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Abstract

Using cross-linking coupled to matrix-assisted laser
desorption/ionization mass spectrometry and CLIP-
Seq sequencing, we determined the peptide and
oligonucleotide sequences at the interfaces between
the capsid proteins and the genomic RNA of
bacteriophage MS2. The results suggest that the
same coat protein (CP)–RNA and maturation protein
(MP)–RNA interfaces are used in every viral particle.
The portions of the viral RNA in contact with CP
subunits span the genome, consistent with a large
number of discrete and similar contacts within
each particle. Many of these sites match previous
predictions of the locations of multiple, dispersed
and degenerate RNA sites with cognate CP affinity
termed packaging signals (PSs). Chemical RNA
footprinting was used to compare the secondary
structures of protein-free genomic fragments and the
RNA in the virion. Some PSs are partially present in
protein-free RNA but others would need to refold
from their dominant solution conformations to form
the contacts identified in the virion. The RNA-binding
peptides within the MP map to two sections of the

N-terminal half of the protein. Comparison of MP
sequences from related phages suggests a similar
arrangement of RNA-binding sites, although these
N-terminal regions have only limited sequence
conservation. In contrast, the sequences of the
C-termini are highly conserved, consistent with them
encompassing pilin-binding domains required for
initial contact with host cells. These results provide
independent and unambiguous support for the as-
sembly of MS2 virions via a PS-mediated mechanism
involving a series of induced-fit viral protein interac-
tions with RNA.
© 2015 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Spherical viral capsids assemble by two distinct
mechanisms [1]. Many double-stranded DNA
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phages and Herpesviruses form a protein-only shell
of coat and scaffold proteins, a pro-capsid, into which
the genome is actively pumped via specialzsed
energy-requiring enzymes as the scaffold proteins are
removed. Spherical, positive-sense, single-stranded
RNA (ssRNA) viruses, which include many major
pathogens in all kingdoms of life, assemble by the
co-assembly of coat protein (CP) subunits around the
genome [2]. The free energy for this process has been
thought to come mostly from favorable electrostatic
interactions between the negatively charged RNA and
positively charged residuesanddomains in theCPs [3–
12]. Adding to this view are the observations from in
vitro reassembly experiments showing that many viral
CPs can assemble into virus-like particles in the
absence of RNA, in the presence of non-cognate
RNAs, or even anionic polymers. High-resolution X-ray
structures of ssRNAvirusesmostly reveal only a limited
ordering of the encapsidated genome, again implying
that RNA has no, or very little, overt roles in virion
assembly [13–17]. However, the specificity of genome
packaging is incompletely explained by such an
assembly mechanism. Virions from natural infections
predominantly encapsidate their cognate genomes,
with onlyminormisincorporation of cellular or degraded
RNAs [18,19]. These outcomes hint at more complex
regulation of the assembly process.
Most families of these viruses encode single-copy,

high-affinity CP-binding sites in their genomes that
are thought to act as assembly initiation sites [20,21].
These RNA sequences form defined secondary
structure elements that are specifically recognized
by the viral CPs. The best characterized of these
interactions is the 19-nt-long stem–loop named TR in
the MS2 genome (Fig. 1) that acts as a translational
operator for the replicase cistron [22]. This also
functions as the assembly initiation site, both in vitro
and in vivo [23,24]. Mutational disruption of this
packaging signal (PS), however, does not result in
discernable defects in viral infectivity or virion
formation, although similar mutation of the TR
recognition site in the CP ablates both these events
[25]. This result led to the suggestion that RNA sites
other than TR act as the site of assembly initiation in
its absence, providing a robust assembly mecha-
nism. Previously, we showed (Fig. 1) that TR–CP
interaction has another consequence, namely, that
binding of the stem–loop biases the conformational
equilibrium of the CP dimer away from the symmet-
ric, RNA-free C/C quasi-conformer and favors the
asymmetric A/B dimer [26,29,32]. The mechanism
underpinning this allosteric conformer switch was
investigated using all-atom normal mode analysis
[33,34]. The results suggest that many RNA stem–
loops with similar structural features to TR could
trigger similar changes; that is, although translational
repression is highly sequence specific, the allosteric
effect is much less so. This both explains the
mutagenesis data and suggests that up to 60 such

stem–loops might lie within the MS2 genome, this
being the number of A/B quasi-conformer dimers
required to construct the T = 3 capsid. Electron
microscopy (EM) reconstruction of the virion is also
consistent with this concept revealing extensively
ordered genome segments in contact with the inner
surface of the CPs (Fig. 1b, right half). Since the
X-ray structures [27,28,35] of MS2 and other RNA
phages do not show much density for the RNA, the
previous inferences based on the apparent absence
of such contacts can be also be ignored.
These ideas led to the introduction of a novel model

for virion assembly based on the presence of multiple,
degenerate and dispersed RNA sequence motifs/
structures called PSs that bind their cognate CPs.
This concept explains results from single-molecule
fluorescence assays of in vitro assembly of the model
viruses bacteriophage MS2 and STNV [36–39].
Highly cooperative, selective RNA packaging was
observed to occur in vitro at nanomolar concentra-
tions, consistent with the existence of multiple
dispersed stem–loops in these genomes with recog-
nition motifs similar to the known high-affinity PSs
[40,41]. Mathematical modeling of this mechanism
suggests that it provides significant selective advan-
tages for the viruses that use it, including solving the
viral equivalent of Levinthal's paradox [42,43]. There-
fore, PS-mediated assembly could be common for
viruses that infect many different types of host,
although the precise molecular effects arising from
PS–CP contacts could be distinct in each case. An
essential feature of the PS model is that the dispersed
PSs have widely differing CP affinities in order to
regulate the number of initiation events occurring and
avoid kinetic traps. This implies that PS sequences
and structures will be variable and difficult to detect by
sequence searches alone. For MS2 (Fig. 1), we have
determined the molecular details of sequence-specific
recognition of preferred RNA sequences/structures
bound by its capsomere [35,44–54], a CP dimer (CP2),
using X-ray crystallography, and we have investigated
the PS-mediated assembly mechanism using mass
spectrometry [55], analytical ultracentrifugation and
smFCS (single-molecule fluorescence correlation
spectroscopy) [26,36]. Combined with affinity data
[56] and the experimentally determined solution
structure of the genome [57,58], we predicted the
sequences and locations of its PSs [41], identifying a
large percentage of the putative 60 copies required to
regulate assembly of the T = 3 shell (Fig. 1).
In order to confirm the presence of multiple PSs

within the MS2 genome, we have now determined
the contact points between the proteins and RNA
components of intact virions. The results show that
the previous predictions of PS sites in contact with
the phage CP were remarkably accurate, confirming
unambiguously the PS-mediated assembly of this
virion. The data also allow us to assign the functions
of the single-copy/virion maturation protein (MP) to
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Fig. 1. Components of the MS2 virion and its lifecycle. (a) Ribbon representations of the two quasi-equivalent MS2 CP
dimers: The symmetric dimer (C/C) is colored pink, while the asymmetric (A/B) is blue/green. Binding the TR high-affinity
PS, sequence and secondary structure triggers conformer switching of C/C to A/B [26]. In principle, 60 such conformer
switching events are required to create the T = 3 capsid shown in (b). (b) Structure of the MS2 virion. Left, surface view of
the icosahedrally averaged X-ray structure of the T = 3 MS2 virion [27,28]. Right, cutaway schematic of the equivalent EM
reconstitution at 9 Å resolution [29], showing the extensive contacts between the genome, density radially colored pink to
blue as the radius increases and the overlying protein shell. X-ray coordinates for these images were taken from PDB ID
1ZDH. (c) Schematic of the phage lifecycle. Virions initially bind to the sides of the bacterial pilus via the MP. MPs are an
essential single-copy structural component of RNA phages. By a mechanism that remains largely obscure, the RNA–MP
complex but not the remaining capsid shell enters the cell. MP also binds to its own PSs located toward either end of the
MS2 genome [30]. Recent asymmetric reconstruction of the MS2–pilus complex suggests that MP replaces a CP dimer of
the C/C conformer in an otherwise entirely icosahedral protein shell [31], from which position it is ideally placed to contact
the cellular receptor and escort the RNA into the cytoplasm. Note that the presence of the asymmetric MP component
could not be detected in averaged X-ray and EM density maps. Once internalized, the MP is cleaved into two separate
fragments by protease, allowing translation and replication to start. Temporal control of phage gene expression then
regulates the production of progeny genomes and structural proteins that assemble prior to the action of the phage lysis
protein.

433Packaging Signal-Mediated Bacteriophage MS2 Assembly



separate domains (Fig. 1), the N-terminal domain
seemingly encompassing the RNA-binding function
while the pilus-binding function lies within the
C-terminal portion. Sequence comparisons with
other phage MPs suggest that this is a conserved
arrangement. In addition, RNA structure probing has
been used to monitor the presence of PS sites in
CP-free genome transcripts or the virion, revealing
that PSs fall into at least two classes, those that are
present at least some of the time in the protein-free
RNA and those that must refold as assembly
proceeds. An ordered series of induced-fit interac-
tions, similar to those occurring during ribosome
assembly [59–62], likely accounts for MS2 virion
formation and presumably for assembly of other
ssRNA viruses using the PS-mediated mechanism.

Results

Mapping the RNA contacts on both CP and MP
subunits

The genomic RNA footprint on the capsid proteins
within the virion was determined by an RNA cross-
linking and peptide mapping assay (RCAP), used
previously to map the interaction between the capsid
and the nucleic acid of brome mosaic virus [63].
Briefly, the RNA was cross-linked to the virion
proteins in amine-free buffer by treatment with
formaldehyde, followed by digestion with proteases.
RNA and RNA–peptide complexes were then
precipitated with lithium chloride, the cross-links
were reversed and the released peptides were
identified by MALDI (matrix-assisted laser desorp-
tion/ionization)-ToF (time of flight) mass spectrome-
try (Fig. 2a). Control reactions that lacked
formaldehyde did not yield significant amounts of
recovered peptides. In contrast, several peptides
were detected in the cross-linked samples. Peptides
within 0.5 Da of their theoretical molecular mass
were assigned to those generated from theoretical
digests of the MS2 CP or MP proteins (Fig. 2b and/or
c, Fig. 3a, Supplementary Fig. 1 and Supplementary
Table 1). There is an extensive overlap in the
peptides identified by digestion either with trypsin
alone or with trypsin and Glu-C (Fig. 2b). Arginines or
lysines that remain uncleaved in these peptides are
assumed to be the sites of cross-linking to the RNA.
MS2 virion peptides identified using RCAP are

shown mapped onto the amino acid sequences of
both the CP (Fig. 2c) and the MP (Fig. 3a). The CP
peptides in contact with the genomic RNA encom-
pass all the amino acid residues that contact TR in
VLP crystal structures (Supplementary Fig. 1),
including the four β-strands (C–F) that form the
interior face of the CP subunit. Importantly, there are
no RNA contacts that map outside the known

RNA-binding site. This is consistent with the idea
that CP binding to the genomic RNA occurs along
the same RNA-binding face of each CP, as expected
for a PS-mediated assembly mechanism.
The RNA–MP complex is the only part of the virion

to enter the host cell during infection where the MP
undergoes proteolytic cleavage into two fragments
of 15 and 24 kDa that are presumed to be separate
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Fig. 2. RCAP of the MS2 virion. (a) MALDI-ToF spectra
of trypsin-generated peptides co-purified with the MS2
RNA (Materials and Methods) from samples mock-treated
or cross-linked with formaldehyde. (b) Residue numbers of
CP peptides recovered in experiments similar to those
shown in (a) for the different protease treatments. “+”
indicates the intensity of each peptide segment. (c) MS2
CP peptides in contact with the genome in the virion.
Peptides assigned following RCAP are shown in red and
comprise the entire region from amino acid 32 to amino
acid 105, which form the four β-strands, C, D, E and F,
facing the interior of the virion. The secondary structure
elements (PDB ID 2MS2; Fig. 1a) are represented by
green arrows, blue bars and a gold bar for β-strands,
α-helices and a 310 helix, respectively. Residues contact-
ing the TR PS are shown with an asterisk above (Fig. 1b).
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globular domains [64]. The MP RCAP data (Fig. 3a)
are consistent with this idea. All the RNA-contacting
peptides are localized to the first 233 amino acid
residues of the 393-residue protein, implying that it
is orientated in the virion in the C- to N-terminal
direction from out to in. This is also consistent with a
prediction of RNA-binding functional domains [65],
which identifies two motifs located between amino
acids 52–60 and amino acids 162–170 (Fig. 3a) that
are within peptides detected via RCAP. Sequence
comparison with the MPs from other phages reveals

a conserved pattern consistent with this organization
(Fig. 3b). The MPs of phages in the Levivirus or
Allolevivirus families are, respectively, predicted
to encode RNA-binding motifs around amino acids
50–70 and 160–180 despite considerable sequence
divergence over the N-terminal ~140 residues. In
contrast, the C-terminal fragments are highly con-
served, perhaps reflecting the requirement to bind
the same or very similar pilin targets.

Mapping the CP contacts on the viral genome

RNA sequences in contact with the MS2 CP
subunits were identified using CLIP-Seq [63]. The
genomic RNA was cross-linked to virion proteins
using UV irradiation (Fig. 4a). The virion was then
dissociated and the protein-bound RNA fragments
were minimized by hydrolysis in the presence of zinc
ions to produce fragments in the ~25- to 40-nt range,
based on conditions established for a polyAU control
(Fig. 4b). RNA fragments cross-linked to the CP
were then concentrated by immunoprecipitation
with an anti-CP-specific serum. In the absence of
MP-specific antibodies, it is not possible to do the
equivalent experiment for RNA fragments in contact
with MP. The extent of cross-linking was assessed
by SDS-PAGE. UV irradiation produces a small
amount of cross-linking between CP dimers, com-
pared to the non-irradiated control (Fig. 4c); howev-
er, quantification of radiolabeled RNA revealed that it
co-migrated with the CP and that there is an ~60-fold
higher signal for CP-associated RNA in the irradiat-
ed sample (Fig. 4d). The material in these regions of
the gel for both irradiated and control samples was
then released from the membrane by treatment
with proteinase K, TRIzol™ extraction, was ethanol
precipitated and was subjected to NextGen se-
quencing (Illumina MiSeq).
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Fig. 3. Roles of the MP. (a) Sequence of the MPwith the
peptides identified via RCAP highlighted in red. The
Jpred3-predicted secondary structure elements of the
MP are shown using the same format as for the CP
(Fig. 2c). Predicted RNA-binding residues (RNABindR-
Plus) are highlighted in orange. Peptides that are highly
conserved across both Leviviridae and Alloleviviridae
phage MPs are boxed (motif 1, amino acids 193–210,
51% average identity over 18 amino acids; motif 2, amino
acids 279–308, 56% average identity over 30 amino acids;
motif 3, amino acids 385–393, average 52% identity over 9
amino acids). These regions may therefore be part of the
pilin-binding site. (b) Sequence homology of Leviviridae
MP sequences. Filled bars represent regions homologous
to MS2 MP and open boxes represent non-homologous
regions. These bars cover the full length of each protein,
without indicating the short gaps required to accommodate
the alignment. Most proteins in this comparison are ~400
amino acids long. Colors represent the homology score
using the BLOSUM62 matrix. Potential RNA-binding sites
predicted by RNABindRPlus are represented by asterisks.
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The individual MS2 sequence reads were con-
verted into sense-strand RNA and mapped onto the
genomic sequence of the phage creating a histo-
gram of hits at each nucleotide for both irradiated
(green) and control (blue) samples, yielding Fig. 4e.
The frequency of matched nucleotides varies by

factors of up to 6000 across the genome and, at
every position, is higher in the cross-linked sample
than at the same position in the control. In the
sequences from the non-cross-linked sample, some
enrichment of theRNAs is apparent. In someplaces, a
small peak in the non-irradiated sample appears to
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Fig. 4. RNA sequences in the MS2 virion that contact the capsid proteins. (a) Outline of the CLIP-Seq protocol used to
map RNA residues that contact the MS2 capsid proteins. (b) PAGE analysis of a time course of RNA cleavage using
10 mM ZnCl2 with poly(A:U) RNA. (c) SDS-PAGE gel of immune-precipitated MS2 CP containing covalently linked RNA
treated with zinc ions. Irradiated and control samples were transferred to a nitrocellulose membrane and subsequently
visualized by a Western blot with an anti-MS2 CP primary antibody (left-hand panel). The regions of the same gel
containing cross-linked RNA were identified in parallel samples by prior 5′ end labeling of the RNA fragments with
polynucleotide kinase (right-hand panel). The smear likely represents cross-linked CP–RNA. The white lines identify the
regions excised from the membrane and processed for deep sequencing (see Materials and Methods). (d) Amount of input
RNA recovered with CP after purification. (e) Abundances of cDNA fragments that co-purified with the MS2 CP. The
sequences for the cDNAs identified by Illumina DNA sequencing were aligned with the MS2 genome, and histograms were
produced denoting the frequency of particular sequences within the datasets for irradiated (green) and control (blue)
samples. The peak that corresponds to the MS2 operator hairpin is identified by an inverted blue triangle. A schematic of
the MS2 genome is shown below the graph to allow identification the approximate locations of the most significant peaks.
Lines in blue highlight those sites matching previous PS predictions by Dykeman et al. [41]; those in orange, similarly for
Bleckley et al. [66]; and green, for matches to both predictions. Black lines indicate the 10 peaks not predicted previously.
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match a peak in the irradiated sample but at a much
lower frequency. However, this is clearly not the case
for the majority of the peaks in the irradiated sample,
confirming that specific enrichment had occurred. The
background may be due to some RNA sequences or
conformations being recognized by the capsid with
higher affinity or that some RNA fragments may
precipitate better than others. This is one reason why
the peak heights cannot be interpreted simply in terms
of RNA–CP affinity.
The pattern of peaks, some of which are clearly

symmetrical implying discrete sites of contact, is
consistent with the presence of the same series of
discrete RNA oligonucleotides in contact with the
capsid in every virus particle, that is, that the highest
matching nucleotide in each peak should be within or
adjacent to a PS. A random arrangement of the
genomic RNA within each capsid would not be
expected to yield this distribution. Importantly, the
level of sequencing multiplicity in the MiSeq data
(Supplementary Table 2) suggests that they provide
an accurate sampling of the virion population; thus,
the peaks represent the most frequently cross-linked
fragments. Unfortunately, most peaks are not well
resolved from their neighbors, making such direct
identification more difficult, but the TR site is clearly
within one of these higher peaks (see arrow in
Fig. 4e) as expected. In order to analyze these peaks
further, we identified a significance threshold (3658;
see Materials and Methods) for the number of hits
required to generate a significant peak. This results
in 54 peaks (Table 1), and their locations are
mapped onto the MS2 genome below the histogram
of Fig. 4e.
Since cross-linking can occur at any point of

contact between a PS fragment and a CP subunit
and the rate of zinc ion cleavage is locally RNA
sequence/structure dependent, the peak nucleo-
tides do not necessarily coincide with the central
nucleotides of a PS. Another problem is the nature of
the pile-up analysis could produce a misleading
single peak due to overlapping sequence reads from
adjoining fragments. In order to take account of
these issues, Table 1 lists both the peak nucleotide
of each of the 54 peaks and the 20 nucleotides of the
genomic flanking sequences on each side of it, thus
creating a fragment of about the average probe size
that was sequenced. If these fragments encompass
PSs, they would be expected to form a stem–loop.
Mfold was therefore used to explore the potential
secondary structures for each fragment and any
stem–loops that can form compared to previous
predictions of the PS sites [41]. Sequences capable
of forming stem–loops are shown in red in Table 1,
with those nucleotides predicted to base pair being
underlined. This analysis rapidly identified a large
number of potential PSs within the CLIP-Seq
fragments. In addition, it revealed several fragments
that encompass two potential PSs, presumably for

the reasons set out above. It also suggested that the
PSs may extend beyond the boundaries of the
41 nucleotides listed, and the regions of these
sites within such CLIP-Seq fragments are shown in
Table 1. This misalignment could be a consequence
of mis-identification of peaks due to their overlaps
(Fig. 4e).
There have been two previous attempts to predict

the locations of the PSs in the MS2 genome. We
used information on the preferred RNA-binding sites
for CP from X-ray crystal structures and SELEX
together with the reported solution structure of
CP-free RNA to create a minimal RNA motif. This
yielded 54 of the expected 60 PSs required in this
T = 3 virus. The CLIP-Seq fragments encompass
33/54 sites predicted in this manner. The Schroeder
laboratory has also used their RNA folding algorithm
CRUMPLE [66] with a slightly more relaxed probe
motif to predict PS sites. The CLIP-Seq dataset has
32 matches to their 60 stem–loop predictions. The
matches to the different predictions only partially
overlap, meaning that, together, they account for 44/
54 experimentally determined sites. Mfold of these
remaining 10 orphan sites fails to identify stable folds
that are likely PS sites; thus, their presence in the
dataset is confusing but could be due to artifacts in
aligning CLIP-Seq peaks within the histogram. The
multiple matches between the observed CP–RNA
contacts in the virion and the predicted PS sites
are, however, excellent evidence in support of
PS-mediated assembly. It is interesting to examine
why neither prediction yielded a complete match to
the experimental data, but this requires a more
detailed discussion that will be described separately
in Dykeman et al. (unpublished results).
The CLIP-Seq data also contain a sequence

previously reported as one of two RNA-binding sites
of the MP, Peak 8 (Table 1) corresponding to the 5´
site. The previous identification of these sites relied on
direct sequencing of theRNA fragments resulting from
RNase A digestion of the acid-insoluble MP–RNA
complex that can be isolated from the virion [30]. This
identified two sites, one toward each end of the
genome, consistent with a role for the MP in
circularizing the RNA. Since the RNA–protein com-
plexes here were recovered by anti-CP antibodies,
this suggests that there is a CP-binding site adjacent
to the MP-binding site, consistent with the known
location of the MP in the virion, where it replaces one
of the C/C CP dimers [31].

Identification of classes of PSs

The experiments described above provide direct
evidence that MS2 assembles via a PS-mediated
mechanism, but they do not address how the CPs
locate their respective PS sites during virion assem-
bly. The latter cannot always be present in the active
form of a stem–loop due to the many roles the
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genome plays in the phage lifecycle. Previous
smFCS assays of assembly in vitro with the full
genome and large sub-fragments, all containing the
TR site, show that assembly is divided into two
separate kinetic phases. There is an initially rapid
phase that occurs above a minimum threshold CP
concentration during which the RNA conformational

ensemble collapses to facilitate encapsidation
[38,67]. This CP concentration-independent process
is followed by a kinetically slower phase, dependent
on CP concentration, during which additional CPs
are recruited to complete formation of T = 3 parti-
cles. Controlling the partitioning of these two stages
is presumably an essential feature of assembly

Table 1. Flanking sequences of the MiSeq peaks and their relationship to previous predicted PSs. Matches to the
predictions of Dykeman et al. [41] are highlighted in blue in the peak nucleotide. Column, those to Bleckley et al. [66], is in
orange and with matches to both in green. There are 10 CLIP-Seq sites that do not match any prediction (no color).
Predicted hairpins are underlined. Predicted MS2 CP-binding motifs are in red. The peak column relates to the peaks
identified in Fig. 4e with peak 1 nearest the 5′ end of the genome.
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efficiency. One way that this could be achieved is
via PSs with a distinct hierarchy of affinities, with
higher-affinity interactions forming in the first phase
and lower-affinity ones forming in the later phase.
Alternatively, the RNA could undergo conformational
change revealing functional PSs after the binding of
the initial CP subunits.
In order to discriminate between these mecha-

nisms, we carried out secondary structure probing of

transcripts encompassing large sections of the MS2
RNA, as well as the intact virion (Fig. 5a). This was
performed using Pb2+ ions that hydrolyse RNA via
the deprotonation of the 2′ OH followed by cleavage
of the phosphodiester bond at the 3′ position [68–
72]. Lead ions are ideal for this purpose because
their small size allows complete penetration into the
MS2 capsids, which have pores at the 3-fold and
5-fold axes, and their reactivity is rapidly controllable

Fig. 5. Lead acetate probing of the MS2 ssRNA genome. (a) Outline of the lead probing experiment. The
time-dependent cleavage of the genome within MS2 virions or sub-genomic fragments was performed in separate
reactions at room temperature. Following Pb2+ incubation, we quenched the reactions with EDTA and we precipitated the
RNAs at high salt concentration. Following addition of EDTA, we phenol/chloroform extracted the MS2 phage sample to
remove virion proteins. (b) Schematic showing the RNA fragments footprinted and the region from 1419 to 2190 probed.
The arrows indicate the sites of hybridisation of the primers; blue bar, the location of the TR site. (c) An autoradiograph of a
6% (w/v) PAGE assay of primer extension products obtained by reverse transcription of the 5′ RNA treated with Pb2+. The
TR operator is highlighted by the blue bar. Samples were treated with 0.4 mM Pb2+ in assembly buffer for 5, 10, 30 and
60 min. A control reaction lacking Pb2+ is indicated by “÷”. Arrows highlight sites cleaved specifically by lead-ion-induced
hydrolysis positions. Dideoxy sequencing ladders (G and C), a hydrolysis ladder (OH) and size standards (L) analyzed in
adjacent lanes allowed identification of the nucleotide sequence and hence the sites of cleavage.
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by addition of excess ethylenediaminetetraacetic
acid (EDTA). In addition, lead ions are expected to
have minimal interactions with capsid proteins. The
rate of cleavage is affected by the accessibility of the
2′ OH and the flexibility of the RNA backbone.
Therefore, efficient cleavage occurs mainly in
single-stranded regions and is inhibited in base-
paired, stacked or higher-order structures in the RNA
or due to interaction with proteins [71].
The lead-ion-induced hydrolysis sites on three

MS2 RNA transcripts (referred to as the 5′ RNA, the
3′ RNA and the internal iRNA) were compared to
that of the genome within virions (Fig. 5b). We
assayed the genome between nucleotide 1450 and
2190, using primers spaced at roughly 130-nt
intervals in the MS2 genome, resulting in partial
overlap of the primer extension products when
resolved on 6–8% (w/v) polyacrylamide sequencing
gels. This region is present in all the RNAs,
encompasses the TR PS and is well away from
MP-binding sites. By analyzing the kinetics of
lead-ion-induced hydrolysis, it was possible to
assign nucleotide cleavage positions from autora-
diographs as signals whose intensities increased
with incubation time (see Materials and Methods).
An example of the lead-ion-induced cleavage patterns
observed on autoradiograms is shown in Fig. 5c. The
pattern of cleavages observed within the TR operator
in the 5′ RNA is similar in both the 3′ RNA and the
iRNA (Supplementary Fig. 2). Three distinct patterns
of lead ion cleavage are seen across the different
fragments. These are sites that are present in the
virion only, in the protein-free RNA fragments only or
in both. Note that lead ion cleavage is relatively slow
and the signals seen on the gels are from the
averaging of many individual molecules. Therefore,
it is not possible to be definitive about whether any
cleavage sites detected are universally present.
However, the qualitative distinction between sites
that cleave within the assay period and those that do
not provides a clear indication about the propensity for
a particular structure to form.

RNA structure is partially conserved in vitro and
within the virion

Conserved lead ion hydrolysis sites were ob-
served across all the RNA fragments that together
span the MS2 genome (Supplementary Fig. 2). For

example, ~75% of the cleavage sites in iRNA are
also observed in both the 5′ and 3′ RNAs, with
the similarity between the latter two being ~90%.
These results suggest that the solution secondary
structures of the overlapping portions of all three
transcripts are very similar. Within the probed region
in the virion, there are 121 cleavages, 78 of which
(64%) are also detected in each of the protein-free
transcripts (Fig. 6a). Most of these are within or
adjacent to RNA regions proposed, on the basis of
previous selective chemical and enzymatic structure
probing, to be single stranded [58,73]. Thus, some
conservation of secondary structures extends to all
four RNAs. This is consistent with these features
being the result of local interactions, that is, that
short-range contacts drive the formation of similar
stem–loops [72,74] that are indifferent to the flanking
sequences in each case. For clarity, the stem–loops of
the solution secondary structure are labeled 1 to 24 in
Roman numerals and, where appropriate, also with
our previously predicted PS labels, based on the TR
site, that is, SL ± 1 and so on (Fig. 6). Importantly, the
clarity of these cleavage patterns suggests that, within
each ensemble of probedRNAs, there is a consensus
structure and that, within each virion, the genome
conformation is largely the same. Such an arrange-
ment is a consequence of PS-mediated assembly and
consistent with the structure obtained by asymmetric
cryo-tomographic reconstruction [31].

Identification of the CP–RNA genome interactions
in the virion

The conserved solution secondary structure ele-
ments in the virion imply that the tertiary RNA
conformation is a compacted version of the RNA
solution structure [67]. The susceptibility of several
nucleotides to lead ion hydrolysis, however, differs
between the virion and the protein-free RNA. Some
of these differences must be a consequence of the
more compact structure, and others likely reflect
protection from hydrolysis due to CP binding or a
protein-induced remodeling of RNA secondary
structure. To identify and differentiate between
these scenarios, we compared the oligonucleotides
isolated by CLIP-Seq (Fig. 4d and Table 1), the
previously predicted PS sites [41], the proposed 2°
genome structure [57,58,75] and lead ion cleavage
positions on protein-free RNA (Fig. 6b).

Fig. 6. Identification of different classes of PS sites. (a) Shared lead ion cleavage positions detected in both the
transcripts and the MS2 virion are highlighted in magenta on the RNA secondary structure [73]. Proposed hairpins are
indicated as I–XIV. (b) Altered lead-ion-induced cleavage sites are indicative of altered RNA structure following genome
packaging. The lead-ion-induced cleavage sites detected only in transcripts, that is, which are protected in the virion, are
highlighted in red. Those that cleave only in the virion are in blue. Comparison of these positions with MiSeq reads, shown
here with a green line spanning 40 nt around the peak nucleotide (*), and previously predicted PSs [41] within the MS2
genome, shown here as orange lines and annotated as SL − 3 to SL + 5, allows the identification of PSs that have a
propensity to fold prior to capsid assembly or that must refold during assembly.
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TR is the highest-affinity PS within the MS2
genome and is thus the site [56] where lead
cleavage patterns would be expected to differ the
most between solution and the virion. Consistent with
this idea, the cleavage patterns of stem–loop VI/TR
differ significantly (Fig. 6b) with a large number of
nucleotide positions becoming less accessible (red)
to the lead ions in the virion, while one nucleotide
involved in sequence-specific recognition (Fig. 1b)
becomes more accessible (blue). This result sug-
gests that marked alterations in cleavage site
accessibility occur as a result of CP binding. A
peak centered at nucleotide 1741 in the CLIP-Seq
data lies between VI/TR and the 5′ V stem–loop,
which we predict is also a PS, SL − 1, confirming the
inference from the multiple potential PSs in the
CLIP-Seq fragments (Fig. 4d and Table 1) and
allowing us to interpret the wider RNA cleavage
patterns with confidence.
Starting from the 3′ end of the probed region, there

is a CLIP-Seq peak at 2116 that is adjacent to
nucleotides with altered accessibility to lead hydro-
lysis in the virion, implying that this is a PS although it
was not previously predicted to be one. The next
peak at 2056 lies between two stem–loops predicted
to be PSs, XII/SL + 5 and XI/SL + 4, the former
having one nucleotide with a detectable change in
accessibility. The results with TR and SL − 1
suggest that these sites are indeed PSs. Peak
1960 lies between X/SL + 3 and SL + 2, with both
sequences showing some altered lead accessibility,
implying two PSs, one present in solution and one
that must refold during assembly. Peak 1938
overlaps with the region of SL + 2 and with IX. The
latter is not predicted as a PS and shows no changes
in lead accessibility; thus, its status cannot be
confirmed. Peak 1807 overlaps with VII/SL + 1,
which shows some altered accessibility and therefore
is likely a PS. Peak 1696 overlaps with V/SL − 1 and
IV, the pattern showing increased cleavage at a single
nucleotide but seemingly not at a PS. Peak 1634
overlaps an area that undergoes slight changes in
accessibility but does not form stem–loops and hence
cannot be a PS. Peak 1485 is centered on SL − 2 but
is not in the form of a stem–loop and therefore must
refold extensively into its PS conformation. It also
overlaps with I/SL − 3 where the decreased lead
accessibility to the loop region confirms its role as a
PS. These correlations with solution secondary
structures, CLIP-Seq and PS predictions confirm the
ideas of a PS-mediated assembly reaction without the
need for extensive mutagenesis that could have
pleiotropic effects on MS2 infection.

Discussion

The virions of ssRNA viruses spontaneously
self-assemble in vitro and, it is assumed, in vivo.

This reaction has been proposed to be largely driven
by electrostatic interactions. The data presented
above show clearly that the end product of such
assembly has a highly organized relationship
between its virion proteins and genomic RNA,
which is most unlikely to arise by a simple charge
compaction process. Instead, we have shown that
the process is highly regulated and involves multiple
RNA–protein contacts at sites distributed through-
out the genome, PSs. Such interactions occur in
viruses from bacteria (MS2 [2,23,31,37,41]), plants
(TCV [76], BMV [63] and STNV [38]) and humans
(HPEV-1 [77]). For BMV, it appears that these
interactions can also be altered by post-translational
modification of the CP subunits [63] and that virion
assembly is controlled by more than electrostatics
[78].
PS-mediated assembly sets up a unique relation-

ship between the CP shell and the genomic
sequence, allowing the virus to control the spatial
positioning of those sequences. This may be an
essential feature during the early uncoating events
that occur during the infection of the new host since
extrusion of the RNA occurs at a unique site in the
protein shell [79,80]. These properties explain why a
similar mechanism is found in viruses from such
wide-ranging hosts. Since capsid assembly has no
cellular homologue that we know of, disrupting
PS-mediated assembly can be exploited for thera-
peutic benefit. Given the potential importance of this
mechanism, it is important to validate it as widely as
possible. The data presented here contribute signif-
icantly to that process. By observing the CP–PS
contacts in virions, we have confirmed the roles of
multiple PS sites without having to make multiple
mutant genomes.
The results are not exhaustive because they do

not identify every possible site of contact between
virion proteins and the enclosed genome. RNA
sequences that lack obvious PS motifs are also
present in the CLIP-Seq data, possibly because they
contain features that favor precipitation in the
CLIP-Seq assay. Nonetheless, the overwhelming
majority of contacts are consistent with PS-mediated
assembly. The CP peptides in contact with the
genomic RNA (RCAP) are similar to those seen in
high-resolution X-ray structures of the TR bound to
every position. In principle, each PS contact within a
genome would be to an A/B dimer (Fig. 1). The VLPs
used for X-ray structure determination of bound TR
and its variants were soaked with excess oligonu-
cleotide that binds to all dimer sites. At C/C sites,
due to the 2-fold symmetry, they make degenerate
contacts but bind in a unique orientation at the same
RNA–CP interface seen for TR at A/B [27]. The
peptide data therefore confirm that every virion has
a similar arrangement of RNA–protein contacts for
the first time. In addition, CLIP-Seq has been used to
identify the RNA sequences in close contact with
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these peptides, revealing extensive overlap with
previous predictions of PSs within this virus. This is
the most compelling evidence to date confirming
that MS2 assembly occurs via multiple PS–CP
contacts.
We have also investigated the architecture of the

MP. Its contacts to the genome are localized to the
N-terminal half of the molecule, consistent with
predictions of two RNA-binding sites in this region.
Although these RNA-binding motifs seem to
occur across a large range of the known MPs, the
sequences of these N-termini are quite variable. In
contrast, there is extensive conservation at the
C-termini, perhaps consistent with it encompassing
the pilus-binding domain.
Combining CLIP-Seq information with RNA chem-

ical structure probing allows us to interrogate the
presence/appearance of PSs before and after virion
assembly. It is clear that there are two classes of PS
sites, those that are detectable in the protein-free
RNA and those that are only detected after
CP-induced refolding and capsid assembly. Pre-
sumably, the PS folds are flickering in and out of
existence and the lead ions are sensitive to
equilibrium. This is consistent with the two phases
of assembly previously detected using smFCS
in vitro. This scenario is somewhat analogous to
that seen for assembly of the ribosome [59–62].
However, ssRNA viruses face a more complex
assembly task than the ribosome. They must
co-assemble around RNA genomes, often many
times longer than any ribosomal RNA, using multiple
copies, often numbering in the hundreds, of the
same or very similar CP subunits, to form a highly
symmetrical container of restricted volume. Confin-
ing a complex folded polymer, such as genomic
RNA, into the limited volume of the viral capsid
requires proper regulation. Furthermore, the assembly
of the virion must allow proper extrusion of the RNA
and proper viral gene expression in the subsequent
round of infection. Thus,while electrostatic interactions
are useful in collapsing the conformational ensemble
of protein-free RNA and for lowering the overall free
energy of the assembled particle, rapid and efficient
assembly requires that they occur in a regulated
fashion. This control is precisely what PS-mediated
assembly provides. The tendency of viral genomes to
form branched structures can also contribute to this
assembly efficiency [81,82]. Since PS binding by MS2
CP leads to conformational switching in the CP dimer
and CP binding to PSs results in local refolding of
the genome, assembly occurs via a series of events
that each relies on induced fit. Given that this is a highly
cooperative event involving multiple RNA–protein
and protein–protein contacts, the free energy involved
in this induced fit is likely to be considerable. This
idea is not new [83], but here we have been able to
probe the details of how the process is controlled by
the genomic PSs for the first time.

Materials and Methods

Defining the RNA–protein contacts in the virion

RCAP

MS2 virions were from the American Type Culture
Collection and propagated in male strains of Escherichia
coli. The virions were purified [84] and suspended in SMH
buffer [100 mM NaCl, 8 mM MgSO4 and 50 mM Hepes
(pH 7.5)] to identify regions in the MS2 CP and MP that
contact the RNA. The RCAP protocol was as described in
Ni et al. [63]. Aliquots of the trypsin-treated samples were
subsequently treated with sequencing-grade Glu-C (Pro-
mega) prior to purification, concentration of the sample
using a c18 ZipTip and mass spectrometric analysis using
a Bruker Autoflex III mass spectrometer (Agilent Technol-
ogies) in positive-ion mode. Some samples were also
examined using the reflectron mode. Database searches
used the programMascot (Matrix Science), with the search
directed against the MS2 protein sequences [53]. Peptide
assignments were only made when they were within
0.5 Da of the expected mass.

CLIP-Seq

MS2virions in SMbuffer [100 mMNaCl, 8 mMMgSO4 and
50 mM Tris–HCl (pH 7.5)] were irradiated at 400 mJ/cm2 by
254-nm light, on ice in a CL-1000 ultraviolet cross-linker
(UVP). The samples were mixed with gentle pipetting and
incubated on ice for 3 min. Irradiation was repeated twice
more. The virionswere then pelleted by ultracentrifugation at
60,000 RPM for 4 min at 4 °C and resuspended in RNA
fragmentation buffer [100 mMTris–HCl (pH 7.0) and10 mM
ZnCl2] at 70 °C for 20 min. The reaction was quenched by
adding EDTA, pH 8, to a final concentration of 42 mM.
Immunoprecipitation used an anti-MS2 CP serum
(EMD Millipore) bound to protein A/G magnetic beads
(Pierce) according to the manufacturer's protocol. The
eluted CP–RNA complex was electrophoresed on a
NuPAGE 4–12% (w/v) Bis-Tris SDS-PAGE gel in 1×
4-morpholineethanesulfonic acid buffer on ice and then
transferred to a nitrocellulose membrane using a wet
transfer apparatus (BioRad) at 100 V for 1 h. The mem-
brane was stained with 0.1% (w/v) Ponceau-S in 5% (v/v)
acetic acid for ~5 min, and the region 6–100 kDa above the
CP band was excised from the membrane. Material on the
membrane was digested with 0.8 mg/mL proteinase K at
37 °C for 1 h to release the cross-linked RNA fragments.
The RNA was extracted using Trizol and precipitated with
3 volumes of ethanol containing 0.3 M ammonium acetate.
In preparation for cDNA library construction, the RNA was

treated with T4 polynucleotide kinase (NEB) to remove the 3´
phosphate andadda 5´ phosphate. Thepre-treatedRNAwas
then prepared using an Illumina Truseq Small RNA prepara-
tion kit. After PCR amplification of the cDNA using Pfu DNA
polymerase, the reaction was incubated with 1 μL Taq DNA
polymerase at 72 °C for 10 min and the amplified cDNA was
purified with aQiaquick Gel Extraction Kit (Qiagen) from a 2%
(w/v) agarose-TAE gel. The libraries from different samples
were pooled at equimolar ratios for Illumina MiSeq sequenc-
ing usingMiSeq reagent kit V3 (150 cycles). All samples from
the UV cross-linked and un-cross-linked samples were
processed in parallel and sequenced within the same run.
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Labeling of CP-bound RNA

To visualize and quantify the RNAs covalently attached
to MS2 CP, we incubated CP–RNA complexes treated
with ZnCl2 with 2 U of T4 polynucleotide kinase and
[γ-32P]ATP for 30 min at 37 °C according to the manufac-
turer's instructions (NEB). The material was then electro-
phoresed in NuPAGE 4–12% (w/v) Bis-Tris SDS-PAGE
gel in 1× 4-morpholineethanesulfonic acid buffer. The gel
was wrapped in plastic film and the signal was detected
using a Phosphorimager. Western blots of the CP were
performed as described in Hema et al. [85].

DNA analysis

Analysis of the MiSeq reads used the Galaxy user
interface [86]. The reads were processed with the FASTX
toolkits to trim sequences with a quality score lower than
20 using FASTQQuality Trimmer, removing the 3´ adaptor
and discarding any reads shorter than 15 nt using Clip.
The cleaned reads were aligned to the MS2 reference
genome using Bowtie2 [87] under the default “local”
alignment settings and the actual coverage of each
nucleotide position on MS2 RNA was obtained using
Mpileup in SAMtools [88]. The Mpileup output from the
forward and reverse MiSeq reads were combined. All
peaks with nucleotide coverage higher than the threshold
of 3685 reads were assigned as putative capsid-interact-
ing sites. The threshold was established with results from
a “no UV” control library, using the number of reads at the
apex of the translational operator (TR) hairpin as the
cutoff.

MP sequence analysis

Leviviridae MP sequences were identified using
BLASTP and TBLASTN searches at National Center for
Biotechnology Information [89] using MS2MP as the query
(sequence accession P03610). Excluding MS2 search
results and using an Expect value of 10 allowed recovery
of low homology sequences. Matches were scored using
default parameters, with the BLOSUM62 matrix.
MS2 MP secondary structure composition was predict-

ed using the Jpred3 algorithm [90] with sequence
accession P03610 query and homologous UniRef se-
quences identified by the server. CP secondary structures
were taken from the annotation of PDB file 2MS2.
RNA-binding sites in MPs were predicted using the

RNABindRPlus server [65] with sequence accessions MS2
(P03610), R17 (EF108465), JP501 (AAF67668), phage fr
(CAA33135), BZ13 (FJ483837), KU1 (AAF67673), GA
(CAA27496), C-1-INW (AFN37812), Hgal1 (AFN37816),
PRR (ABH03626), phage M (JX625144), phage FI
(ACT66757), M11 (AAC06249), phage SP (X07489),
MX1 (AF059242), NL95 (AF059243), Qβ (AY099114),
PP7 (A80191), VK (EU372698) and AP205 (AF334111).

Probing RNA conformation before and after
encapsidation

Lead ion probing

The production and purification of the MS2 RNA
fragments was as previously described [67]. All structural

probing reactions were performed in 10 μL final volume.
The 5´ and 3´ sub-genomic fragments were at a 0.1 μM
final RNA concentration. The iRNA was kept at 0.27 μM
final concentration. RNA concentrations were measured
by absorbance at 260 nm assuming that one asymmetric
unit is equivalent to 40 μg/μL. Wild-type MS2 phage was
used at a final concentration of 0.285 μg/μL. Prior to
cleavage with lead ions, the MS2 sub-genomic RNAs were
heated to 65 °C for 10 min and then cooled to room
temperature at 2 °C/min on a thermal cycler in 6 μL final
volume. At this point, 2 μL of 5× assembly buffer was added
to the sample resulting in a final concentration of 40 mM
NH4OAc and 1 mM Mg(OAc)2 (pH 7.2).We then added 2 μL
of freshly prepared 2 mM lead acetate to each reaction to a
final concentration of 0.4 mM lead ions. Reactions were
incubated at room temperature for 5, 10, 30 and 60 min
followed by addition of 5 μL of 0.1 M EDTA, 1.5 μL of 3 M
NaOAc and 35 μL of EtOH and were stored at −20 °C for
≥2 h. RNA was recovered as a pellet by centrifugation at
13,000 RPM and washed once with 70% EtOH prior to
resuspension in 5 μL DEPC-treated H2O. Wild-type MS2
capsids were treated similarly but were phenol/chloroform
extracted prior to precipitation with 3 M NaOAc. Prior to
reverse transcription, the appropriate 32P-labeled primer was
annealed to the cleaved RNA by addition of 1 μL of 1 μM
labeled primer stock solution and incubated at 65 °C for
10 min followed by snap cooling on ice. The primers used for
reverse transcription were as follows:

1568_R:AAGCTCTACACCACCAACAGTCT
1666_R:CCTTGCATTGCCTTAACA
1812_R:CGCGAGGAAGATCAATACATA
1951_R:TCATTACCAGAACCTAAGGTCGGA
2061_R:GATCCCATGACAAGGATTTG
2223_R:TAACGGTTGCTTGTTCAGC

Reverse transcription was performed with Transcriptor®
reverse transcriptase (Roche Diagnostics) at 52 °C for
30 min according to the manufacturer's description.
Single-stranded DNA products were then precipitated by
addition of 3 μL of 3 MNaOAc and 60 μL of EtOH, recovered
by centrifugation and washed once with 70% EtOH and
allowed to dry at room temperature for 15 min. Single--
strandedDNAwas dissolved in 95% formamide RNA loading
buffer and run on 6–8% (w/v) denaturing polyacrylamide slab
gels [91]. The gels were then exposed to film at −80 °C
overnight and digitized using an image scanner.

Data analysis

Lead ion cleavage positions were identified from exposed
film first and foremost as signals whose intensity increased
with increasing lead ion incubation time. An absence of a
signal in the control lane was taken as an indicator but not a
requirement of lead-ion-induced cleavage. Because control
reactions were incubated in assembly buffer for 60 min at
room temperature, non-specific hydrolysis sites were always
detected. If intensity at these positions was observed to
increase in the presence of lead acetate over time and the
intensity with lead ions versus control after 60 min was higher
in sample containing lead ions, this was defined as a
hydrolysis position. The nucleotide position of induced
hydrolysis within the MS2 genome was deduced from
dideoxy sequencing ladders (G and C) and a size standard.

444 Packaging Signal-Mediated Bacteriophage MS2 Assembly



Identified positions were not quantified, and thus, a compar-
ison of cleavage intensities between RNAs was not
performed. All lead-ion-induced hydrolysis was therefore
identified in a Boolean manner with regard to the above-
mentioned criteria. Lead ion hydrolysis positions were
mapped onto the MS2 genome and their nucleotide positions
were compared with respect to whether cleavage occurred
only in the RNA sub-genomic fragments in vitro, only within
the virion or in both the virion and the sub-genomic fragments
in vitro. The numbers of cleavages occurring in these three
groups were taken as an indicator of structural similarity of
these RNAs in the different environments.
Supplementary data to this article can be found online at

http://dx.doi.org/10.1016/j.jmb.2015.11.014.
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