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On the Spin-Statistics Connection in Curved
Spacetimes

Christopher J Fewster

Abstract. The connection between spin and statistics is examined in
the context of locally covariant quantum field theory. A generalization
is proposed in which locally covariant theories are defined as functors
from a category of framed spacetimes to a category of ∗-algebras. This
allows for a more operational description of theories with spin, and for
the derivation of a more general version of the spin-statistics connection
in curved spacetimes than previously available. The proof involves a
“rigidity argument” that is also applied in the standard setting of locally
covariant quantum field theory to show how properties such as Einstein
causality can be transferred fromMinkowski spacetime to general curved
spacetimes.

Mathematics Subject Classification (2010). 81T05, 81T20, 81P99.

Keywords. Quantum field theory in curved spacetimes, spin-statistics
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1. Introduction

In conclusion we wish to state, that according to our opinion
the connection between spin and statistics is one of the most
important applications of the special relativity theory.
W. Pauli, in [33].

It is an empirical fact that observed elementary particles are either
bosons of integer spin, or fermions of half-integer spin. Explanations of this
connection between spin and statistics have been sought since the early days
of quantum field theory. Fierz [19] and Pauli [33] investigated the issue in free
field theories, setting in train a number of progressively more general results.
The rigorous proof of a connection between spin and statistics was an early
and major achievement of the axiomatic Wightman framework; see [5, 30] and
the classic presentation in [38]. Similarly, general results have been proved
in the Haag–Kastler framework [23], for example, [9, 8, 22]. In these more
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algebraic settings, statistics is not tied to the properties of particular fields,
but is understood in terms of the graded commutativity of local algebras
corresponding to spacelike-separated regions [9], or the properties of super-
selection sectors [8, 22].

Nonetheless, the theoretical account of the spin-statistics connection is
subtle and even fragile. Nonrelativistic models of quantum field theory are
not bound by it, and as Pauli observed [33], one may impose bosonic statistics
on a Dirac field at the cost of sacrificing positivity of the Hamiltonian. Ghost
fields introduced in gauge theories violate the connection, but also involve
indefinite inner products. The rigorous proofs therefore rely on Hilbert space
positivity and energy positivity. Moreover, they make essential use of the
Poincaré symmetry group and its complex extension together with analytic-
ity properties of the vacuum n-point functions. The spin-statistics connection
observed in nature, however, occurs in a spacetime which is not Minkowski
space and indeed has no geometrical symmetries. There is neither a global
notion of energy positivity (or, more properly, the spectrum condition) nor
do we expect n-point functions in typical states of interest on generic space-
times to have analytic extensions. Thus the general proofs mentioned have
no traction and it is far from clear how they can be generalized: a priori it
is quite conceivable that the theoretical spin-statistics connection is an acci-
dent of special relativity that is broken in passing to the curved spacetimes of
general relativity. Indeed, for many years, work on the spin-statistics connec-
tion in curved spacetimes was restricted to demonstrations that free models
become inconsistent on general spacetimes if equipped with the wrong sta-
tistics (e.g., imposing anticommutation relations on a scalar field) [41, 32]
unless some other important property such as positivity is sacrificed [24].

The breakthrough was made by Verch [40], who established a general
spin-statistics theorem for theories defined on each spacetime by a single field
which, in particular, obeys Wightman axioms in Minkowski space. Together
with [27], this paper was responsible for laying down many of the founda-
tions of what has become the locally covariant framework for QFT in curved
spacetimes [2]. Verch’s assumptions allow certain properties of the theory on
one spacetime to be deduced from its properties on another, provided the
spacetimes are suitably related by restrictions or deformations of the met-
ric. In particular, the spin-statistics connection is proved by noting that if it
were violated in any one spacetime, it would be violated in Minkowski space,
contradicting the classic spin-statistics theorem.

Nonetheless, there are good reasons to revisit the spin-statistics connec-
tion in curved spacetime. First, as a matter of principle, one would like to
gain a better understanding of why spin is the correct concept to investigate
in curved spacetime, given the lack of the rotational symmetries that are so
closely bound up with the description of spin in Minkowski space. A second,
related, point is that [40] describes spinor fields as sections of various bundles
associated to the spin bundle. While this is conventional wisdom in QFT in
CST, it has the effect of basing the discussion on geometric structures that
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are, in part, unobservable. This is not a great hindrance if the aim is to discuss
a particular model such as the Dirac field. However, we wish to understand
the spin-statistics connection for general theories, without necessarily basing
the description on fields at all. With that goal in mind, one needs a more
fundamental starting point that avoids the insertion of spin by hand. Third,
the result proved in [40] is confined to theories in which the algebra in each
spacetime is generated by a single field, and the argument is indirect in parts.
The purpose of this contribution is to sketch a new and operationally well-
motivated perspective on the spin-statistics connection in which spin emerges
as a natural concept in curved spacetimes, and which leads to a more general
and direct proof of the connection. In particular, there is no longer any need
to describe the theory in terms of one or more fields. Full details will appear
shortly [10].

The key ideas are (a) a formalisation of the reasoning underlying [40]
as a ‘rigidity argument’, and (b) a generalization of locally covariant QFT
based on a category of spacetimes with global coframes (i.e., a ‘rods and
clocks’ account of spacetime measurements). As in [40] the goal is to prove
that a spin-statistics connection in curved spacetime is implied by the stan-
dard results holding in Minkowski space; however, the proof becomes quite
streamlined in the new formulation. We begin by describing the standard
version of locally covariant QFT, describing the rigidity argument and some
of its other applications in that context, before moving to the discussion of
framed spacetimes and the spin-statistics theorem.

2. Locally covariant QFT

Locally covariant QFT is a general framework for QFT in curved spacetimes,
due to Brunetti, Fredenhagen and Verch (BFV) [2], which comprises three
main assumptions. The first is the assertion that any quantum field theory
respecting locality and covariance can be described a covariant functor A :
Loc → Alg from the category of globally hyperbolic spacetimes Loc to a
category Alg of unital ∗-algebras.1

This assumption already contains a lot of information and we shall un-
pack it in stages, beginning with the spacetimes. Objects of Loc are oriented
and time-oriented globally hyperbolic spacetimes (of fixed dimension n) and
with finitely many components.2 Morphisms between spacetimes in Loc are
hyperbolic embeddings, i.e., isometric embeddings preserving time and space
orientations with causally convex image.

1Other target categories are often used, e.g., the unital C∗-algebra category C∗-Alg, and
other types of physical theory can be accommodated by making yet other choices.
2It is convenient to describe the orientation by means of a connected component of the
set of nonvanishing n-forms, and likewise to describe the time-orientation by means of

a connected component of the set of nonvanishing timelike 1-form fields. Our signature
convention throughout is +− · · ·−.
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Figure 1. Schematic illustration of the kinematic net.

The category Alg has objects that are unital ∗-algebras, with morphisms
that are injective, unit-preserving ∗-homomorphisms. The functoriality condi-
tion requires that the theory assigns an object A (M) of Alg to each spacetime
M of Loc, and, furthermore, that each hyperbolic embedding of spacetimes
ψ : M → N is mirrored by an embedding of the corresponding algebras
A (ψ) : A (M)→ A (N), such that

A (idM ) = idA (M) and A (ϕ ◦ ψ) = A (ϕ) ◦A (ψ) (2.1)

for all composable embeddings ϕ and ψ.
Despite its somewhat formal expression, this assumption is well-motiv-

ated from an operational viewpoint3 and provides a natural generalization
of the Haag–Kastler–Araki axiomatic description of quantum field theory
in Minkowski space. Indeed, as emphasized by BFV, this single assumption
already contains several distinct assumptions of the Minkowski framework.

The next ingredient in the BFV framework is the kinematic net indexed
by O(M), the set of all open causally convex subsets of M with finitely
many connected components. Each nonempty O ∈ O(M) can be regarded
as a spacetime M |O in its own right, by restricting the causal and metric
structures of M to O, whereupon the inclusion map of O into the underlying
manifold of M induces a Loc morphism ιO : M |O → M (see Fig. 1). The
theory A therefore assigns an algebra A (M |O) and an embedding of this
algebra into A (M), and we define the kinematic subalgebra to be the image

A
kin(M ;O) := A (ιO)(A (M |O)). (2.2)

As mentioned above, the net O 7→ A kin(M ;O) is the appropriate generaliza-
tion of the net of local observables studied in Minkowski space AQFT. Some
properties are automatic. For instance, the kinematic algebras are covariantly
defined, in the sense that

A
kin(N ;ψ(O)) = A (ψ)(A kin(M ;O)) (2.3)

for all morphisms ψ : M → N and all nonempty O ∈ O(M). This is
an immediate consequence of the definitions above and functoriality of A .
Similarly spacetime symmetries of M are realised as automorphisms of the
kinematic net in a natural way.

It is usual to assume two additional properties. First, the theory obeys
Einstein causality if, for all causally disjoint O1, O2 ∈ O(M) (i.e., no causal

3For a discussion of how the framework can be motivated on operational grounds (and as
an expression of ‘ignorance principles’) see [13, 14].
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Figure 2. Schematic representation of spacetime deformation.

curve joins O1 to O2), the corresponding kinematic algebras commute ele-
mentwise. Second, A is said to have the timeslice property if it maps every
Cauchy morphism, i.e., a morphism whose image contains a Cauchy surface
of the ambient spacetime, to an isomorphism in Alg. This assumption en-
codes the dynamics of the theory and plays an important role in allowing the
instantiations of A on different spacetimes to be related. In fact, two space-
times M and N in Loc can be linked by a chain of Cauchy morphisms if and
only if their Cauchy surfaces are related by an orientation-preserving diffeo-
morphism (see [16, Prop. 2.4], which builds on an older argument of Fulling,
Narcowich and Wald [21]). The construction used is shown schematically in
Fig. 2: the main point is the construction of the interpolating spacetime I

that ‘looks like’ N in its past and M in its future. The assumption that A

has the timeslice property entails the existence of an isomorphism between
A (M) and A (N); indeed, there are many such isomorphisms, because there
is considerable freedom in the choice of interpolating spacetime, none of which
can be regarded as canonical.

The assumptions just stated are satisfied by simple models, such as the
free Klein–Gordon field [2], and, importantly, by perturbatively constructed
models of a scalar field with self-interaction [1, 26, 27]. In order to be self-
contained, we briefly describe the free theory corresponding to the minimally
coupled Klein–Gordon theory, with field equation (�M +m2)φ = 0: in each
spacetime M ∈ Loc, one defines a unital ∗-algebra A (M) with generators
ΦM (f) (‘smeared fields’) labelled by test functions f ∈ C∞

0 (M) and subject
to the following relations:

• f 7→ ΦM (f) is linear
• ΦM (f)∗ = ΦM (f)
• ΦM ((�M +m2)f) = 0
• [ΦM (f),ΦM (f ′)] = iEM (f, f ′)1A (M)

where

EM (f, f ′) =

∫

M

f(p)
(
(E−

M
− E+

M
)f ′

)
(p)dvolM (p) (2.4)

is constructed from the advanced (−) and retarded (+) Green operators
(which obey supp (E±

M
f) ⊂ J±

M
(supp f)). This defines the objects of the

theory; for the morphisms, any hyperbolic embedding ψ : M → N deter-
mines a unique morphism A (ψ) : A (M)→ A (N) with the property

A (ψ)ΦM (f) = ΦN (ψ∗f) (f ∈ C∞
0 (M)), (2.5)
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where ψ∗ is the push-forward. The proof that A (ψ) is well-defined as a mor-
phism of Alg relies on the properties of globally hyperbolic spacetimes, the
definition of hyperbolic embeddings, and some algebraic properties of the
algebras A (M) [notably, that they are simple].

Our discussion will use two more features of the general structure.
First, let D be the functor assigning test function spaces to spacetimes,
D(M) = C∞

0 (M), and the push-forward to morphisms D(ψ) = ψ∗. Then
(2.5) precisely asserts the existence of a natural transformation Φ between
the functors D and A (modulo a forgetful functor from Alg to the category
of vector spaces) [2]. We take this as the prototype of what a field should be
in the locally covariant setting, allowing for fields depending nonlinearly on
the test function by using a forgetful functor from Alg to the category of sets,
and for other tensorial types by suitable alternative choices of D . As will be
discussed later, spinorial fields require a modification of the category Loc.

Second, natural transformations may also be used to compare locally
covariant theories. A natural η : A

.
→ B is interpreted as an embedding

of A as a subtheory of B, while a natural isomorphism indicates that the
theories are physically equivalent [2, 16]. Naturality requires that to each
M ∈ Loc there is a morphism ηM : A (M)→ B(M)

ηN ◦A (ψ) = B(ψ) ◦ ηM (2.6)

for each morphism ψ : M → N . The interpretation of η as a subtheory
embedding can be justified on several grounds – see [16].

The equivalences of A with itself form the group Aut(A ) of automor-
phisms of the functor. This has a nice physical interpretation: it is the global
gauge group [18].

Locally covariant QFT is not merely an elegant formalism for rephrasing
known results and models, but has also led to new departures in the descrip-
tion of QFT in curved spacetimes. These can be divided into those that are
model-independent and those that are specific to particular theories. Those of
the former type include the spin-statistics connection [40]; the introduction
of the relative Cauchy evolution and intrinsic understanding of the stress-
energy tensor [2]; an analogue of the Reeh–Schlieder theorem [34, 11] and
the split property [11]; new approaches to superselection theory [3, 4] and
the understanding of global gauge transformations [18]; a no-go theorem for
preferred states [16], and a discussion of how one can capture the idea that
a theory describes ‘the same physics in all spacetimes’ [16]. Model-specific
applications include, above all, the perturbative construction of interacting
models [1, 26, 27], including those with gauge symmetries [25, 20]. However,
there are also applications to the theory of Quantum Energy Inequalities
[15, 31, 12] and cosmology [6, 7, 39].

3. A rigidity argument

The framework of local covariance appears quite loose, but in fact the de-
scriptions of the theory in different spacetimes are surprisingly tightly related.
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There are various interesting properties which, if they hold in Minkowski
space, must also hold in general spacetimes. This will apply in particular to
the spin–statistics connection; as a warm-up, let us see how such arguments
can be used in the context of Einstein causality, temporarily relaxing our
assertion of this property as an axiom.

For M ∈ Loc, let O(2)(M) be the set of ordered pairs of spacelike sep-
arated open globally hyperbolic subsets of M . For any such pair 〈O1, O2〉 ∈
O(2)(M), let PM (O1, O2) be true if A kin(M ;O1) and A kin(M ;O2) com-
mute elementwise and false otherwise. We might say that A satisfies Einstein
causality for 〈O1, O2〉. It is easily seen that there are relationships between
these propositions:

R1. for all 〈O1, O2〉 ∈ O
(2)(M),

PM (O1, O2) ⇐⇒ PM (DM (O1), DM (O2)),

where DM denotes the Cauchy development;
R2. given ψ : M →N then, for all 〈O1, O2〉 ∈ O

(2)(M),

PM (O1, O2) ⇐⇒ PN (ψ(O1), ψ(O2));

R3. for all 〈O1, O2〉 ∈ O
(2)(M) and all Õi ∈ O(M) with Õi ⊂ Oi (i = 1, 2)

PM (O1, O2) =⇒ PM (Õ1, Õ2).

R3 is an immediate consequence of isotony, and R1 follows from the times-
lice property. Property R2 follows from the covariance property (2.3) of the
kinematic net, which gives

[A (N ;ψ(O1)),A (N ;ψ(O2))] = A (ψ)([A (M ;O1),A (M ;O2)]) (3.1)

and the required property holds because A (ψ) is injective. In general, we
will describe any collection of boolean-valued functions PM : O(2)(M) →
{true, false} obeying R1–R3 (with M varying over Loc) as rigid.

Theorem 3.1. Suppose (PM )M∈Loc is rigid, and that PM (O1, O2) holds for

some 〈O1, O2〉 ∈ O
(2)(M). Then P

M̃
(Õ1, Õ2) for every 〈Õ1, Õ2〉 ∈ O

(2)(M̃)

in every spacetime M̃ ∈ Loc for which either (a) the Cauchy surfaces of Õi
are oriented diffeomorphic to those of Oi for i = 1, 2; or (b) each component

of Õ1 ∪ Õ2 has Cauchy surface topology R
n−1.4

Proof. The strategy for (a) is illustrated by Fig. 3, in which the wavy line
indicates a sequence of spacetimes forming a deformation chain (cf. Fig. 2)

M̃ |
Õ1∪Õ2

ψ̃
←−− L̃

ϕ̃
−−→ I

ϕ
←−− L

ψ
−−→M |O1∪O2

, (3.2)

where ψ, ψ̃, ϕ, ϕ̃ are Cauchy morphisms. By property R2, PM (O1, O2) is

equivalent to PM |O1∪O2

(O1, O2), and likewise P
M̃

(Õ1, Õ2) is equivalent to

4For example, these components might be Cauchy developments of sets that are diffeo-
morphic to a (n− 1)-ball and which lie in a spacelike Cauchy surface.
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M̃M

O1 O2 Õ1 Õ2

M |O1∪O2

M̃ |
Õ1∪Õ2

Figure 3. Schematic representation of the rigidity argument.

P
M̃ |

Õ1∪Õ2

(Õ1, Õ2). Writing Li and Ii for the components of L and I corre-

sponding to O1 and O2, and applying R1 and R2 repeatedly,

PM |O1∪O2

(O1, O2)
R1
⇐==⇒ PM |O1∪O2

(ψ(L1), ψ(L2)) (3.3)

R2
⇐==⇒
ψ

PL(L1, L2)
R2
⇐==⇒
ϕ

PI(ϕ(L1), ϕ(L2))
R1
⇐==⇒ PI(I1, I2)

and in the same way, PI(I1, I2) is also equivalent to P
M̃ |

Õ1∪Õ2

(Õ1, Õ2). To-

gether with the equivalences noted already, this completes the proof.
For (b), we choose, for each i = 1, 2, a globally hyperbolic set Di con-

tained in Oi and with the same number of components as Õi, and so that all
its components have Cauchy surface topology R

n−1. Using R3, PM (D1, D2),
and the result follows by part (a). �

As a consequence, we see that the hypothesis that Einstein causality
holds in one spacetime is not independent of it holding in another. This is
a prototype for the spin–statistics connection that will be described later,
and is similar to the arguments used in [40]. Related arguments apply to
properties such as extended locality (see [37, 29] for the original definition)
and the Schlieder property (see, likewise [36]) as described in [17].

4. Framed spacetimes

The conventional account of theories with spin is phrased in terms of spin
structures. Four dimensional globally hyperbolic spacetimes support a unique
spin bundle (up to equivalence) namely the trivial right-principal bundle
SM = M × SL(2,C) [28] and for simplicity we restrict to this situation. A
spin structure σ is a double cover from SM to the frame bundle FM over M
that intertwines the right-actions on SM and FM : i.e., σ ◦RS = Rπ(S) ◦ σ,

where π : SL(2,C) → L↑
+ is the usual double cover. Pairs (M , σ) form the

objects of a category SpinLoc, in which a morphism Ψ : (M , σ) → (M ′, σ′)
is a bundle morphism Ψ : SM → SM ′ which (a) covers a Loc-morphism
ψ : M →M

′, i.e., Ψ(p, S) = (ψ(p),Ξ(p)S) for some Ξ ∈ C∞(M ; SL(2,C)),
and (b) obeys σ′ ◦Ψ = ψ∗ ◦σ, where ψ∗ is the induced map of frame bundles
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arising from the tangent map of ψ. These structures provide the setting for
the locally covariant formulation of the Dirac field [35], for instance. From
an operational perspective, however, this account of spin it is not completely
satisfactory, because the morphisms are described at the level of the spin
bundle, to which we do not have observational access, and are only fixed up
to sign by the geometric map of spacetime manifolds. To some extent, one has
also introduced the understanding of spin by hand, as well, although this is
reasonable enough when formulating specific models such as the Dirac field.

By contrast, the approach described here has a more operationally sat-
isfactory basis. Instead of Loc or SpinLoc, we work on a category of framed
spacetimes FLoc defined as follows. An object of FLoc is a pair M = (M, e)
where M is a smooth manifold of fixed dimension n on which e = (eν)n−1

ν=0

is a global smooth coframe (i.e., an n-tuple of smooth everywhere linearly
independent 1-forms) subject to the condition that M, equipped with the
metric, orientation and time-orientation induced by e, is a spacetime in Loc,
to be denoted L (M, e). Here, the metric induced by e is ηµνe

µeν , where
η = diag(+1,−1, . . . ,−1), while the orientation and time-orientation are
fixed by requiring e0 ∧ · · · ∧ en−1 to be positively oriented, and e0 to be
future-directed. Similarly, a morphism ψ : (M, e) → (M′, e′) in FLoc is
a smooth map between the underlying manifolds inducing a Loc-morphism
L (M, e) → L (M′, e′) and obeying ψ∗e′ = e. In this way, we obtain a for-
getful functor L : FLoc → Loc. Moreover, FLoc is related to SpinLoc by a
functor S : FLoc→ SpinLoc defined by

S (M, e) = (L (M, e), (p, S) 7→ Rπ(S)e|
∗
p), (4.1)

where e|∗p is the dual frame to e at p, and so that each FLoc morphism
is mapped to a SpinLoc-morphism S (ψ) whose underlying bundle map is
ψ × idSL(2,C). Essentially, S (M, e) corresponds to the trivial spin structure
associated to a frame [28], and we exploit the uniqueness of this spin structure
to define the morphisms. One may easily see that S is a bijection on objects;
however, there are morphisms in SpinLoc that do not have precursors in FLoc,
namely, those involving local frame rotations.5 Clearly, the composition of
S with the obvious forgetful functor from SpinLoc to Loc gives the functor
L : FLoc→ Loc.

The description of spacetimes in Loc represents a ‘rods and clocks’ ac-
count of measurement.6 However, we need to be clear that the coframe is
not in itself physically significant, by contrast to the metric, orientation and
time-orientation it induces. In other words, our description contains redun-
dant information and we must take care to account for the degeneracies we

5Local frame rotations will appear later on, but not as morphisms.
6One might be concerned that the assumption that global coframes exist is restrictive,
as it requires that M to be parallelizable. However, this presents no difficulties if n = 4,
because all four dimensional globally hyperbolic spacetimes are parallelizable. Conceivably,

one could modify the set-up in general dimensions by working with local coframes, if it
was felt necessary to include non-parallelizable spacetimes.
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have introduced. This is not a bug, but a feature: it turns out to lead to an
enhanced understanding of what spin is.

In this new context, a locally covariant QFT should be a functor from
FLoc to Alg (or some other category, e.g., C∗-Alg). Of course, any theory
A : Loc → Alg induces such a functor, namely A ◦ L : FLoc → Alg, and
likewise every B : SpinLoc→ Alg induces B ◦S : FLoc→ Alg, but not every
theory need arise in this way. As already mentioned, we need to keep track
of the redundancies in our description, namely the freedom to make global

frame rotations. These are represented as follows. To each Λ ∈ L↑
+, there is a

functor T (Λ) : FLoc→ FLoc

T (Λ)(M, e) = (M,Λe), where (Λe)µ = Λµνe
ν (Λ ∈ L↑

+) (4.2)

with action on morphisms uniquely fixed so that L ◦ T (Λ) = L . In this

way, Λ 7→ T (Λ) faithfully represents L↑
+ in Aut(FLoc). Moreover, any locally

covariant theory A : FLoc→ Alg induces a family of theories

A ◦T (Λ) : FLoc→ Alg (Λ ∈ L↑
+), (4.3)

which corresponds to applying the original theory A to a frame-rotated ver-
sion of the original spacetime. If we are to take seriously the idea that frame
rotations of this type carry no physical significance then these theories should
be equivalent. We formalise this in the following

Axiom 4.1 (Independence of global frame rotations). To each Λ ∈ L↑
+, there

exists an equivalence η(Λ) : A
.
→ A ◦T (Λ), such that

η(Λ)(M,e)α(M,e) = α(M,Λe)η(Λ)(M,e) (∀α ∈ Aut(A )). (4.4)

The condition (4.4) asserts that the equivalence implementing indepen-
dence of global frame rotations intertwines the action of global gauge transfor-
mations. Plausibly it might be relaxed (or modified) but it gives the cleanest
results, so will be maintained for now. Note that the equivalences η(Λ) are
not specified beyond this requirement; what is important is that they ex-
ist. Obviously every theory induced from Loc (i.e., A = B ◦ L , for some
B : Loc → Alg) obeys Axiom 4.1, simply by taking η(Λ) to be the identity
automorphism of A .

The assumptions above have a number of consequences [10]. First, the

η(Λ) induce a 2-cocycle of L↑
+, taking values in the centre of the global gauge

group Z(Aut(A )), and given by

ξ(Λ′,Λ)(M,e) = η(Λ)−1
(M,e)η(Λ

′)−1
(M,Λe)η(Λ

′Λ)(M,e); (4.5)

furthermore, any other system of equivalences η̃(Λ) : A
.
→ A ◦T (Λ) obeying

(4.4) determines an equivalent 2-cocycle. We conclude that each theory A :
FLoc → Alg obeying Axiom 4.1 determines a group cohomology class [ξ] ∈

H2(L↑
+;Z(Aut(A ))) in a canonical fashion.
It is worth pausing to consider some sufficient conditions for [ξ] to be

trivial. This occurs, for instance, whenever A is induced from a theory on
Loc, because we may take η(Λ) = idA , giving ξ(Λ,Λ′) = idA , and any other
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ι+[Λ̃]

ι−[Λ̃]

ι+

ι−
Λ̃

(M, Λ̃e)(M, e)

(M+, e)

(M−, e)

Figure 4. Schematic representation of the relative Cauchy
evolution induced by a local frame rotation.

choice gives a cohomologous 2-cocycle. Again, if A has global gauge group
with trivial centre, then ξ has no choice but to be trivial.

Next, the scalar fields of the theory form a vector space Fld(A ) carrying
an action of both the gauge group

(α · Φ)(M,e)(f) = α(M,e)Φ(M,e)(f) (α ∈ Aut(A )) (4.6)

and the proper orthochronous Lorentz group L↑
+

(Λ ⋆ Φ)(M,Λe)(f) = η(Λ)(M,e)Φ(M,e)(f) (Λ ∈ L↑
+). (4.7)

These two actions commute, and turn out to obey

(Λ′Λ) ⋆ Φ = ξ(Λ′,Λ) · (Λ′ ⋆ (Λ ⋆ Φ)), (4.8)

which entails that irreducible subspaces of Fld(A ) under the action of L↑
+ ×

Aut(A ) carry multiplier representations of L↑
+, determined by ξ. We deduce

that the scalar fields form Lorentz and gauge multiplets (extending a result
on gauge multiplets from [18]). Further, all multiplets in which the multiplier
representation is continuous (at least near the identity) must arise from true
real linear representations of the covering group SL(2,C), and are therefore
classified in the familiar way by pairs (j, k) where j, k are integer or half-
integer spins. Accordingly our analysis has led to an emergent understanding
of spin, and answers the question of why this is an appropriate physical notion
in curved spacetimes.

In certain cases, we may say more immediately. Any theory induced from
Loc, or in which Z(Aut(A )) is trivial, can only support fields of integer-spin,
because [ξ] is trivial. Similarly, all multiplets of observable fields are of integer
spin, because ξ is a global gauge transformation, and therefore acts trivially
on such fields.

It seems remarkable that so much can be extracted from the single
Axiom 4.1, without the need to specify what the equivalences η(Λ) actually
are. In order to prove the spin-statistics connection, however, it is convenient
to be a bit more specific, and to connect them to dynamics. This requires a
generalization of the spacetime deformation techniques to FLoc [10].



12 CJ Fewster

(M,Λe)(M, Λ̃e)(M, e)

Figure 5. Construction of the natural transformations ζ(S).

With this in mind, let us define FLoc-Cauchy morphisms to be FLoc

morphisms ψ whose image L (ψ) in Loc is Cauchy according to our earlier
definition. Further, let us assume that A : FLoc → Alg has the timeslice
property and so maps any FLoc-Cauchy morphism to an isomorphism in Alg.

Fixing (M, e) ∈ FLoc, any Λ̃ ∈ C∞(M;L↑
+) that is trivial outside a time-

compact set7 induces a relative Cauchy evolution, illustrated in Fig. 4, and
given by

rce(M,e)[Λ̃] = A (ι−) ◦A (ι−[Λ̃])−1 ◦A (ι+[Λ̃]) ◦A (ι+)−1. (4.9)

However, it would seem strange if such a frame rotation could induce physical
effects in the overall evolution. Taking a more conservative stance, let us
weaken that to cover only those frame rotations that can be deformed away
homotopically. It seems reasonable to posit:

Axiom 4.2 (Independence of local frame rotations). rce(M,e)[Λ̃] = idA (M,e)

for homotopically trivial Λ̃.

Axiom 4.2 has an important consequence. Consider the chain of space-
times illustrated in Fig. 5, in which the morphisms illustrated are all Cauchy,

and Λ̃ ∈ C∞(M;L↑
+) is equal to the identity in the past region and takes the

constant value Λ in the future region. Then the timeslice axiom induces an
isomorphism A (M, e) → A (M,Λe). Crucially, Axiom 4.2 entails that the

isomorphism depends on Λ̃ only via its homotopy class. Thus each S in the

universal cover L̃↑
+ of L↑

+ induces isomorphisms

ζ(M,e)(S) : A (M, e) −→ A (M, π(S)e). (4.10)

Let us assume (although one might suspect this can be derived) that the
ζ(M,e)(S) cohere to give natural isomorphisms

ζ(S) : A
.
→ A ◦T (π(S)). (4.11)

We may now replicate our previous analysis, with S 7→ ζ(S) in place of

Λ 7→ η(Λ), leading to a 2-cocycle of the universal cover of L↑
+ in Aut(A ) that

7That is, a set that lies to the future of one Cauchy surface and the past of another.
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is trivial; indeed, one may show that

ζ(S′)(M,π(S)e)ζ(S)(M,e) = ζ(S′S)(M,e) (S, S′ ∈ L↑
+).

In n = 4 dimensions, we note that ζ(−1) is an automorphism of A (as
π(−1) = 1); moreover, it obeys

ζ(−1)2 = ζ(1) = id, (4.12)

which one might think of as a spacetime version of Dirac’s belt trick.
It is important to connect our discussion of frame rotations with the

familiar implementation of the Lorentz group in Minkowski space. In our
present setting, n-dimensional Minkowski space is the object M0 =
(Rn, (dXµ)n−1

µ=0), where X
µ : Rn → R are the standard coordinate functions

Xµ(x0, . . . , xn−1) = xµ. Any Λ ∈ L↑
+ induces an active Lorentz transforma-

tion Λ : Rn → R
n by matrix multiplication, Xµ ◦Λ = ΛµνX

ν , which induces
a morphism

ψΛ : M0 → T (Λ−1)(M0) (4.13)

in FLoc. One may verify that ψΛ′Λ = T (Λ−1)(ψΛ′) ◦ ψΛ. Accordingly, we

obtain an automorphism of A (M0) for each S ∈ L̃
↑
+ by

Ξ(S) = ζ(S)T (π(S)−1)(M0) ◦A (ψπ(S)). (4.14)

It may be checked that Ξ(S′S) = Ξ(S′) ◦ Ξ(S) and that one has

Ξ(S)ΦM0
(f) = (S ⋆ Φ)M0

(π(S)∗f) (f ∈ C∞
0 (Rn)), (4.15)

where we now extend the action on fields from the Lorentz group to its
universal cover. In particular, for n = 4, any 2π-rotation corresponds to

Ξ(−1) = ζ(−1)M0
. (4.16)

Given a state ω0 on A (M0) that is invariant under the automorphisms, i.e.,
ω0 ◦ Ξ(S) = ω0 for all S, the corresponding GNS representation will carry a
unitary implementation of the Ξ(S), which recovers the standard formulation.

5. Spin and statistics in four dimensions

We come to the proof of the spin–statistics connection [10]. As in [40], the
idea is to refer the statement in a general spacetime back to Minkowski space,
where standard spin–statistics results can be applied. In other words, we
apply a rigidity argument. The notion of statistics employed is based on
graded commutativity of local algebras at spacelike separation.

Definition 5.1. An involutory global gauge transformation γ ∈ Aut(A ), γ2 =
id is said to grade statistics in M if, for all spacelike separated regions Oi ∈
O(M), every component of which has Cauchy surface topology R

3, one has

A1A2 = (−1)σ1σ2A2A1 (5.1)

for all Ai ∈ A kin(M;Oi) s.t., γMAi = (−1)σiAi.
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The standard spin–statistics connection, in view of (4.16), asserts that
ζ(−1) grades statistics in Minkowski space M0, where ζ(S) is defined as in
Sect. 4.

Theorem 5.2. If γ grades statistics in M0, then it does so in every spacetime
of FLoc. Consequently, if the theory obeys the standard spin–statistics connec-
tion in Minkowski space, ζ(−1) grades statistics on every framed spacetime
M ∈ FLoc.

Proof. (Sketch) For each 〈O1, O2〉 ∈ O
(2)(M), let PM(O1, O2) be the state-

ment that

A1A2 = (−1)σ1σ2A2A1 for all Ai ∈ A
kin(M;Oi) s.t., γMAi = (−1)σiAi.

(5.2)
We argue that the collection (PM)M∈FLoc is rigid, whereupon the result holds
by a generalization of Theorem 3.1 to FLoc. R1 and R3 hold for the same
reasons used in Section 3 for Einstein causality. For R2, we note that the
subspaces

A
kin
σ (M;O) = {A ∈ A

kin(M;O) : γMA = (−1)σA} σ ∈ {0, 1} (5.3)

obey, for any ψ : M→ M̃,

A
kin
σ (M̃;ψ(O)) = A (ψ)(A kin

σ (M;O)) (5.4)

by naturality of γ and injectivity of A (ψ). A further use of injectivity gives

P
M̃
(ψ(O1), ψ(O2)) ⇐⇒ PM(O1, O2), (5.5)

thus establishing R2 and concluding the proof. �

What is really being proved is the connection between the statistics
grading in Minkowski space and that in arbitrary spacetimes. Thus, a lo-
cally covariant theory that violates the standard spin-statistics connection in
Minkowski space (e.g., a ghost theory) but in which the statistics grading
is still implemented (in Minkowski) by an involutory gauge transformation,
would be covered by our result - the statistics would be consistently graded
in all spacetimes by the same gauge transformation.

6. Summary and outlook

The BFV paper [2] is subtitled ‘A new paradigm for local quantum physics’,
and indeed their paper marked the beginnings of a full development of a
model-independent account of QFT in CST, the current state of which is
described in more detail in [17]. At the heart of this approach is the fact that
local covariance is a surprisingly rigid structure, which makes it possible to
transfer certain results from the flat spacetime situation into general curved
spacetimes in a fairly systematic way. This is a consequence of the timeslice
property and also the structure of the categories Loc and FLoc.

In this contribution, I have focussed particularly on the spin-statistics
connection, which was one of the starting points for the general theory. I have
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described a new viewpoint, based on framed spacetimes, that gives a more
operational starting point for the discussion of spin in locally covariant QFT,
without making reference to unobservable geometric structures such as spin
bundles. Instead, by recognizing that we make physical measurements using
frames, and by tracking the concomitant redundancies, we are led naturally
to a description that allows for spin. In our discussion, the relative Cauchy
evolution, which plays an important role in locally covariant physics on Loc,
is developed further so as to cater for deformation of the framing, rather than
just of the metric.

Certain issues remain to be understood. Our view of statistics has fo-
cussed on graded commutativity at spacelike separation; it is not currently
clear how to make contact with the occurrence of braid statistics in low di-
mensions. The coframed spacetimes we consider are necessarily parallelizable;
while this is not a restriction in four spacetime dimensions, one could seek
generalizations that accommodate nonparallelizable spacetimes of other di-
mensions. Finally, neither the result described here, nor Verch’s result [40],
gives a direct proof of the spin-statistics connection in curved spacetime;
both rely on the classic results of Minkowski space QFT. Now a proof is a
proof, and perhaps one should not complain too much, because it may be
that a direct argument would be considerably more involved than those we
now have. Nonetheless, arguments that provide more insight into the nature
of the spin-statistics connection are still desirable and it is hoped that the
more operational account of spin presented here can be a further step along
that path.
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