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Self-contained Pedestrian Tracking during Normal

Walking using an Inertial/Magnetic Sensor Module
Xiaoli Meng, Zhi-Qiang Zhang∗, Jian-Kang Wu, Wai-Choong Wong, and Haoyong Yu

Abstract—This paper proposes a novel self-contained pedestri-
an tracking method using a foot-mounted inertial and magnetic
sensor module, which not only uses the traditional zero velocity
updates (ZUPT), but also applies the stride information to
further correct the acceleration double integration drifts and
thus improves the tracking accuracy. In our method, a velocity
control variable is designed in the process model, which is set
to the average velocity derived from stride information in the
swing (non-zero velocity) phases or zero in the stance (zero-
velocity) phases. Stride-based position information is also derived
as the pseudo-measurements to further improve the accuracy
of the position estimates. An adaptive Kalman filter (AKF) is
then designed to fuse all the sensor information and pseudo-
measurements. The proposed pedestrian tracking method has
been extensively evaluated using experiments, including both
short distance walking with different patterns and long distance
walking performed indoors and outdoors, and have been shown
to perform effectively for pedestrian tracking.

Index Terms—Sensor fusion, zero velocity update, stride count-
ing, Unscented Kalman filter, pedestrian navigation.

I. INTRODUCTION

S
ELF-CONTAINED pedestrian navigation systems have

been applied in numerous applications, such as res-

cue/emergency first response, location-aware computing, aug-

mented reality and so on [1]. Until now, current outdoor

position tracking technologies mainly rely on GPS, which

normally requires an unobstructed line of sight to four or

more GPS satellites [2]. However, in urban and indoor en-

vironments GPS signals are unreliable or even unavailable

due to the signal attenuation caused by buildings, tunnels,

and other construction materials. Various acoustic, optical or

radio frequency (RF) localization systems have been suggested

so far, but such systems all require complicated setup and

calibration, which impose tremendous challenges for routine

use [3].

As wearable sensors can work in arbitrary unprepared

indoor and outdoor environments, to this end, self-contained
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pedestrian tracking systems based on inertial/magnetic mea-

surement units have attracted lots of research interests. A

typical inertial/magnetic measurement unit contains a triaxial

accelerometer, a triaxial angular rate sensor, and a triaxial

magnetometer, and these sensor units are already commercial-

ly available on the market at reasonable cost [4] [5]. The basic

idea of the inertial/magnetic measurement unit-based pedes-

trian tracking is an adaptation of the well-known strapdown

navigation algorithm, which incorporates double integration

of the measured acceleration to estimate distance or position.

However, it is extremely difficult to extract accurate motion

accelerations from the accelerometer signals due to sensor

bias and noises, and any small error can make the position

error increase exponentially; therefore, zero-velocity updates

(ZUPTs) are commonly employed to mitigate this problem

by resetting the accumulated error [6] [7]. This technique

exploits the intrinsic property of pedestrian walking: there are

repeated recognizable periods when the foot stays stationary

on the ground, during which the velocity and acceleration

of the foot are zero. Extensive research has been performed

on how to use ZUPTs for accurate position estimation. For

example, both Ojeda et al. [8] and Bebek et al. [9] simply

reset the integrated velocity to zero during the zero velocity

phases. Foxlin [10] and Godha et al. [11] introduced ZUPTs

as pseudo-measurements into an extended Kalman filter as

the navigation error corrector. Instead of simply resetting

the accumulated velocity error periodically, Yun et al. [12]

further improved the idea of ZUPTs and applied a time variant

acceleration bias error to revise the acceleration in the swing

phases. Although the removal of the acceleration bias error

can significantly improve the accuracy of position tracking, it

is still problematic for long distance tracking.

To increase the accuracy of the ZUPT-based methods over

long durations, some extra infrastructures and technologies,

such as ultrasound, short-range radio (Wi-Fi, Ultra-Wideband

(UWB), radio frequency identification (RFID) and Zigbee) or

vision, have been explored in pedestrian navigation together

with the inertial/magnetic sensor units. For instance, Fischer

et al. [13] proposed a pedestrian navigation system based on

a combination of foot-mounted inertial sensors and ultrasound

beacons. Both Hol et al. [14] and Corrales et al. [15] com-

bined UWB with inertial/magnetic sensor units for position

tracking. Ruiz et al. [16] fused inertial navigation system

(INS) techniques with active RFID technology for accurate

indoor pedestrian localization and navigation. Widyawana et

al. [17] presented a multi-modal indoor navigation technique

that integrated inertial/magnetic sensor units with RF and

ultrasound beacons to reduce the impact of incremental er-
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ror accumulation. All the above mentioned methods have

illustrated that the incorporation of extra infrastructures can

improve location accuracy, but the extra instrumentations can

make the systems less ubiquitous in terms of installation and

maintenance.

However, except for ZUPT, more information, such as

stride frequency, stride length and heading direction, can

also be derived from the raw sensor measurements, and

this information can be used for pedestrian localization as

well [18] [19]. Through the counting of strides, the position

of the pedestrians can be estimated based on an approximate

stride length and heading direction, which can avoid the

excessive double integration drifts, but is susceptible to stride

mis-detection/false-detection and the errors in stride length

estimation and heading direction. Moreover, the stride-based

method can only be implemented with relatively low frequency

to update the positions once per gait cycle.

In this paper, we propose a novel pedestrian navigation

method which integrates the ZUPT-based method with the

stride-based method under the framework of an adaptive

Kalman filter (AKF). In order to compensate for the velocity

drift, a velocity control variable is designed in the process

model, which is set to the average velocity derived from the

stride information in the swing (non-zero velocity) phases or

zero in the stance (zero velocity) phases. Stride-based position

estimates are also derived as the pseudo-measurements to

further improve tracking accuracy. The proposed pedestrian

tracking method has been extensively evaluated using exper-

iments including both short distance walking with different

patterns and long distance walking performed indoors and

outdoors. The significant improvement of tracking accuracy

in comparison with the two pure ZUPT-based methods has

shown the proposed algorithm works effectively for pedestrian

tracking.

The rest of the paper is organized as follows. Section

II presents the proposed pedestrian tracking method under

the framework of the AKF, including the stance phase de-

tection, process model, sensor measurement model, pseudo-

measurement model and adaptive filtering. Experimental re-

sults and discussions are described in Section III. Finally, we

conclude the paper in Section IV.

II. PROPOSED PEDESTRIAN TRACKING METHOD

For a pedestrian navigation system, three coordinate systems

are defined: 1) the global coordinate system (GCS): North

east down (NED) coordinate system is introduced as the

GCS with X-axis pointing north, Y-axis pointing east, and

Z-axis pointing down to construct a right-handed coordinate

system; 2) body coordinate system (BCS): coordinate system

of the foot segment; 3) sensor coordinate system (SCS): three

orthogonally axes of the mounted sensors. To facilitate our

analysis, the BCS is assumed to coincide with the SCS after

sensor to body alignment calibration [20].

As shown in Fig. 1, the proposed pedestrian tracking method

consists of stance phase detection, process model, sensor

measurement model, pseudo measurement model and adaptive

filtering. We will introduce them in sequence in this section.
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Fig. 1. The flowchart of the proposed pedestrian tracking algorithm.
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A. Stance Phase Detection

During any stance phase, the foot stays stationary on the

ground, which means that the accelerometer only measures the

gravity and the gyroscope readings should be zero. As shown

in Fig. 2, a simple stance phase detector can be designed as:

Stance =

{

1, |∥zA,t∥ − g|<λA and |∥zG,t∥|<λG

0, else
(1)

where zA,t is the accelerometer measurement at time t, while

the zG,t is the gyroscope reading at time t, ∥·∥ and |·| are the

magnitude and absolute operations, respectively, and g denotes

the gravity magnitude. λA and λG are the predefined thresholds

which are set to the same value empirically in this paper.

B. Process Model

The process model employed by the AKF governs the

dynamic relationship between the states of two successive time

steps. The state vector at time step t, denoted by xt, consists of

position pt, velocity vt, motion acceleration at, low frequency

accelerometer bias error bA,t, and quaternion qt associated with

orientation:

xt =
[

pTt , v
T
t , a

T
t , b

T
A,t, q

T
t

]T
(2)
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where pt, vt, at and bA,t are defined in the GCS; qt
represents the foot’s orientation relative to the GCS, and

qt = [q1,t, q2,t, q3,t, q4,t]
T

=
[

eTt , q4,t
]T

, q4,t and et =
[q1,t, q2,t, q3,t]

T are the scalar part and vector part of qt,

respectively; the superscript ‘T’ means ‘transpose’.

The motion acceleration at is modeled as a first-order low-

pass filtered white noise process, as in

at = caat−1 + wa,t (3)

where ca is a constant, and wa,t is a random Gaussian noise

with zero mean and covariance matrix Qa. The slow variation

of the accelerometer bias bA,t is modeled as a random walk

driven by a Gaussian noise wbA,t, with covariance matrix QbA,

bA,t = bA,t−1 + wbA,t. (4)

To reduce the acceleration integration drift during the swing

phase, we introduce the average velocity of the last stride as

an control variable in the velocity dynamic model. Thus, the

velocity can be modeled as:

vt = ξ (vt−1 + at−1δt) + (1− ξ) vSk−1
+ wv,t (5)

where δt is the sampling interval (it was set to 0.01s in our

implementation); vSk−1
is the average velocity of last stride

calculated from stride-based tracking; k is the index of the

current stride; ξ is the weight; and wv,t is the velocity process

noise with covariance matrix Qv . During the stance phase, the

foot velocity should be zero. To get a unified equation, the

velocity in the stance phase can be written in the following

form:

vt = ξ (vt−1 + at−1δt) + (1− ξ)
[

0 0 0
]T

+ wv,t (6)

where
[

0 0 0
]T

is the control vector during the stance phase

and ξ is set to 0. The covariance matrix of the process noise

for velocity wv,t in the stance phase would also be a zero

matrix. In summary, the control vector ut can be defined as

follows:

ut =

{

vSk−1
, Stance = 0

[

0 0 0
]T

, Stance = 1
(7)

The position of the foot is calculated by

pt = pt−1 + vt−1δt +
1

2
at−1δ

2
t + wp,t (8)

where wp,t is the position process noise with covariance matrix

Qp.

Given the gyroscope measures zG,t, the foot orientation qt
at time step t can be propagated as [21]:

qt = exp

(

1

2
Ω [zG,t] δt

)

qt−1 + wq,t (9)

where Ω [zG,t] is a 4× 4 skew symmetric matrix as in

Ω [zG,t] =

[

− [zG,t×] zG,t

−zTG,t 0

]

, (10)

[×] represents the cross product operator [22], and wq,t is a

zero-mean Gaussian noise with covariance matrix Qq .

From (3)–(6), (8), and (9), the linear process model can be

summarized as:

xt = Ftxt−1 + ut + wt

=
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(11)

where I3 denotes a 3 × 3 identity matrix; 0 stands for zero

matrix; and At is the transition matrix given by

At = exp

(

1

2
Ω [zG,t] δt

)

. (12)

In this paper, wp,t, wv,t, wa,t, wbA,t and wq,t are assumed to be

uncorrelated with each other, thus the process noise covariance

matrix Qt will have the following expression:

Qt = diag ([Qp,Qv,Qa,QbA,Qq]) . (13)

C. Sensor Measurement Model

The gravity acceleration and earth magnetic field strength

are used to compensate for the predicted quaternion to get

drift-free orientation estimation. Given a quaternion qt and the

reference magnetic vector in the GCS rM , the measurement

equation of the magnetometer signal zM,t can be defined as:

zM,t = C(qt) rM + nM,t (14)

where C(qt) is the corresponding rotational matrix of the

quaternion qt [22]:

C(qt) =
(

q24,t − eTt et
)

I3 + 2ete
T
t − 2q4,t [et×] (15)

where nM,t is the magnetometer measurement noise with

zero mean and covariance matrix ΣM,t. As the magnetometer

measurements include the earth magnetic field and disturbance

from environments, which would introduce inaccuracy to the

orientation estimates. The influence from the magnetic distur-

bance to the orientation estimates is guarded by the adaptive

mechanism proposed in [23].

The accelerometer measures gravitational acceleration to-

gether with acceleration caused by human motion, plus bias

and measurement noises, as in

zA,t = C(qt) (at + g0 + bA,t) + nA,t (16)

where nA,t is the accelerometer measurement noise with

covariance ΣA; and g0 denotes the gravitational acceleration

in GCS.

From (14) and (16), the sensor measurement model is given

by:

zS,t =

[

zM,t

zA,t

]

= f(xt) + nS,t

= C(qt) ·

[

rM
at + g0 + bA,t

]

+

[

nM,t

nA,t

] (17)
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The covariance matrix of the sensor measurement noises nS,t,

denoted by RS,t, is given by:

RS,t =

[

ΣM,t 03×3

03×3 ΣA

]

(18)

D. Pseudo Measurement Model

The pseudo measurements of the position attained from

the stride information during the stance phase can further

improve tracking accuracy of the pedestrians. According to the

stride-based pedestrian tracking method, at time t, when the

kth stride occurs, the pseudo measurements of the pedestrian

location zP,t can be updated by:

zP,t = lp,k−1 + [Sk cos θk, Sk sin θk, 0] (19)

where lp,k−1 is the location of the previous stride after the AK-

F update; Sk and θk are the stride length and the heading angle

of the current stride, respectively. The above equation requires

three important steps: stride detection, stride length estimation

and heading angle determination. Here, stride detection is the

same as the stance detection, so we will only introduce the

stride length estimation and heading angle determination.

1) Stride length estimation: in practice, stride length varies

from across different strides, but it has shown some relation-

ship to the angular rates [24], which is given below:

Sk = K · 4

√

Y max
G,k − Y min

G,k (20)

where Y max
G,k and Y min

G,k are the maximum and minimum

values of the angular rates along the Y-axis during the kth

stride, respectively. The constant K is personal-dependent

and determined through off-line training by collecting some

walking data before the actual experiments from the subject.

2) Heading angle determination: when a stride is detected,

the heading angle θk is extracted from the orientation of the

kth stride, represented by qSk
, as given in:

θk=atan2
(

2(qSk,4qSk,3+qSk,1qSk,2), 1−2(q2Sk,2
+q2Sk,3

)
)

−θ0
(21)

where θ0 is the initial foot toe-out angle, which is assumed to

be the same of each stride.

To sum up, when a stride is detected, the pseudo measure-

ment equation is governed by:

zP,t = pt + nP,t (22)

where nP,t is zero mean Gaussian noise with covariance ΣP .

E. Adaptive Filtering Design

Through the process model (11), the measurement mod-

el (17) and (22), the ZUPT-based method is tightly integrated

with the stride-based method. Because of the nonlinear mea-

surement function (17), the Unscented Kalman Filter (UKF)

is employed in this paper. The detailed UKF equations can be

found in [25]. To avoid the effects of stride mis-detection/false-

detection or errors in stride length estimation and the heading

direction, the pseudo measurement zP,t is regarded as invalid

and disregarded when the kth stride is detected if:
∣

∣∥zP,t∥ −
∥

∥p−t
∥

∥

∣

∣ > λp, (23)

Fig. 3. The attachment of a sensor module on the right foot of the tester.

where p−t is the predicted position using the process model,

and λp is the error threshold of the position. Otherwise, the

pseudo position measurement zP,t will be used to update the

position estimates to get the location of the pedestrian at time

t, denoted by p+t , and the control vector vSk
in (5) is also

updated by

vSk
=

[Sk cos θk, Sk sin θk, 0]

TSk

(24)

where TSk
is the swing phase duration of the kth stride.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the performance of the proposed algorithm,

an inertial/magnetic sensor module is placed on the right

foot as shown in Fig. 3. The sensor chip is the ADIS16405

from Analog Devices, which contains a triaxial accelerometer,

triaxial gyroscope and triaxial magnetometer [26]. The sensor

module is connected to a base station by SPI serial data bus,

and it controls the data collection and send the data to PC

for offline processing through Bluetooth. All the data analysis

was implemented using MATLAB on a PC with 3.40 GHz

Intel Core i5 processor and 8G RAM. Two types of walking

experiments are carried out to validate the performance of the

algorithm. Simple walking experiments including straight line

walking, turning around and circle walking are evaluated first.

As follows, long distance walking experiments performed both

indoors and outdoors are analyzed.

B. Experimental Demonstration

A comparative study between the proposed method and two

ZUPT-based methods are carried out to evaluate the pedestrian

tracking performance. In what follows, ‘Truth’ represents the

marked trajectory that the tester needs to follow; ‘Our’ shows

the tracking results of our method, while the results using

Godha’s method [11] and Yun’s method [12] are also shown

for comparison.

1) Short distance walking: for short distance walking, three

experiments are carried out according to the predefined paths:

1) the subject walks in a straight line for 15m; 2) the subject

walks in a straight line for 10m, makes a 180◦ turn and walks

back to the starting point; 3) the subject walks in a circle of

radius 3m. Each experiment is repeated 5 times. One example

of the estimated displacements for the three experiments are
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Fig. 4. One example of the estimated displacement results for walking in a
straight line for 15m.

shown in Figs. 4–6, respectively. In these figures, the thick

grey solid line in the plots represents the predefined path,

the thin solid line shows the estimated trajectory using our

proposed methods, the dotted-dashed line are the estimated

results using Godha’s method, and the dashed line illustrates

the position estimation of Yun’s method. Table I shows the

position errors of each test for the three experiments. For the

straight line walking, the path is not a closed-loop trajectory,

and the position error is calculated using the difference be-

tween the estimated final position and the truth final position.

For the other two experiments with closed-loop trajectories,

the position error is evaluated by the difference between the

starting and final position. Table I also show the average

position errors over the 5 trials. The average position error of

the proposed method for straight line walking is 0.44±0.20m,

for walking with 180◦ turn is 0.45±0.08m, and for walking in

a circle path is 0.40±0.07m, respectively. The figures show

that our method is more accurate than the other two pure

ZUPT-based methods.

2) Long distance walking: both indoor and outdoor long

distance walking experiments are conducted to further validate

the feasibility of our method in long-term tests. The indoor

experiment is carried out in a laboratory on campus. The

walking path of the experiment is shown in Fig. 7, which

totally covers about 132m in distance, with various obstacles

and turns. Along the walking path, distinctive points with 1m

distance are marked on the floor to guide the subjects to walk

along the path. As shown in Fig. 7, the thick grey solid line in

the plot represents the predefined path. From the start position

which is the (0, 0) point in the plot, the subject walks along

the path, makes several turns and walks back to the starting

position. The subject takes about 3 minutes to walk along

it under normal walking speed. In Fig. 7, the thin solid line

shows the estimated trajectory using the proposed method, the

dash-dotted line is the results of Godha’s method, while the

dashed line illustrates the position estimation of Yun’s method.

Similar to indoor walking, as shown in Fig. 8, the thick
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Fig. 5. One example of the estimated displacement results for walking in a
straight line for 10m, and back to the starting point with a turn of 180◦.
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Fig. 6. One example of the estimated displacement results for walking in a
circle with radius of 3m.

grey solid line represents the predefined path for the outdoor

experiment. The total distance of the outdoor walking path is

about 332m. From the starting position which is the original

point in the plot, the subject walks along the path, makes

several turns and walks back to the starting position. Under

normal walking speed, it takes about 6 minutes for the subject

to walk along the path. In Fig. 8, the thin solid line shows

the estimated trajectory using our proposed method, the dash-

dotted line follows Godha’s method, and dashed line illustrates

the position estimation by Yun’s method. Both indoor and

outdoor walking experiments are repeated 5 times, and the

position errors of each test are shown in Table II. The average

position errors over the 5 trials are also shown in the table.

Based on our method, the averaged error for 3 minutes indoor

walking is 4.31±1.77m, and for 6 minutes outdoor walking is

3.88±0.35m. The comparison results of the average position

errors among the three methods indicates our method has

achieved the highest accuracy in the long-term experiments.
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TABLE I
ABSOLUTE INITIAL-FINAL POSITION ERROR FOR SHORT DISTANCE WALKING (UNIT: M)

Position error(%)
line turn circle

Our Godha’s Yun’s Our Godha’s Yun’s Our Godha’s Yun’s

1 0.21 2.19 1.52 0.40 1.20 0.44 0.34 5.52 1.00
2 0.63 1.86 2.93 0.50 0.64 1.00 0.37 6.53 1.77
3 0.64 1.63 2.10 0.55 0.54 1.08 0.36 6.15 0.89
4 0.44 1.23 1.39 0.36 0.64 0.46 0.52 7.82 0.65
5 0.28 1.70 0.87 0.44 0.89 0.39 0.41 3.97 1.28

mean±std 0.44±0.20 1.72±0.35 1.76±0.78 0.45±0.08 0.78±0.27 0.67±0.34 0.40±0.07 6.00±1.41 1.12±0.43

TABLE II
ABSOLUTE INITIAL-FINAL POSITION ERROR FOR LONG DISTANCE WALKING (UNIT: M)

Position error(%)
indoor outdoor

Our Godha’s Yun’s Our Godha’s Yun’s

1 5.35 14.68 9.03 4.16 22.01 8.13
2 2.11 7.18 8.94 3.39 16.17 12.48
3 2.69 18.70 14.90 3.87 21.98 12.08
4 5.93 19.95 14.80 4.25 21.45 10.79
5 5.48 13.56 15.09 3.72 17.70 8.33

mean±std 4.31±1.77 14.73±4.93 12.55±3.26 3.88±0.35 19.86±2.74 10.37±2.05
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Fig. 7. One example of the displacement estimation for the indoor
experiments.

C. Discussion

The performance of the proposed method has been exten-

sively compared with those of the two pure ZUPT-based meth-

ods. As we can see from Table I and Table II, the proposed

method has achieved the smallest position error compared

with the other two methods. Compared with Godha’s method,

which simply resets the velocity to zero during the stance

phase, Yun’s method has improved the tracking accuracy. This

is mainly because Yun’s method not only applied ZUPT to

the stance phase, but also applied a time-variant velocity drift

error to revise the acceleration in the swing phase. However,

in Yun’s method, there was one stride delay in the position

estimation, because it had to wait for the stride to be executed

and then determined the drift error afterwards. Our method

corrects the velocity using the different velocity control vectors

in the stance phase or swing phase, without the introduction of
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Fig. 8. One example of the displacement estimation for the outdoor
experiments. The actual position of the 7 important points are marked by
the square number plates.

the one-stride delay. Based on the results shown in Figs. 4–8,

the integration of ZUPT with stride counting can significantly

improve the tracking performance compared with the pure

ZUPT-based methods. This is mainly due to the extracted

average stride velocity and the position from stride counting,

which can be used to further compensate for the acceleration

double integration and thus improve the estimation accuracy.

We also believe that with the tolerance of one stride delay,

the tracking accuracy could be further improved by using the

velocity of current stride as the control vector.

In our experiments, we use the position difference between

the starting and final points to evaluate the performance of

the proposed pedestrian tracking algorithm. Although it is

commonly recognized in the assessment of the pedestrian

tracking accuracy [9], [12], [16], the tracking performance
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Fig. 9. The distance errors between the estimated position and actual position
of the 7 important points.

may not be fully exploited by this method since it ignores the

possible deviation of the other points from the walking path.

Therefore, more points are extracted from the walking path

for the performance evaluation. One possible way is to choose

the critical turning points from the path of the ground truth.

The corresponding turning points will be found manually from

the position estimates provided by the three different methods.

Then the position differences between these turning points can

be calculated for performance comparison. Take the outdoor

long-term walking as an example, except the starting and final

points, 7 more points can be used for evaluation, which are

marked by the square number plates in Fig. 8. The average

distance errors and standard deviations between the estimated

position and actual position of the 7 points from the 5 trials are

shown in Fig. 9. To further illustrate how the stride information

can be used to improve estimation accuracy of the ZUPT-

based methods, the results of the pure stride-based method

are also shown in the figure. It is evident that integration of

the ZUPT-based method with stride-based method can achieve

better results than applying any of the methods alone.

When stride is mis-detected/false-detected, or errors exist

in the estimated stride length or heading direction, the pseudo

measurement from stride counting should be regarded as

invalid by setting the threshold λp. During our experiments,

all the strides could be accurately detected, but the estimated

stride length or heading direction had significant errors under

some certain situations, like turning, activities switching (from

standing still to walking or from walking to standing still) or

even walking on the spot. Take the 180o turn or sharp turn for

example, the subjects normally did the turning at the same spot

with little displacement change. In such case, the inaccurate

pseudo measurement should be ignored, which was achieved

via the threshold λp; the double integration could then take

the leading role in position estimation to reduce the error

in the pedestrian’s location estimation. To further illustrate

the behavior of the ZUPT method with/without intervention

of the pseudo measurement model, different values of λp

have been chosen to compare the displacement estimation

performances. The pure stride-based method in Fig. 9 can be

taken as the estimation results when λp=∞, while the ZUPT

method without any pseudo measurements intervention can be

considered as the estimation results when λp=0. It is evident

that the displacement estimation performance is slightly better

than the that of Yun’s method when λp =0, but not as good

as our final results. Although the both of pure stride-based

method and the ZUPT method without any pseudo measure-

ments intervention work poorly, the integration of these two

method can act as the best one. The possible explanation is that

though the stride method is not performing good for turns and

activity transitions or other situations, it outperforms double

integration method in the rest of conditions. Therefore, by

integrating of these two methods together, we have obtained

best results.

IV. CONCLUSION AND FUTURE WORK

In this paper, a novel pedestrian navigation method using a

sole foot-mounted sensor module has been proposed, which in-

tegrates the ZUPT-based method with the stride-based method

under the framework of an AKF. In order to compensate for

the velocity drift, a velocity control variable has been designed

in the process model, which has been set to the average

velocity derived from stride information in the swing phases

or zero in the stance phases. Stride-based position estimates

are also derived as the pseudo-measurements to further im-

prove tracking accuracy. The impressive experimental results

have demonstrated that our proposed method can accurately

track the positions of pedestrians in both indoor and outdoor

environments.

The proposed method is only evaluated for normal walking

experiments on level ground. Our future work will focus on

further extending our method for other walking patterns, like

backwards walking, sideways walking and stair climbing.
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