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Abstract 

Carbon Capture and Storage (CCS) has been highlighted as a potential method to enable 

the continued use of fossil-fuelled power stations through the abatement of carbon dioxide 

(CO2). A complete CCS cycle requires safe, reliable and cost effective solutions for the 

transmission of CO2 from the capturing facility to the location of permanent storage.  

This publication presents a detailed review of the integrity risks posed to dense phase CO2 

pipelines in the form of internal corrosion. To begin, the current worldwide experience in 

handling dense phase CO2 and the anthropogenic stream compositions expected from the 

different combustion techniques currently available are discussed. The anticipated 

compositions are then related to a number of tentative CO2 stream compositions available in 

open literature proposed by research institutes and pipeline operators. 

In subsequent sections, early laboratory and field corrosion experience relating to natural 

dense phase CO2 transport for the purposes of enhanced oil recovery (EOR) are 

summarised along with more recent research efforts which focus on identifying the role of 

anthropogenic impurities in the degradation processes. For each system impurity, the 

reaction rates, mechanisms and corrosion product composition/morphology expected at the 

steel surfaces are discussed, as well as each component’s ability to influence the critical 

water content required to initiate corrosion. Potential bulk phase reactions between multiple 

impurities are also evaluated in an attempt to help understand how the impurity content may 

evolve along a long distance pipeline. 

The likelihood of stress-corrosion cracking and hydrogen-induced cracking is discussed and 

the various corrosion mitigation techniques which exist to control degradation to acceptable 
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levels are reviewed. Based on the current research performed in the context of impure 

dense phase CO2 corrosion, issues associated with performing laboratory experiments to 

replicate field conditions and the challenges such limitations present in terms of defining the 

safe operating window for CO2 transport are considered.  

1 Introduction 

1.1 General overview 

Fossil fuels will continue to be the dominant source of the world’s energy production for the 

foreseeable future. There has been increased concern that the combustion of carbon-based 

fuels produces greenhouse gases (particularly CO2) which adversely affects the global 

climate. 

The implementation of Carbon Capture and Storage (CCS) technology has the potential to 

enable the continued use of fossil fuels through the abatement of carbon dioxide (CO2), 

preventing emissions into the atmosphere, whilst also presenting itself as an opportunity to 

facilitate the recovery of hydrocarbons through the application of enhanced oil recovery 

(EOR). Currently, CCS is the only process available to create a significant and immediate 

impact on the CO2 level in the Earth’s environment. 

CCS refers to a number of technologies which essentially involve capturing CO2 from large 

point sources (i.e. power generation, refineries and industrial applications), followed by 

compressing and transporting the fluid to geological reservoirs or depleted oil and gas fields 

for sequestration or EOR.[1] Numerous industrial processes, most notably cement 

manufacture, iron/steel making and natural gas treatment also intrinsically produce CO2 and 

can be fitted with CO2 capture technologies.[1]   

Although CO2 can be transported by pipeline, ship, rail or road, the mode of transport will be 

dictated by the quantity of CO2 requiring sequestration, the distance travelled, and the CO2 

stream composition produced after capture, processing and purification.[1] It is estimated that 

for the abatement of climate change, approximately 10 Gt/year of CO2 will need to be 

transported and sequestered in 2050.[2] Furthermore, researchers have suggested that the 

only logical choice to achieve such deep reductions in CO2 emission would be to construct 

an extensive pipeline network from carbon steel.[3]  

CO2 pipelines must be constructed and designed at an optimal cost such that they are 

reliable and safe to operate, posing minimal risk to the local population and environment.[1] 

One of the most notable risks to pipeline integrity during operation is internal corrosion; 

carbon steel is the principal material of construction and is susceptible to corrosion in flue 
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gas environments because of the presence of CO2, H2O, O2, SOx, H2S, NOx and various 

other constituents that are capable of forming corrosive products.[4] 

Currently, there is no universally agreed upon specification for the CO2 stream composition 

to ensure safe transport. It is also apparent that there is a distinct lack of industrial 

experience associated with anthropogenic CO2 transmission. Consequently, the purpose of 

this review article is two-fold: 

i. Firstly, to review the current literature focusing on the internal corrosion threats 

posed to carbon steel pipelines in impure dense phase CO2 environments.   

ii. Secondly, to evaluate the extent of knowledge in the various subject areas pertaining 

to pipeline integrity and to use this information to identify where research efforts 

should be focused and concentrated to enable the safe design, construction and 

operation of CO2 pipelines. 

2 Industrial experience in handling CO2 and pipeline 

incidents 

2.1 Industrial experience worldwide 

The transportation of CO2 has been practiced for over 40 years and currently, over 6000 km 

of pipeline exist for EOR purposes. The majority of these pipelines are located in the USA 

and Canada, with some projects also being undertaken in Norway, Algeria, Hungary and 

Turkey.[5] Nearly all of these pipelines transport CO2 from natural sources; however a few 

pipelines do transport anthropogenic CO2, but these tend to have very stringent specified 

water content limits imposed, as will be discussed in due course. In North America, CO2 has 

been used for EOR since 1972, but the majority of CO2 is transported from naturally 

occurring gas fields along the mid-continental mountain ranges and Mississippi Basin.[5]  

In terms of European experience with CO2 transport, this currently rests with Statoil at 

Sleipner and Snovhit. However, the expectation is that European CCS will evolve to target 

offshore storage sites, developing in a network format due to the potential for CCS 

clusters.[5] Some studies have suggested that the infrastructure for European CCS could 

reach between 30,000 and 150,000 km.[5]  

2.2 Pipeline incidents – the importance of corrosion management 

It is perhaps worth reflecting on the past number of failures attributed to corrosion in dense 

phase CO2 pipelines to highlight the importance of understanding material susceptibility to 

such environments. Statistics on pipeline incidents in the USA can be found at the Office of 

Pipeline Safety (OPS) within the US Department of Transportation, Pipeline and Hazardous 
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Materials Safety Administration (PHMSA).[6] CO2 pipeline failure information is contained 

within the hazardous liquid accident data and is specifically related to the transmission of 

compressed supercritical CO2. However, operational problems are not necessarily reported 

in the public domain unless a release occurs. Consequently, this limitation slightly inhibits 

the ability for people outside of industry to learn from operational sources.  

Regardless of this fact, Det Norske Veritas (DNV)[7] analysed the data provided by the 

PHMSA  thoroughly from 1986 to 2008. During this period, 29 incidents relating to CO2 

transport were reported, with one fatality and two injuries. The failure modes of all the 29 

reported incidents from 1986-2008 are summarised in Figure 1, which has been adapted 

from the work of Johnson et al.[7]. The results indicate that between 1986 and 2008 the 

single greatest cause of pipeline failures was attributed to corrosion. 

 

Figure 1: Failure modes for CO2 pipeline systems in the US – adapted from Johnson et 

al.[7] 

In comparison to the statistics provided for CO2 pipelines, 5,610 accidents causing 107 

fatalities and 520 injuries relating to natural gas and hazardous liquid (excluding CO2) 

pipelines occurred from 1986-2006 in the USA.[7] Of these accidents, 32% were attributed to 

corrosion. 

A mile-by-mile comparison was also performed by Gale and Davidson[8] between natural 

gas, hazardous liquid and CO2 pipelines. According to their study, CO2 pipelines have a 

frequency of incident of 0.32 per 1000 km per year based on data collected between 1990 

and 2001, whereas natural gas and hazardous liquid pipelines have a frequency of 0.17 and 

0.82, respectively.[8] Table 1 summarises the data collated by Gale and Davidson [8] from 

1990 to 2001 in comparison to more recent data collected from the PHMSA website [6] for 
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1994 to 2013. Figure 2 also depicts the number of CO2 pipeline incidents recorded per year 

in the USA between the same period. 

Table 1: Statistics relating to pipeline incidents in the USA – adapted from Gale et al.[8] 

and the US Department of Transportation, Pipeline and Hazardous Materials Safety 

Administration (PHMSA)[6] 

 Natural Gas Transmission Hazardous Liquid Transmission CO2 Transmission 

 1990-2001[8] 1994-

2013[6] 

1990-2001[8] 1994-2013[6] 1990-2001[8] 1994-2013[6] 

No. of incidents  1287 1891 3035 5897 10 64 

No. incidents per 

1000 km pipeline 

per year  

0.17 0.19 0.82 1.06 0.32 0.64* 

*assuming 5000 km as average US pipeline distance between 1994 and 2013 

The statistics in Table 1 show that the frequency of incidents on CO2 pipelines from 1990 to 

2001 was greater than that of natural gas transport, but less than that of hazardous liquids. 

Furthermore, the results indicate that the rate of incidents associated with CO2 transmission 

increased from 0.32 between 1990 and 2001 to 0.64 per 1000 km per year for 1994-2013. 

However, certain authors[8] have cautioned on drawing conclusions from the small sample 

size of CO2 pipelines in the USA. The fact that only 6000 km of CO2 pipelines are in place is 

often pointed out as a limitation by not providing an extensive knowledge base, especially 

when compared to the 490,000 km of gas pipelines or the 278,000 km of hazardous liquid 

pipelines in the US alone.[5] 

Figure 2 shows the number of CO2 pipeline incidents reported per year in the USA between 

1994 and 2013 from the PHMSA website. From this figure, it does appear that the number of 

reported incidents has been generally increasing over the last 20 years. Whether this is 

related to complacency, lack of reliable information or supply of incorrect information is not 

known. 

../AppData/Local/Temp/,#_ENREF_6
../AppData/Local/Temp/,#_ENREF_6
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Figure 2: CO2 pipeline incidents between 1994 and 2013[6] 

3 Early corrosion studies in supercritical CO2 and 

experience from the SACROC pipeline 

One of the key examples of early research into corrosion as well as field observations was 

that undertaken by the Scurry Area Canyon Reef Operators Committee (SACROC) project. 

The unit consists of a 352 km long CO2 injection pipeline network, initially commenced in 

1972.[9-11]  

Research into the potential for corrosion within the SACROC pipelines was performed by 

Schremp and Roberson[10] who tested a number of stream compositions to determine the 

anticipated internal corrosion rates within the system. Samples for the experiments consisted 

of full size X60 carbon steel 12-inch and 16-inch pipe sections which were exposed to CO2 

streams consistent with the real SACROC pipeline conditions. Corrosion tests were 

performed at two design temperatures (22 and 3°C) and a pressure of 13.8 MPa. Impurities 

within the CO2 stream included 600-800 ppm H2S (twice the pipeline concentration) and a 

water content of 1000 ppm, which was 20 times the specified pipeline concentration.  

Specimens recovered from the tests after 4-6 weeks exposure showed no evidence of pitting 

or localised attack and general corrosion rates were below 0.5 µm/year. These results 

aligned very well with operation experience on the SACROC pipeline which, after 12 years 

with a 50 ppm water content limit, recorded a corrosion rate between 0.25 and 2.5 

../AppData/Local/Temp/,#_ENREF_6
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µm/year.[5, 11] That being said, there have been incidents with corrosion on a spur line from 

the SACROC pipeline[12] which occurred as a result of free-standing water remaining from a 

hydrostatic test, generating high levels of corrosion.  

The operation of the SACROC pipeline over the last 44 years, along with a number of other 

CO2 pipelines across the USA demonstrates a considerable amount of experience 

associated with dense phase CO2 transport. However, despite CO2 transport having been 

practiced successfully for decades, there is a limited amount of experience in relation to 

anthropogenic CO2 transport, as nearly all US involvement lies with transporting CO2 from 

natural sources.  

4 Typical CO2 stream compositions and anticipated 

impurity contents 

4.1 Typical stream compositions available in open literature 

Although the composition of CO2 streams currently being transported through pipelines is 

not readily available in the open literature, Table 2 provides a summary of information 

compiled from various authors.[8, 10, 13-17] This covers a selection of existing pipelines which 

transport either natural or anthropogenic sources of CO2. 

CO2 from natural sources is typically high purity, will require minimal gas treatment prior to 

injection and only impurities such as CO2, N2, CH4, water (potentially containing salts) and 

H2S are to be expected.[1] Considering anthropogenic sources, there can be a distinct 

difference in composition, as the stream can become further contaminated by various flue 

gas impurities (SOx, NOx, O2, CO, Ar, H2 and others) due to the associated combustion 

process. Regrettably, the presence of some of these compounds is not reflected in the list of 

anthropogenic sources in Table 2; and it is unclear from the literature whether this is 

because these components are not present, or the streams were not analysed for these 

particular compounds. Despite this, it is clear there will be significant differences in stream 

composition between natural and anthropogenic CO2 and the exact composition of man-

made CO2 will inevitably vary depending upon the type of capture process, the source and 

the level of gas treatment applied. 
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Table 2: CO2 compositions transported in existing pipelines  

 Canyon Reef 
Carriers Pipeline[1, 8, 

10, 13, 14] 

Central Basin Pipeline[1, 

13-15] 
Sheep Mountain 

Pipeline[1, 8, 14] 
Bravo 

Pipeline[1, 8, 13, 

14] 

Cortez Pipeline[1, 

8, 13, 14] 
Weyburn 

Pipeline[1, 16] 
NEJD 

Pipeline[13] 
Sleipner[1, 16] 

(Offshore 
Pipelines) 

Snohvit[1, 13, 17] 
(Offshore 
Pipelines) 

 

Location USA USA USA USA USA USA and 
Canada 

USA Norway Norway 

Operator Kinder Morgan Kinder Morgan Occidental BP/Occidental Kinder Morgan Dakota 
Gasification 
Company 

Denbury 
Resources 

Statoil Statoil 

Length (km) ~225 ~278 ~772 ~350 ~803 ~328 ~295 <1 ~160 

Capacity (Mt/y) 4.4 20 9.2 7.3 19.3 5 n/a 1 0.7 

Source Anthropogenic - 
Gasification Plant 

Natural Natural Natural Natural Anthropogenic 
- Gasification 

Plant 

Natural Separation from 
Natural Gas 

Separation from 
Natural Gas 

CO2 (vol.%) 85-98 98.5 96.8-97.4 99.7 95 96 98.7-99.4 93-96 Not specified 

CH4 (vol.%) 2-15 (C6H14) 0.2 1.7 - 1-5 0.7 0.3 0.5-2.0 total 
hydrocarbons 

Not specified 

N2 (vol.%) <0.5 1.3 0.6-0.9 0.3 4 <300 ppm 0.3 3-5 non-
condensable 

Not specified 

H2S <260 ppm <26 ppm - - 20 ppm 9000 ppm - 150 ppm Not specified 

C2+ (vol.%) - - 0.3-0.6 - Trace 2.3 - 0.5-2.0 total 
hydrocarbons 

Not specified 

CO (vol.%) - - - - - 0.1 - - Not specified 

O2 - <14 ppm - - - <70 ppm - - Not specified 

NOX Not specified - - - - Not specified - - Not specified 

SOX Not specified - - - - Not specified - - Not specified 

H2 (vol.%) - - - - - Trace - 3-5 non-
condensable 

Not specified 

Ar (vol.%) - - - - - - - 3-5 non-
condensable 

Not specified 

Water content 
(mole) 

50 ppm ~630 ppm 315 ppm Not specified ~630 ppm 20 ppm 418 ppm Water-saturated 
(Corrosion 

Resistant Alloy 
pipeline) 

50 ppm 

../AppData/Local/Temp/CO2#_ENREF_14
../AppData/Local/Temp/CO2#_ENREF_14
../AppData/Local/Temp/CO2#_ENREF_14
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Table 3 is extracted from a publication by the EDGAR (Energy Delta Gas Research) CO2 

purity project[18] which indicates the concentrations of impurities expected in flue gases and 

their dependency on the combustion process and form of purification technique employed. 

The table itself is compiled from numerous publications[19-22] and demonstrates the large 

variation in the level of impurities expected in the captured CO2 stream from the various 

combustion processes.  

In addition to the compounds mentioned in Table 3, there may exist the potential for amine 

carry-over from the capture plant (for post and pre-combustion) that could influence the 

internal corrosion of pipeline materials. Thodla et al.[23] and Kanimozhi et al.[24] demonstrated 

that the presence of Monoethanolamine (MEA) can be beneficial or detrimental to internal 

corrosion depending upon its concentration in the CO2 stream. 

Table 3: Composition ranges for CO2 streams for different combustion processes – 

from EDGAR CO2 purity project – adapted from Walspurger et al.[18] 

 Post-combustion Pre-combustion Oxyfuel 
combustion 

 Amine scrubbing Selexol 
IGCC[20] 

Reactisol 
IGCC[19] 

Amine 
scrubbing[21] 

Sour SEWGS Oxyfuel and 
double 

flashing[22] 

CO2 99.8-99.9% 98.1-99.7% 95-98.5% >97.2% >99% 97% 

H2 - 1.5% 20 ppm <1% <1% - 

O2 150-300 ppm - - - - 1.2% 

N2 450-900 ppm (inc. Ar) 195 ppm < 1% <1% <1% 1.6% 

Ar 450-900 ppm (inc. N2) 178 ppm 150 ppm <1% <1% 0.4% 

Sulphur 
compounds 

10-20 ppm (SO2 
predominantly) 

2<H2S<1700 
ppm 

0.2-20 ppm H2S<200 ppm 
for 2-stage 

plant 

<5000 ppm to 
ppm level with 

H2S stage 

35ppm SO2 

NOx 20-40 ppm - - - - 150 ppm 

CO 10-20 ppm 100-1300 ppm 400 ppm <1% <1% - 

CH4 - 112 ppm 100 ppm <1% <1% - 

MeOH -  20-200 ppm - - - 

H2O 100-600 ppm 376 ppm 0.1-10 ppm 1.8% 500 ppm 
(drying step) 

- 

 

4.2 Recommended impurity limits (enhanced oil recovery vs sequestration) 

A number of tentative CO2 purity specifications exist in literature, two of which are provided 

in Table 4. These are from the European project ‘ENCAP – ENhanced CAPture of CO2’ from 

the DYNAMIS project[16], and a set of compiled data from Alstom which was referred to in a 

publication by Dugstad et al.[25]. Currently, no universally agreed upon specification for CO2 

quality exists, yet it is critical to accurately define the safe operating window before more 
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CO2 lines are constructed or old natural gas lines are converted, as an overly conservative 

limit will impose unnecessary costs during capture and purification, whilst a liberal limit will 

cause pipeline integrity and storage issues. 

Table 4: DYNAMIS CO2 quality recommendations and Alstom CO2 quality tolerances 

(the justification behind each limitation is also provided) 

Component DYNAMIS CO2 quality recommendations (adapted 
from de Visser et al.[16]) 

Alstom CO2 quality tolerances (extracted from Dugstad et 
al.[25]) 

 Concentration Limit Reason for Limit Low Limit High Limit Reason for Limit 

CO2 >95.5 vol.% Balanced with other 
compounds in CO2 

>90% vol.% 
(storage) 

>95% vol.% 
(EOR) 

Low – Storage requirement 

High – EOR requirement  

N2/Ar/ H2 < 4 vol.% As proposed in ENCAP  <4 vol.% EOR requirement 

O2 Aquifer < 4 vol.%, 

EOR 100 – 1000 ppm 

Technical: range for EOR due 
to lack of practical 

experiments on effect of O2 
underground 

<10 ppm <1000 ppm Unclear 

CH4 Aquifer < 4 vol.%, 

EOR < 2 vol.%, 

As proposed in ENCAP <4% <4% EOR requirement 

H2O 500 ppm Technical: below solubility 
limit of H2O in CO2. No 

significant cross effect of H2O 
and H2S, cross effect of H2O 

and CH4 is significant but 
within limits for water 

solubility. 

<10 ppm <600 ppm Corrosion prevention 
requirement 

H2S 200 ppm Health and Safety <10 ppm 

 

<15000 ppm 

 

Low – Health and Safety 

High – EOR requirement 

CO 2000 ppm Health and Safety <100 ppm 

 

<40000 ppm 

 

Low – Health and Safety 

High – EOR requirement 

SOx 100 ppm Health and Safety <100 ppm 

 

<1500 ppm 

 

Low – Health and Safety 

High – EOR requirement 

NOx 100 ppm Health and Safety <100 ppm 

 

<1500 ppm 

 

Low – Health and Safety 

High - Unclear 

 

It is worth noting that the specifications outlined in Table 4 do not fully take into account 

cross-reactions between impurities (except for H2S and CH4 impact on water solubility 

through the DYNAMIS study) and no interactions between H2O, SOx
 and NOx were 

considered in the development of these guidelines.[26] It is also important to stress that the 

NOx and SOx limits recommended by DYNAMIS were justified based on health and safety in 

the event of a sudden release, not from the perspective of maintaining pipeline integrity. 

It is important to keep in mind when considering the purification of the CO2 stream, in the 

case of EOR, that there is an economic incentive to remove certain impurities down to very 

low levels to enable optimum oil recovery by preventing adverse reactions with 

hydrocarbons in the reservoir and maintaining the minimum miscibility pressure. However, 
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transporting CO2 for solely storage purposes does not share the same relationship, and 

removing impurities down to such low concentrations may impose a significant energy and 

cost penalty which could be avoided.[1]  

5 Water content specifications, water solubility and 

dehydration 

5.1 Pipeline water content specifications, water solubility and rationale for a water 

concentration limit  

Referring back to Table 2, it can be observed that the water content within each CO2 stream 

for the different sources varies from 20 ppm to ~630 ppm (with the exception of Sleipner 

which transports water-saturated CO2 using corrosion resistant alloy pipelines).  

When the acceptable water content is discussed, the proposed limit is usually related to the 

solubility of water in the system. Putting this into context, the solubility limit of water in pure 

CO2 over the range of conditions expected for CCS (5-85°C and 7.3-30.0 MPa), is around 

1700 ppm or higher before free water precipitation occurs.[16, 27] Figure 3, which is extracted 

from a publication by de Visser et al.[16] outlines in more detail how the solubility of water 

varies as a function of temperature and pressure over the range of -10 to 25°C and 1.0 to 

20.0 MPa. The figure shows that increasing temperature serves to increase the solubility 

limit of water in CO2. Furthermore, a noticeable increase in solubility is observed due to 

increasing pressure when CO2 makes the transition from gas to liquid phase. Before this 

transition, the minimum solubility is observed for each specific temperature profile. 

 

Figure 3: Water solubility in pure CO2 for varying temperatures as a function of 

pressure - Figure from de Visser et al.[16] as part of the DYNAMIS report 

If the water content within the CO2 stream locally exceeds the specified solubility limit, water 

will break free from the CO2 phase and a separate aqueous phase will exist. If such a phase 
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were to form on the pipeline wall, it will invariably become saturated with CO2, creating 

carbonic acid (H2CO3) which will pose a threat to pipeline integrity, even without the 

presence of additional flue gases such as SOx, O2, H2S and NOx.[28] Consequently, because 

of the inherent risk associated with corrosion, pipeline operators set their own limits for water 

content in CO2 streams, with some limits being as strict as 50 ppm. According to Dugstad et 

al.[3], 500 ppm tends to be the accepted limit in literature, although little reasoning exists 

behind this specific value.  

6 Influence of impurities on bulk CO2 stream 

properties and water solubility 

Unfortunately, the added complication brought about by impurities is that they influence the 

physical properties of the CO2 which can have a significant effect the extent/occurrence of 

both corrosion and hydrate formation.[29] This aspect is reviewed within this section, with 

focus directed towards the impact of impurities on water solubility within the CO2 stream. 

6.1 Effect of impurities on the critical properties and phase envelope of CO2 

Modelling of phase behaviours requires the use of Equation of State (EOS), but there no 

universal agreement regarding the EOS model that should be used for CO2 pipelines. It has 

been suggested that the models selected should be based on reliable experimental data.[30] 

Both Li and Yan[31] and Seevam et al.[30] indicated through the use of different EOS models 

that the presence of SO2 and H2S impurities increase the critical temperature of the CO2 

stream, whilst CH4, Ar, N2 and O2 all serve to lower the critical temperature of the mixture. In 

terms of the critical pressure, Seevam et al.[30] reported an increase in critical pressure with 

the introduction of 5% SO2, N2, O2, CO, CH4, H2S, H2, NO2 and Ar in CO2. Such observations 

agreed with the findings of Li and Yan [31] for SO2 and CH4, but in contrast they reported that 

N2 and H2S caused a reduction in critical pressure with increasing concentration from 0 to 

5%. The contrast in results highlights the importance of selecting an appropriate EOS model 

and suggests further research is required to determine the most appropriate models to use 

to predict phase behaviour.  

Although the location of the critical point is important, the entire phase envelope of CO2 can 

change when impurities are introduced into the system, and this also requires consideration. 

For efficient transport, it is important that CO2 remains in the dense phase. Consequently, 

the implication of impurities on the whole phase envelope (as well as the critical point) needs 

to be understood, as this envelope defines where CO2 exists as a supercritical fluid. On the 

basis of this information, Seevam et al.[30] implemented the Peng-Robinson equation to 

perform a study into the influence of impurities (5% of SO2, N2, O2, CO, CH4, H2S, H2, NO2 
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and Ar individually in combination with CO2) on the phase envelope. Their constructed 

phase diagrams for all these binary combinations generally showed that the impurities 

increase the width of the phase envelope, resulting in the formation of a two-phase gas-

liquid region. Impurities such as H2 and NO2 were shown to generate very large envelopes, 

whilst H2S and N2 produced much smaller changes. Ternary mixtures analysed for 90% CO2 

with 5% N2 and 5% NO2 produced a dramatic effect on increasing the size of the phase 

envelope whilst also increasing critical pressure and temperature significantly. However, it 

could be argued that some of the concentrations considered in these systems (e.g. 5% 

SO2/NO2) are unrealistic in terms of what is actually likely to be transported. Nonetheless, 

they highlight an important point that certain impurities may have notable effects on the 

optimum pipeline operating region. The general observations suggested that as the impurity 

contents increases, so does the size of the phase envelope, and the critical pressure. It is 

also important to note that the pipeline will contain mixtures of numerous impurities and the 

interactions between these species need to be taken into account, as discussed later in this 

review. 

6.2 Effect of impurities on water solubility 

An additional complexity associated with the presence of impurities is that they not only 

influence the physical properties and phase boundaries of CO2, but they can have an effect 

on the solubility of water in the process stream. At present, very little data exists relating to 

water solubility in impure CO2. Such data has been identified by the UK Carbon Capture and 

Storage Research Council (UKCCSRC) as being crucial for the development of safe CO2 

transportation pipelines in both the gaseous and dense phase, as this is believed to be 

related to the likelihood of corrosion and hydrate formation. 

In terms of understanding the influence of species such as N2 and H2, Foltran et al.[32] 

established the water solubility limit in CO2 containing 5 and 10% N2 at 40°C and from 80 to 

18.0 MPa. Their research indicated that the presence of N2 was able to significantly lower 

the solubility of water in CO2. In particular, at 40°C and 10.21 MPa, the addition of 10% N2 

reduced solubility of water from 4450 ppm to 3400 ppm (approximately a 30% reduction). 

Figure 4 (from the publication by Foltran et al.[32]) shows in more detail how N2 influences the 

solubility behaviour of water in CO2 at 40°C over the pressure range of 8.0 to 18.0 MPa. 
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Figure 4: Water solubility expressed as a mole fraction in pure CO2, CO2 + 5% N2 and 

CO2 + 10% N2 as a function of pressure at 40°C determined using FT-IR spectroscopy 

– Figure from Foltran et al.[32] 

7 Influence of impurities on corrosion of carbon 

steel in dense phase CO2 

When considering CO2 corrosion of carbon steel in supercritical environments, there are two 

main types of corroding system that can be considered. The stream can consist of an 

aqueous/water-rich phase saturated with supercritical CO2 (representative predominantly of 

oil and gas production), or the dominant phase can be dense phase CO2 (representative of 

CO2 transport in the context of CCS) containing considerably much smaller quantities of 

water (i.e. typically from 50 to a few thousand ppm). Only a review of corrosion in systems 

dominated by dense phase CO2 is provided within this work as this is typical of the 

conditions encountered during normal CO2 service in the context of CCS and EOR. Although 

some studies by Sim et al.[33] and Ruhl et al.[34-36] seek to understand corrosion behaviour in 

supercritical systems through aqueous and/or ambient pressure testing, they are not 

reviewed in detail here as focus is directed towards experiments performed at high 

pressures. 

7.1 CO2-H2O and CO2-H2O-O2 environments 

The impact of CO2 corrosion on carbon steel in aqueous systems has been covered 

extensively at pressures relevant to oil and gas transport (up to 2.0 MPa) and has been an 

active area of study for the past 50 years.[37-43] However, less research has been afforded to 

high pressure CO2 corrosion where CO2 is the dominant phase[44], especially in conditions 
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above the critical point of 31.1oC and 7.38 MPa.[45] That being said, the corrosion of carbon 

steel in systems where supercritical CO2 is the dominant fluid has received considerably 

more attention over the last few years due to the emerging potential of CCS. 

The mechanism of CO2 corrosion in CCS is similar to that encountered in oil and gas 

production and is capable of being divided into both anodic and cathodic processes which 

are outlined in the following sections. 

7.1.1 Cathodic reactions 

When CO2 dissolves in water, it is hydrated to produce carbonic acid (H2CO3).[46] Although 

CO2 is very soluble in water, only a small proportion of the dissolved CO2 in the aqueous 

phase is hydrated to form H2CO3:[47] 

 
 

(1) 

H2CO3 is diprotic and partially dissociates in two stages to form bicarbonate and carbonate 

ions[46, 48] (Reactions 2a and 2b). The dissociation of carbonic acid (Reaction 2a) in particular 

is very fast in comparison to CO2 dissolution, meaning that hydration generally becomes the 

rate-determining step, limiting the corrosion reaction rate:[47] 

 
 

(2a) 

 
 

(2b)  

In terms of reactions at the steel surface, the main cathodic reaction (under oil and gas 

transportation and normal CO2 service) is hydrogen evolution: 

 
 

 (3) 

This reaction depends strongly on the solution pH, however, it is often limited by the rate at 

which H+ ions can be transported to the steel surface by mass-transfer (i.e. diffusion limited), 

making the reaction flow-dependant[47]. In terms of dense phase CO2 transport, the 

acceleration of corrosion rate due to flow is less of a concern within the condensate on the 

pipe wall as it is typically stationary. 

In CO2 systems at low pH (i.e. less than pH of 4), which is typical for pure CO2-saturated 

water at the pressures associated with dense phase transport, the dominant process is the 

cathodic reduction of H+ because of its high concentration. At intermediate concentrations (4 

< pH < 6), the limiting diffusion rate of H+ is smaller because of its low concentration. Such a 

pH range can be achieved within the condensate if it becomes contaminated with Fe2+ ions 
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from corrosion or if amine carry-over occurs. Both processes result in increased alkalinity of 

the electrolyte.  

In addition to hydrogen evolution, another cathodic reaction pathway is also suggested to be 

important; the direct reduction of H2CO3:[48] 

 
 

(4)  

Again, in this reaction the distinction is only the pathway and hence, the kinetics of the 

reaction (which is limited by the slow CO2 hydration step). The reaction is a strong function 

of partial pressure, which means it can potentially play a substantial role in the acceleration 

of corrosion in dense phase CO2 systems.[47] However, Reaction (4) has recently become 

subject to debate regarding whether or not it actually occurs to any significant degree, or 

whether it is purely attributed to a buffering effect at the steel surface.[49, 50]  

Given that HCO3
- is also a weak acid, then reduction of H+ from HCO3

- is another reaction 

pathway (Reaction 5), although experience indicates that this reaction is much slower than 

the direct reduction of carbonic acid in the pH range 4 to 6, and consequently, it can be 

ignored under oil and gas and CO2 service. However, in neutral and alkaline systems, the 

concentration of HCO3
- can become higher than H2CO3, making the direct reaction of HCO3

- 

significant.  

 
 

(5)  

A final additional reaction is the direct reduction of water i.e. the reduction of H+ ions from the 

water molecules adsorbed on the steel surface: 

 
 

(6)  

Although this reaction is thermodynamically equivalent to hydrogen evolution, the difference 

in the reaction pathway means that this reaction is much slower and generally does not 

contribute significantly towards the total cathodic reaction under typical CO2 service 

conditions where the aqueous pH will be typically less than 4.[47]  This reaction tends to only 

play a significant role at very high pH, or very low partial pressures of CO2. 

7.1.2 Anodic reactions 

In terms of anodic reactions, the electrochemical dissolution of iron in acid solutions: 

 
 

(7) 
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has been studied extensively by researchers, with several multi-step mechanisms being 

used to explain experimental results. A detailed discussion of such steps is outside of the 

scope of this review. However, more detail on the proposed multi-step models can be found 

in the publication by Nešić et al.[51] who demonstrate the iron dissolution reaction is much 

more complicated than that shown in Reaction (7). The two electrons involved in the reaction 

are not released in one step, more a sequence of intermediate steps. 

Considering both the anodic and cathodic reactions, the overall corrosion reaction can be 

represented as: 

 
 

(8) 

providing the solution does not become saturated with respect to FeCO3.  

7.1.3 FeCO3 precipitation 

In aqueous CO2 environments when the concentration of Fe2+ and CO3
2- ions exceed the 

solubility product it becomes thermodynamically favourable for FeCO3 to form as a corrosion 

product on the steel surface. 

FeCO3 precipitation is a common occurrence in the oil and gas industry (particularly at high 

pH and high temperature) and is believed to occur via a one stage reaction with carbonates, 

or via a two stage reaction with bicarbonates[52, 53]: 

 
 

(9) 

 
 

(10) 

 
 

(11) 

The driving force for precipitation of FeCO3 is the supersaturation (S) which measures the 

extent to which the solubility of FeCO3 is exceeded within the solution. Typically, a high 

degree of supersaturation is required in the bulk solution to obtain appreciable levels of 

precipitation onto the steel surface. The supersaturation is defined as: 

 

 

 (12) 

where 

 
 

(13a) 
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 and  (in mol/dm3) are the concentrations of ferrous and carbonate ions, 

respectively. Ksp (in mol2/dm6) is the solubility product for FeCO3, which is a function of ionic 

strength and temperature.  and  are the concentrations of the species in 

equilibria. 

The value of Ksp can be calculated using a unified equation developed by Sun and Nesic[54]: 

 (13b

) 

where TK is the temperature in Kelvin and I is the ionic strength of the solution. 

 

FeCO3 films possess an interesting property in that they are capable of slowing down the 

corrosion kinetics at the steel surface by acting as a diffusion barrier to electrochemically 

active species, but also by a surface coverage effect where the FeCO3 crystals adhere to the 

substrate. In some instances, the FeCO3 layer is capable of reducing the corrosion rate of 

the underlying steel by over two orders of magnitude.  

 

Understanding the factors which influence the rate of formation of this corrosion product are 

essential as part of a corrosion management strategy within the oil and gas industry and 

could be an important consideration in CO2 pipeline transportation. Numerous studies have 

focused on determining factors which influence the protectiveness and kinetics of FeCO3 

formation under various oil and gas conditions as many operators are reliant on the 

protective properties of this film to minimise internal corrosion.[54-67] The question remains as 

to the ability for FeCO3 to form and offer protection under the conditions typical of CCS, as 

much less information is known regarding the precipitation kinetics, formation and protective 

nature of FeCO3 at higher pressure.  

 

That being said, a number of authors have reported FeCO3 precipitation onto carbon steel in 

supercritical CO2 experiments under CCS conditions.[4, 68-70] Images of these observed films 

are provided in Figure 5 and bear a strong resemblance to those which develop under 

aqueous oil and gas conditions. The question which remains is whether such films are also 

capable of stifling the corrosion rate at the steel surface. Recent work by Hua et al. [70] has 

highlighted that specific morphologies of FeCO3 formed under dense phase CO2 are indeed 

capable of preventing both general and localised corrosion. Consequently, understanding 

the conditions conducive to the formation of FeCO3 and how other impurities may influence 
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FeCO3 precipitation kinetics, morphology and protectiveness is important for accurately 

determining the threat of internal corrosion in CO2 pipelines. 

 

(a) (b) 

 

(c) (d) 

  

(e) (f) 

Figure 5: Examples of FeCO3 films precipitated onto carbon steel surfaces under pure 

dense-phase CO2 conditions with water; (a) from Choi et al.[4] – 8.0 MPa water-

saturated CO2 at 50°C after 24 h, (b) from Choi et al.[68] -  6.0 MPa water-saturated CO2 
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at 50°C after 24 h, (c) from Choi et al.[68] -  4.0 MPa water-saturated CO2 at 50°C after 24 

h, (d) from Sim et al.[69] – 8.0 MPa CO2 at 90°C with 50,000 ppm water after 7 days, (e) 

from Hua et al.[71] – 8.0 MPa water-saturated CO2 at 50°C after 48 h and (f) from Hua et 

al.[70] – 8.0 MPa water-saturated CO2 at 35°C after 7 days. 

Although all the aforementioned anodic, cathodic and precipitation reactions outlined are 

capable of occurring during dense phase CO2 transport when water condenses onto the 

steel surface and becomes saturated with CO2, the corrosion rates and corrosion product 

precipitation kinetics can be markedly different to those observed in systems where water is 

the dominant phase. In a system where the dominant fluid is CO2 and is at considerably 

higher pressures, the water content in the system is critical in influencing the extent of 

degradation observed. Understanding how the different process fluid and operating 

conditions change the degradation and precipitation kinetics is crucial towards developing a 

robust pipeline integrity management strategy. 

7.1.4 Influence of O2 on CO2 corrosion 

The introduction of O2 to CO2 corrosion systems has been evaluated in the context of oil and 

gas transportation and has been reported to have a two-fold effect on corrosion behaviour; 

firstly, by introducing an additional cathodic reaction (for acidic solutions)[41], which can 

potentially accelerate the level of corrosion: 

 
 

(14) 

and secondly, through the ability of O2 to inhibit the formation of protective FeCO3 by 

oxidising ferrous ions to ferric ions, resulting in the formation of non-protective iron oxide.[4] 

Observations on the effect of O2 at high pressure appear contradictory in the literature and 

are discussed in the following sections. 

7.2 Anticipated corrosion rates in CO2-H2O and CO2-H2O-O2 environments 

In relation to the literature focusing on carbon steel corrosion specifically in dense phase 

CO2-H2O-O2 systems, a full summary of recent studies is provided in Table 5 and is 

discussed within the following paragraphs. A number of studies have been performed 

considering the degradation of carbon steel in both water-saturated and under-saturated 

environments over the past few years. The overall consensus from the corrosion rate data in 

Table 5 for CO2-H2O and CO2-H2O-O2 systems is that uniform corrosion rates are generally 

very low (<0.08 mm/year) when water is below the solubility limit. However, when the CO2 
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phase becomes saturated with water or approaches the saturation limit, the level of attack 

becomes significantly greater. 

One concern in terms of pipeline integrity is the magnitude of localised corrosion rates 

reported by some researchers in the end column of Table 5. It is apparent that the extent of 

pitting/localised attack on the surface can be approximately one order of magnitude greater 

than the general corrosion rates, even when water content is well below the solubility limit. 

For example, Sim et al.[69] found that a molar concentration of ~900 ppm water in 

supercritical CO2 at 40°C and 8.0 MPa produced a general corrosion rate of ~0.08 mm/year, 

whereas the localised corrosion rate was recorded at a maximum of ~0.65 mm/year over 

168 hours of exposure. Similarly, Hua at al. [71] recorded general corrosion rates increasing 

from 0.003 to 0.1 mm/year as water content was increased from 700 ppm to water-saturated 

conditions at 35°C and 8.0 MPa, while localised corrosion rates ranged from 0.29 to 0.92 

mm/year based on 48 hour experiments.  

Given these high penetration rates it is important to stress that the stated pitting rates are 

only a reflection on the average mm/year over the test duration. Whether the pits identified 

are stable and continue to propagate at the same rate indefinitely is a fundamental question 

and requires further research. Nonetheless, the results highlight the potential severity and 

importance of understanding the extent of localised attack in such systems. It is also clear 

from a review of the work of Dugstad et al.[3, 25] Hua et al.[70-72] and Sim et al.[69] that localised 

corrosion of mild steel does appear to be prevalent in supercritical CO2 systems containing 

water. Hence, it is critical that the occurrence of localised corrosion in such environments is 

taken into account when defining the safe water content. Furthermore, it is important to have 

in place a procedure to allow systematic and accurate quantification of the extent of attack to 

ensure that the pitting rates determined are indicative of the test conditions. It is also 

essential to understand the initiation, propagation and stability of pits in such environment to 

ascertain whether they would present themselves as a long term threat in the field. It is clear 

that very little attention has been directed towards quantifying localised corrosion in 

supercritical CO2 systems where CO2 is the dominant phase, yet pitting/localised corrosion 

have the potential to be a key concern in such environments if pits remain stable and 

continue to propagate.  

Another interesting observation from Table 5 is that the effect of pressure appears not to 

have a particularly significant influence on corrosion rate in conditions typical of CCS. Choi 

and Nesic[68] found that the increase in CO2 pressure from 4.0 to 8.0 MPa produced only a 

marginal effect on general corrosion rate in water-saturated experiments, increasing the 

uniform thickness loss rate from approximately 0.2 to 0.4 mm/year. 
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With regards to the influence of temperature, research has indicated that for the same total 

system pressure, a change in temperature can have a significant influence on the critical 

water content required to initiate corrosion in a particular system. Hua et al.[71] showed that 

X65 samples exposed to conditions at 50°C and 80 bar produced no corrosion when water 

content was below 1600 ppm, whilst small levels of corrosion were recorded at as low as 

300 ppm water at 35°C under the same pressure.  

In terms of the influence of O2 on the extent of corrosion observed in dense phase CO2, 

there appears to be some contrasting observations in the literature. Some of the first 

experimental work to determine the corrosion rates of carbon steel in water-saturated CO2-

H2O-O2 environments was performed by Choi and co-workers[4]. Tests conducted over 24 

hours at a pressure of 8.0 MPa and temperature of 50°C indicated that the presence of up to 

0.33 MPa O2 resulted in an increase in general corrosion rate by delaying the onset of 

FeCO3 film formation on the steel surface and providing an additional cathodic reaction. 

Corrosion rates recorded by Choi and colleagues[4] for X65 steel ranged from 0.38 to 1.05 

mm/year as a result of increasing O2 concentration. In contrast, Hua et al.[73] evaluated the 

influence of lower O2 contents (0, 20, 500 and 1000 ppm) on both the general and localised 

corrosion of X65 steel at 8.0 MPa CO2 and 35°C. The introduction of O2 under these 

conditions was shown to reduce the general corrosion rate of X65 due to the establishment 

of an iron oxide film, but promoted severe localised/pitting corrosion. The difference in 

behaviour could be attributed to the lower operating temperature as other authors have 

reported O2 to both reduce general corrosion but accelerate localised attack at lower 

temperatures.[74] There appears to be a balance between the passivating effect of iron 

oxides and the enhancement of the cathodic reaction due to O2 presence which could be 

largely dependent upon the operating temperature and the concentration of O2 in the 

system. It is clear that further research is required to elucidate the effect of O2 presence at 

the concentrations anticipated for CO2 transport.
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Table 5: Summary of literature relating to corrosion rates in supercritical CO2 with H2O and O2 as impurities 
 CO2 pressure (MPa) O2 pressure (MPa 

unless stated) 
Temp (°C) Test period Water content  

(ppm in mole) 
Corrosion Rate (mm/year) 

General (test rotation 
speed in brackets) 

Localised 

Choi, Nesic and 
Young[4] 

8.0 

0 

50 24 h 
Water-saturated CO2 (10 g water added to 

autoclave)  

~0.4 n/a 
0.16 ~0.6 n/a 

0.33 ~1.05 n/a 
0.51 ~0.9 n/a 

Choi and 
Nesic[68] 

4.0 

0 50 24 h 
Water-saturated CO2 (400 ml water added to 

autoclave) 

~0.2 n/a 

6.0 ~0.2 n/a 
8.0 ~0.4 n/a 

Choi and 
Nesic[27] 

8.0 0.33 50 24 h 
650 ppm <0.01 n/a 
2000 ppm <0.01 n/a 
3000 ppm <0.01 n/a 

Dugstad et al.[75]  10.0 
0 

20 30 days 500 ppmw (~1200 ppm) 
No attack (3 rpm) No attack 

200 ppm No attack (3 rpm) No attack 

Sim et al.[69] 8.0 
 

0 
 

40 168 h 

~900 ppm ~0.08 
Av. ~0.22 

Max ~ 0.65 

~1800 ppm ~0.07 
Av. ~ 0.30 
Max ~ 0.64 

~2600 ppm ~0.06 
Av. ~ 0.22 
Max ~ 0.55 

~3500 ppm ~0.08 
Av. ~ 0.22 
Max ~ 0.65 

Water-saturated CO2 (1.5g water added to 
autoclave) 

~0.08 
Av. ~ 0.19  
Max ~ 0.50 

Brown et al.[76] 10.0 500 ppm 

4 

168 h 500 ppm 

0.008 (3 rpm) n/a 

4 <0.005 (3 rpm) n/a 
50 0.006 (3 rpm) n/a 

50 <0.005 (3 rpm) n/a 

Hua et al.[71]  8.0 0 

35 

48 h 

300 ppm 0.003 0 
700 ppm 0.005 ~0.29 

1770 ppm 0.027 ~0.62 
2800 ppm 0.068 ~0.85 

Water-saturated CO2 (3 g water added to 
autoclave) 

0.10 ~0.92 

50 

700 ppm No attack No attack 

1600 ppm No attack No attack 
2650 ppm 0.014 0.20 

Water-saturated CO2 (3 g water added to 
autoclave) 

0.024 1.99 

Hua et al.[70] 8.0 0 35 

14 h 
Water-saturated CO2 (3 g water added to 

autoclave) 

0.10 0.92 

48 h 0.10 0.92 
96 h 0.03 0.96 
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Hua et al.[73] 8.0 

0 ppm 

35 48 h 
Water-saturated CO2 (10 g water added to 

autoclave)  

0.10 0.92 

20 ppm 0.09 1.10 
500 ppm  0.07 1.24 

1000 ppm 0.03 3.13 

1000 ppm 35 48 h 

300 ppm 0 0 
650 ppm 0 0 

1200 ppm 0.002 0 
1770 ppm 0.005 0.39 

2800 ppm 0.012 0.77 
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7.3 CO2-H2O-SO2-O2 environments 

Any additional contaminants entering the CO2 stream (such as SO2 and NOx in particular) 

will segregate into the aqueous phase, potentially lowering the solution pH further and 

increasing the corrosivity of the environment.[77]  

When SO2 and O2 are present together, the formation of sulphurous (H2SO3) and/or 

sulphuric (H2SO4) acid is permitted, which can play a key role in, not only the corrosion 

mechanisms, but also in the nature and morphology of any corrosion products formed on the 

steel surface which may indirectly inhibit or accelerate the corrosion kinetics.  

7.3.1 Additional corrosion and precipitation reactions in CO2-H2O-SO2-O2 

environments 

Currently, the minimum water content required in dense phase CO2 for acid formation in the 

presence of SO2 is not known[26], but the detection of FeSO3 and FeSO4 on the steel surface 

in numerous experiments indicate that reactions occur at water contents considerably lower 

than the water solubility in pure CO2-H2O systems[3, 4, 26, 76, 78, 79]. It is still not clear whether 

SO2 reacts with water in the bulk solution to form an acid, or if a thin condensed layer of 

water is initially formed on the steel surface which then reacts with SO2. However, the 

postulated reaction mechanisms associated with FeSO3 formation have been suggested 

using the following steps:[80] 

 
i. Firstly, SO2 is believed to dissolve into the condensed water film on the surface and 

subsequently becomes ionised: 

 

 
 

(15a) 

 
 

(15b) 

ii. The cathodic reaction then occurs via the direct reduction of hydrogen ions: 

  

 
 

(16) 

iii. The formation of FeSO3 then occurs via a precipitation process: 

 

 
 

(17) 
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FeSO3·3H2O has been observed on carbon steel surfaces by both Choi et al. [4], Xiang et 

al.[80] and Hua et al.[78, 81] in SO2-containing dense phase CO2 experiments. Additionally, both 

Choi et al.[4] and Xiang et al.[80] detected the presence of FeSO4 when O2 was introduced into 

the system. It was suggested by Choi and co-workers[4] that the addition of O2 not only 

results in an additional cathodic reaction (Equation 18a), but it also enables the oxidation of 

sulphite ions to sulphate ions (Equation 18b): 

 
 

(18a) 

 
 

(18b) 

Enabling FeSO4 to form via the following reaction: 

 
 

(19) 

FeSO4 was also believed by Choi et al.[4] to undergo further oxidation to become FeOOH in 

the presence of O2 in an acid regeneration process: 

 
 

(20) 

Examples of the typical corrosion product films encountered by numerous authors in CO2-

H2O-SO2-O2 environments are provided in Figure 6. In general, three typical corrosion 

morphologies are reported in literature; a thin sulphur-rich cracked film[27, 78, 82, 83] (Figures 

6(a), (b) and (c)), columnar/spherical crystals of FeSO3/FeSO4
[4, 78, 84]  (Figures 6(d), (e) and 

(f)), and globular crystals of FeCO3
[78, 81] (Figures 6(g) and (h)).  

The presence of the thin sulphur-rich film (which has presented difficulty in terms of 

characterisation) is believed to offer little protection to the steel substrate by some authors [85] 

as the cracks in the film are considered to provide channels required for the transport of 

reactants and products to and from the steel surface, respectively. However, no evidence 

exists to support this statement and it is not clear as to whether these cracks appear due to 

dehydration of the film upon removal from the autoclave after testing is complete. 

In terms of the columnar and spherical crystals of FeSO3 and FeSO4, little evidence has 

been provided to support the protectiveness of such a corrosion product. However, Xiang et 

al.[84] have utilised focused ion beam etching to look into the structure of a spherical FeSO4 

corrosion product (shown in Figure 6(d)). Observations from the etching process revealed 

that small micro-pores existed within the crystalline film, but these were not connected and 
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could not provide necessary channels to facilitate the corrosion process. It was therefore 

postulated that such a film could offer corrosion protection. To support this statement, further 

work by Xiang et al.[85] involved understanding the corrosion rate of X70 steel as a function of 

immersion time in water-saturated CO2 at 10.0 MPa and 50°C in the presence of 1000 ppm 

O2 and 0.2 MPa SO2. Exposure times of 24, 72, 120 and 192 hours were considered and 

results indicated that the corrosion rate reduced as a function of time from 2.0 to 0.7 

mm/year in conjunction with the formation and growth of a hydrated FeSO3/FeSO4 crystalline 

surface scale. The authors believed that the results suggested the corrosion deposits were 

capable of reducing the dissolution of the underlying steel. However, the reduction in 

corrosion rate could potentially be attributed to consumption of SO2 throughout the 

experiment as it reacted with the steel surface, and this fact should not be discounted. 

With regards to the FeCO3 films observed in Figures 6(g)and (h), this particular morphology 

of corrosion product has only been observed at low concentrations of SO2 (2 to 100 ppm 

range) as higher concentrations of SO2 have been shown to completely dominate the 

corrosion process and prevent any formation of FeCO3.[34, 35] At low concentration, the 

presence of SO2 is capable of changing the structure of the FeCO3 film from that typically 

observed in Figure 5. Again, further work is required to define whether such a film is capable 

of offering protection to the steel substrate. 

   

(a) (b) 
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(c) (d) 

   

(e) (f) 

 

(g) (h) 

Figure 6: Examples of corrosion products formed on carbon steel surfaces under 

dense-phase CO2 conditions containing water, SO2 and O2; (a) thin cracked sulphur-

rich film from Hua et al.[78] – water-saturated CO2 at 8.0 MPa and 35°C containing 50 

ppm SO2 and 20 ppm O2  after 48 h; (b) thin cracked sulphur-rich film from Choi et 

al.[27] – 8.0 MPa CO2, 0.33 MPa O2 and 0.08 MPa SO2 and 50°C with 650 ppm water after 
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24 h; (c) thin cracked sulphur-rich film from Farelas et al.[83] – 8.0 MPa CO2, 0.08 MPa 

SO2 and 50°C with 650 ppm water after 24 h; (d) focused ion beam etching through 

FeSO4 spherical agglomeration of crystals from Xiang et al.[84]] – water-saturated CO2 

at 10.0 MPa and 93°C containing 0.2 MPa SO2 and 0.002 MPa O2 (e) FeSO3 crystals 

from Choi et al.[4] - water-saturated CO2 at 8.0 MPa and 50°C containing 0.08 MPa SO2 

after 24 h; (f) FeSO3 crystals from Hua et al.[78] - water-saturated CO2 at 8.0 MPa and 

35°C containing 100 ppm SO2 and 20 ppm O2  after 48 h; (g) Globular FeCO3 crystals 

from Hua et al.[78] - water-saturated CO2 at 8.0 MPa and 35°C containing 100 ppm SO2 

and 20 ppm O2  after 48 h; (h) Globular FeCO3 crystals from Hua et al.[81] - water-

saturated CO2 at 8.0 MPa and 35°C containing 2 ppm SO2 and 20 ppm O2  after 48 h 

7.3.2 Anticipated corrosion rates in CO2-H2O-SO2-O2 environments  

In reference to the literature relating to the corrosion of carbon steel in supercritical CO2-

H2O-SO2-O2 systems, Table 6 provides a summary of corrosion experiments performed by 

numerous authors. The results within this table are discussed within the following 

paragraphs.  

Referring to Table 6, a number of authors are in agreement that the presence of SO2 and 

SO2/O2 are detrimental to pipeline integrity if a particular water content is exceeded. 

Investigators have shown that increasing SO2 concentration in dense phase CO2 results in 

an increase in general corrosion rate[4, 83, 86] and can also promote localised corrosion under 

FeSO3/FeSO4 deposits.[76] Some authors have also demonstrated a noticeable synergy 

existing between SO2 and O2 which results in the synergistic corrosion rate being greater 

than the sum of the individual corrosion rates from the presence of SO2 and O2 individually.[4] 

This observation is attributed to the ability of O2 to react with SO2 and water to produce 

sulphuric acid (H2SO4), as will be discussed later. 

Table 6 also shows that SO2 or SO2 and O2 combined are capable of increasing the 

corrosion rate in under-saturated conditions. In particular, Choi and Nesic[27] evaluated the 

corrosion behaviour of X65 carbon steel in conditions with a water content of 650 ppm whilst 

SO2 and O2 content were varied in a 8.0 MPa/50°C system containing supercritical CO2. 

After 24 hours of exposure, the corrosion rate of X65 in the absence of O2 and SO2 at 650 

ppm water was less than 0.01 mm/year. Increasing SO2 content to 0.08 MPa without the 

presence of O2 increased corrosion rate to 3.48 mm/year and further addition of 0.33 MPa 

O2 along with 0.08 MPa SO2 increased general corrosion rate to 3.70 mm/year, 

demonstrating that corrosion can be excessive in the presence of SO2 and SO2/O2 

combinations, even at low water contents recommended by pipeline operators. However, 

SO2 and O2 concentrations of this magnitude are unlikely to be encountered during typical 



30 
 

CO2 service. The SO2 impurity concentrations evaluated by Choi and Nesic [27] and Farelas et 

al.[86] could be regarded as being very high when compared with the proposed impurity limits 

outlined by the DYNAMIS project and Alstom in Table 4, which suggest a lower limit of 100 

ppm. 

Under conditions which could be argued to be more reflective of the field, Dugstad et al.[75] 

performed a study to understand the effect of SO2 and O2 on the corrosion of carbon steel. 

In this work, SO2 and O2 contents of 200 and 100 ppm, respectively were chosen. For initial 

tests involving pure CO2 with 1220 ppm water at 10.0 MPa and 20°C, no corrosion was 

observed after 30 days of exposure. Likewise, when 200 ppm O2 was introduced to the 

same system at the same water content, no corrosion was recorded over the same test 

duration. However, introducing 200 ppm SO2 and 100 ppm O2 to the autoclaves at a lower 

water content of 200 ppm resulted in corrosion rates of approximately 0.01 mm/year, 

indicating SO2 can enhance the corrosion process and lower the critical water content 

required for corrosion to occur under realistic SO2/O2 combinations expected under normal 

CO2 service conditions for anthropogenic transport.  

Two studies in literature have also considered the influence of SO2 on the critical water 

content required to prevent substantial corrosion during CO2 service. Xiang et al.[79] 

performed a series of experiments on X70 steel at 10.0 MPa and 50°C over 120 hours. A 

partial pressure of 0.2 MPa SO2 and an O2 content of 1000 ppm were added to supercritical 

CO2 and relative humidity values of 9, 50, 60, 70, 88 and 100% (414 to 4600 ppm) were 

considered. The results indicated that the onset of appreciable levels of corrosion (>0.1 

mm/year) occurred when a humidity content of 60% (2760 ppm) was exceeded. In a another 

study, Hua et al.[78] evaluated the minimum water content required to avoid both general and 

localised corrosion of X65 carbon steel in the presence of SO2 and O2. Corrosion 

experiments were performed in autoclaves containing supercritical CO2 at 8.0 MPa and 35°C 

in the presence of 0, 50 and 100 ppm SO2 and water contents from 0 ppm to water-

saturated CO2. Figure 7 shows a selection of the results obtained and indicates the 

importance of considering localised corrosion rates of carbon steel in supercritical CO2 

systems by providing a comparison between the general and localised attack on X65 steel 

under various stream compositions. Again, it is perhaps worth noting that the localised 

corrosion rates are based on pit depths over 48 hours of exposure and there is no certainty 

that the pitting rates can be extrapolated to provide realistic rates over the lifetime of the 

pipeline. 
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Table 6: Summary of literature relating to corrosion rates in supercritical CO2 with H2O, SO2 and O2 as impurities 

 CO2 pressure 
(MPa) 

O2 content (MPa 
unless stated) 

SO2 content (MPa 
unless stated) 

Temp 
(°C) 

Test 
period 

Water content  
(ppm in mole) 

Corrosion Rate (mm/year) 

General (test rotation 
speed in brackets) 

Localised 

Choi, Nesic 
and Young[4] 

8.0 

0.33 0.08 

50 24 h 

0 ppm No attack No attack 

0 0 

Water-saturated CO2 (10 g water added to autoclave) 

~0.4 n/a 

0.33 0 ~1.0 n/a 
0 0.08 (1%) ~5.6 n/a 

0.33 0.08 (1%) ~7.0 n/a 

Choi and 
Nesic[27] 

8.0 

0 0 

50 24 h 650 ppm 

< 0.01 

n/a 

0 0.08 (1%) 3.48 n/a 

0.33 0.08 (1%) 3.70 n/a 

Dugstad et 
al.[75] 

10.0 

0 0 

20 

30 days 500 ppmw (~1220 ppm) No attack No attack 
200 ppm 0 30 days 500 ppmw (~1220 ppm) No attack No attack 

100 ppm 1000 ppm 7 days 200 ppmw (~488 ppm) 0.01 n/a 
100 ppm 200 ppm 7 days 200 ppmw (~488 ppm) < 0.01 n/a 

Dugstad et 
al.[3] 

10.0 

0 0 

25 14 days 

488 ppm No attack (3 rpm) No attack 

0 0 1220 ppm No attack (3 rpm) No attack 
0 100 ppm 488 ppm < 0.005 (3 rpm) n/a 

0 344 ppm 488 ppm < 0.005 (3 rpm) n/a 

0 344 ppm 1220 ppm 0.02 (3 rpm) n/a 

Farelas et 
al.[86]  

8.0 0 

0 

50 

24 h 650 ppm 

0 n/a 

0.008 (0.1%) 0.03 n/a 
0.004 (0.05%) 0.05 n/a 

0.008 (0.1%) 
25 

(Liquid 
CO2) 

0.1 6.8 

0.004 (0.05%) ~0 2.4 
0.008 (0.1%) ~0.019 (1000 rpm) n/a 

0.008 (0.1%) ~0.013 (1000 rpm) n/a 

Xiang et al.[80] 10.0 1000 ppm 

0.02 (0.2%) 

50 288 h 
Water-saturated CO2 (6 g water added to autoclave to ensure 

saturation) 

0.2 (120 rpm) n/a 
0.07 (0.7%) 0.7 (120 rpm) n/a 

0.14 (1.4%) 0.85 (120 rpm) n/a 
0.2 (2%) 0.9 (120 rpm) n/a 

Xiang et al.[85] 10.0 1000 ppm 0.2 (2%) 50 

24 h 

Water-saturated CO2 (3 g water added to autoclave to ensure 
saturation) 

2.0 (120 rpm) n/a 

72 h 1.8 (120 rpm) n/a 
120 h 1.4 (120 rpm) n/a 

192 h 0.7 (120 rpm) n/a 

Xiang et al.[79]  10.0 1000 ppm 0.2 (2%) 50 120 h 

414 ppm ~0 (120 rpm) n/a 
2300 ppm ~0.04 (120 rpm) n/a 

2760 ppm ~0.08 (120 rpm) n/a 
3220 ppm ~0.35 (120 rpm) n/a 

4048 ppm ~0.9 (120 rpm) n/a 

Water saturated CO2 (~4600 ppm) ~1.5 (120 rpm) n/a 

Brown et 
al.[76] 

10.0 

0 

200 ppm 4 7 days 500 ppm 

0.022 (3 rpm) n/a 

0 0.022 (3 rpm) n/a 

500 ppm 0.006 (3 rpm) n/a 
500 ppm 0.009 (3 rpm) n/a 
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500 ppm 0.013 (3 rpm) n/a 

0 100 ppm 
50 

No attack (3 rpm) n/a 
0 200 ppm <0.005 (3 rpm) n/a 

0 

100 ppm 

4 

50 ppm 

No attack (3 rpm) n/a 

0 No attack (3 rpm) n/a 
200 ppm No attack (3 rpm) n/a 

10000 ppm No attack (3 rpm) n/a 
0 

50 

<0.005 n/a 

200 ppm No attack (3 rpm) n/a 

500 ppm No attack (3 rpm) n/a 
 No attack (3 rpm) n/a 

Hua et al.[81]  8.0 

0 0 

35 48 h Water-saturated CO2 (3 g water added to autoclave) 

0.10 0.92 

20 ppm 2 ppm 0.12 1.26 
20 ppm 50 ppm 0.37 1.66 

20 ppm 100 ppm 0.72 1.72 

Hua et al.[78] 8.0 

0 0 

35 48 h 

310 ppm 0.003 n/a 

1185 ppm 0.005 0.29 

1770 ppm 0.009 0.36 
3400 ppm 0.027 0.62 

Water-saturated CO2 (3 g water added to autoclave) 0.100 0.92 

20 ppm 50 ppm 

310 ppm 0.003 n/a 
1185 ppm 0.006 0.23 

1770 ppm 0.009 0.26 
3400 ppm 0.028 1.09 

Water-saturated CO2 (3 g water added to autoclave) 0.368 1.66 

20 ppm 100 ppm 

310 ppm 0.003 n/a 
1185 ppm 0.004 0.18 

1770 ppm 0.039 0.44 

3400 ppm 0.067 1.55 
Water-saturated CO2 (3 g water added to autoclave) 0.716 1.72 
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(a)                                                          (b) 

Figure 7: Surface plots for X65 carbon steel to indicate the variation of (a) general and 

(b) pitting/localised corrosion rates as a function of SO2 and water content in static 

dense phase CO2 at 35°C and 8.0 MPa over 48 h of exposure – from Hua et al.[78] 

From the information produced by Hua et al.[78] in Figure 7 it was possible to establish the 

critical water content to maintain general and localised corrosion rates below a threshold of 

0.1 mm/year, as shown in Figure 8. The results obtained indicated that the presence of SO2 

significantly reduces the critical water content required to maintain a general corrosion rate 

below 0.1 mm/year, from ~3400 ppm to ~1850 ppm. However, the water content required to 

avoid excessive localised corrosion was far less than that to prevent significant general 

corrosion and reduced from approximately 500 ppm to 400 ppm as SO2 content was 

increased from 0 to 100 ppm. These results are in agreement with a systematic study 

performed by Brown et al.[76]. In their extensive parametric study, water content was 

maintained at 500 ppm in a 10.0 MPa system. Only temperatures of 4 and 50oC were 

considered whilst O2 and SO2 content were varied from 0 to 10000 ppm and from 100 to 200 

ppm, respectively (see Table 6 for further details). At 500 ppm water, all experiments 

produced general corrosion rates below 0.03 mm/year regardless of operating temperature. 

However, most of the specimens experienced localised attack or produced small visibly 

stained regions on the surface. The local corrosion rates under the clusters of FeSO3/FeSO4 

corrosion product were much higher than those reported by mass loss, but were not 

determined.  

In additional tests, Brown et al.[76] reduced the water content to 50 ppm. At such low water 

content, all general corrosion rates were below 0.005 mm/year for SO2 contents up to 100 

ppm and O2 concentrations up to 10000 ppm (at 10.0 MPa and 4/50°C). These results 

suggest that a water concentration limit of 500 ppm may not be substantial enough to 

completely prevent corrosion in systems where SO2 content can be as high as 200 ppm.  
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The research by Hua et al.[78] and Brown et al.[76] highlight that reducing water content is a 

more favourable option compared to reducing SO2 content to minimise internal pipeline 

corrosion during transportation, as significant level of pitting corrosion were still observed in 

the absence of SO2 when water content was high enough. 

 

 

Figure 8: Critical water content at which 0.1 mm/year corrosion rate is reached from 

the perspective of general and localised corrosion for X65 steel. Conditions are 35°C 

and 8.0 MPa in supercritical CO2 with 48 h exposure – from Hua et al.[78] 

7.4 CO2-H2O-O2-NO/NO2 environments 

The lack of experimental data in impure dense phase CO2 is particularly noticeable for 

systems containing NOx as an impurity. It is known that NO2 is highly soluble in water and 

capable of reacting to produce nitric acid and NO under atmospheric conditions[26] and it has 

been suggested that the following reaction could also occur in dense phase CO2
[26]: 

 
 

(21) 

Which will serve to reduce the pH of the aqueous phase and accelerate the rate of the 

cathodic hydrogen evolution reaction.  

Some of the most recent work performed to evaluate the influence of NO and NO2 has been 

performed by Brown et al.[76] (as part of the second phase of the CO2PIPETRANS Joint 

Industry Project) as well as by Dugstad et al.[3]. The results from these two studies are 

provided in Table 7 and discussed in the following sections. 
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Brown et al.[76] presented results from 16 different carbon steel corrosion experiments 

involving various concentrations of O2, NO and NO2 at a pressure of 10.0 MPa and 

temperatures of 4 and 50°C (see Table 7). Out of a total matrix of 31 experiments performed 

(which also included assessing the effect of SO2 and H2S without NOx present) Brown et 

al.[76] reported that corrosion rates were the highest in the presence of NO and NO2. Specific 

tests in the presence of 200 ppm NO2 and 500 ppm O2 resulted in the general corrosion rate 

reaching 0.275 mm/year with only a water content of 500 ppm. A distinct trend was noticed 

in that corrosion rates rapidly reduced as a function of test duration from 1 to 7 days in such 

experiments. It is postulated that the reduction in corrosion rate is attributed to the rapid 

consumption of impurities within the system, as opposed to the formation a protective 

corrosion product. This was based on evidence that the presence of NO2 results in the 

formation of a brown/orange coloured dusty, porous film which was very easily removed 

from the steel surface.[3, 76] The appearance and morphology of typical corrosion products 

produced on the steel surface during NO2 experiments is provided in Figure 9 which is from 

the work of Dugstad et al.[3]. 
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Table 7: Summary of literature relating to corrosion rates in supercritical CO2 with H2O, NO2, NO and O2 as impurities 
 CO2 pressure 

(MPa) 
O2 content 

(ppm unless 
stated) 

NO2 content 
(ppm unless 

stated) 

NO content 
(ppm unless 

stated) 

Temp 
(°C) 

Test period Water content  
(ppm in mole) 

Corrosion Rate (mm/year) 

General (test rotation 
speed in brackets) 

Localised 

Brown et 
al.[76] 10.0 

0 200 0 

4 

7 days 

500 

0.017 (3 rpm) n/a 
500 200 0 3 days 0.2 (3 rpm) n/a 

500 200 0 3 days 0.21 (3 rpm) n/a 
0 0 200 7 days <0.05 (3 rpm) n/a 

500 0 200 7 days 0.082 (3 rpm) n/a 

0 50 0 

50 

1 day 0.127 (3 rpm) n/a 
500 50 0 1 day 0.116 (3 rpm) n/a 

0 100 0 7 days 0.02 (3 rpm) n/a 
500 100 0 1 day 0.182 (3 rpm) n/a 

0 200 0 1 day 0.205 (3 rpm) n/a 

0 200 0 3 days 0.088 (3 rpm) n/a 
0 200 0 7 days 0.025 (3 rpm) n/a 

500 200 0 1 day 0.275 (3 rpm) n/a 
500 200 0 7 days 0.09 (3 rpm) n/a 

0 0 200 7 days 0.013 (3 rpm) n/a 
500 0 200 7 days 0.03 (3 rpm) n/a 

Brown et 
al.[76] 

10.0 

0 100 0 

4 
7 days 50 

0.011 (3 rpm) n/a 

200 100 0 0.002 (3 rpm) n/a 
500 100 0 0.005 (3 rpm) n/a 

10000 100 0 No attack (3 rpm) No attack 
500 100 0 

50 
0.005 (3 rpm) n/a 

10000 100 0 No attack (3 rpm) No attack 

Dugstad et 
al.[3] 

10.0 

0 478 0 

25 

10 days 1220 1.6 (3 rpm) n/a 
0 191 0 10 days 1220 0.67 (3 rpm) n/a 

0 191 0 20 days 488 0.06 (3 rpm) n/a 
0 96 0 3 days 488 0.17 (3 rpm) n/a 
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In recent research by Dugstad et al.[3], four key experiments were performed involving 

various concentrations of NO2 and water. Corrosion rates from weight loss measurements 

ranged between 0.06 and 1.6 mm/year with the highest rate recorded at a NO2 content of 

478 ppm over 10 days with a water content of 1220 ppm (the highest NO2 content tested - 

image shown in Figure 9). After each experiment, the specimens were shown to be evenly 

corroded and contained a black/orange dusty film. The dust was spread within the autoclave 

and EDX analysis of the film revealed no nitrogen compounds present on the surface. It was 

suggested that the nitric acid oxidised Fe2+ ions within the solution to produce the rust-like 

corrosion product. Similar observations were made by Paschke et al.[87] who reported a 

yellow/brown surface colour of the specimen and supported the idea of Fe2+ oxidation. 

Dugstad et al.[3] also observed significantly lower corrosion rates over longer duration 

experiments (20 days vs 3 days) in agreement with Brown et al.[76]. It was suggested that the 

corrosion rates recorded would have been significantly higher if the water and NO2 were 

replenished in the system at the same rate as they were consumed. 

    

(a) (b) 

Figure 9: (a) Photograph and (b) SEM image of corrosion product found on the 

surface of carbon steel exposed to 478 ppm NO2 and 1220 ppm water in dense phase 

CO2 at 10.0 MPa and 25°C for 10 days. The recorded corrosion rate was 1.6 mm/year – 

Figure from Dugstad et al.[3] 

Research by Ruhl et al.[88] showed that the mobility and corrosivity of acidic gases in 

supercritical CO2 are very different for HCl, HNO3 and H2SO4. Nitric acid was found to be 

very mobile and aggressive to low alloy steels, but not to the austenitic autoclave material.  

Furthermore, Cole et al.[77] implemented the use of equation of state based software to 

determine the pH of the aqueous phase formed in the presence of various concentrations of 

HCl, HNO3, SO3, NO2 and SO2. Their simulations suggested that HCl, HNO3 and SO3 would 
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have a dramatic effect on the pH of the aqueous phase, even at very low concentrations, 

whilst NO2 and SO2 had only a marginal effect. 

Based on the review within this section, it is clear that the least research attention has been 

directed towards understanding the influence of NOx out of all the main impurities on the 

corrosion process, particularly in terms of its role on corrosion product formation and its 

potential synergy towards the corrosion kinetics with other species in the system. It does 

appear that NO and NO2 do have the potential to be the most aggressive species in terms of 

how they influence the corrosion kinetics, and therefore it is paramount that the effects of 

these two compounds are clearly distinguished and that the reaction mechanisms at the 

steel surface are identified. 

7.5 CO2-H2O-H2S environments 

The corrosion of carbon steel in mixed CO2/H2S aqueous environments is an important issue 

in the oil and gas industry and has been the subject of debate for a number of years. 

Although this form of corrosion has received significant attention in terms of quantifying 

corrosion rates for various systems, little progress has been made in understanding the 

mechanisms of corrosion involved during oil and gas transport.  

The general consensus from research into the effects of H2S presence in CO2 systems is 

that low concentrations (approx. <500 ppm) of H2S can dramatically reduce general 

corrosion rate.[89, 90] However, increasing H2S content beyond this limit can result in an 

increase in uniform corrosion rate.[91, 92] The change in corrosion rate is as a result of H2S 

influencing both the anodic and cathodic reactions. It also appears that the role of H2S on 

localised and general corrosion behaviour of carbon steels is dependent, not only upon its 

concentration in the aqueous phase, but on various other environmental and physical 

parameters which can influence the corrosion mechanisms dramatically.[91, 92]  

In terms of research into the effects of very low (<100 ppm) concentrations of H2S, results by 

Brown et al.[89] strongly suggest that at pH<5 in aqueous environments (typical of oil and gas 

production), when there is no formation of carbonate or sulphide films, concentrations as low 

at 10 ppm H2S in the gas phase will lead to rapid and significant reduction in corrosion rate. 

In instances where protective films did form, no effect was observed on the level of film 

protection for H2S contents between 25 and 100 ppm. These observations were also 

supported by Videm et al.[90] and Ma et al.[92] who recorded very rapid reductions in anodic 

dissolution at low H2S concentrations.  

At low concentrations of H2S (<500 ppm), the presence of the dissolved gas was shown by 

Zheng et al.[91] to hinder the rate of the H2O and H2CO3 reduction reaction (in aqueous 
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environments). However, increasing H2S content beyond this value resulted in the direct 

reduction of H2S accelerating the reaction kinetics. 

The retardation effect of H2S on general corrosion rate has been suggested to be attributed 

to two specific phenomenon. Various authors have proposed that the reduction in general 

corrosion rate is attributed to the very rapid formation of a thin mackinawite film, formed by 

the direct reduction of H2S with Fe (referred to as a solid state reaction):[93, 94] 

 

 
(22) 

However, other authors[91, 95, 96] have suggested that a very thin adsorbed iron sulphide layer 

which displaces H2O and OH- from the steel surface and influences the double layer 

composition may also be responsible for the low corrosion rates prior to the formation of  a 

FeS film. 

Caution has to be exercised when evaluating the role of H2S on pipeline integrity as although 

the gas can reduce general corrosion, localised corrosion can become prevalent in such 

systems due to the nature of the iron sulphide films formed. Iron sulphide films are capable 

of adopting numerous morphologies with varying degrees of protectiveness and physical 

properties which can change over time as well as with environmental conditions. These 

include amorphous ferrous sulphide (FeS) and mackinawite (Fe S1-x),which are able to form 

quickly while others such as cubic ferrous sulphide (FeS), smythite (Fe3+xS4), greigite 

(Fe3S4), pyrrhotite (Fe1-xS), troilite (FeS), and pyrite (FeS2) have been linked with a transition 

from the initially formed mackinawite phase.[43] 

In the context of carbon steel corrosion in H2S environments, a clear understanding of the 

level of influence and/or interaction of the combining gases on pitting corrosion in these 

systems has remained elusive. However, it has been reported that a thin initial layer of 

mackinawite forms in H2S-containing environments which is very susceptible to failure and 

can lead to localised corrosion and/or pitting. Iron sulphide corrosion products formed in sour 

corrosion systems have also been reported to be electronically conductive with the ability to 

generate local galvanic cells around unprotected areas of steel surface, creating electrode 

potential gradients which are believed to drive the pitting process. [43]  

Despite the literature in oil and gas production on the influence of H2S, dense phase 

transport is a different system. Regrettably, research into the effect of H2S on the corrosion 

of carbon steel in dense phase CO2 systems is limited. Only two studies currently exist in 

literature considering the effect of H2S. These were performed by Brown et al. [76] and Choi et 

al.[97] and are summarised in Table 8. In the work of Brown and colleagues [76], the general 

corrosion rate of carbon steel was evaluated in the presence of 200 ppm H2S and 500 ppm 
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O2 with a water content of 500 ppm at 10.0 MPa and 4/50°C. General corrosion rates were 

recorded at approximately 0.005 mm/year, although no measurements of localised corrosion 

were performed. Research by Choi et al.[97] determined the general corrosion rate of X65 

carbon steel in water-saturated conditions at pressures of 8.0 and 12.0 MPa and 

temperatures of 25 and 80°C. Experiments were performed in the absence and presence of 

200 ppm H2S. When no H2S was present in the system, general corrosion rates were below 

0.01 mm/year at both temperatures. The introduction of H2S resulted in corrosion rates rising 

to 0.07 mm/year at 25°C and 0.44 mm/year at 80°C and generated a corrosion product on 

the steel surface which possessed a bilayer structure. The film was believed to consist of an 

inner FeCO3 layer and an outer iron sulphide layer. 

Apart from the two independent studies performed by Brown et al. [76] and Choi et al.[97], there 

has been little consideration afforded to the effect of H2S in dense phase CO2 systems and 

its likely impact on carbon steel corrosion. This is especially from the view of localised 

corrosion (a form of corrosion known to be linked very strongly to the presence of H2S in oil 

and gas production systems).  

7.6 Complex mixture systems 

7.6.1 Corrosion observations – NO2 and SO2 synergy 

According to Corvo et al.[98], under atmospheric conditions, the combined presence of SO2 

and NO2 can have a synergistic effect which can increase the corrosion and degradation of 

materials and is dependent upon the relative humidity. Corvo et al. [98] stated that nitrogen 

containing corrosion products are rarely reported under atmospheric corrosion conditions 

and that the primary purpose of NO2 is to catalyse degradation reactions, although such 

behaviour has not, currently, been conclusively shown to occur under dense phase CO2 

conditions. 

An interesting set of experiments was performed by Paschke et al.[87] whereby samples were 

mounted in an autoclave and studied visually. For a set of experiments, the samples were 

exposed to a CO2 mixture containing 1000 ppm water and 4.7% O2. Specimens exposed to 

this mixture showed no visible signs of corrosion. Additionally, no corrosion was observed 

when CO or SO2 were subsequently added to the CO2/O2 mixture. In fact, significant 

corrosion only occurred once 100 ppm NO was introduced to the entire system, resulting in 

the formation of a yellow corrosion layer which turned brown after a few days. The reactions 

with NO were reported to occur a few minutes after injection, indicating the rapid corrosion 

kinetics in the system. An analysis of the corrosion products revealed the presence of an 

amorphous compound and Į-FeOOH with no FeCO3 or nitrates being reported. It was 
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concluded that NO oxidised to NO2 rapidly, reacting again with water to produce nitric acid, 

initiating corrosion. No formation of sulphuric acid was reported in the presence of SO2 

without NO, as it was believed to be hindered due to the low temperature. However, the 

combined presence of SO2 and NO resulted in corrosion and the presence of sulphur within 

the oxide layer (from EDX analysis), suggesting the formation of sulphuric acid was 

catalysed by the oxidised NO. This evidence supports the catalytic behaviour of NO2 on 

sulphuric acid formation, a process which is also referred to as the lead chamber effect: 

 
 

(23) 

Additional results of corrosion experiments performed in complex mixed impurity systems 

are provided in Table 9. 
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Table 8: Summary of literature relating to corrosion rates in supercritical CO2 with H2O and H2S as impurities 
 CO2 pressure 

(MPa) 
H2S content 

(ppm) 
O2 content 

(ppm) 
Temp 
(°C) 

Test period Water content  
(ppm in mole) 

Corrosion Rate (mm/year) 

General (test rotation 
speed in brackets) 

Localised 

Brown et 
al.[76] 10.0 

200 500 
4 

7 days 

500 

<0.005 (3 rpm) n/a 
200 500 7 days <0.005 (3 rpm) n/a 

200 500 
5 

7 days 0.005 (3 rpm) n/a 
200 500 7 days 0.006 (3 rpm) n/a 

Choi et 
al.[97] 

12.0 

0 0 25 24 h 

Water-saturated CO2 

<0.01 n/a 

0 0 80 24 h <0.01 n/a 
200 0 80 48 h 0.41 n/a 

200 0 25 48 h 0.07 n/a 
200 0 25 24 h 

100 
<0.01 n/a 

8.0 200 0 80 24 h <0.01 n/a 
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Table 9: Summary of literature relating to corrosion rates in supercritical CO2 with complex mixtures of impurities 
 CO2 pressure 

(MPa) 
O2 content 

(ppm unless 
stated) 

NO2/NO 
content (ppm 

unless 
stated) 

CO content 
(ppm unless 

stated) 

SO2 content 
(ppm unless 

stated) 

H2S content 
(ppm unless 

stated) 

Temp 
(°C) 

Test period Water content  
(ppm in mole) 

Corrosion Rate (mm/year) 

General (test 
rotation speed in 

brackets) 

Localised 

Paschke et 
al.[87] (L485MB 

steel) 
11.0 

0.517 MPa 
(4.7%) 

100 ppm NO 50 100 0 60 7 days 

1000 0.072 n/a 

600 0.031 n/a 
100 0.019 n/a 

50 0.016 n/a 
0 0.004 n/a 

Paschke et 
al.[87] (L360NB 

steel) 
11.0 

0.517 MPa 
(4.7%) 

100 ppm NO 50 100 0 60 7 days 

1000 0.050 n/a 

600 0.024 n/a 
100 0.003 n/a 

50 0.002 n/a 
0 0.004 n/a 

Paschke et 
al.[87] (L485MB 

steel) 
11.0 0 100 ppm NO 50 100 0 60 7 days 1000 0.009 n/a 

Yevtushenko et 
al.[99] (L360NB 

steel) 
10.0 8100 100 ppm NO2 750 70 0 60 7 days 1000 0.003 n/a 

Yevtushenko et 
al.[100] (X52 

steel) 
10.0 8100 100 ppm NO2 750 70 0 60 30 days 

1000 0.0013 n/a 
600 0.007 n/a 
500 0.004 n/a 

Yevtushenko et 
al.[100] (X52 

steel) 
10.0 8100 100 ppm NO2 750 70 0 60 

7 days 
1000 

0.025 n/a 
30 days 0.013 n/a 

186 days 0.003 n/a 
Dugstad et al.[3] 10.0 0 191 ppm NO2 0 138 0 25 7 days 488 0.017 (3 rpm) n/a 
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7.6.2 Bulk phase reactions 

Chemical reactions are not just limited to those which occur at the electrolyte-steel interface. 

Dugstad[101] stated that numerous cross chemical reactions (Reactions 24 to 34) are capable 

of occurring within the bulk phase which can result in the formation of sulphuric/sulphurous 

acid, nitric acid and elemental sulphur when SO2, NO2, NO, O2 and H2S are present 

together: 
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(34) 

Currently, no publically available models are available to predict which of these reactions are 

the most thermodynamically favourable, or provide information on the rates at which these 

reactions can occur.  

To help understand the level of impurity consumption and the depletion of impurities within a 

dense phase CO2 environments, Dugstad et al.[101] performed experiments using a rocking 

autoclave. The autoclave was continuously fed with CO2 and impurities (water, H2S, O2, NO2 

and SO2) causing the excess CO2 mixture to be vented out. This vented CO2 was analysed, 

enabling the reaction mechanisms consuming impurities to be identified. The setup 
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implemented for impurity analysis consisted of a tuneable diode laser system for water 

measurement, an optical feedback cavity enhanced absorption spectroscopy laser for H2S, 

O2 and water analysis, a non-dispersive infrared/ultraviolet/visible photometer for NOx and 

SOx and gas chromatograph for H2S and O2 analysis. 

From two initial tests performed in which impurity concentrations were fed into the autoclave 

over total periods of up to 133 to 147 hours, it was possible to propose some tentative 

mechanisms based on observed changes in impurities within the system (details of the exact 

impurities concentrations fed into the autoclave and the operating conditions are provided in 

Figure 10). Referring to analysis performed by Dugstad et al. [101], it was observed that when 

O2, SO2 and H2S were injected all at the same time, no rapid cross-chemical reactions 

appeared to occur within the first few days. Consequently, although Reactions (24) and (25) 

(also known as the Claus process) could not be excluded, it was clear these reactions were 

slow as they could not be detected after 3-6 days. When NO2 was introduced to the system, 

the level of water, SO2 and NO increased immediately, whilst H2S and NO2 reduced, 

corroborating with the process proposed by Reaction (26). A few hours after the injection of 

NO2, a decrease in SO2 and NO were reported, linking in with any of Equations (27) to (30). 

When NO2 injection ceased, an increase in SO2 content was observed, suggesting that 

H2SO4 is formed preferentially by Reaction (28) and not (29), again supporting the catalytic 

effect of NO2 on sulphuric acid formation through the lead chamber effect.  
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Changes in water and O2 concentration 

 

(a)                                                                                         (b) 

 Changes in H2S and SO2 concentration 

 

(c)                                                                                         (d) 

Changes in NO2 concentration 

  

(e)                                                                                         (f) 

Figure 10: Impurity concentrations in vented CO2 experiments – adapted from the 

publication by Dugstad et al.[101]; The left column ((a), (c) and (e)) correspond to one 

test performed at 25°C for the following impurities concentration feed: 300 ppm H2O 

(injected from 1-142 h), 100 ppm NO2 (48-70 h), 100 ppm SO2 (28-91 h), 350 O2 (28-91 h) 

and H2S (22-115 h); The right column ((b), (d), and (f)) corresponds to one test 

performed at 45°C for the following impurities concentration feed: 300 ppm H2O 
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(injected from 1-133 h), 100 ppm NO2 (43-63 h), 100 ppm SO2 (22-90 h), 350 O2 (22-90 h) 

and H2S (2-84 h). 

The initial research conducted by Dugstad et al[101] provides an interesting insight into the 

numerous reactions capable within complex mixtures of impure dense phase CO2. This is 

even without considering any of the reaction processes which occur on the steel surface. 

The implementation of such a technique and an understanding of the likely reactions and 

their kinetics is pivotal to be able to determine the change in CO2 stream chemistry along the 

length of pipelines and whether this increases or decreases the risk of corrosion. 

7.7 Depressurisation, accumulation of impurities and fracture 

When dense phase CO2 is depressurised within a pipeline below the critical temperature, a 

two-phase gas/liquid system will form. Within this system, compounds will partition between 

the two phases and the concentration of impurities such as water, SO2 and NO2 will become 

more concentrated in the remaining liquid phase.[26] When the water solubility in a particular 

phase in exceeded, a third phase can also form. The accumulation of such impurities can 

increase the corrosivity of the liquid phase significantly.[102]  

Very few experiments within the literature, other than the work of Dugstad et al.[102], focus on 

the level of corrosion potentially encountered as a result of depressurisaton and 

accumulation of impurities. Their research involved depressurisation experiments at 4 and 

25°C in which autoclaves were vented via the gas phase. In order to ensure the corrosive 

phase reached the carbon steel test material, thin carbon steel foils were placed in the 

bottom of the autoclave to contact the sinking corrosive phase during depressurisation. 

Dugstad and colleagues[102] found that when the system contained CO2 and water only (488 

and 1222 ppm), the corrosion rate recorded was below 0.1 mm/year. The introduction of 138 

ppm SO2 increased corrosion rates to just over 0.1 mm/year and covered the samples in a 

black deposit. Perhaps most interesting was that the experiment in the presence of 191 ppm 

NO2 produced corrosion rates reaching 0.9 mm/year. It is important to note that these tests 

were closed system experiments and that the corrosion rate of the sample will have 

inevitably reduced over time as the impurities were consumed on the steel surface. 

Consequently, it could be argued that the value of 0.9 mm/year in the presence of NO2 may 

have been substantially lower that the true corrosion rate for such a scenario. 

In addition to the partitioning of phases, the expansion of CO2 from a region of high pressure 

to a region of low pressure causes a decrease in system pressure due to the Joule-Thomson 

effect. A sudden accidental release from a CO2 pipeline would cause rapid cooling and 

potential embrittlement of the steel structure.[103] This process can lead to fracture of the 
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steel and the resulting cracks can then propagate along the pipeline. The problem is 

exacerbated further by the fact CO2 exists as a two-phase mixture over a range of velocities, 

meaning that the pressure at the crack tip is maintained at a high level during 

propagation.[103] It is necessary to ensure that any propagating cracks are arrested. 

7.8 Solid product formation 

Various authors have reported the formation of solid products (believed to be elemental 

sulphur) in the bottom of autoclaves when performing experiments with complex mixtures of 

impurities.[76, 101] The formation mechanism for elemental sulphur is currently uncertain, 

although the formed acids within the system can potentially take part in the generation of 

elemental sulphur as shown previously in Reactions (31) and (32) with the Claus process 

(Reaction (24)) also becoming important. However, Brown et al.[76] also suggested that the 

H2S-O2 reaction has the potential to form elemental sulphur at very low H2S and O2 

concentrations i.e. in the ppb range: 

 
 

(35) 

Currently, no information relating to Reaction (35) in dense phase CO2 has been found. 

However, Brown et al.[76] stated that conversion of 100 ppm H2S would produce in excess of 

100 tons of sulphur per year for a 20’’ pipeline at a flow velocity of 1.5 m/s. Consequently, 

understanding sulphur formation and its associated mechanisms is crucial to ensure efficient 

and safe CO2 transport. 

Furthermore, in terms of the build-up of solid compounds, the presence of corrosion 

products on the pipe wall can also pose an issue and requires consideration. A 0.1 mm thick 

FeCO3 corrosion product on a 100 km long 20’’ line would produce approximately 50 tons of 

solids[76], whilst FeSO3/FeSO4 would produce approximately 58 to 66 tons for the same 

thickness. A degree of understanding of the tenacity of the corrosion product to the inner 

wall may be required to understand the risks associated with corrosion product formation 

and build-up. 

8 Stress corrosion cracking  

Currently, corrosion research in CO2 transport has focused on identifying corrosion rates 

during CO2 transport. The risk of Stress Corrosion Cracking (SCC) has not been extensively 

investigated. A recent conference paper by Sandana et al. [104] explores the possibility of SCC 

in CO2 transportation lines. The paper also highlights gaps in the current knowledge and 

provides some preliminary test results that indicate that SCC may be of concern. A summary 
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of this review is provided here for completeness, but the reader is referred to the paper in 

question for a detailed discussion of the risk of SCC in CO2 pipelines. 

8.1 Effect of Carbon Monoxide 

The presence of carbon monoxide (CO) is likely under pre-combustion processes. Sandana 

et al.[104] stated that cracking of carbon steels was observed in wet CO2-CO environments in 

the 1970's. The interest generated in this area led to the first studies by Brown et al. [105] and 

Kowaka and Nagata[106] into SCC in CO2-CO-H2O systems. The aforementioned research 

indicated that the presence of water is critical for the incidence of cracking and that CO can 

promote trans-granular cracking in carbon steels. Brown et al. [105] showed that an increase in 

CO activity promoted faster crack growth and reduced the minimum initial stress required for 

SCC to occur. Interestingly, the results also indicated that the introduction of O2 into the 

system resulted in an increase in SCC susceptibility. Unfortunately, the majority of this data 

is limited to partial pressures of CO2 below 2.0 MPa, so the conditions are not particularly 

reflective of those likely to be encountered during CO2 transport. Consequently, there is a 

requirement to explore the likelihood of SCC occurring in high pressure CO2-CO-H2O 

environments during upset conditions under which the dehydration process might fail, 

resulting in significant water presence in the pipeline. 

8.2 Effect of Hydrogen Sulphide 

Even though supercritical CO2 lines have been in operation for approximately 40 years, 

there are few standards which relate to their design or construction.[107] ASME B31.4 is the 

standard which describes the design and construction requirements of supercritical CO2 

pipelines, although there is no mention of H2S in the CO2 or any requirement to consider the 

potential for cracking from H2S.[107]  

H2S can be present as an impurity in both anthropogenic and natural sources of CO2 and 

can result in both Sulphide Stress Corrosion Cracking (SSCC) and Hydrogen Induced 

Cracking (HIC). Although these threats and their associated mitigation techniques have been 

covered extensively by the oil and gas industry by ANSI/NACE MR0175/ISO 15156[108], CO2 

pipelines are not specifically covered by these standards and the threat of SSCC and HIC 

needs to be considered, particularly where the CO2 source contains H2S.[107]  

8.3 Effect of bicarbonates, sulphates and nitrates 

The risk of bicarbonate/carbonate internal SCC is unlikely given that there is no surface 

electrochemical polarisation to drive internal pipeline surface steel potential into the SCC 

critical range for initiation.[104] Furthermore, the intergranular SCC of low alloyed steels in 
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bicarbonate/carbonate systems is usually referred to as high-pH SCC since it readily occurs 

in solution of pH 9-10.[104] The typically low pH encountered in the aqueous phase is 

expected to reduce the likelihood of SCC. It is also expected that relatively low 

concentrations of bicarbonates would be present in the aqueous phase, also minimising the 

risk of SCC. 

In terms of SOx and NOx, it is important to consider the potential effects these impurities may 

have on the SCC mechanisms in CO2 pipelines. The presence of nitrates, sulphates and 

even sulphide films may have the ability to promote SCC. 

Nitrates are known to cause SCC of carbon steel on their own, with the susceptibility to 

cracking increasing with the concentration of nitrates and temperature. [104] The occurrence of 

SCC becomes significant at temperatures above 70°C due to the rapid formation of an 

Fe3O4 film[104]. Whether this process is capable of occurring at lower temperatures is 

unknown, but the risk is thought to be low.[104]  

8.4 Quantifying the risk of SCC and HIC in supercritical CO2 pipelines 

From an extensive review of the literature, it appears that there are no studies relating to 

SCC or HIC of pipeline steels when exposed to supercritical CO2 containing H2S. 

Clarification is required as to whether SCC or HIC can even occur under these conditions 

and whether the threshold conditions established for H2S to avoid cracking in oil and gas 

service would be applicable to supercritical CO2 pipelines.[107] 

The risk of HIC and SCC are dependent upon the presence of an aqueous phase within the 

pipeline. In the presence of such a phase, SCC is obviously a potential risk. When H2S and 

other impurities are present in the CO2 stream, the rapid and catastrophic nature of SCC 

makes its consideration essential. In contrast, HIC is generally a much slower cracking 

mechanisms, but still requires attention. 

Although there are currently no regulatory requirements to design and construct dense 

phase CO2 pipelines to resist SCC and HIC, it is essential to mitigate their risk of 

occurrence. Furthermore, because these processes are reliant upon the presence of a 

significant aqueous phase (which would only effectively be present during upset conditions 

i.e. failure of the dehydration system) it is perhaps prudent to determine the requirement for 

SCC and HIC resistance based on the frequency and duration of upset conditions as well as 

how these materials behave during long term exposure to an aqueous phase.[104] 

Until SCC and HIC tests are performed in supercritical CO2 in the presence of impurities 

such as NOx, SOx and H2S, it is impossible to be confident that SCC and/or HIC are not 

potential risks for dense phase CO2 pipelines. 
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As a final note, the expected low pH (~pH of 3 without impurities in CO2 stream) of the 

aqueous phase within the pipeline has the potential to cause significant hydrogen adsorption 

and permeation. Although CO2 is less aggressive than H2S in enhancing the adsorption of 

hydrogen in steels, it still contributes to the adsorption process.[107] There is also the 

possibility for hydrogen to accumulate within traps and remain after water has been 

removed. Therefore, periodic upsets could result in significant accumulation of hydrogen, 

leading to HIC at a later stage.[107] 

9 Issues associated with closed system laboratory 

experiments, replicating field conditions and 

defining a safe operating window 

Currently, no reliable prediction models are available for anthropogenic dense phase CO2 

transport.[103] Although numerous corrosion prediction models for CO2 corrosion in oil and 

gas environments exist, extending the models to pressures and conditions typical of CCS 

could pose challenging. The models would be unable to account for the additional 

anthropogenic impurities expected from flue gases such as NOx and SO2.  

One model has recently been proposed within the literature for supercritical CO2-SO2-O2-

H2O environments.[109] The details of the model by Xiang et al.[109] are beyond the scope of 

this review, however it was established using a combination of standard CO2 models and an 

atmospheric corrosion model and is yet to be correlated or verified by field data. 

In order to develop a reliable and uniformly acceptable corrosion model, researcher and 

stakeholders must develop a standardised methodology for the evaluation of materials in 

dense phase CO2 transport environments. Currently, no standards exist in relation to 

performing laboratory experiments to replicate the conditions encountered in the field. The 

absence of a standard methodology for performing laboratory corrosion experiments has 

produced results which may be of limited use in terms of selecting materials or identifying 

safe conditions for CO2 transport.[103] There are a number of issues and/or limitations 

associated with performing laboratory experiments which represent field conditions and the 

following main aspects are discussed within this section: 

 replicating dynamic conditions 

 addition of impurities prior to pressurisation 

 consumption of impurities during testing 

 application of electrochemical techniques in dense phase CO2 
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9.1 Replicating dynamic conditions 

It has been suggested in literature that the presence of flow within the system is capable of 

reducing the extent of water condensing onto the steel surface and subsequently minimising 

the level of corrosion.[81, 83]  

In terms of supporting the theory, the work of Farelas et al. [83] demonstrated that the 

presence of flow (1000 rpm sample rotation speed) reduced corrosion rates of X65 steel by 

around an order of magnitude in specific dense phase CO2 environments. Farelas et al.[83] 

performed tests at 8.0 MPa in both liquid (25°C) and supercritical (50°C) conditions with the 

addition of 650 ppm water and 0.008 MPa (0.1 %) SO2. General corrosion rates reduced as 

a result of the transition from static to dynamic from 0.03 to 0.02 mm/year in supercritical 

conditions and from 0.1 to 0.01 mm/year in liquid CO2.  

9.2 Addition of impurities prior to pressurisation 

Numerous studies have been conducted in autoclaves where water is introduced into the 

autoclave followed by SOx, NOx, H2S etc. before pressurisation.[3, 23, 70-72, 78, 81, 110] It is 

theoretically possible for the water to initially react with SOx and NOx to produce sulphuric 

and nitric acid before the system is pressurised. It could be argued that such an approach 

does not produce an accurate representation of CO2 transport conditions. 

9.3 Consumption of impurities 

Perhaps the main issue associated with closed loop/system testing is the depletion of 

impurities within the system over the course of the experiment. The rate of consumption of 

impurities is dependent upon the corrosion rate of the sample, the steel surface area to fluid 

volume ratio and the bulk/surface corrosion mechanisms.[76] The actual level of consumption 

by corrosion in NO2/SO2 experiments was measured by the Institute for Energy (IFE).[76] 

They found that the level of impurity consumption was much greater than that expected from 

solely the corrosion rate of the sample. A large part of the impurities were reported to 

become ‘non-active’ in the system. This was believed to be a combination of immobilisation 

of the corrosive phase and reactions in the bulk fluid.[76] 

With only a small part of the impurity consumption being attributed to corrosion, it could be 

questioned whether the corrosion rates recorded in such systems reflect a worst case 

scenario. These results support the requirement for a dynamic tests system whereby the 

impurity levels are continuously monitored and dosed precisely to maintain a constant 

stream composition. 
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9.4 Application of electrochemical techniques in dense phase CO2 

Real-time in-situ measurements of corrosion rates of materials exposed in impure dense 

phase CO2 would enable instantaneous measurements of corrosion rates which can be 

linked to the formation of protective corrosion products, increased sensitivity for low 

corrosion rates and potentially an understanding for how depletion in impurities related to the 

observed decline in steel corrosion rate.[111] The issue associated with performing 

electrochemical measurements in dense phase CO2 are its low conductivity, even when 

saturated with water vapour.  

Previous attempts to perform electrochemical measurements in dense phase CO2 where 

conducted by Thodla et al.[23] and Ayello et al..[110] A flush mounted probe was used with the 

electrodes mounted in an electrically insulated material with the cross-section exposed as 

the active surface. When the probe was polished, a flat surface was presented for 

condensation to occur on. A probe of this design, however, requires a certain degree of 

surface wetting, to enable conductivity between all electrodes (in this case, a three-electrode 

cell was implemented). Such a process can be intermittent and unreliable during long term 

testing. To overcome this issue, Thodla et al. [23] and Ayello et al.[110] administered water 

droplets to the steel surface in-situ at high pressure to maintain conductivity. However, such 

a thick water film may not be wholly representative of the films encountered in a CO2 

pipeline.  

Recently, however, Beck et al.[111] produced a novel design involving the use of a three 

electrode flush mounted probe coated with an ion conducting polymer. Wetting of the 

polymer by moisture in the dense phase CO2 enables sufficient electrolyte conductivity to 

perform electrochemical measurements without administering water directly onto the steel 

surface. 

10 Material selection for CO2 transport  

Information pertaining to the assessment of the corrosion behaviour of corrosion resistant 

alloys (CRAs) in conditions similar to those encountered in CO2 transport (i.e. dense phase 

CO2) is relatively sparse in the literature. It is the opinion of some authors that the use of 

CRAs (stainless steels) may be capable of mitigating the corrosion risk during dense phase 

CO2 transport.[112, 113] Although this is most likely impractical from an economic perspective 

for long distance pipelines, caution still needs to be exercised if these materials are 

considered as the pH of the aqueous phase could potentially become low enough to 

dissolve the passive film on some of these materials, causing extensive pitting corrosion or 

localised attack. This statement is supported by the work of Yevtushenko et al.[99, 100] who 

evaluated the performance of X20Cr13 and X46Cr13 in a circulating impure dense phase 
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CO2 system. Corrosion experiments performed at 10.0 MPa and 60°C in the presence of 

1000 ppm water, 70 ppm SO2, 100 ppm NOx, 750 ppm CO and 8100 ppm O2 produced 

severe pitting corrosion of X20Cr13 and slight pitting of X46Cr13.  

Choi et al.[4] also reviewed the corrosion behaviour of X65 steel in comparison to 13Cr in 

water-saturated CO2 in 24 hour experiments at 8.0 MPa CO2 and 50°C in the presence of 

1% SO2 and 4% O2. They recorded a corrosion rate of 7 mm/year for both X65 and 13Cr, 

indicating that the CRA produced no beneficial effect in the form of corrosion mitigation. 

To reinforce these observations, experiments performed by Dugstad et al.[101] at 10.0 MPa 

and 25°C in the presence of 300 ppm water, 100 ppm NO2, 100 ppm SO2, 350 ppm O2 and 

100 ppm H2S for 147 hours produced signs of corrosion attack on the Hastelloy autoclave 

used for the corrosion experiment, indicating the level of corrosivity of the aqueous phase 

which can be produced in such systems. 

In light of the previous paragraphs, it must be noted that the effectiveness of CRAs will be 

heavily dependent upon the level and type of contaminants within the system and how they 

influence the pH of the aqueous phase formed on the pipe wall. For example, if ‘appreciable’ 

levels of nitric acid were to be present in the aqueous phase, it is unlikely that CRAs will offer 

any significant benefit in terms of mitigating corrosion as the protective passive film will not 

be stable under the conditions in the aqueous phase due to the low pH. However, if the 

impurity is H2S or O2, or a purely CO2-H2O system is considered with a high water content, 

then CRAs may be able to mitigate the effects of corrosion. The question then becomes 

whether the construction of pipelines using CRAs is economically feasible, and this is 

unlikely to be the case.  

In summary, it is possible that CRAs and low Cr-bearing steels could offer superior corrosion 

protection compared to carbon steels for pipeline or downhole tubing materials whilst still 

remaining an economic alternative. However, this will be heavily dependent upon the type 

and level of impurities in the system and the conditions of the aqueous phase. The results of 

Yevtushenko et al.[99, 100], Choi et al.[4] and Dugstad et al.[101] all demonstrate that 

considerable corrosion can take place even on CRAs if specific impurities are present at 

high enough concentrations (namely SO2 and NO2). However, in contrast, other research by 

Choi et al.[97] has suggested that under the correct environmental conditions (CO2-H2O-H2S), 

even 1Cr and 3Cr bearing steel are capable of reducing corrosion rates to acceptable levels 

when carbon steel is unable to perform, enabling a wider tolerance on impurity contents. The 

decision to move to a more ‘corrosion resistant’ material is one that should not be taken 

lightly and should be supported by experimental work under appropriate conditions to 

determine the level of effectiveness.  
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11 Corrosion inhibition in CO2 transport 

11.1 Potential of neutralising amines 

It is evident that sufficient drying of the dense phase CO2 is capable of preventing the 

breakout of free water and excessive corrosion rates. However, this contributes towards an 

increase in handling costs, particularly for offshore installations. Although the application of 

CRAs such as 13Cr are an option, they are expensive and appear to have little corrosion 

resistance to SO2/NO2 environments.[103] Therefore, the use of corrosion inhibitors may be 

the most appropriate corrosion mitigation technique for such instances. 

Neutralising amines, in particular, offer themselves as a potential option to help prevent the 

corrosion caused by strong acids in systems where water condenses onto a metallic surface. 

Regrettably, the selection of an appropriate neutralising amine usually involves making 

compromising choices amongst their properties. For example, each amine possesses 

unique properties which dictate their ability to evaporate, to form liquid/solid salts, along with 

how quickly/readily they partition into the first drops of water, which condense onto a steel 

surface.[114] There is no one amine which exhibits all the desirable properties required, 

meaning that the compounds need to be carefully selected to perform the best form of 

corrosion inhibition. A number of properties require consideration when selecting an 

appropriate amine corrosion inhibitor. These include boiling point, the effect of excess 

amine, the vapour-liquid equilibrium, the base strength and potential salt formation.  

A review of corrosion inhibitors would not be appropriate in this article given that no one 

inhibitor is universally applicable and usually a cocktail of chemicals are administered to 

control degradation of metals. Furthermore, although corrosion inhibitors have been 

reviewed extensively for oil and gas environments, there is a significant difference between 

the operating conditions, the dominant phase and the level and type of contaminants 

compared to CO2 transport. Limited research exists in which inhibitors have been reviewed 

in dense-phase CO2 with low water contents and this difference in operating conditions and 

environment may render an inhibitor ineffective for such an application, even if it performs 

well in a system where the aqueous phase dominates. Exceptions include the work of 

Turgoose[115] and a recent presentation by Dugstad at a National Association of Corrosion 

Engineers Technology Exchange Group Session[116], although the inhibitor chemistries were 

not disclosed in these publications. 

Currently, little or no information exists on chemical inhibitors which have been evaluated in 

environments containing flue gas impurities. If inhibitors are to be developed for CO2 

transport upset conditions, it is imperative they are evaluated in conditions which reflect 
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those which they will be used in as accurately as possible to ensure they are compatible with 

any anticipated impurities. 

11.2 Environmental concerns in corrosion inhibition 

One of the additional concerns with the application of corrosion inhibition for CO2 pipeline 

materials is that any impurities or components added to the CO2 stream will be injected into 

the chosen storage site if left untreated. Consequently, it is imperative that any unsuitable 

components are removed from the stream prior to injection, or that the residual 

concentration and environmental properties of the chemical are such that they do not 

adversely affect the environment where they are injected. 

As well as providing sufficient levels of chemical inhibition, any components chosen should 

be non-toxic with high biodegradability and reduced bioaccumulation.[117] Whether a 

chemical is environmentally acceptable or not is usually determined by the national 

regulations of a particular country. In terms of the North Sea where numerous potential 

sequestration sites exist, this location is well regarded as having stringent criteria regarding 

chemical requirements compared with the rest of the world. 

12 Knowledge gaps  

Reflecting on the previous Chapters within this review, it is evident that knowledge gaps still 

exist in the literature which if left unaddressed, will cast ambiguity over the long term safety 

and efficiency of dense phase CO2 transport via carbon steel pipelines. Figure 11 highlights 

the different areas where research attention should be directed based on this review. In the 

opinion of the authors, there are four key areas from Figure 11 which require significant 

attention. These are listed below and outlined in the following section:  

i. Predicting the thermo-physical properties of the CO2 stream 

ii. Understanding the mechanisms of localised corrosion  

iii. Understanding upset conditions and elucidating NOx reaction mechanisms  

iv. Determining bulk phase reactions and kinetics 

It is important to stress that other areas exist in addition to the aforementioned, however, the 

four listed here are regarded as priority areas. 

12.1 Predicting the thermo-physical properties of the CO2 stream 

One of the key requirements for safe transport is to understand the thermo-physical 

properties of the process fluid being transported and how this is influenced by the presence 

of impurities. In addition is important to understand how the impurities within the system 

segregate into the aqueous phase, so that the chemistry can be accurately related to the 
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extent of degradation observed within the system. Accurately determining the role of 

impurities in influencing the physical properties of the CO2 stream (density, viscosity), the 

solubility of water in impure CO2 and the conditions in the aqueous phase is essential if the 

corrosion processes are to be understood and if accurate prediction of corrosion rates is to 

be made possible. 

12.2 Understanding the mechanisms of localised corrosion  

Understanding the relationship between the species present in the CO2 stream, the 

corrosion products formed on the steel surface and how this is related to the ability of pits to 

initiate and propagate is important to determine whether localised corrosion is a true threat 

to pipeline integrity. Most importantly it is essential to establish a robust 

methodology/standard for simulating dense phase CO2 transport in laboratory experiments 

and to overcome the issues previously identified in this review (depletion of impurities and 

change in bulk phase chemistry with time in particular). 

12.3 Understanding upset conditions and elucidating NOx reaction mechanisms  

One aspect which has resulted in failures in past CO2 lines was caused by free standing 

water in the system. It is important to understand the effects of ‘upset’ conditions within the 

system which can cause extremely high degradation rates. This will enable operators to 

understand the potential risk and extent of damage cause in the event of water ingress into 

the system. Furthermore, the limited number of experiments with NOx (even under normal 

service conditions) have shown that this particular component has the ability to be 

particularly aggressive, resulting in very fast corrosion kinetics. Further study of this 

component and its potentially synergistic behaviour with other compounds in the CO2 stream 

(particularly through the lead chamber effect) is required to understand the corrosion 

processes and define the safe stream compositions for transport. 

12.4 Determining bulk phase reactions and kinetics  

Studies have indicated that in multi-impurity systems, the bulk phase composition can 

change over time and consequently, along the length of a pipeline. A better understanding of 

potential bulk phase reactions is required to determine whether the CO2 stream exhibits any 

change in its corrosive nature along the length of a pipeline. This is an important area of 

research as will impact the corrosion management strategy significantly in long distance 

pipelines. 
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Figure 11: Knowledge gaps identified in the field of dense phase CO2 transport 

 

13 Conclusions 

The most economically viable option for the transport of large quantities of dense phase CO 2 

is a dedicated carbon steel pipeline network. Such extensive networks may potentially 

operate in densely populated areas and will only be permitted if the transportation process is 

safe and does not present a risk to the local population.  

There is currently limited industry experience in handling anthropogenic CO2 worldwide and 

no general consensus currently exists on the exact CO2 stream composition required to 

ensure the safe transport of CO2, although some tentative suggestions have been proposed 

by researchers and pipeline operators. It is essential to have in place a set of technical 

specifications/requirements for CO2 processing and purification, enabling the CCS cycle to 

operate at a minimised cost. 
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Although tentative guidelines exist in the literature for the CO2 stream quality, experiments 

have confirmed that reactions between impurities can occur at ppm level and that multi -

impurity systems with impurity concentrations less than the recommended concentrations 

suggested by DYNAMIS, Alstom, IPCC etc. are corrosive towards carbon steel and result in 

the formation of nitric/sulphuric acids which are able to lower the critical water content at 

which general and localised corrosion is initially observed.  

The distinct lack of corrosion data from both laboratory experiments and the field where 

anthropogenic CO2 is transported makes accurate corrosion prediction challenging. This is 

particularly true for impurities such as NOx and H2S, for which there is a lack of 

understanding in the general/localised corrosion behaviour, mechanisms and corrosion 

product formation in dense phase systems. Furthermore, chemical reactions are not just 

limited to those which occur at the electrolyte-steel interface. Numerous reactions are 

capable in the bulk phase between H2S, NO, NO2, SO2, O2 and water. To better understand 

the corrosion rates in pipelines, there is a requirement to fully understand these reaction 

processes, the formation of separate corrosive phases and how these influence material 

degradation to define the safe operating window for CO2 transport.  

The risk of SCC and HIC to occur is dependent upon the presence of an aqueous phase. 

Although there are no regulatory requirements to construct dense phase CO2 pipelines to 

resist SCC or HIC, it is essential to prevent such mechanisms from occurring. Until  SCC and 

HIC tests are performed in supercritical CO2 in the presence of impurities such as NOx, SOx 

and H2S, it is impossible to be confident that SCC and/or HIC are not potential risks for 

dense phase CO2 pipelines. 

Various experimental challenges exist in replicating the conditions encountered during CO2 

transport, particularly for closed system tests with ppm-range concentrations. These include 

depletion of impurities through reactions with the steel surface, but also reactions in the bulk 

fluid resulting in the formation of acid phases, or solid products such as elemental sulphur. 

Furthermore, no standards exist for corrosion experiments in dense phase impure CO2. An 

ideal laboratory experiment would involve a dynamic tests system whereby the impurity 

levels are continuously monitored and dosed/vented precisely to maintain a constant stream 

composition. 

Based on the literature relating to material selection, alternate materials other than carbon 

steels (such as corrosion resistant alloys) for long-distance dense phase CO2 pipelines are 

unlikely given their associated costs. Furthermore, research suggests that the corrosivity of 

the aqueous phase is too severe even for these materials when impurities such as SO2 and 

NO2 are present in appreciable concentrations.   
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The application of corrosion inhibitors through continuous injection is an alternative option to 

CRAs for long distance dense phase CO2 pipelines. It is also possible that inhibitors could 

be applied exclusively in the event of ‘upset’ conditions (i.e. failure of dehydration system) to 

mitigate significant levels of corrosion. However, in such instances the environmental 

properties of the chemical used needs to be carefully considered if there is no intention to 

remove the inhibitor prior to injection. 
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