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Use of an Inertial/Magnetic Sensor Module for

Pedestrian Tracking during Normal Walking
Zhi-Qiang Zhang∗ and Xiaoli Meng∗

Abstract—The ability to track pedestrians without any in-
frastructure support is required by numerous applications in
the healthcare, augmented reality, and entertainment industries.
In this paper, we present a simple self-contained pedestrian
tracking method using a foot-mounted inertial and magnetic
sensor module. Traditional methods normally incorporate double
integration of the measured acceleration, but such methods are
susceptible to the acceleration noise and integration drift. To
avoid this issue, alternative approaches which make use of walk-
ing dynamics to aggregate individual stride have been explored.
The key for stride aggregating is to accurately and reliably detect
stride boundary and estimate the associated heading direction
for each stride, but it is still not well solved yet due to sensor
noise and external disturbance. In this paper, we propose to
make use of the inertial sensor and magnetometer measurements
for stride detection and heading direction determination. In our
method, a simple and reliable stride detection method, which
is resilient to random bouncing motions and sensor noise, is
designed based on gyroscope and accelerometer measurements.
Heading direction is then determined from the foot’s orientation
which fuses all the three types of sensor information together.
The proposed pedestrian tracking method has been evaluated
using experiments, including both short distance walking with
different patterns and long distance walking performed indoors
and outdoors. The good experimental results have illustrated the
effectiveness of the proposed pedestrian tracking method.

Index Terms—Sensor fusion, stance detection, heading, stride
counting, pedestrian navigation.

I. INTRODUCTION

THe ability to track pedestrians without any infrastructure

support is required by numerous applications in the

healthcare, augmented reality, and entertainment industries [1]

[2]. Until now, current outdoor position tracking technologies

mainly rely on satellite navigation systems, such as GPS and

GNSS, which normally require an unobstructed line of sight to

four or more satellites [3]. However, in urban and indoor en-

vironments, satellite signals are unreliable or even unavailable

due to the signal attenuation caused by buildings, tunnels, and

other construction materials. Although the integration of the

satellites and ground base stations can solve this problem, the

construction of the base stations is very expensive. Alternative

solutions, such as fingerprinting approach and trilateration ap-

proach, have been proposed so far. The fingerprinting approach

can deliver satisfactory localization accuracy, but it requires

complicated setup and high labor input to collect location

fingerprints [4] [5]. Similarly, the trilateration method can
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also achieve relative high localization accuracy, but it requires

the coverage of at least three line-of-sight ranging beacon

nodes at any point in the service area [6] [7]. Moreover,

determination of the locations of the beacon nodes is not easy

at all in practice. In summary, although these two approaches

can achieve reasonable accuracy, both of them need extra

infrastructure support, which impose tremendous challenges

for routine use [8].

In recently years, the dead-reckoning approach for pedes-

trian tracking has attracted extensive research attentions due

to its low requirement of infrastructure support. Starting at a

known initial user location, a typical dead-reckoning system

relies on different sensors to update the location information

by adding the current estimated displacement to the previ-

ously estimated location [9] [10]. Since the inertial/magnetic

measurement unit can work in arbitrary unprepared indoor

and outdoor environments, it has been widely applied for

self-contained pedestrian tracking. A typical inertial/magnetic

measurement unit contains a triaxial accelerometer, a triaxial

angular rate sensor, and a triaxial magnetometer, and these

sensor units are already commercially available on the market

at reasonable cost [11] [12] [13]. The basic idea of the

inertial/magnetic measurement unit-based pedestrian tracking

is to integrate the measured acceleration twice to estimate dis-

tance/position. However, any small acceleration bias error can

make the position error increase exponentially; therefore, zero-

velocity updates (ZUPTs) are commonly employed to mitigate

this problem by resetting the accumulated error [14] [15].

This technique exploits the intrinsic property of pedestrian

walking: there are repeated recognizable periods when the

foot stays stationary on the ground, during which the velocity

and acceleration of the foot are zero. Extensive research has

been performed on how to use ZUPTs for accurate position

estimation. For example, both Ojeda et al. [16] and Bebek

et al. [17] simply reset the integrated velocity to zero during

the zero velocity phases. Foxlin [18] and Godha et al. [19]

introduced ZUPTs as pseudo-measurements into an extended

Kalman filter as the navigation error corrector. Instead of

simply resetting the accumulated velocity error periodically,

Yun et al. [20] further improved the idea of ZUPTs and applied

a time variant acceleration bias error to revise the acceleration

in the swing phases. Although the removal of the acceleration

bias error can significantly improve the accuracy of position

tracking, it is still problematic for long distance tracking.

Similarly, both Schepers et al. [21] and Floor-Westerdijk et

al. [22] proposed to use high pass filters to remove the bias

error. The integrated velocity and the integrated position were

high-pass filtered by first-order recursive Butterworth filters
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to alleviate the integration drift, but it is quite challenging to

determine the cut-off frequencies of the filters, which makes

this method not straightforward to use in practice. However,

all the aforementioned acceleration double integration methods

assumed that the gravitational acceleration could be removed

from the accelerometer signal to obtain the motion accelera-

tion, but such procedure is extremely difficult due to sensor

bias and noise.

Alternative approach is to make use of walking dynamics

to determine pedestrian location by aggregating individual

stride, and the key is to accurately and reliably detect stride

boundary and estimate the associated heading direction for

each stride [23] [24]. Traditional stride detection typically

relies on peak detection/zero-cross over the accelerometer data

only, which is sensitive to noise and other irrelevant motion,

producing a high rate of false positives, while the heading

direction is mainly derived from a magnetometer compass,

which is susceptible to metal material disturbance [25]. In

this paper, we propose to make use of the inertial sensor and

magnetometer measurements for stride detection and heading

direction determination. In our method, a simple and reliable

stride detection method, which is resilient to random bouncing

motions and sensor noise, is designed based on both gyroscope

and accelerometer measurements. Heading direction is deter-

mined from the foot’s orientation which fuses of all the three

types of sensor information. The proposed pedestrian track-

ing method has been evaluated using experiments, including

both short distance walking with different patterns and long

distance walking performed indoors and outdoors. The good

experimental results have illustrated the effectiveness of the

proposed pedestrian tracking method.

The rest of the paper is organized as follows: Section

II describes the normal walking data acquisition and the

stride-counter based pedestrian tracking methods. Experimen-

tal results and discussions are described in Section III while

conclusion is provided in Section IV.

II. METHODS

A. Data Acquisition

The inertial/magnetic sensor module used in the data col-

lection is the sensor chip ADIS16405 from Analog Devices,

which contains a triaxial accelerometer, triaxial gyroscope and

triaxial magnetometer [26]. The sensor module was connected

to a base station by SPI serial data bus, which controlled the

data collection and sent the data to PC for offline processing

through Bluetooth. During the data collection, the sensor node

was placed on the foot as shown in Fig. 1(a).

Two types of walking protocols were designed: short dis-

tance walking and long distance walking. Subjects were in-

structed to walk along the predefined path between the start

and end points during walking. For short distance walking,

subjects can choose from the following three patterns: 1) walk

in a straight line for 15m; 2) walking in a straight line for 10m,

and back to the starting point with a turn of 180◦; 3) walk in

a circle with radius of 3m. For the long distance walking,

the subjects can select walking in the corridor for 130m or

walking outside for 330m. At least five trials were performed

for each walking pattern for statistic analysis.

Fig. 1. (a) The attachment of a sensor module on the foot of the subject.(b)
The illustration of the coordinate systems. The body coordinate system is
given in red dashed lines: X axis pointing the forward direction of the subject,
Z axis pointing up and Y axis (not given in the figure) pointing left to form a
right hand system, while the sensor coordinate system is given in black solid
lines representing the sensor unit sensitivity axes. At the initial position of
each trial, the global coordinate system and body coordinate system coincide
with each other.

B. Data Analysis

In this section, we will describe how to extract stride length

and heading direction information from the inertial/magnetic

sensor measurements. Since these parameters are related to

each stride, we will introduce how to segment walking steps

into strides.

Before we start to introduce the data analysis method,

three coordinate systems are defined: 1) the global coordinate

system: the reference coordinate system which will remains

unchanged during each trial; 2) body coordinate system: coor-

dinate system of the foot segment, X axis pointing the forward

direction of the subject, Y axis pointing left and Z axis

pointing up. As shown in the Fig. 1(b), the global coordinate

system and body coordinate system coincide with each other

at the initial position of each trial; 3) sensor coordinate system:

three orthogonally axes of the mounted sensors. To facilitate

our analysis, all the sensor data needs to be transformed to

the body coordinate system before processing, which can be

achieved by sensor to body alignment calibration [27].

1) Stride Detection: The gait cycle/stride is used to de-

scribe the complex activity of walking. This cycle/stride de-

scribes the motions from initial placement of the supporting

heel on the ground to when the same heel contacts the ground

for a second time. In general, our human gait cycle has two

basic components: swing phase and stance phase. During the

swing phase, the foot is in the air for lower limb advancement,

while during the stance phase, the foot is in contact with the

ground.

Previous studies tend to place the sensor node at waist

area [23] [24], and only the accelerometer measurements can

be used for stride detection since the waist keeps moving

all the time during walking. However, when we place the

sensor node on the foot, it will have a short stationary period

within each stance phase; therefore, we can also use the

gyroscope measurements for stride detection to increase the

robustness. As shown in Fig. 2, when the foot stays stationary

on the ground, the accelerometer only measures the gravity and

the gyroscope readings should sense no angular movement;
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Fig. 2. The detection results of the strides. Green line:
∣

∣
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∥zA,t

∥

∥− g
∣
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∥

∥zG,t

∥

∥

∣

∣; red dotted arrows: stride indices. λA and λG are
set to the same value.

therefore, a simple stance phase detector can be designed as:

Stance =

{

1, |‖zA,t‖ − g|<λA and ‖zG,t‖<λG

0, else
(1)

where zA,t is the accelerometer measurement at time t, while

the zG,t is the gyroscope reading at time t, ‖·‖ and |·| are the

magnitude and absolute operations, respectively, and g denotes

the gravity magnitude. λA and λG are the predefined thresholds

which are set to the same value empirically in this paper. As

shown in the figure, the first point of each stance phase is

taken as the end of a stride or as the start of a new stride.

2) Stride length estimation: Stride length may vary from

stride to stride even for the same pedestrian, but it has shown

that the walking speed strongly influences the amplitude of

the acceleration signal. Therefore, the stride length Sk can

be approximated with minimum latency by using a simple

formula [28] [23]:

Sk = Γ · 4

√

zmax

A,k − zmin

A,k (2)

where zmax

A,k (or zmin

A,k ) is the maximum (or minimum) vertical

acceleration in the stride k, and Γ is a constant. Although

the parameter Γ is user specific, our test results show that

it does not vary too much from person to person. In our

experiment, the value of the subject-dependent parameter Γ
can be determined by obtaining the actual distance d covered

by a calibration walking trial of N strides.

3) Heading direction determination: Since the heading

direction is critical to the location estimation performance, it

should be determined as accurate as possible using all the

sensor measurements together. Here, the heading direction is

determined from the foot’s orientation which fuses all the

sensor information. Given the gyroscope measurement zG,t,

the foot’s orientation qt at time step t can be predicted as [29]:

qt = exp

(

1

2
Ω [zG,t] δt

)

qt−1 + wt (3)

where qt = [q1,t, q2,t, q3,t, q4,t]
T
=

[

eTt , q4,t
]T

, q4,t and et =
[q1,t, q2,t, q3,t]

T are the scalar part and vector part of qt,

respectively. δt is the sampling interval (set to 0.01s in our

implementation), and Ω [zG,t] is a 4×4 skew symmetric matrix

as in

Ω [zG,t] =

[

− [zG,t×] zG,t

−zTG,t 0

]

, (4)

[×] represents the cross product operator [30], and wt is a

zero-mean Gaussian noise with covariance matrix Q.

The gravity acceleration and earth magnetic field strength

are used to compensate for the predicted quaternion to get

drift-free orientation estimation. Given a quaternion qt and

the reference magnetic vector rM , the measurement equation

of the magnetometer signal zM,t can be defined as:

zM,t = C(qt) rM + nM,t (5)

where C(qt) is the corresponding rotational matrix of the

quaternion qt [30]:

C(qt) =
(

q2
4,t − eTt et

)

I3 + 2ete
T
t − 2q4,t [et×] (6)

where nM,t is the magnetometer measurement noise with zero

mean and covariance matrix ΣM,t. Similarly, the measurement

equation of the accelerometer signal zA,t can be defined as:

zA,t = C(qt) g0 + nA,t (7)

where nA,t is the accelerometer measurement noise with

covariance ΣA; and g0 denotes the reference gravity vector.

From (5) and (7), the sensor measurement model is given

by:

zt =

[

zM,t

zA,t

]

= f(xt) + nt

= C(qt) ·

[

rM
g0

]

+

[

nM,t

nA,t

] (8)

The covariance matrix of the sensor measurement noises nt,

denoted by Rt, is given by:

Rt =

[

ΣM,t 03×3

03×3 ΣA

]

(9)

Once the prediction model and sensor measurement model

are defined, an Unscented Kalman filter (UKF) can be used

to fuse all the sensor measurements together for orientation

estimation. In practice, body motion acceleration and magnetic

disturbances can affect the performance of the UKF. To make

the UKF resilient to body motion acceleration and magnetic

disturbance, we applied the adaptive weighting mechanism to

adjust the corresponding measurement covariance matrix pre-

sented in our previous work [31] [32]. After the measurement

covariance adjustment, a standard UKF can be employed to

deal with the filtering [33].

When a stride is detected, the heading angle θk can be

extracted from the orientation of the kth stride, represented

by qSk
, as given in:

θk=atan2
(

2(qSk,4qSk,3+qSk,1qSk,2), 1−2(q2Sk,2
+q2Sk,3

)
)

−θ0
(10)
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Fig. 3. One example of the estimated displacement results for walking in a
straight line for 15m.

Fig. 4. One example of the estimated displacement results for walking in a
straight line for 10m, and back to the starting point with a turn of 180◦.

where θ0 is the initial heading angle. Thus, the pedestrian

location lp,k can be updated by:

lp,k = lp,k−1 + [Sk cos θk, Sk sin θk] (11)

where lp,k−1 is the location estimation of the previous stride.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Demonstration

In order to better illustrate the performance of the pedes-

trian tracking, a comparison study between the state-of-the-art

ZUPT-based methods and our method was carried out. In our

experiments, three ZUPT-based methods were implemented:

Godha’s method [19] which simply resets the velocity drift

to zero during the stance phases; Yun’s method [20] which

applies a time-variant acceleration bias error to remove ve-

locity drift; and Schepers’ method [21] [22] which uses high

pass filters to remove velocity drift. In what follows, ‘Truth’

represents the marked trajectory that the subjects need to

Fig. 5. One example of the estimated displacement results for walking in a
circle with radius of 3m.

follow; ‘Our’ shows the tracking results of our method, while

‘Godha’, ‘Yun’ and ‘Schepers’ stand for the corresponding

ZUPT-based methods, respectively.

1) Short distance walking: For short distance walking,

three walking patterns were designed for the subjects to follow

as described in Section II.A. Figs. 3–5 give the exemplary

results of the pedestrian location estimation using different

methods. In these figures, the thick grey solid lines represent

the predefined path that the subjects need to follow, while

the thin solid lines indicate the estimated trajectory using our

proposed method. The dotted-dashed lines, dashed lines and

dotted lines illustrate the position estimation results of the

three ZUPT-based methods: Godha’s method, Yun’s method

and Schepers’ method, respectively. The statistic results of the

position errors for these three walking patterns are given in

Table I. For the straight line walking, the path is not a closed-

loop trajectory, and the position error is calculated using the

difference between the estimated final position and the truth

final position. For the other walking patterns with closed-loop

trajectories, the position error is evaluated by the difference

between the starting and final positions. Table I also shows the

average position errors and the standard derivations over the

5 trials. The average position error of the proposed method

for straight line walking is 0.51±0.18m, for walking with

180◦ turn is 0.68±0.45m, and for walking in a circle path

is 0.70±0.41m, respectively. As we can see from the figures

and the table, it is evident that the proposed stride-counter

based method outperforms all the ZUPT-based methods.

2) Long distance walking: In order to further validate the

feasibility of our method for long-term walking tracking, both

indoor and outdoor long distance walking were conducted.

The indoor experiment was carried out in the corridors in

our laboratory, while the outdoor experiment was conducted

outside our department building. The predefined walking paths

are shown by the thick solid lines in Fig. 6 and Fig. 7. From the

start position (0,0) in the plot, the subjects walk along the path,

make several turns and then walk back to the starting position.

To facilitate the waling process, distinctive points along the
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TABLE I
ABSOLUTE INITIAL-FINAL POSITION ERROR FOR SHORT DISTANCE WALKING (UNIT: M)

Position
line turn circle

error Our Godha Yun Schepers Our Godha Yun Schepers Our Godha Yun Schepers

Trial 1 0.24 2.19 2.20 3.08 0.21 1.20 0.48 1.03 1.37 3.97 0.59 3.72
Trial 2 0.70 1.85 3.80 2.92 0.91 0.65 1.01 0.38 0.27 6.53 2.81 6.62
Trial 3 0.19 1.70 1.11 2.78 0.99 0.54 0.39 0.33 0.26 6.15 0.90 5.80
Trial 4 0.54 1.63 2.90 2.76 0.64 0.31 0.58 0.58 7.82 1.52 6.88
Trial 5 0.42 1.23 1.82 2.3 0.37 0.89 0.13 0.79 0.95 5.44 4.43 3.73

mean±std 0.42±0.21 1.72±0.35 2.36±1.03 2.77±0.29 0.58±0.35 0.79±0.27 0.47±0.33 0.62±0.29 0.69±0.48 5.98±1.42 2.05±1.58 5.35±1.54

TABLE II
ABSOLUTE INITIAL-FINAL POSITION ERROR FOR LONG DISTANCE WALKING (UNIT: M)

Position error
indoor outdoor

Our Godha Yun Schepers Our Godha Yun Schepers

Trial 1 3.54 14.68 4.45 13.54 5.92 16.18 11.21 15.09
Trial 2 4.89 7.18 4.15 6.72 11.13 13.75 14.75 13.31
Trial 3 5.76 6.69 5.89 6.25 6.48 12.09 14.37 11.29
Trial 4 4.61 13.56 7.52 12.48 5.79 14.53 12.48 12.32
Trial 5 4.06 18.71 4.80 17.55 6.31 11.70 8.33 11.38

mean±std 4.57±0.84 12.16±5.15 5.36±1.37 11.31±4.79 7.13±2.26 13.65±1.83 12.23±2.61 12.68±1.58

Fig. 6. One example of the displacement estimation for the indoor
experiments.

walking path are marked on the floor to guide the subjects

to walk along the path. Similar to the short distance walking,

the thick grey solid lines in Fig. 6 and Fig. 7 represent the

predefined path that the subjects need to follow, and the thin

solid lines indicate the estimated trajectory using our proposed

method. The dotted-dashed lines, dashed lines and dotted lines

illustrate the position estimation results of the three ZUPT-

based methods: Godha’s method, Yun’s method and Schepers’

method, respectively. Both indoor and outdoor walking exper-

iments are repeated 5 times, and the statistic position errors

are shown in Table II. For our proposed method, the averaged

error for 3 minutes indoor walking is 4.57±0.84m, and for

6 minutes outdoor walking is 7.13±2.26m. The comparison

results of the average position errors among the four methods

indicate our method has achieved the highest accuracy in the

long-term experiments.

Fig. 7. One example of the displacement estimation for the outdoor
experiments. The actual positions of the 7 important points are marked by
the square number plates.

B. Discussion

In our previous analysis, we only use the position differ-

ences between the starting and final points to evaluate the

performance of the proposed pedestrian tracking algorithm.

Although it is commonly recognized in the accuracy assess-

ment of the pedestrian tracking [17] [20] [34], the tracking

performance may not be fully exploited by this method since

it ignores the possible deviation of the other points from the

walking path. Therefore, more points should be extracted from

the walking path for the performance evaluation. One possible

way is to choose the critical turning points from the path of

the ground truth. Taking the outdoor long-term walking as an

example, except the starting and final points, 7 more points can

be used for evaluation, which are marked by the square number
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Fig. 8. The distance errors between the estimated positions and actual
positions of the 7 important points.

plates in Fig. 7. The average distance errors and standard

deviations between the estimated positions and actual positions

from the 5 trials are shown in Fig. 8. It is evident that although

the proposed stride-counter based pedestrian tracking method

is very simple for implementation, it still can achieve the best

tracking accuracy over the state-of-the-art ZUPT-based meth-

ods. Based on the results shown in Tables I–II and Figs. 3–8,

it is evident that the Yun’s method outperforms the other two

ZUPT-based methods. This is mainly because Godha’s method

only simply reset the velocity to zero during the stance phases

and the accumulated drift during the swing phases is included

in the location estimation. Although Schepers’ method applied

first-order recursive Butterworth high pass filters to remove the

drift caused by the acceleration bias in the integrated velocity,

the filters can’t remove the integration drift during the stance

phases due to the difficulty choosing the cut-off frequency.

Yun’s method applied an acceleration bias variable not only to

revise the integrated velocity during the swing phases, but also

to set the velocity to zero during the stance phases, which can

significantly improve the accuracy of position tracking over

the other two ZUPT-based methods. However, all the ZUPT-

based methods assume that the gravitational acceleration can

be removed from the accelerometer signal to obtain the motion

acceleration, but such procedure is extremely difficult, and the

errors in the motion acceleration can’t be fully compensated

by the zero velocity constraint. Instead of integrating the

measured acceleration, our proposed method make use of the

walking dynamics contained in the sensor signals, such as

frequency, maximum/minimum amplitude, which can avoid

motion acceleration derivation and integration drift. Therefore,

good pedestrian tracking accuracy can be achieved.

The stride-counter based methods also have some pitfalls

over the ZUPT-based methods. The major disadvantage of the

stride-based method is it can only work on the level ground or

the 2D environment. In our experiments, only X axis and Y

axis displacements were estimated, while the Z axis movement

Fig. 9. The illustration of the displacement estimation results using the
magnetometer only for heading direction determination.

was ignored. However, the ZUPT-based methods can not only

estimate the movement in X and Y axes, but also can estimate

the displacements in Z axis. Foxlin [18] and Yun et al. [20]

have demonstrated it is possible that the ZUPT-based methods

can be applied for the downstairs/upstairs walking tracking,

which is beyond the ability of stride-based methods. The

second disadvantage of the stride-based method is that it can

only work for normal forward walking scenarios, since it is

not applicable to the other walking patterns, like backwards

walking and sideways walking. In theory, the ZUPT-based

methods should also be able to provide reasonable displace-

ment estimation for the backwards walking and sideways

walking, although we haven’t found any study evaluating such

walking patterns. The third disadvantage of the stride-based

method is its low updating frequency. From the Fig. 4 and

Fig. 5, it is very clear that the stride-based method can only

provide one location estimation per stride while the ZUPT-

based method can give 100 location updates per second.

Therefore, to overcome the pitfalls of the stride-based method

and also to make use of the stride-based method, our future

work will be to integrate the ZUPT-based method and the

stride-based method together, and it can be expected that the

tracking accuracy could be further improved.

To further illustrate the effectiveness of the proposed stride-

based method, we have also evaluated the characteristics of the

two key steps involved in our method: the stride detection,

and heading direction determination. In the stride detection

step, we used the accelerometer and gyroscope measurements

together for the stance phase detection, and no miss-detection

or false positive detection has been found in our experiments.

However, we also used the accelerometer alone for stride de-

tection, and approximately 10% of the detected strides are false

positive due to noise and other irrelevant motion, which means

that the incorporation of gyroscope measurements can improve

the robustness of the stride detection. We also applied the

magnetometer only for the heading direction determination.

Fig. 9 shows an example of the outdoor walking results. It is

obvious that the tracking performance using the magnetometer
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only for heading direction determination is much worse than

that of using all the sensor measurements. The reason is

that when there is magnetic disturbance, the gyroscope and

accelerometer can compensate for such disturbances and still

provide accurate heading directions.

IV. CONCLUSION AND FUTURE WORK

This paper provided an alternative approach for pedestrian

tracking by investigating the usage of the stride length and

heading direction to avoid the motion acceleration derivation

and excessive double acceleration integration drift. In our

method, a simple and reliable stride detection method, which

is resilient to random bouncing motions and sensor noise,

was designed based on both gyroscope and accelerometer

measurements. Heading direction was then determined from

the foot’s orientation which fuses of all the three types of

sensor information. The proposed pedestrian tracking method

has been evaluated using experiments, including both short

distance walking with different patterns and long distance

walking performed indoors and outdoors. The good experi-

mental results have illustrated the effectiveness of the proposed

pedestrian tracking method.

Our future work will focus on extending our current method

by incorporating the ZUPT-based method in. More walking

patterns experiments, like backwards walking, sideways walk-

ing and stair climbing, and longer distance waling trials will be

carried out to further evaluate our method. The usage of map

information for pedestrian navigation will also be explored in

the future.
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