 Second-order and fourth-order derivative plots of two samples from Figure 2. 

Solid lines mark the derivative curve with scale on the left-hand y-axis. Dotted lines mark the 

original spectrum with scale on the right-hand y-axis. The positions of individual distributions 

are denoted by downward-facing peaks in second-order plots, and upward-facing peaks in 

fourth-order plots: ‘2nd’ and ‘4th’ denote second-order or fourth-order derivative plots. (A) 

Second order derivative plot of a fine-grained sample with six distributions. (B) Second-order 

derivative plot of a relatively coarse-grained sample with D5 denoted by an inflection. (C) 

Fourth-order derivative plot of the 505 mm sample of (B) where the D5 population denoted in 

the fourth-derivative. Note that in all derivatives the D1 peak is relatively small in comparison to 

a  tall peak that is a computational artefact generated by the sharp cut-off at the lower limit of the 

grain-size analysis.  
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Figure 5 Plot of fit statistics r2, standard error and F-statistic for determining the most 

appropriate number of distributions in a model solution.  Samples 507 mm and 509 mm were 

modelled using two to nine log-normal distributions and in this example unconstrained fully-

automated deconvolution and peak fitting.. Substantial improvement in the fit statistics (an 

inflection point) stops at five distributions. However, at five distributions one distribution is 

wholly contained within another (annotated on the bottom plot are the number of such 

subservient distributions), indicative of the unrealistic solutions generated by ‘unconstrained’ 

fitting (see text). Once D2 to D3 and D4 to D5 separation is forced the plots generate the 

inflection at six distributions. The ‘-ve’ annotated on the bottom plot represents solutions with 

negative amplitude distributions. The constrained solutions for these samples are demonstrated in 

Figure 2B and 2C). 

 

Figure 6 Variation with depth down core of selected variables: (A) D6 Amplitude – note 

the large spikes at various positions down core, and the ages of different peaks (discussed in 

text); (B) fine sand; (C) mean grain size; (D) total silt; (E) D3 Area; and (F) medium silt. Grey 

lines are the individual measurements and the black line represents a nine-point moving average. 

D3 Area and D6 Amplitude are the complete data as extrapolated by the polynomial algorhythm 

from the training set. 

 

Figure 7 Cross-plots with regression equations of selected variables from Figure 6: (A) 

Fine sand versus D6 Amplitude, which is an example of a good, although unlikely, correlation; 

(B) mean grain size versus D6 Amplitude. For D6 Amplitude <0.7 the data is highly scattered, 

indicating the region where the mean grain size is probably a composite variable of other grain-
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size populations. The reasonable correlation is mostly driven by the higher D6 Amplitude values 

that have a considerable impact on mean grain size; (C) D3 Area versus Total Silt. No traditional 

grain-size measure can adequately reproduce the D3 Area data. ρ is the Spearmans rank 

correlation. 
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