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The architecture of infinite structures with non-crystallographic symmetries can

be modelled via aperiodic tilings, but a systematic construction method for finite
Edited by .-G. Eon, Universidade Federal do Rio structures with non-crystallographic symmetry at different radial levels is still
de Janeiro, Brazil lacking. This paper presents a group theoretical method for the construction of
finite nested point sets with non-crystallographic symmetry. Akin to the
construction of quasicrystals, a non-crystallographic group G is embedded into
the point group P of a higher-dimensional lattice and the chains of all G-
containing subgroups are constructed. The orbits of lattice points under such
subgroups are determined, and it is shown that their projection into a lower-
dimensional G-invariant subspace consists of nested point sets with G-symmetry
at each radial level. The number of different radial levels is bounded by the
index of G in the subgroup of P. In the case of icosahedral symmetry, all
subgroup chains are determined explicitly and it is illustrated that these point
sets in projection provide blueprints that approximate the organization of
simple viral capsids, encoding information on the structural organization of
capsid proteins and the genomic material collectively, based on two case studies.
Contrary to the affine extensions previously introduced, these orbits endow
virus architecture with an underlying finite group structure, which lends itself
better to the modelling of dynamic properties than its infinite-dimensional
counterpart.

Keywords: orbits; non-crystallographic
symmetry; icosahedral viruses; computational

group theory.

1. Introduction

Non-crystallographic symmetries are ubiquitous in physics,
chemistry and biology. Prominent examples are quasicrystals,
alloys exhibiting five-, eight-, ten- and 12-fold symmetry with
long-range order in their atomic organization (Steurer, 2004)
and, in carbon chemistry, icosahedral carbon cage structures
called fullerenes (Kroto et al., 1985), with architectures akin to
Buckminster Fuller’s geodesic domes. Icosahedral symmetry
also plays a fundamental role in virology. Viruses encapsulate
and hence protect their genomic material inside a protein
shell, called capsid, that in the vast majority of cases possesses
icosahedral symmetry. In 1962, Caspar and Klug proposed, in
their seminal paper (Caspar & Klug, 1962), a theory to
describe the geometry of icosahedral viral capsids and predict
the locations and orientations of the capsid proteins. Inspired
by the structure of the geodesic dome, they derived a series of
icosahedral triangulations, called deltahedra. More recently,
Twarock (2004) proposed a generalization of this theory by
considering more general tilings of the capsid surface inspired
by the theory of quasicrystals.

Caspar—Klug theory and generalizations thereof describe
the capsid of a virus as a two-dimensional object rather than in
three-dimensional space. Therefore, they do not provide
© 2015 International Union of Crystallography information about other important features of the capsid, such
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as its thickness and the organization of the genomic material
encapsulated within. Experiments showed that many viruses
exhibit icosahedral symmetry at different radial levels:
examples are the dodecahedral cage of RNA observed in
Pariacoto Virus (Tang et al., 2001) and the double-shell
structure of the genomic material of Bacteriophage MS2
(Toropova et al, 2008). These results suggest that the
symmetry of the virus should be extended to include infor-
mation on the capsid proteins and the packaged genome
collectively.

A first step towards this goal was the principle of affine
extensions, described in a series of papers (Keef & Twarock,
2009; Keef et al., 2008, 2012). In this work, the generators of
the icosahedral group have been extended by a non-compact
generator acting as a translation, with the additional
requirement that the resulting words of the group satisfy non-
trivial relations. Such affine extension can also be obtained via
a construction similar to affine extensions in the theory of
Kac-Moody algebras (Carter, 2005). In this case, icosahedral
symmetry is extended via an extension of the Cartan matrix,
resulting in the addition of a non-compact operator to the
generators of the icosahedral group (Patera & Twarock, 2002;
Dechant et al., 2012, 2013). The orbits of the affine extensions
thus constructed consist of infinite sets of points that
densely fill the space, since the icosahedral group is non-
crystallographic in three dimensions. Since viral capsids are
finite objects, a cut-off parameter must be introduced, that
limits the number of monomials of the affine group. In
previous work, words characterized by a finite action of the
translation operator had been used to construct multi-shell
structures, in which each radial level displays icosahedral
symmetry. However, such a cut-off implies that the point sets
are not invariant under the extended group structure, which
limits the use of these concepts in the formulation of energy
functions, e.g. Hamiltonians or in the context of Ginzburg—
Landau theory.

An alternative to this approach based on affine extension is
Janner’s work, which models viral architecture in terms of
lattices. In a series of papers (Janner, 2006, 2010a,b, 2011a,b),
Janner embedded virus structure into lattices, and showed that
this provided an approximation for virus architecture, and
provides an alternative approach for the modelling of the
onion-like fullerenes (Janner, 2014); a paper combining this
lattice approach with the affine extensions mentioned above
was also published (Janner, 2013). Subsequently, approxima-
tions of virus architecture in terms of quasilattices were
developed (Salthouse et al., 2015), which provide an alter-
native to the lattice approach of Janner, and by construction
have vertex sets that contain the point arrays determined by
the affine extended groups as subsets. All of these approaches
approximate viruses in terms of infinite structures, lattices,
quasilattices, infinite groups, which require a cut-off. In the
case of the lattices and quasilattices, the cut-off consists of
choosing a subset of the infinite (quasi)lattice, and in the case
of affine extensions the action of the translation operator has
to be limited. This is the motivation for the study described in
the present paper in which we develop an approach in terms

of mathematical concepts that are intrinsically finite-dimen-
sional, because they are related to orbits of finite groups.

In this paper we introduce a new group theoretical method
to study nested point sets with non-crystallographic symme-
tries, based on the embedding of non-crystallographic groups
into higher-dimensional lattices (Senechal, 1995). This
embedding is a standard way to define mathematically
quasicrystals, e.g. via the cut-and-project schemes and model
sets (Moody, 2000), or the superspace approach (Janssen &
Janner, 2014). More generally, in order to model objects in
three dimensions that possess a non-crystallographic
symmetry at different radial levels, it makes sense to embed
the non-crystallographic symmetry into a crystallographic
setting and use the long-range order implied to induce in
projection information on the collective arrangements of
different radial levels. Janner (2008) gave a first approach in
this direction, by analysing double-shell structures with five-
fold symmetry as projected orbits of specific point groups in
higher dimensions. Here we present a more systematic study
for general non-crystallographic symmetries. Specifically, we
embed a non-crystallographic group G into the point group P
of a lattice in the minimal higher dimension where the cut-
and-project construction is possible. Since this embedding is
not, in general, maximal, we consider the subgroups K of P
containing G as a subgroup, which extend the symmetry
described by G. We prove that the projection of the orbits of
lattice points under such subgroups into a lower-dimensional
subspace invariant under G is a nested finite point set with
non-crystallographic symmetry G. We show that the number of
distinct radial levels in the projected orbits is bounded by the
index of G in K.

As an illustration of this approach, we provide analytically
an explicit construction of planar nested structures for non-
crystallographic dihedral groups. Moreover, in order to pave
the way for applications to icosahedral viruses, we apply this
approach to the icosahedral group Z, which can be embedded
into the point group of the simple cubic lattice in six dimen-
sions (Zappa et al., 2014). We classify all the Z-containing
subgroups of the hyperoctahedral group, with the aid of the
software GAP (The Gap Group, 2013), which is designed for
problems in computational group theory. Since the six-
dimensional lattice is infinite, a cut-off parameter must be
introduced in order to select a finite number of lattice points
whose orbits can then be used to model the capsid. By
construction, all point arrays have full icosahedral symmetry,
i.e. containing reflections as well as rotations. Since viruses are
known to be chiral, this may seem perplexing; however, we
note that point arrays do not fully constrain viral architecture,
and thus proteins can be positioned in the capsid so as to
break the full symmetry, as long as they adhere overall to the
blueprint indicated by the points. Therefore, it is not possible
to obtain a full classification of the orbits as was done by Keef
et al. (2012). However, these results provide for the first time a
finite group structure, albeit in a higher-dimensional space,
underlying the geometry of the multiple layers of material in a
virus. This has important consequences for the modelling of
physical properties; specifically, conformational changes of
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viral capsids, which are important for the virus to become
infective, can be modelled in the framework of the Ginzburg—
Landau theory of phase transitions (Zappa et al., 2013), via the
formulation of an energy function invariant under the
generators of the symmetry group of the capsid.

The paper is organized as follows. After reviewing, in §2, the
embedding of non-crystallographic groups into higher-
dimensional lattices, in §3 we describe the new group theo-
retical setup to model finite nested structures with non-
crystallographic symmetry. As a first application, we study in
§4 planar nested point sets obtained from projection of
extensions of embedded non-crystallographic dihedral groups.
In §5 we analyse in detail the case of icosahedral symmetry,
classifying the chain of subgroups containing the icosahedral
group embedded into the six-dimensional hyperoctahedral
group. Finally, in §6 we use these results to obtain geometric
constraints on viral capsid architecture, and present two case
studies, namely the capsids of Pariacoto Virus and Bacter-
iophage MS2, whose structures have been intensively studied
experimentally. We conclude in §7 by discussing further
applications of these results.

2. Crystallographic embedding of non-crystallographic
groups

Our new group theoretical setup relies on the embedding of
non-crystallographic symmetries into the point group of
higher-dimensional lattices. This is a standard method in the
theory of quasicrystals; here we briefly review it and fix the
notation that we are going to use throughout the paper. We
refer to Senechal (1995) and Baake & Grimm (2013) for
further information.

The point group P of a lattice £ in R? with generator matrix
B is the maximal set of orthogonal transformations that leave
the lattice invariant:

P(L) :={0 € O(d) : IM € GL(d,R) : OB = BM}. (1)

P is a finite group and does not depend on the matrix B
(Senechal, 1995). The lattice group A constitutes an integral
representation of the point group P with respect to B:

AB):={M e GL(d,Z):30 € P(L) : B'OB=M}. (2)

A finite group of isometries G is non-crystallographic in
dimension k if it does not leave any lattice invariant in R*.
Following Levitov & Rhyner (1988), we introduce the
following:

Definition 2.1. Let G C O(k) be a finite non-crystal-
lographic group of isometries. A crystallographic representa-
tion of G is a matrix group G satisfying the following
conditions:

(C1) G stabilizes a lattice £ in RY, with d >k, i.e. G is a
subgroup of the point group P of L;

(C2) G is reducible in GL(d, R) and contains an irreducible
representation (irrep) p, of G of degree k, i.e.

~

Gp®p,  degp)=d—k. ©)

The condition (C1) implies that the matrices representing
the elements of G with respect to a generator matrix B of the
lattice are integral or, equivalently, B-'GBis a subgroup of
the lattice group A € GL(d, Z) of L [cf. equation (2)]. As a
consequence, the character y~ is an integer-valued function.
The condition (C2) is necessary for the construction of
quasicrystals in R via the cut-and-project method (Senechal,
1995; Baake & Grimm, 2013).

The minimal dimension d > k for which a crystallographic
representation G of Gis possible is called the minimal crys-
tallographic dimension of G. The conditions x~ € Z and
equation (3) can be easily verified with the aid of the character
table of G and Maschke’s theorem (Fulton & Harris, 1991).
The existence, and possibly an explicit construction, of lattices
in R? whose point group contains a crystallographic repre-
sentation of G is a more difficult task. In the case of icosa-
hedral symmetry, the minimal crystallographic dimension is six
and the lattices in R® have been classified in Levitov & Rhyner
(1988) (this is explained in more detail in §5). For planar non-
crystallographic symmetries described by the dihedral groups
D,,, the minimal crystallographic dimension is ¢(n), the Euler
function of n. We will go back to this example in §4.

Let us denote by V¥ the invariant subspace of R? which
carries the irrep p, of G. Let 7 : RY — V® be the projection
into V®, i.e. the linear operator such that the diagram

RY Gle) RY

bx bx “4)
y® - ele) k)
commutes for all g € G:

1(Gg)v) = p(R)(m(v)),

Let V@5 denote the orthogonal complement of V® in RY.
We recall the following proposition [for the proof, see Sene-
chal (1995)]:

Vge G, YWwveR. (5

Proposition 2.1. The following are equivalent:
(i) V=M is totally irrational, i.e. V@0 N L = {0};
(ii) 7 | is one-to-one.

The triple [V®, V@5 L] is the starting point to define
model sets via cut-and-project schemes with G-symmetry
(Moody, 2000), which is a standard way to define quasicrystals
mathematically. In this paper, we construct finite point sets
resulting from the projection into V% of orbits of points of £
under G-containing subgroups of the point group P. We
explain this construction in the next section.

3. Nested point sets obtained from projection

The embedding of a non-crystallographic group G into a
higher-dimensional lattice L is, in general, not maximal. This
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means that there exist proper subgroups of the point group P
of £ which contain a crystallographic representation G of G as
a subgroup. Therefore, we introduce the set

A-:={K <P:G <K}, ()

which consists of all the a—containing subgroups of P. For
computational purposes, we fix the generator matrix B of L,
and consider the subgroup structure of the lattice group A in
that representation, ie. the set Ay, (B) ={K <A :H <K},
with H := B"'GB. Notice that a different choice in the
generator matrix of the lattice results in subgroups K’ conju-
gate to K in GL(d, Z).

The elements in A;, encode the symmetry described by G
plus additional generators that extend this symmetry. Let K be
an element of A,, and let n := [K : H] be the index of H in K.
LetT ={g,...,8,} be atransversal of H in K, i.e. a system of
representatives in K of the right cosets of H in K (Holt et al.,
2005). Let v € £ be a lattice point, which can be written as
v=(my,...,my), with m; € Z (since we fixed the basis B). v
can be taken as seed point for the orbit Ox(v) = {kv : k € K}
under K. With this setup, we prove the following theorem.

Theorem 3.1. Let O(v) = Oy, (v) = {hg;v : h € H} be the
orbit of v € £ with respect to the coset Hg;, and let us denote
by P,(v) := m(O,(v)) the orbit projected into V), the subspace
of dimension k carrying the irrep p, of G [cf. equation (4)].
Then we have:

(1) P,(v) is well defined, i.e. does not depend on the choice of
the transversal T.

(ii) P;(v) retains the symmetry described by G.

(iii) P,(v) = P;(v) if and only if

gj_ngi N Staby(v) # 0. @)

(iv) If H is normal in K, then all P,(v) have the same
cardinality.

Proof. (i) Let T" = (g}, . . ., g,) be another transversal for H
in K. This implies that there exist h; € H,fori =1, ..., n,such
that g; = h,g;. We have

O[(v) = Oy (v) = {hg; - h € H} = {hhgv : h € H}

=0v), i=1,...,n
and the result follows.

(ii) It follows from the commutative property in (5); in
particular, we have

(O,;(v)) = {m(hgv) : h € H} = {p(W)n(g;v) : h € H}

= {hn(gv) : h € p} =: O),
for i=1,...,n. The orbit @i(v) has
construction.

(iii) We have

G-symmetry by

Py(v) = Py(v)=n(0,(v)) = 1(O,(»))=0,(v)

e O (v)ye=s{hgv; h € H) = thgv - h € H)
<3dh, ke H:hgyv= kg]-v<=>gf]k71hgiv =v
=g 'k 'hg, € Staby(v),

which proves the statement.

(iv) Since H is normal in K, the cosets Hg; form the quotient
group K/H of size n. Let X := {0, :i =1,..., n}be the set of
all the orbits with respect to the cosets Hg,. In the following,
we will omit the dependence on v for ease of notation. We can
define an action of K/H on X as H;- Oy := Oy, This
action is well defined since K/H is a group, and it is transitive
since, for every element O, € X, we have H; - (’)H 1y, = Oy
Let Sy, := Staby 5(Oy,) denote the stabilizer of Oy under this
action. With s := |Sy| we thus have by the orbit-stabilizer
theorem

|K/H| _n

[Sy| s

It follows that the sets O,(v) are in bijection with the left cosets
of S, in K/H. We denote these cosets by A, fori=1,...,r.
These form a partition of the quotient group K/H, which we
write as

HY, L HO, L HY Y R HY
A, Ay A

O

r

By construction, O s. Let us define

the sets

forj,k=1,...,

o =00
H O

KO = JH c K,

=1

i=1,...,r. (8)

The set {K® :i=1,...,r} constitutes a partition of K, since it
is the union of cosets. Moreover they all have the same order:

KO =5 |H| = Vi=1,...,r 9)
Let S = (’Hﬁl), e, 'HY)) be a transversal for the coset of S;, in
K/H. Tt follows from equation (8) that K@ =

{k € K: kv € O,0}; therefore
1

OK(i) = {kv ke K(i)} = OH(l’)'

To conclude, we observe that each K contains complete
cosets of K/Staby(v). In fact, let kStab,(v) be a coset in
K/Stabg(v). If k € K?, then an element in k Staby(v) is of
the form kk with k € Stabg(v), and belongs to K(’) since
(kk)v = k(kv) kv € O 0 Therefore, each K is partitioned
into |[K®|/|Stabg(v)| sets each of these sets corresponds to
a distinct point in the orbit (9 . Since |K?| = N for all i
due to equation (9), each orblt OH(" has the same number
of points, and hence also each P; (v) because the projection
is one-to-one. a

The decomposition of K € 4, into cosets with respect to H
induces a well defined decomposition of the projected orbit

7(Ok(v)) [cf equation (4)]:

572

Reidun Twarock et al.

+ Orbits of non-crystallographic groups and viruses

Acta Cryst. (2015). A71, 569-582



research papers

n

1(Ox(v) = | Jm(O0,m) = [ J O, (ngv).  (10)

i=1

The point set defined by equation (10) consists of points
situated at different radial levels, since, in general,
|(g;v)| # |m(gv)| for i # j, where |- | denotes the standard
Euclidean norm in R*. Hence the projected orbit is an onion-
like structure, with each layer being the union of the projec-
tion of orbits corresponding to different cosets. It follows that
the number r of distinct radial levels is bounded by the index
of H in K.

Using these results, we can set up a procedure to extend the
non-crystallographic symmetry described by p, in V%, In
particular, let x € V® be a seed point for the orbit of p,. The
pre-image v = 71(x) is a point of the lattice £ by construc-
tion. Let K be an element of A4;,. The projection of Og(v)
contains the orbit O, (x), which corresponds to the coset H
[compare with equation (10)], and possibly more layers with
G-symmetry. This procedure can be iterated; let us consider
the chain of subgroups in A4,

HCK CK,C...CK, CA.

By ascending the chain we obtain a chain of orbits

. . . . . (k)
'(’)K[(v) C Ok, .(v), the projection of such orbits mjto 1%
induces a chain of nested shells. We can summarize the
situation in the following diagram:

O L 2% Ok, ) — 0, (v)
it 1 project N 1
0, (x) — (O, )20,k —...— w(0O,@)2...20,(%

(1

In the next section we present a first application of these
results in the case of planar non-crystallographic symmetries.

4. Embedding of dihedral groups D,, and planar nested
structures

Let n > 0 be a natural number. The dihedral group D,, is the
symmetry group of a regular n-gon, and consists of n rotations
and n reflections, with presentation (Holt et al., 2005)

DZn = (an S: RZ =e, SRn = R;1S)’ (12)

where R, is a rotation by 27/n, and S a reflection.

Let &, = exp[(2ni)/n] € C be a primitive root of unity, and
let Z[£,] be the ring of integers of the field Q(,). The standard
embedding of D,, into a ¢(n)-dimensional lattice, where ¢(n)
denotes the Euler function, is achieved via the Minkowski
embedding of Z[§,] (Baake & Grimm, 2013). Specifically, let G
denote the Galois group of Q(§,). G is isomorphic to
Z) :={m e Z,: gcd(m,n) =1}, the multiplicative group of
Z,, and therefore consists of ¢(n) elements. Such elements are
automorphisms of Q(§,) given by &, 1— &7, where n and m are
coprime, and they are pairwise conjugate. We can then choose
¢(n)/2 non-conjugate elements o; in G, where o, is the identity.
The Minkowski embedding of Z[£,] is then given by

Ly = (0. 00), ..., o) 1 x € ZE ]} € CF = RAY,
(13)

which is a lattice in R*". The projection 7 : L,y —> Con the
first coordinate is, by construction, one-to-one on its image

We can define an action of D,, in Z[§,] in the following way:

R, - x=§&x, S-x=%x,

where ¥ denotes the complex conjugation in C and x € Z[§,].
Note that this action is well defined as every element of D,,
stabilizes Z[£,]. If g is an element of I,(n), g can be lifted to an
element g defined by

g (x) =7 (g ), (14)

which is well defined since the projection is one-to-one. In
particular, we have

R, -m'(x) =7 (R, -x) = 7 '(§%)

(€% 02(E,0), - 0 (6,))

Similarly we have
5.0 =n'(S-0) =7 = (x, (), ..., %)(x)).
2

It follows that the transformations fin and S are orthogonal
and stabilize the lattice £,,,. Therefore the set {g : g € D,,} is
an embedding of D,, into the point group of L. We point
out that, although this construction is a priori possible and well
defined for all natural numbers, it is difficult to find the explicit
form of the point group of £, in equation (13) for general n.
The explicit form is known, in particular, for n = 5, 8 and 12
(Baake & Grimm, 2013).

We now prove the existence of an extension K of D,,
embedded into P(L,,), i.e. a subgroup K of P(L,,) such that
D,,, is a normal subgroup of K. Note that D,, can be seen as a
subgroup of the symmetric group S, acting on the vertices of
a regular n-gon. More precisely, let R, = (1,2, ...,n) be an
n-cycle and let S be the permutation defined by
S'(j) = —jmodn, for j=1,...,n; then (R,,S’) defines a
permutation representation of D,,. Let T = (R)) >~ Z,, and
define K as the normalizer (Artin, 1991) of T:

K:=Ng(I)={o€S,:0 'To =T} (15)

We point out that K thus constructed is referred to as the
holomorph of the group Z,, and denoted by Hol(Z,) (Hall,
1959). We have the following:

Lemma 4.1. D,, is a proper normal
K = Hol(Z,) whenn =5orn >17.

subgroup of

Proof. We have, using notation as in equation (15),
ceK <+ oTo'=T <+ OoRo'eT <
o(1,2,...,n)0 ' =(1,2,...,n)" for some meZ, <
(6(1),0(2),...,0(n)=(1,2,...,n)" for some m € Z, with
gcd(m,n) =1 [otherwise (1,2,...,n)" decomposes into
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disjoint cycles] <= Vj € Z,,, o(j) = mj + [ for some m, |l € Z,
with ged (m, n) = 1. To sum up:

K={ceS,:ImeZ;,1€Z,:0()=mj+1,Vj€Z,}.

K contains R}, and §’, which correspond to m =1,/ =1 and
m = —1, [ = 0, respectively. It follows that D,, is a subgroup
of K. We notice that |K| = ¢(n)n, which is greater than 2n for
n =5orn > 7.Hence D,, is a proper subgroup of K for these
values of n, which correspond to the non-crystallographic
cases.

In order to prove the normality, we write

D,, ~ (R,) U (R,)S' = TUTS.

Define 0 € K by o(j) =mj+ 1L We want to prove that
oD,, =D,,o. Clearly oT = To by definition of K [cf. equa-
tion (15)]. We are then left to show that ¢7S = TS'o. For
s,j€Z, we have ((R,)'S)(j)=s—j, which implies
(0((R,))'SYo™1)(j) = ms — j + 2I. Therefore, o((R,)'S)o~! =
(R.)™ %S’ hence 0TS = TS'o, and the result follows. |

We now prove the following:

Proposition 4.1. K = Hol(Z,) is a subgroup of P(L,,)).

Proof. Let us define the functions ¢, ; € Aut(Z[£,]) by

n—1 n—1
th(Z a,-éi}) = Zag:“f“, meZil1eZ, (16

j=0 j=0

Notice that the elements t,, o, with m € Z,, correspond to the
Galois automorphisms o,,, which constitute the Galois group G
of Q). LetK' = {t,,,:m € Z,;,l € Z,}. K' is a G-containing
subgroup of Aut(Z[én]). In particular, composition of two

elements is given by

tm,[ : tnl’,l’ =1 (17)

mm’ ,ml'+1>

and the inverse of an element ¢, , is ¢, 1.
be the function

9(0) = tm,l’

6 is an isomorphism by construction. We define D), := 6(D,,).
By Lemma 4.1, we have that D), is a normal subgroup of
K' < Aut(Z[§,)).

We can write the Minkowski embedlding of Z[§,] as L) =
{ty, 0@ty 0(2) 1z € ZIE, € C¥" =~ RY™ | where 1 =
V1< <Vymyp <n/2 and ged(y;, n) =1, for all j. We can
then lift ¢, ; as in equation (14), and obtain

;m,l . n_l(z) = n_l(tm,l(z)) = (tm,O([m,l(Z))v ] tmyw(,,)/z,o(tm,l(z))>
[by§7)] (

. Letd: K — K’

—m

o(j) =mj+ L

thleII(Z)’ e tmyw(n)/z~yw(n)/2 (Z))
[by (16)] i /2!
= ( ﬁl tmyl.O(Z)s o &VJ( " tmyw(n)/z (Z)) '

Therefore 7, just rearranges the coordinates of 7 '(2),
possibly converting some of them to their complex conjugates
and/or multiplying them by a power of &,. Hence K’ stabilizes

the lattice £, and this action is orthogonal. Thus K’ is a
subgroup of P(L,) and the result is proved. o

It follows that we can construct nested point sets with n-fold
symmetry using the extension K = Hol(Z,) and the
Minkowski embedding £,,. The number r of distinct radial
levels obtained via projection is at most

ol _ pln)

r<[K:H]= o 5

4.1. Fivefold symmetry

As a first example, we consider the case n = 5. In this case,
the Minkowski embedding of D,, is isomorphic to the root
lattice A, (Baake & Grimm, 2013), whose simple roots are
given by a; =¢, —e¢;, for i=1,...,4, and e; denotes the
standard basis of R’ [cf. also Carter (2005) for more details on
root systems of semisimple Lie algebras]. With respect to the
basis of simple roots, we obtain a representation H of D,
which is a subgroup of the lattice group A(A,) (which is
isomorphic to the symmetric group S;):

1.0 0 0 11 0 0
1. 0 0 -1 0 1 0 0

H:< 1 0 -1 o|]lo 1 0o -1 > (18)
1 -1 0 0 0 1 -1 0

This representation splits into two two-dimensional irreps,
which induce a decomposition R* ~ EV @ E®, where E"
and E@ are both totally irrational with respect to the root
lattice A,. A basis for each of them can be found using tools
from the representation theory of finite groups (Fulton &
Harris, 1991). The projection 7" : R*— E® is given by

ORI (—ru/3 —7 3-1 0 —V3- 1:)
P 261 -1 2—t 27 2-t )
(19)

where 1:=1(1+ V/5) denotes the golden ratio and
7 :=1— 1 its Galois conjugate. The space E(!) carries the
vTH2 >> (20)

irrep p,:
_[(1 01/  —7
L2=\W\o —1)2\ 12 7

With the help of GAP, we study the set A, of subgroups of
A(A,) containing H [compare with equation (6)]. There is a
unique chain of subgroups containing a proper extension of H:

H<K C AA,), (1)

where K is, in fact, isomorphic to Hol(Zs). The explicit
representation of K is given by

574

Reidun Twarock et al.

+ Orbits of non-crystallographic groups and viruses

Acta Cryst. (2015). A71, 569-582



research papers

° ®
° ®
® ® )
® ° ®e ° L4 ¢
° ° ° °
)
°
° ° ° °
° ° o ® ° ° .
" ° N ® °
° °
(@) ()
Figure 1

e ® exactly three Bravais lattices left invar-
° iant by Z in R®, namely the simple cubic
(SC), face-centred cubic (f.c.c.) and
body-centred cubic (b.c.c.) lattices
(Levitov & Rhyner, 1988). The point
° group of these lattices is the hyper-

octahedral group in six dimensions,
. which we denote by By [cf. equation

o (]
© B, ={0 € 0(6): Q=M € GL(6, Z)}
= 0(6) N GL(6, Z),

Examples of point sets with fivefold symmetry via projection of orbits of points from the A, root

lattice in R*. The lattice point v = (1, 2, 4, 3) (whose coordinates are written with respect to the
basis of simple roots) is taken as seed point from the orbits under the groups [cf. equation (21)]: (a)

‘H >~ Dy, (b) K >~ Hol(Zs) and (c¢) A(A,) = S;s.

0 -1 1 0 00 0 —1
K:<—1 10’100—1,
0 1 0 010 —1
0 1 -1 001 —1
10 0 0
10 -1 1
01—11>’
01 —1 0

The group K corresponds to the point group 54 given in Janner
(2010b). We point out that, by Theorem 3.1, the point sets
obtained from projection of orbits of points of the root lattice
A, consist of at most two radial levels, which can either be two
nested decagons or two nested pentagons. In Fig. 1 we show an
example of such point sets.

5. Nested point sets with icosahedral symmetry

As mentioned in §1, icosahedral symmetry plays a funda-
mental role in virology, carbon chemistry and quasicrystals.
For applications in the natural sciences, it is important to
distinguish between chiral and achiral symmetry. Chiral
icosahedral symmetry is described by the icosahedral group Z,
which consists of all the rotations that leave an icosahedron
invariant and admits the presentation

T =(g8: g% = gg = (gzg3)5 =e),

where g, and g, are a two- and threefold rotation, respectively.
It has order 60 and it is isomorphic to the alternating group 2.
On the other hand, achiral icosahedral symmetry corresponds
to the full symmetries of an icosahedron (i.e. reflections
included), and it is described by the Coxeter group H;, whose
order is 120 and it is isomorphic to Z x Z,.

For applications in virology, we focus firstly on chiral
icosahedral symmetry, since not all viral capsids are invariant
under reflections. Since the icosahedral group contains five-
fold symmetry, it is not crystallographic in three dimensions.
Its minimal crystallographic dimension, in the sense of Defi-
nition 2.1, is six (Senechal, 1995). In particular, there are

which consists of all the 6 x 6 ortho-
gonal and integral matrices. It is
isomorphic to the wreath product
Z, 'S¢, where S denotes the symmetric
group on six elements (see Appendix A). Its order is 2°6! =
46 080. In what follows, we will focus on the SC lattice:

6
Ly = @ Ze;,
i=1

where e;,, i =1, ..., 6,is the standard basis of R®: its point and
lattice groups coincide [cf: equation (1) and equation (2)]. The
crystallographic representations of Z have been classified in
Zappa et al. (2014). They are all conjugated in Bg; a repre-
sentative Z can be chosen as the following:

00 0 0 0 1
00 0 0 10
) 00 -1 0 0 0
=14 o 1.0 0
0 1 00
10 0 0 0
0 0 00 1
0 100
) 0 —1 00 0
I(g) = 0 10 0 0 (22)
1 00 0
0 01 0

7 leaves two three-dimensional subspaces invariant, denoted
by El and E*, that are both totally irrational with respect to
the SC lattice. It follows that Z decomposes, in GL(6, R), into
two three-dimensional irreps, usually denoted by 7 and T,.
An explicit form of T, useful for computations, is given by
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) -7 1 T
Ti(g) = 5 1 -t =7 |,
T -7 -1
) T -7 1
Ti(g3) = ) T -1 =t (23)
1 -t 7
The projection 7! : R® — El is given by
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T 0O -1 0 =t 1
0O —t -1 0]. (24)

1
|1 <
V22+9\o 1 ¢+ 1 0 1

For achiral icosahedral symmetry, the crystallographic
representations of H, are easily computed using the direct
product structure Z x Z,. Specifically, if I' = {1, —1} is the
non-trivial irrep of Z,, then the representation Z Q1T is a
crystallographic representation of Hj, and is such that
IQr~T,IrdT,®TI in GL(6,R). We point out that
there exist other crystallographic groups in six dimensions
which contain the icosahedral group as a subgroup, and these
can be found using the GAP package CARAT (Opgenorth et
al., 1998). However, the representations of Z induced by this
embedding do not split into two three-dimensional irreps of Z,
according to the classification provided by Levitov & Rhyner
(1988), and hence they are not suitable for the construction of
nested point sets by projection presented here.

In order to construct nested structures with icosahedral
symmetry, we consider the set of all the Z-containing
subgroups of By [cf. equation (6)]:

A :={K <Bg: T <K} (25)

With the help of GAP, it is possible to compute the set A;. In
order to make computations efficient, we use some results
from group theory. In particular, we recall that, if G is a
soluble group, then every subgroup of G is soluble
(Humphreys, 1996). Since the icosahedral group is isomorphic
to 2, it is not soluble. Therefore, any subgroup H of B
containing Z as a subgroup must not be soluble. Moreover, it
cannot be Abelian (since 7 is not) and the order of H must be
divisible by |Z| = 60, as a consequence of Lagrange’s theorem.
With these considerations, we provide the following algorithm.

Algorithm 5.1. In order to determine A;, perform the
following steps:

1. Compute the conjugacy classes C; of the subgroups of By.

2. List a representative K; for each class C,.

3. Rule out those representatives which have one of the
following properties:

(a) K, is soluble;

(b) K; is Abelian;

(c) 60 JIK,I-

4. For each K; not ruled out, compute all the elements
G; € C. If T <G, then add G; to A;.

The algorithm was implemented in GAP and the results are
given in Table 1. There are 13 elements in A;, which we
denote by G, for i =1, ...,13. A set of generators for each
group G is given in Appendix A. Clearly, G, and G,; are the
icosahedral and hyperoctahedral group, respectively, whereas
G, is isomorphic to H;. In Fig. 2 we show the graph of
inclusions of the groups G,.

The projections into E' of the orbits of lattice points under
the groups G; produce nested point sets with icosahedral
symmetry at each radial level. An example is given in Fig. 3.
Every radial level corresponds to the union of cosets of G;
with respect to Z. It is worth pointing out that every group G;,

Table 1
Classification of the subgroups of B, containing the icosahedral group Z
as a subgroup.

Subgroup Order Index
G ~T1 60 1
G, ~ H, 120 2
G, 240 4
G, 1920 32
G; 3840 64
Gy 3840 64
G, 3840 64
Gy 7680 128
G, 11520 192
Gy 23040 384
G, 23040 384
G, 23040 384
G,; = Bg 46080 768

for i>3, contains H; as well as 7 as subgroups. From a
geometrical point of view, this implies that the resulting orbits
in projection are all invariant under reflections, i.e. each radial
level possesses full icosahedral symmetry H;. This observation
provides a sharper bound on the number of distinct radial

Be
G G2 Gro Gy
Go G5 G(; G7
Gy Gs
H;
I
Figure 2

Graph of inclusions of the subgroups containing the icosahedral group
embedded into the hyperoctahedral group.
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levels in projection: in fact, this is given by #n/2, which is the
index of H; in G; (recall that n is the index of Z in G)).

6. Applications to viral capsid architecture

In this section we show that this group theoretical setup is a
powerful tool to rationalize viral architecture. Specifically, the
classification of the chains of subgroups of B, extending
icosahedral symmetry, derived in §5, provides a suitable
mathematical framework to understand structural constraints
on viral capsids. As a first step towards this goal, we identify a
finite library of point arrays, corresponding to the projected
orbits of six-dimensional lattice points under the groups G,
previously classified. Elements in this library depend on two
quantities: the group G; € A; and the lattice point v € L.
The G, are provided by our classification. As can be seen from
Fig. 2 and Table 1, the first group that gives icosahedral nested
shells in projection is G5. The index of G, with respect to Hj is
2; therefore the number of radial levels is at most two. In order
to obtain deeper information about the geometry of capsids,
more radial levels are necessary. Therefore, we neglect the
orbits of G, and consider the subgroups G;, fori =4, ...,13.
Moreover, v is chosen as follows: since the six-dimensional
lattice is infinite, we introduce a cut-off parameter N > 0 and
consider all lattice points within a six-dimensional cube,

I :==[-N,N] x ... x[=N,N]=[-N,N]° C L.

containing 2N + 1)° lattice points. In particular, we consider
all orbits of the groups G; within a bounded area around the
origin defined by N.
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Figure 3

Projected orbit of the lattice point v = (0,0, 1, 1, 2, 1) under the group
G,. Each layer in the resulting nested point set possesses achiral
icosahedral symmetry.

Based on this setup, the library of point arrays is obtained
via the action of the group G, on the set 116\,, fori=4,...,13.
This action is well defined since G;, is a subgroup of the point
group of the lattice, and therefore lattice points are mapped
into lattice points under elements of G, Let DX,) =
{vﬁi), R vfl_)} be a set of distinct representatives for the orbits
of G;in I%. Since G, C G, for alli =5, ..., 13, and thus their
fundamental domains are contained in that of G,, the set D%)
contains the sets of representatives Dg\i,) for the groups G,
i=35,...,13, which are not necessarily distinct. Since we do
not have information on the group G, apart from its genera-
tors, the set Dg:,‘) is computed numerically according to the
following procedure:

(i) For v € I}, compute O (v).

(ii) Among all v; € O (v) identify ¥ with the largest
number of positive components, choosing at random if two or
more points fulfil this property.

(iii) Add v to D%) and repeat from the start until all v € I§,
have been considered.

In particular, DX‘,) thus obtained contains 47, 183 and 529
points for N = 2,3 and 4, respectively. With this setup, the
library is given by

S(N) = {{n”(ocj(v))} veDW j=4,..., 13}, (26)

which by construction consists of distinct point arrays.

Once the set S(N) is computed for a chosen value of N, we
retrieve the information of the viral capsid in consideration
from the VIPER data bank (Carrillo-Tripp et al., 2009). These
PDB files contain structural data of the viral capsid, such as
the coordinates of the atomic positions of the capsid proteins
and in many cases also of the packaged genome. Following
Wardman (2012), we represent the atomic positions of the
proteins by spheres of radius 1.9 A in the visualization tool
PyMOL. In order to compare the point arrays with biological
data, and hence find those point sets which best represent the
capsid features, we use the following procedure:

(i) For any group G; € A;, we compute with GAP a
transversal T = (ggi), cees ﬁj)) for the right cosets of 7 in G,
where n; denotes the index of 7 in G,.

(i) Given a point array n' (Og,(v)) € S(N), we compute the
set

LO%) = {|7T|‘(g](-i)v)| j=1,..,n)

The cardinality of L?(v) is the number of distinct radial levels
in the point set 7!(Og;(v)). We denote by RY, (v):=
max;L¥(v) the largest radial level which corresponds to the
outermost layer in the nesting. This is used to scale the point
set so that the capsid is contained in the convex hull of the
projected orbit.

(iii) The rescaled orbit is then compared with the data in the
PDB file. We start by selecting those point arrays whose
outermost layer best represents the outermost features of the
capsid. Specifically, we consider a coarse-grained representa-
tion of the capsid surface by locating the most radially
distal clusters of C, atoms using the procedure described
by Wardman (2012). Denoting these clusters by C,,
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Figure 4

(©)

Blueprints for the capsid of Pariacoto Virus (based on PDB file 1{8v, Tang et al., 2001). (a) Cross section of the capsid superimposed with the projected
orbit of v = (2, 1, —1, —1, 0, 0) under the group G,. The point set consists of 960 points situated at eight distinct radial levels which provides constraints
on the capsid architecture. (b) Close-up view of the outermost layer of the projected orbit, which encodes the locations of the spikes around the quasi-
threefold axes. (c¢) The layers between the spikes and the genomic material map around the inner surface of the capsid proteins. (d) The third farthest
layer from the origin gives information on RNA organization: the 120 points, forming a truncated icosidodecahedron, map around the dodecahedral

RNA cage.

k=1,..., M,the C, can be approximated by M spheres B, ()
of radius 7 (for the numerical implementation, we chose the
cut-off #=10 A). For any orbit 7! (Og,(v)), we isolate its
external point layer L") by computing the points situated at
distance R,,,, (introduced above) from the origin. The orbit is
then selected if, for every point x € L©"W, there exists
k € {1,..., M} such that x € B,(F).

(iv) Among the point sets thus selected, we determine those
that best match the other capsid features. For this, we isolate
the inner radial levels using the decomposition of orbits into
cosets and compare them with the location of the genomic
material and the inner capsid surface. The cardinalities of the
point arrays are not large enough to match with atomic posi-
tions, but they rather map around material as in Keef et al
(2012); this comparison can be achieved via visual inspection
using the surface representation of the capsid in PyMOL.

We consider here two case studies: Pariacoto Virus and
Bacteriophage MS2, both 7' = 3 capsids in the Caspar—Klug
classification. These were chosen in order to facilitate
comparison with Keef et al. (2012), where point arrays derived
from affine extensions of the icosahedral group were used to
generate blueprints for viral architecture, and Janner (20115),
where virus architecture is approximated by lattices.

6.1. Pariacoto Virus

Pariacoto Virus (PaV) is a single-stranded RNA insect
virus, whose X-ray crystal structure reveals approximately
35% of the RNA organized as a dodecahedral cage of duplex
RNA in proximity to the inner capsid surface (Tang et al.,

2001). A characteristic feature of this capsid are the 60
protrusions of approximately 15 A around the quasi-threefold
axes, each formed by three interdigitated subunits. These are
the outermost capsid features that we will match to the largest
radial levels in the point arrays of our library in order to
identify the best-fit point array. For this we performed the
procedure described above, and found that the best fit for this
capsid is given by the projected orbit of the lattice point
v=1(2,1,—1,—1,0,0) under the group G (see Fig. 4). This
point set consists of 960 points, arranged into eight radial
levels. The outermost level is formed by 60 points which map
onto the spikes at the 60 local threefold axes, see Fig. 4(b). The
third radial level from the origin describes the organization of
the RNA inside the capsid. This set is made up of 120 points
forming a truncated icosidodecahedron, which maps around
the dodecahedral RNA cage, see Fig. 4(d). The fifth radial
level from the origin, located between the RNA and the
spikes, consists of 120 points, organized into ten and 12 clus-
ters of six and five points each, which are located around the
three- and fivefold axes, respectively. In particular, we show in
Fig. 4(c) a close-up view of the clusters with fivefold symmetry.
Note that these points provide constraints on the lengths
of the protein helices and the positions of the protein subunits
of type C.

We point out that Gy is the group of smallest order in the set
Aj; that provides a blueprint for PaV that captures the loca-
tion of both capsid proteins and the RNA collectively. The
orbit of ¥ under G, in projection, which by construction is
contained in 7!(Og, (¥)), maps around the spikes, but totally
lacks information on the organization of the genomic material
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Figure 5

The projected orbits of v = (2,1, 1, —1, 0, 1) under the group G, provide blueprints for the capsid
of Bacteriophage MS2 (based on PDB file 1aq3, van den Worm et al., 1998). (a) Cross section of the
capsid: the point set consists of nine different radial levels which encode information on the position the
of capsid proteins and the genomic material of the virus. (b) Close-up view of the outermost layers
of the projected orbit which map around the capsid proteins. (¢) Close-up view of the RNA density.
The second and third innermost layers (in blue and green, respectively) map around the fivefold

symmetry axes and connect the two RNA shells.

inside. Moreover, all the orbits of ¥ under the G¢-containing
G, € A;, i.e. Gg and G,,, as well as By (cf. Fig. 2) coincide in
projection, implying that they contain no additional informa-
tion on capsid architecture. Hence G, can be chosen as the
six-dimensional symmetry group that induces the three-
dimensional structure of the PaV capsid in projection.

6.2. Bacteriophage MS2

Like PaV, MS2 is a single-stranded RNA virus, witha 7' =3
capsid. Cryo-electron microscopy reveals a double-shell
structure in the organization of the genomic RNA (Toropova
et al., 2008), and we will demonstrate here that our approach is
able to capture this. With our procedure as above, we found
that the projected orbit of v =(2,1,1,—1,0,1) under the
group G, is the point set that provides the best blueprint for
the capsid (see Fig. 5). Specifically, this orbit contains 960
points, that are arranged, in projection, into nine radial levels.
The two outermost layers, L® and L®, map to the exterior of
the capsid: L consists of 60 points, arranged into 12 clusters
of five points each, positioned around the fivefold symmetry
axes of the capsid, whereas L® has size 120 and is made up of
20 clusters of six points, located around the threefold axes.
This is consistent with the quasi-equivalent structure of the
T = 3 capsid. We point out that L® and L® are in fact almost
situated at the same radial level (the ratio of their radii is
~ 1.064814), and collectively map around the capsid exterior
as demonstrated in the close-up in Fig. 5(b).

All other points of the array are from a mathematical point
of view related to these outermost shells, and should therefore
also map around material boundaries. We start by comparing
the point array with the icosahedrally averaged cryo-electron
microscopy structure at 8 A resolution in Toropova et al.
(2008). As shown in Fig. 5(a), the innermost radial levels of the

point array define the interior of the
inner RNA shell. Moreover, there are
points mapping around the outer and
inner surfaces of the other shell. There
is a layer of points between the shells
that at a first glance seems to float in
space, but a close inspection of the data
set reveals that they are in fact posi-
tioned around the RNA connecting the
outer and inner shell (see also the close-
up in Fig. 5c). This icosahedrally aver-
aged data set has been obtained via a
superposition of a large number of viral
particles, aligned according to their
symmetry axes, in order to enhance the
resolution. However, in any individual
particle, the RNA is organized in an
asymmetric way, that is consistent with
icosahedrally averaged density.
Since our point arrays are not fully
constraining the structure, but are
providing blueprints for the overall
organization of the virus, we expect the
asymmetric organization to be consistent with our symmetric
point arrays. In order to test this hypothesis, we compare our
model with the asymmetric RNA density of a cryo-electron
microscopy tomogram at about 39 A resolution (Dent et al.,
2013; Geraets et al., 2015), see Fig. 6. Since the density is shown
in a cross-sectional view, the density in the two shells cannot
be seen in full. However, as expected, the density is consistent
with the radial levels defined by the point arrays, consistent
with our hypothesis that the mathematical model indeed
describes material boundaries in this virus. Taken together,

Figure 6

A cryo-tomogram of Bacteriophage MS2, based on an RNA density map
provided by Dent et al. (2013), superimposed on the best-fit point array
for Bacteriophage MS2. The top of the figure shows a portion of the
bacterial pilus, the natural receptor of this virus. The surface representa-
tion shows both the capsid on the exterior and the genomic RNA. The
inner and outer RNA shells follow the blueprints of the array points, but
realize it in an asymmetric way as expected.
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these results imply that the group G, is the group of smallest
order in our classification that provides structural constraints
on the capsid proteins and the genome organization of MS2,
and is therefore the symmetry group in six dimensions that
describes the structure of this virus in projection.

7. Conclusion

The method presented here is a new way of constructing finite
nested point sets with non-crystallographic symmetry from
group theoretical principles. It complements previous studies,
in which such point sets were constructed via affine extensions
of non-crystallographic groups. The latter, being based on the
theory of infinite-dimensional Kac-Moody algebras, produced
infinite point sets, and a cut-off parameter had to be intro-
duced in order to obtain finite structures. This implies that the
point sets do not correspond to orbits of finite groups. The
method developed in this paper, on the other hand, provides
for the first time a characterization of non-crystallographic
finite multi-shell structures which is entirely based on the
theory of finite groups in a higher-dimensional space
which admits a crystallographic embedding of the non-
crystallographic symmetry.

With application to viruses in mind, we discussed the case of
icosahedral symmetry in detail and provided a classification of
all the subgroup chains of the hyperoctahedral group that
contain a crystallographic embedding of the icosahedral
group. We showed that the point sets induced by orbits of
lattice points under such groups via projection into a three-
dimensional invariant subspace provide a library of structural
constraints on the structural organization of viruses. In parti-
cular, we presented two case studies, Pariacoto Virus and
Bacteriophage MS2, both T' = 3 viruses, and showed that the
corresponding constraint sets indicate material boundaries in
these viruses. We note also that previous approaches provided
good approximation for the material boundaries (Janner,
2011b; Keef et al., 2012; Salthouse et al., 2015); however, in
contrast to these approaches, we approximate here virus
architecture via point arrays that are generically finite,
because they stem from orbits of finite groups. As already
pointed out, the point sets display achiral icosahedral
symmetry at each radial level, and hence they are invariant
under reflections, i.e. the non-crystallographic Coxeter group
H,. However, since the point arrays only provide constraints
on the structural organization of a virus, but do not fully
determine its structure, this does not imply that the virus must
have full H; symmetry. Indeed, as we have discussed above,
viruses may realize the blueprints given by the point arrays in
an asymmetric way. This can occur, e.g., via asymmetric
components in the viral capsid such as the one copy of a
maturation protein that is believed to replace one of the
protein dimers in the capsid shell of Bacteriophage MS2 (Dent
et al., 2013), or by the way in which genomic material realizes
the polyhedral genome organization observed via cryo-
electron microscopy. As an example of the latter, we discussed
a cryo-electron microscopy tomogram of the packaged RNA
of Bacteriophage MS2. However, knowledge of the possible

blueprints is important, as it can be used, in combination with
other techniques, in the analysis of low-resolution data of the
genome organization in viruses (Geraets et al., 2015).

Viruses are known to exhibit icosahedral symmetry in their
capsids due to the principle of genetic economy: the use of
symmetry in the capsid organization enables viruses to code
for a small number of different types of building blocks, thus
minimizing genome length, whilst building containers with a
maximal number of repeats (corresponding to the order of the
symmetry group) of the basic building blocks, thus achieving
maximal container volume. The high level of symmetry that is
observed at different radial levels, including genome organi-
zation, may seem surprising. However, the fact that the
interaction sites between genomic RNA and capsid proteins
are at symmetry-related positions with reference to capsid
architecture may provide an explanation for the correlation
between capsid architecture and genome organization in
terms of local interactions.

Moreover, our analysis of the group theoretical under-
pinnings of viral architecture has implications for our under-
standing of the dynamic properties of viruses. For example, it
provides a framework for the analysis of conformational
changes in the viral capsid, which are structural rearrange-
ments of the capsid proteins that are important for larger
classes of viruses to become infective. Specifically, such
structural transitions can be modelled with a crystallographic
approach, using a generalization of the concept of Bain strain
for multi-dimensional lattices (Indelicato et al., 2011) or in the
framework of the Ginzburg-Landau theory of phase transi-
tions (Zappa et al., 2013). Our work opens up a new avenue for
a description of such structural transitions in terms of
Hamiltonians that are formulated in terms of the six-
dimensional symmetry groups that induce the three-
dimensional structures of the virus in projection.

More generally, previous mathematical work on affine
extensions of non-crystallographic symmetries has resulted in
applications beyond the area of virology for which these
concepts had originally been introduced. For example, the
organization of different fullerene shells of carbon onions has
been modelled with previous approaches (Janner, 2014;
Dechant et al., 2014), and we expect that our new approach
should be relevant in this context as well. Moreover, a math-
ematical formulation of systems with non-crystallographic
symmetries is a challenge in wider areas of physics, such
as integrable systems, where models in terms of non-
crystallographic root systems have been introduced (Fring &
Korff, 2005, 2006); we expect that the use of projections of
the higher-dimensional symmetry groups, that contain non-
crystallographic symmetries as crystallographic embeddings,
could provide a new perspective also in this context.

APPENDIX A
In this Appendix we provide the generators of the
subgroups G,, fori =1, ..., 13, which constitute the set A; (cf.

§5). For the computations in GAP, it is convenient to work
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with permutation instead of matrix representations. In parti-
cular, the hyperoctahedral group is isomorphic to a subgroup
of the symmetric group §;,. We briefly recall this result here;
for more details, we refer to Baake (1984).

Let a € Z5 and let  be a permutation in the symmetric
group S,. The set {(a, 1) : a € Z5, w € S4} is a group under the
multiplication

(a, )b, 0) := (a, +, b, m0), (@p)k = a,p, k=1,...,6,

known as the wreath product of Z, and S, and denoted by
Z, 2 S¢. It is isomorphic to B, via the function T : Z, : S¢ — B,
given by

[T(a, m)]; = (=1)98; 1. 1,7 =1,...,6.
The function ¢ : Z, 1 S¢ — §,, given by

(k) + 6a,
7k —6)+6(1 —a;_¢)

ifl1<k<6

pla, w)(k) := { if7<k<12

is an injective = homomorphism; the composition
@oT™1: By, — S, can be used to map By into a subgroup of
S,,. In particular, the generators of B, are given by

B, ~((1,2)(7,8),(1,2,3,4,5,6)(7,8,9, 10, 11, 12), (6, 12)),
and for the representation 7 of T we have [¢f: equation (22)]:

T = ((1,6)2,5)3, 94, 10)(7, 12)(8, 11),
(1,5,6)(2,9,4)(7, 11, 12)(3, 10, 8)).
With these results, Algorithm 5.1 was implemented in GAP.
The generators for the groups G,, for i =2,...,12, are the
following:
(1,5,6)(2,9,4)(7,11,12)(3, 10, 8),
(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)),

G, = ((3, 11)(4, 12)(5, 9)(6, 10), (2, 3, 5, 4)(6, 12)(8, 9, 11, 10),
(1,2)3, 5)(7, 8)(9, 11)),

G, = ((1,3)(2, 8)(4,5,10,11)(7, 9),
(1,3,4,7,9,10)(2, 5,12, 8, 11, 6)),

Gs = ((1,8,9,7,2,3)(4, 6,5)(10, 12, 11),
(1,2)(3, 5)(7, 8)(9, 11), (4, 10)),

Gy = ((3,9)(6,12), (3,4, 5,6)(9, 10, 11, 12),
(1,7)6,12),(1,2,9,10,11,7, 8, 3, 4, 5)(6, 12)),

G, = ((1,7)(6, 12), (2, 8)(6, 12),
(1,2,9,10,11,7,8,3,4,5)(6,12),
(3,4,5,12,9,10, 11, 6)),

Gy =1((1,8,9,7,2,3)4, 6,5)(10, 12, 11),
(1,2)(3,5)(7,8)(9,11), (3,4, 5, 6)(9, 10, 11, 12), (4, 10)),

G, = ((2, 8)(6, 12), (1, 7)(2. 5, 3)(6, 12)(8, 11, 9),
(1,3,7,9)(2,12,8,6),(1,3,2,7,9,8)(4, 5,12, 10, 11, 6)),

Gy = ((1,2,6,4,3)(7,8,12,10,9), (5, 11)(6, 12),
(1,2,6,5,3)(7,8,12,11,9), (5, 12, 11, 6)),

Gy, = ((1,8,9,7,2,3), (1,7)(2, 3, 4)(8, 9, 10),
(1,7)(2,3,5)8,9, 11), (2,6,3,5,4)(8, 12,9, 11, 10),
(5, 11)),

Gy, = ((2,8)(6,12),(1,2,6,5,3)(7, 8,12, 11, 9),
(5,6)(11, 12), (1,2, 6, 4, 3)(7, 8, 12, 10, 9)).
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