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Abstract

In this paper, we present the task of gen-

erating image descriptions with gold stan-

dard visual detections as input, rather than

directly from an image. This allows the

Natural Language Generation community

to focus on the text generation process,

rather than dealing with the noise and

complications arising from the visual de-

tection process. We propose a fine-grained

evaluation metric specifically for evaluat-

ing the content selection capabilities of

image description generation systems. To

demonstrate the evaluation metric on the

task, several baselines are presented us-

ing bounding box information and textual

information as priors for content selec-

tion. The baselines are evaluated using

the proposed metric, showing that the fine-

grained metric is useful for evaluating the

content selection phase of an image de-

scription generation system.

1 Introduction

There has been increased interest in the task of

automatically generating full-sentence natural lan-

guage image descriptions in recent years. Com-

pared to earlier work that annotates images with

isolated concept labels (Duygulu et al., 2002),

such detailed annotations are much more informa-

tive and discriminating, and are important for im-

proved text and image retrieval. They also pose an

interesting and difficult challenge for natural lan-

guage generation.

Previous work on generating image descriptions

concentrates on solving the problem ‘end-to-end’,

that is to generate a description given an image as

input (Yao et al., 2010; Kulkarni et al., 2011; Yang

et al., 2011). Recent advances in large scale vi-

sual object recognition, especially in deep learning

techniques, have reached a reasonably high level

of accuracy in the last few years. For the task of

classifying an image into one of 1,000 object cat-

egories (i.e. does the image contain an object of

category X, yes or no?) on the ImageNet Large

Scale Visual Recognition Challenge (ILSVRC’14)

dataset (Russakovsky et al., 2014), the state-of-

the-art currently performs at a 4.82% top-5 error

rate (Ioffe and Szegedy, 2015) comparable to the

5.1% error rate of a human annotator who trained

himself to recognise the object categories (Rus-

sakovsky et al., 2014). For the more challenging

object category detection task (i.e. draw a bound-

ing box around each instance of objects of the

given categories), the state-of-the-art achieved a

mean average precision of 43.9%. However, even

at this level of performance, the errors from the

visual output are still problematic when used as

input to an image description generation system,

especially when considering a large pool of candi-

date object categories to be mentioned in the de-

scription.

What if we were to assume that visual object

recognisers have already achieved close to perfect

detection rates, and that the object instances have

already been identified and localised in an image?

This then raises many interesting questions with

regards to generating a description for an image,

including: (i) how do we decide which objects are

to be mentioned? (ii) how should these objects

be ordered in the description? (iii) how do we

infer and describe activities or actions? (iv) how

to we describe spatial relations between objects?

(v) how and when do we describe the object at-

tributes? Many of these questions could be ex-

plored if we had a ‘perfect’ visual input to our im-

age description generator.

To be able to begin to answer these questions,

we proposed a pilot task, which has formed part of

the ImageCLEF 2015 Scalable Image Annotation,

Localization and Sentence Generation task bench-

This is the first author’s self-archived version of the paper, posted on 6th April 2016 at
http://www.josiahwang.com/. It includes an errata that corrects the results of the baseline based on

bounding box positions.



[5] painting.n.01[6] curtain.n.01

[1] cabinet.n.01
[2] bed.n.01

[4] male child.n.01

[0] cabinet.n.01

[3] blanket.n.01

[7] book.n.01

Figure 1: We present the task of generating textual

descriptions given gold standard labelled bound-

ing boxes as input. This allows researchers to

focus on the text generation aspects of the im-

age description generation task, rather than deal-

ing with the noise arising from visual detection.

This task also allows us to evaluate specific phases

of the conventional generation pipeline, providing

insights into which specific phases of the genera-

tion pipeline contribute to the performance of an

image description generation system.

marking challenge (Villegas et al., 2015; Gilbert

et al., 2015). More specifically, we assume that

perfectly labelled object instances and their local-

isations are available to image description genera-

tion systems, as done in Elliott and Keller (2013)

and Yatskar et al. (2014). Given this knowledge,

we would like to evaluate how well image descrip-

tion generation systems perform through the vari-

ous stages of Natural Language Generation (Reiter

and Dale, 2000): content determination (what ob-

jects to describe), microplanning (how to describe

objects) and realisation (generating the complete

sentence). This pilot task is an attempt at en-

couraging fine-grained evaluation specifically for

image descriptions, compared to general-purpose

metrics like METEOR (Denkowski and Lavie,

2014) that evaluates text at a global, coarse-

grained level. For our pilot, we concentrated on

just one fine-grained metric: a content selection

measure to evaluate how well a text generation

system selects the correct object instances to be

mentioned in the resulting image description.

A dataset has been introduced for this partic-

ular challenge. This paper will not discuss in

great detail how the dataset has been collected and

annotated; we instead refer readers to Gilbert et

al. (2015) for more details about the challenge.

The main purpose of this paper, instead, is to: (i)

present and discuss the task of generating image

descriptions with a gold standard visual input; (ii)

propose a fine-grained metric specifically for eval-

uating the content selection capabilities of image

description generation systems; (iii) introduce sev-

eral baselines for this task and evaluate the base-

lines using the proposed fine-grained metric.

Overview. In section 2, we discuss the motiva-

tions for introducing the pilot task and the fine-

grained metric in the ImageCLEF 2015 challenge,

positioning them in relation to existing work. In

section 3, we describe the task of generating im-

age descriptions given gold standard visual inputs,

along with a discussion on evaluating image de-

scription generation systems with regards to their

content selection abilities. Section 4 presents sev-

eral baselines for this task, while section 5 eval-

uates these baselines using the proposed content

selection metric. Finally, we discuss further chal-

lenges with the proposed task, and introduce pos-

sible fine-grained metrics to be considered in the

future.

2 Motivation and Related Work

There are currently three main groups of ap-

proaches to generating image descriptions. The

most common and intuitive paradigm is the

knowledge-based, generative approach that takes

an image as input, detects instances of pre-defined

object categories in the image using a visual recog-

niser, and then reasons about the detected objects

to generate a novel textual description (Yao et al.,

2010; Kulkarni et al., 2011; Yang et al., 2011;

Li et al., 2011; Mitchell et al., 2012). However,

these approaches are constrained to a limited num-

ber of categories, for example 20 in Kulkarni et al.

(2011). We found that these approaches are gener-

ally sensitive to errors from visual input detection,

as such errors tend to propagate and accumulate

through the generation pipeline. The problem is

accentuated when scaling up to a larger number

of categories (e.g. 1000), where it becomes diffi-

cult to reason about what to describe amongst the

candidate instances produced by the noisy visual

detectors. Thus, generating image descriptions

with gold standard visual input allows researchers

to concentrate on the sentence generation aspects

without being bogged down by the complications

of the vision aspects of the task.

The second group of work revolves around de-



[4] hair.n.01[2] woman.n.01

[0] dress.n.01

[3] car.n.01

[6] signboard.n.01

[1] wheel.n.01
[5] boot.n.01

A [woman]2 in a white [dress]0 and gold [boots]5 leaning on a [car]3 .

A [woman]2 poses along a [car]3 .

[woman]2 dressed in white with gold [boots]5 poses next to a police [car]3.

A [woman]2 dressed in white leans against a white [car]3 .

A [woman]2 is leaning against a [car]3.

A [woman]2 with gold [boots]5 leans against an Indy pace [car]3 .

A blonde [woman]2 wearing gold shiny [boots]5 , a white [top]0 and short

white skirt is leaning on a [car]3 .

Figure 2: An example image and its seven corresponding textual descriptions from the development

dataset, with bounding box annotations labelled with WordNet concepts, and the correspondence of

bounding boxes to entity mentions in the descriptions. For example, [woman]2 in the first sentence

refers to bounding box ID [2] in the image, and [dress]0 corresponds to bounding box ID [0]. Correspon-

dence is annotated at word level rather than at phrase level to avoid possible complications with multiple

correspondences within the same phrase (woman in a white dress).

scription generation by retrieving existing textual

descriptions from similar images. A common ap-

proach would be to map text and images to a com-

mon meaning space (Farhadi et al., 2010; Ho-

dosh et al., 2013; Socher et al., 2014) or by using

some similarity measure (Ordonez et al., 2011).

Although such methods produce descriptions that

are more expressive, they rely on a large amount

of training data, and are unable to produce novel

sentences. There have been attempts at retrieving

only text fragments and combining them to gen-

erate novel descriptions (Kuznetsova et al., 2012;

Kuznetsova et al., 2014) or by pruning irrelevant

fragments for better generalisation (Kuznetsova et

al., 2013). However, the resulting descriptions

may still be pure ‘guesswork’ and may reference

text fragments that are irrelevant to image content.

Most recently, work using deep learning

approaches has produced state-of-the-art re-

sults (Karpathy and Fei-Fei, 2015; Donahue et al.,

2015; Vinyals et al., 2015), by utilising Convo-

lutional Neural Networks (CNN) (Krizhevsky et

al., 2012; Razavian et al., 2014) as image features,

and a Recurrent Neural Network (RNN) (Mikolov

et al., 2010) for language modelling, and learning

to generate descriptions jointly from images and

their descriptions. The advantages of such models

are that they cope better with noisy visual detec-

tions, and that the RNN language models are ca-

pable of modelling long range dependencies. The

main disadvantages are (i) it is difficult to inspect

what has been learnt by the model and hence to

gain insight into what is working or not working

in the system; (ii) these methods are dependent on

image datasets aligned with sentences as learning

is performed in a joint manner. The latter limita-

tion means new datasets need to be produced even

for small changes in the task, such as generating

descriptions that are more or less detailed, or in

more or less simplified language (e.g. for chil-

dren) or have a specific information focus (say, fo-

cussing on buildings versus people in an image for

a particular application). Thus, knowledge-based,

generative approaches may have an advantage in

this respect, as there is no need for aligned image-

text datasets, since visual detection and sentence

generation are independent, allowing the language

model to be tuned at surface realisation stages.

Image description generation with gold stan-

dard input. As discussed, knowledge-based,

generative approaches are sensitive to visual de-

tection input errors. Therefore, previous work has

proposed circumventing the problem by provid-

ing gold standard annotations as input to descrip-

tion generation systems. Elliott and Keller (2013)

provide region annotations along with spatial re-

lations between region instances. Yatskar et al.

(2014) also provide gold standard region anno-



tations, as well as fine-grained region properties

such as attributes, parts, and activities. Zitnick and

Parikh (2013) take a unique approach of generat-

ing scenes from clipart as an abstraction to real

world images to address the issue of noisy input.

Our work takes a similar direction as Elliott and

Keller (2013) and Yatskar et al. (2014), but with

bounding boxes as gold standard input, and with

an emphasis on fine-grained evaluation of image

description generation systems.

Evaluation of image description generation

systems. Existing image description generation

systems are most commonly evaluated using au-

tomatic evaluation metrics such as BLEU (Pap-

ineni et al., 2002), ROUGE (Lin, 2004), ME-

TEOR (Denkowski and Lavie, 2014) and most

recently CIDEr (Vedantam et al., 2015). How-

ever, such global measures only allow evalua-

tion of image description generation systems as

a whole, without being able to ascertain which

parts of the generation process, or components of

the generation system, are responsible for perfor-

mance gains or losses. Although evaluations based

on human judgments could provide a more fine-

grained metric (Yang et al., 2011; Mitchell et al.,

2012; Kuznetsova et al., 2012), they are expensive

and difficult to scale. We propose instead to ex-

ploit the pipeline of knowledge-based, generative

approaches to generation, allowing us to inspect

specific capabilities of image generation systems

by means of evaluation with fine-grained metrics.

Rather than just evaluating image description gen-

eration extrinsically with a global evaluation mea-

sure, we isolate evaluation of different phases of

description generation, and treat each phase as a

first-class citizen.

3 Task and Evaluation Measure

As mentioned above, we introduced as a bench-

marking challenge the task of generating image

descriptions for 450 test images given gold stan-

dard, labelled bounding box annotations as input

(Figure 1). The category labels were restricted to

251 WordNet synsets selected specifically for the

challenge. To enable evaluation with our proposed

fine-grained metric, participants were also asked

to annotate, within their generated descriptions,

the bounding box ID to which a term in the de-

scription corresponds. A development dataset of

500 images was provided with labelled bounding

box annotations and correspondence annotations

between textual terms and bounding boxes. Fig-

ure 2 shows an example annotation of bounding

boxes and the correspondences between bound-

ing box instances and terms in the image descrip-

tions. Note that correspondence was annotated at

word level (unigram) rather than at phrase level

(higher-order n-grams) to avoid possible compli-

cations with multiple correspondences within the

same phrase (woman in a white dress).

3.1 Fine-grained Evaluation Metric

As a pilot, we propose a fine-grained metric to

evaluate the content selection capabilities of an

image description system. This content selection

metric is the F1 score averaged across all 450 test

images, where each F1 score is computed from the

precision and recall averaged over all gold stan-

dard descriptions for the image.

Formally, let I = {I1, I2, ...IN} be the set of

test images. Let GIi = {GIi
1
, G

Ii
2
, ..., G

Ii

M
} be

the set of gold standard descriptions for image Ii,

where each GIi
m is the set of unique bounding box

instances referenced in gold standard description

m of image Ii. Let SIi be the set of unique bound-

ing box instances referenced by the participant’s

generated sentence for image Ii. The precision

P Ii for test image Ii is computed as:

P Ii =
1

M

M∑

m

|GIi
m ∩ SIi |

|SIi |
(1)

where |GIi
m ∩ SIi | is the number of unique

bounding box instances referenced in both the

gold standard description and the generated sen-

tence, and M is the number of gold standard de-

scriptions for image Ii.

Similarly, the recall RIi for test image Ii is com-

puted as:

RIi =
1

M

M∑

m

|GIi
m ∩ SIi |

|GIi
m|

(2)

The content selection score for image Ii, F
Ii , is

computed as the harmonic mean of P Ii and RIi :

F Ii = 2×
P Ii ×RIi

P Ii +RIi
(3)

The final P , R and F scores are computed as the

mean P , R and F scores across all test images.

The advantage of the macro-averaging process

in equations (1) and (2) is that it implicitly cap-

tures the relative importance of the bounding box



instances based on how frequently they occur

across the gold standard descriptions. For exam-

ple, in Figure 2, both woman and car are ref-

erenced in all seven gold standard descriptions,

while boot is mentioned four times and dress

twice. Thus, a generated description that refer-

ences woman and car will naturally result in a

higher score than one that references only woman

and dress.

Note that for this metric, we are only concerned

with evaluating the generation system’s content

selection capabilities, rather than its referring ex-

pression generation. As such, systems are free

to generate any referring expression for each se-

lected bounding box instance. We consider the

evaluation of referring expressions as a potentially

separate fine-grained evaluation task to be intro-

duced in the future. In addition, we do not evalu-

ate terms outside those that refer to bounding box

instances, and as for the pilot task of the challenge

use the global METEOR metric to cover evalua-

tion of other aspects of image description genera-

tion.

4 Generating Descriptions: Baselines

We propose a set of baselines for the image de-

scription generation task, or more specifically the

content selection task. These allow us to test

the proposed fine-grained content selection met-

ric (Section 3.1) and to gain some insights into

what features might inform content selection. The

baselines use visual and textual cues to select the

bounding box instances to be described in the text

to be generated.

4.1 Generation based on Visual Cues

Stratos et al. (2012) found that the size and posi-

tion of visual entities in an image, to a certain ex-

tent, plays a part in determining what is mentioned

in the corresponding description. As such, we con-

sider two baselines based on different visual cues:

(i) bounding box size (bigger objects have higher

likelihood of being mentioned); (ii) distance of the

centroid of the bounding box to the centre of the

image (central objects have higher likelihood of

being mentioned). For each test image, bounding

boxes instances are sorted based on these visual

cues, and a fixed threshold used to limit the num-

ber of instances to be selected for sentence gener-

ation. We will explore different thresholds in our

experiments in Section 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

k (maximum number of instances)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F

Bigram
Unigram
Bounding Box Size
Bounding Box Position
Random

Figure 3: The content selection score, F , evalu-

ated on the proposed baselines at varying levels of

k (maximum number of instances per sentence).

Standard deviations are omitted for clarity, but are

included in Table 1.

4.2 Generation based on Textual Priors

We also consider baselines based on textual pri-

ors, as Stratos et al. (2012) also showed that the

category of the object play a role in determining

whether it will be mentioned in the corresponding

textual description.

For the first baseline, we consider as a prior uni-

gram counts of concepts that have been referenced

to a bounding box in the gold standard descrip-

tions from the development set. For each test im-

age, bounding boxes are sorted by the frequency

of their concept labels in the development set, i.e.

frequently mentioned concepts have higher prece-

dence.

We also consider a more sophisticated baseline

based on bigram sequences, where a concept is se-

lected based on how likely it is to be referenced

immediately after another concept, i.e. there are

no other terms referencing a bounding box in be-

tween. For instance, for the first sentence in Fig-

ure 2, we consider woman to be followed by dress,

dress followed by boot, and boot followed by car,

but not woman followed by car or boot. Con-

cept selection is performed in a greedy fashion,

by choosing from the pool of bounding boxes for

each image, the concept that is most likely to occur

first in a sentence, followed by the concept that is

most likely to occur given the previously selected

concept. The selection process terminates when

no remaining concept from the candidate pool is

likely to follow the previously selected concept.
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(a) Baselines based on textual priors
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(b) Baselines based on visual cues

Figure 4: The precision P (solid lines) and recall R (dashed lines), as evaluated on the proposed baselines

at varying levels of k. Again, error bars are omitted for clarity, but are included in Table 1.

For all baselines, we select the first term among

the synonyms of the WordNet synset to generate

the referring expression for each concept.

4.3 Function Words

Our metric only evaluates the content selection

process and ignores everything else. However,

for completeness and in the spirit of generating

complete descriptions, we attempt to connect se-

lected concept terms with randomly selected func-

tion words or phrases. The phrases are selected to

be a random word from a predefined list of prepo-

sitions and conjunctions, followed by an optional

article the.

5 Experimental Results

The generation systems described in Section 4

were evaluated using the proposed content selec-

tion metric (Section 3.1). We also compared the

proposed systems to a baseline that selects bound-

ing boxes at random, up to a pre-defined thresh-

old k of the maximum allowed number of bound-

ing boxes per image. We explore different values

of this threshold by varying k from 1 to 15. We

take min(k,Nbox) for images with fewer than k

bounding boxes, where Nbox is the total number

of bounding boxes for the image.

As an upper bound to how well humans perform

content selection, we evaluated the gold standard

descriptions by evaluating one description against

the other descriptions of the image and repeating

the process for all descriptions. The upper bound

is computed to be F = 0.74 ± 0.12, with P =
0.77± 0.11 and R = 0.77± 0.11.

Figure 3 shows the F -scores of our proposed

generation systems. Firstly, we examine the ef-

fects of varying the threshold k on the number of

instances to be selected. The F -score peaks at k

between 3 and 4 across all systems except the ran-

dom baseline, and then drops or remains stagnant

beyond that. Figure 4 gives an insight about this

observation when the precision P and recall R are

examined separately. As expected, P decreases

while R increases when k is increased. The two

graphs intersect at about k between 3 to 4, sug-

gesting that these values are an optimal tradeoff

between precision and recall (the mean number of

unique instances per description is 2.89 in the de-

velopment dataset).

Comparing the baselines based on visual and

textual cues, the F -score in Figure 3 suggests that

baselines using textual cues perform better when

k is small, and visual cues perform better with

larger k’s. However, Figure 4 gives a clearer pic-

ture, where the bigram-based system obtained the

best precision regardless of k (Figure 4a), while

the systems based on bounding box cues relied on

the increased recall when increasing k to obtain a

high F -score (Figure 4b). Note that the bigram-

based generation system is less sensitive to larger

k’s as the model itself contains an internal stop-

ping criterion when no suitable concept is likely

to follow a selected concept, resulting in a lower

but stable recall rate compared to other systems,

when k is increased. Figure 5 shows some exam-

ple sentences generated by our baseline systems,

for k=3.

We can infer from the results that (i) using prior



knowledge on the ordering of concepts (i.e. bi-

grams) is helpful for concept selection; (ii) fre-

quency of concepts (i.e. unigrams) are helpful

when there are only one or two instances to be

described, possibly because the remaining objects

are not mentioned as frequently as the main actors;

(iii) visual cues are helpful for concept selection,

although the precision is reduced as k increases.

5.1 Combining Textual and Visual Priors

We also explored combining textual priors and

visual cues, which could potentially produce a

stronger baseline. This is done by re-ranking the

bounding boxes, for each image, by the average

rank from both systems. In the case of the bigram-

based system, bounding boxes that are not selected

are all assigned an equal rank: 0.5 × ((Nbox +
1) − Ns) + Ns, where Nbox is the number of all

bounding boxes for the image and Ns the number

of bounding boxes selected by the bigram-based

system. For example, if only 3 out of 9 bound-

ing boxes are selected (and assigned ranks 1, 2

and 3 respectively), then the remaining 6 bound-

ing boxes are all assigned equal rank 6.5. Fig-

ure 6 compares the F -scores of systems combin-

ing textual priors (unigram or bigram) and visual

cues (bounding box position) at k=3 and k=4; we

omitted bounding box size as the results are simi-

lar to bounding box position. Combining unigram

and bounding box position did not significantly

improve the F -score compared to using bound-

ing box position alone, at k=3 and k=4. As seen

earlier, the performance of the unigram-based sys-

tem at these k’s is much lower than systems based

on visual cues. The combination of bigram and

bounding box position, however, seems to yield

slightly improved performance at these k’s. This

is likely due to the bigram-based system providing

higher precision and the system based on visual

cues providing better recall. This shows that com-

bining textual and visual priors may be beneficial

when they complement each other.

6 Discussion and Future Work

We presented the task of generating image de-

scriptions from gold standard labelled bounding

boxes as input to a text generation system. We also

proposed a fine-grained evaluation metric specifi-

cally to evaluate the content selection capabilities

of the image description generation system, which

measures how well the system selects the concepts

to be described compared against a set of human-

authored reference descriptions. Several baselines

were proposed to demonstrate the proposed metric

on the task. We found that selecting a maximum of

3 to 4 instances is optimal for this dataset, and that

both text and visual cues play a part in the content

selection process.

Further challenges can be observed for the pro-

posed generation task based solely on gold stan-

dard visual inputs:

Bounding boxes. Bounding boxes labelled with

concepts may be a good starting point for a ‘clean’

input task, but may be somewhat uninformative as

important visual information is discarded in the

process that might prove useful for the genera-

tion process. A possible solution would be to en-

rich the bounding box inputs with more informa-

tion, either as attributes (adjectives, verbs etc.) or

directly using visual features. However, manu-

ally annotating such fine-grained information is an

onerous task.

Suitability of metrics. Another possible issue

with the proposed task is that it might be prob-

lematic to assume that all image description gen-

eration systems will be using a common pipeline.

With the large variation in how image description

generation systems are constructed, it may be dif-

ficult to constrain and expect systems to be using

the same architecture that will enable us to evalu-

ate them with such fine-grained metrics.

Future work with fine-grained metrics. Al-

though we only consider one metric to evalua-

tion the content selection capabilities of genera-

tion systems, further fine-grained metrics can be

introduced to evaluate different components of

the generation pipeline. Some examples include

content ordering, lexicalisation or referring ex-

pression generation of concepts (and/or their at-

tributes), evaluating the appropriateness of verbs,

predicates and prepositions, and surface realisa-

tion.

Future work on image description generation.

In this paper, we presented several baselines based

on different textual and visual priors, and also ex-

plored combining cues from both text and vision.

Future work on image description generation

could involve stronger cues, for example from

co-occurrences and spatial relationships between

multiple objects.



[8] hallway.n.01

[7] dog.n.01
[6] dog.n.01

[5] dog.n.01

[4] vest.n.01

[3] wall.n.01

[2] floor.n.01

[1] necktie.n.01

[0] dog.n.01

random: [F=0.04] [Wall]3 among [necktie]1 underneath [floor]2 .
bbox pos: [F=0.00] [Hallway]8 below the [wall]3 near the [floor]2 .
bbox size: [F=0.39] [Hallway]8 behind the [dog]0 underneath the [wall]3 .
unigram: [F=0.05] [Wall]3 near [floor]2 with the [dog]5 .
bigram: [F=0.51] [Dog]5 against [dog]0 beside the [dog]6 .

[11] lighter.n.02

[10] window.n.01

[9] park.n.01

[8] temple.n.01

[7] wheel.n.01

[6] window.n.01

[5] river.n.01

[4] wheel.n.01

[3] tree.n.01

[2] flag.n.01

[1] car.n.01

[0] flag.n.01

random: [F=0.05] [Park]9 behind [wheel]7 underneath the [window]6 .
bbox pos: [F=0.59] [Park]9 on the [car]1 below [river]5 .
bbox size: [F=0.44] [Park]9 behind the [car]1 against the [tree]3 .
unigram: [F=0.42] [Tree]3 beneath [car]1 by [window]6 .
bigram: [F=0.71] [Car]1 inside [flag]0 underneath the [flag]2 .

[8] door.n.01

[7] table.n.02

[6] bottle.n.01

[5] bottle.n.01
[4] wall.n.01

[3] door.n.01[2] wall.n.01

[1] floor.n.01

[0] bicycle.n.01
random: [F=0.43] [Wall]4 inside [door]3 around the [bicycle]0 .
bbox pos: [F=0.79] [Bicycle]0 in [floor]1 below [wall]2 .
bbox size: [F=0.79] [Bicycle]0 on [floor]1 with [wall]2 .
unigram: [F=0.34] [Table]7 in the [wall]4 around [wall]2 .
bigram: [F=0.03] [Table]7 near [door]3 .

[4] mouse.n.01[3] field.n.01

[2] hand.n.01

[1] gun.n.01

[0] helmet.n.01

random: [F=0.66] [Mouse]4 inside [field]3 against [helmet]0 .
bbox pos: [F=0.75] [Field]3 and [mouse]4 beside the [gun]1 .
bbox size: [F=0.75] [Field]3 along [mouse]4 underneath [gun]1 .
unigram: [F=0.31] [Field]3 inside [hand]2 below [helmet]0 .
bigram: [F=0.00] [Hand]2 .

[7] picture.n.01

[6] vest.n.01 [5] scarf.n.01

[4] train.n.01

[3] hat.n.01

[2] man.n.01
[1] face.n.01

[0] book.n.01

random: [F=0.39] [Vest]6 at [hat]3 behind the [picture]7 .
bbox pos: [F=0.49] [Picture]7 on [man]2 beside the [train]4 .
bbox size: [F=0.49] [Picture]7 among [man]2 on the [train]4 .
unigram: [F=0.77] [Man]2 below the [hat]3 at [book]0 .
bigram: [F=0.77] [Man]2 around the [hat]3 along the [book]0 .

Figure 5: Example image descriptions generated by our baselines (k = 3).

We believe that the introduction of a fine-

grained approach to evaluating image description

generation tasks can encourage further growth in

this area, linking further research between com-

puter vision and natural language generation.
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Table 1: P , R and F scores (with standard devia-

tions) of the content selection metric, as evaluated

on different baselines at varying levels of k (1 to

10).
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Figure 6: The content selection score, F , when

combining textual priors and visual cues. For text

priors, we compare both unigram and bigram pri-

ors. For visual cues, we show only the results for

bounding box position as using bounding box size

yields similar results. We compare the combined

baselines at k=3 and k=4.
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Errata

There was a bug in our original implementation

of the visual prior based on the positions of

bounding boxes. The correct Precision/Recall/F

scores for this particular baseline are in actual fact

much lower than reported in the paper, and lower

than all proposed baselines (except the random

baseline). As such, we infer that bounding box

position may be a weaker visual cue compared

to bounding box size, at least for this particular

dataset.

This document shows the corrected results.
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Figure 1: Replaces Figure 3 of the original paper.

The figure shows the content selection score, F ,

evaluated on the proposed baselines at varying lev-

els of k (maximum number of instances per sen-

tence). Standard deviations are omitted for clarity,

but are included in Table 1.
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Figure 2: Replaces Figure 6 of the original pa-

per. The figure shows the content selection score,

F , when combining textual priors (unigram or bir-

gram) and visual cues based on bounding box po-

sitions. We compare the combined baselines at

k=3 and k=4.
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Figure 3: The content selection score, F , when

combining textual priors (unigram or birgram) and

visual cues based on bounding box sizes. We

compare the combined baselines at k=3 and k=4.

This figure is provided as a supplement, as our ini-

tial claim that using bounding box position and us-

ing bounding box size yield similar results does

not now hold.
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k = 9 0.34± 0.13 0.87± 0.16 0.48± 0.12

k = 10 0.32± 0.12 0.89± 0.15 0.46± 0.12

U
n

ig
ra

m

k = 1 0.69± 0.40 0.24± 0.18 0.34± 0.24

k = 2 0.57± 0.29 0.36± 0.22 0.43± 0.23

k = 3 0.48± 0.22 0.45± 0.23 0.45± 0.20

k = 4 0.43± 0.19 0.53± 0.23 0.46± 0.17

k = 5 0.40± 0.17 0.59± 0.22 0.45± 0.16

k = 6 0.37± 0.16 0.65± 0.22 0.45± 0.15

k = 7 0.35± 0.15 0.70± 0.22 0.44± 0.14

k = 8 0.33± 0.14 0.74± 0.22 0.44± 0.14

k = 9 0.31± 0.14 0.78± 0.21 0.43± 0.14

k = 10 0.30± 0.13 0.82± 0.20 0.42± 0.13

B
ig

ra
m

k = 1 0.85± 0.29 0.31± 0.17 0.44± 0.21

k = 2 0.65± 0.24 0.43± 0.21 0.50± 0.21

k = 3 0.55± 0.21 0.50± 0.22 0.50± 0.19

k = 4 0.50± 0.21 0.54± 0.23 0.50± 0.19

k = 5 0.47± 0.21 0.57± 0.23 0.49± 0.19

k = 6 0.46± 0.20 0.59± 0.23 0.49± 0.18

k = 7 0.45± 0.20 0.59± 0.23 0.48± 0.18

k = 8 0.44± 0.20 0.60± 0.23 0.48± 0.18

k = 9 0.44± 0.20 0.60± 0.24 0.48± 0.18

k = 10 0.44± 0.20 0.61± 0.23 0.48± 0.18

Table 1: Replaces Table 1 of the original paper.

The table shows the P , R and F scores (with stan-

dard deviations) of the content selection metric, as

evaluated on different baselines at varying levels

of k (1 to 10).
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(a) Baselines based on textual priors
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(b) Baselines based on visual cues

Figure 4: Replaces Figure 4 of the original paper. The precision P (solid lines) and recall R (dashed

lines), as evaluated on the proposed baselines at varying levels of k. Again, error bars are omitted for

clarity, but are included in Table 1.

[8] hallway.n.01

[7] dog.n.01
[6] dog.n.01

[5] dog.n.01

[4] vest.n.01

[3] wall.n.01

[2] floor.n.01

[1] necktie.n.01

[0] dog.n.01

random: [F=0.04] [Wall]3 among [necktie]1 underneath [floor]2 .
bbox pos: [F=0.45] [Hallway]8 below the [dog]5 near the [dog]0 .
bbox size: [F=0.39] [Hallway]8 behind the [dog]0 underneath the [wall]3 .
unigram: [F=0.05] [Wall]3 near [floor]2 with the [dog]5 .
bigram: [F=0.51] [Dog]5 against [dog]0 beside the [dog]6 .

[11] lighter.n.02

[10] window.n.01

[9] park.n.01

[8] temple.n.01

[7] wheel.n.01

[6] window.n.01

[5] river.n.01

[4] wheel.n.01

[3] tree.n.01

[2] flag.n.01

[1] car.n.01

[0] flag.n.01

random: [F=0.05] [Park]9 behind [wheel]7 underneath the [window]6 .
bbox pos: [F=0.59] [River]5 on the [car]1 below [park]9 .
bbox size: [F=0.44] [Park]9 behind the [car]1 against the [tree]3 .
unigram: [F=0.42] [Tree]3 beneath [car]1 by [window]6 .
bigram: [F=0.71] [Car]1 inside [flag]0 underneath the [flag]2 .

[8] door.n.01

[7] table.n.02

[6] bottle.n.01

[5] bottle.n.01
[4] wall.n.01

[3] door.n.01[2] wall.n.01

[1] floor.n.01

[0] bicycle.n.01
random: [F=0.43] [Wall]4 inside [door]3 around the [bicycle]0 .
bbox pos: [F=0.79] [Bicycle]0 in [wall]2 below [floor]1 .
bbox size: [F=0.79] [Bicycle]0 on [floor]1 with [wall]2 .
unigram: [F=0.34] [Table]7 in the [wall]4 around [wall]2 .
bigram: [F=0.03] [Table]7 near [door]3 .

[4] mouse.n.01[3] field.n.01

[2] hand.n.01

[1] gun.n.01

[0] helmet.n.01

random: [F=0.66] [Mouse]4 inside [field]3 against [helmet]0 .
bbox pos: [F=0.75] [Field]3 and [mouse]4 beside the [gun]1 .
bbox size: [F=0.75] [Field]3 along [mouse]4 underneath [gun]1 .
unigram: [F=0.31] [Field]3 inside [hand]2 below [helmet]0 .
bigram: [F=0.00] [Hand]2 .

[7] picture.n.01

[6] vest.n.01 [5] scarf.n.01

[4] train.n.01

[3] hat.n.01

[2] man.n.01
[1] face.n.01

[0] book.n.01

random: [F=0.39] [Vest]6 at [hat]3 behind the [picture]7 .
bbox pos: [F=0.41] [Picture]7 on [man]2 beside the [scarf]5 .
bbox size: [F=0.49] [Picture]7 among [man]2 on the [train]4 .
unigram: [F=0.77] [Man]2 below the [hat]3 at [book]0 .
bigram: [F=0.77] [Man]2 around the [hat]3 along the [book]0 .

Figure 5: Replaces Figure 5 of the original paper. Example image descriptions generated by our base-

lines (k = 3).


