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ABSTRACT

Flux elements� pores and sunspots form a family of magnetic features observed at the
solar surface� As a �rst step towards developing a fully nonlinear model of the structure
of these features and of the dynamics of their interaction with solar convection� we
conduct numerical experiments on idealised axisymmetric �ux tubes in a compressible
convecting atmosphere in cylindrical boxes of radius up to eight times their depth� We
�nd that the magnetic �eld strength of the �ux tubes is roughly independent of both
distance from the centre and the total �ux content of the �ux tube� but that the angle
of inclination from the vertical of the �eld at the edge of the tube increases with �ux
content� In all our calculations� �uid motion converges on the �ux tube at the surface�
The results compare favourably with observations of pores	 in contrast� large sunspots
lie at the centre of an out
�owing moat cell� We conjecture that there is an in�ow
hidden beneath the penumbrae of large spots� and that this in�ow is responsible for
the remarkable longevity of such features�

Key words� Convection � MHD � Sun� interior � Sun� magnetic �elds � sunspots�

� INTRODUCTION

Magnetic �elds appear at the surface of the Sun in the form
of �ux elements� pores and sunspots� though other� more ac�
tive� stars can have magnetic features covering a signi�cant
fraction of their surfaces� This family of magnetic features
on the Sun can be parameterized by magnetic �ux content�
It ranges in scale from �ux elements� with diameters down
to ��� km 	the current limit of resolution
� �eld strengths
of ����G and magnetic �uxes on the order of ����� TWb
	���� Mx
� through pores� with sizes in the range ����
���� km� �eld strengths of ���� G and �ux contents up to
�TWb� to sunspots� with diameters up to �� ��� km� �eld
strengths of ���� G in the umbra and ���� G in the penum�
bra� and �ux contents varying from � to ��� TWb�

The smallest features are formed between the convec�
tion cells 	granules
 on the surface� and have a lifetime of
only a few minutes� Magnetic �ux accumulates at the cor�
ners of supergranules� possibly forming a pore� which grows
as it accretes more �ux� Occasionally� a pore becomes large
enough to develop a penumbra and become a sunspot� Most
sunspots are torn apart within a few hours� but the largest
sunspots are long�lived� lasting for several weeks� and organ�
ise convection around themselves into a moat cell� in which
there is a systematic out�ow at the surface� The suppression
of convective transport by their strong magnetic �elds leads

to signi�cant reductions in the radiative output of the larger
features�

Existing models of the subsurface structure of �ux
tubes� pores and spots 	reviewed by Thomas � Weiss ����

incorporate balances between pressure and magnetic forces�
but do not fully take into account the dynamic and nonlinear
nature of the convective atmosphere in which these features
live� A sunspot poses particular di�culties because of its �l�
amentary penumbra and complex magnetic �eld� The most
comprehensive magnetostatic model to date is that of Jahn
� Schmidt 	����
� which incorporates umbral and penum�
bral regions with thermal properties di�ering from those of
the surrounding convection zone� and with current sheets
between the three regions�

In this paper� we present an idealised model of verti�
cal �ux tubes in a convecting atmosphere� In order to focus
attention on the �ux tube and its interaction with convec�
tion� we have performed our computations in a cylindrical
box 	containing a compressible� electrically conducting ideal
gas
� We have restricted ourselves to axisymmetric solutions
in this initial set of calculations� This can be justi�ed as
pores and spots can be fairly circular� though in future work
we will extend our axisymmetric calculations to the fully
three�dimensional case�

In common with earlier work in the Cartesian geome�
try 	Hurlburt � Toomre ����� Weiss et al� ����� ����� Tao
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et al� ����� Blanch�ower� Rucklidge �Weiss ����� Rucklidge
et al� ����
� the unstably strati�ed static reference atmo�
sphere has an initial density strati�cation� with the density
increasing by a factor of eleven over the layer� pressure like�
wise increasing by a factor of ���� and the ratio � of the
magnetic to thermal di�usivity increasing from ��� to ���
with depth� The ratio � plays a crucial role in determining
the type of convective behaviour seen at onset� with small �
	less than one
 and large magnetic �elds favouring oscil�
latory convection� and large zeta or small �elds favouring
steady convection� In the photosphere� � passes through one
at a depth of about ���� km 	Meyer et al� ����
� At that
depth� the pressure scale height is on the order of ��� km�
so notionally the region of the photosphere being modelled
by these calculations from ��� km below the surface and ex�
tends to a depth of about ���� km�

The two� and three�dimensional Cartesian calculations
examined patterns of magnetoconvection� both small�scale
behaviour found in strongly magnetized regions 	Weiss et al�
����� ����� Rucklidge et al� ����
� such as the umbrae of
sunspots� and large�scale behaviour 	Tao et al� ����
� in
which magnetic �eld is expelled from the surrounding con�
vection� as in plage regions� These latter calculations con�
tained many convection cells and magnetic features in a va�
riety of shapes and sizes�

An axisymmetric or cylindrical 	or even hexagonal
 ge�
ometry is better suited to the study of a single magnetic
feature� and early incompressible calculations demonstrated
that convection readily expels magnetic �elds and forms a
central �ux tube surrounded by a toroidal convection cell
	Galloway et al� ����� Galloway � Moore ����� Galloway �
Proctor ����
� These calculations were carried out in small
boxes with the convecting �uid obeying the Boussinesq 	in�
compressibility
 assumption� and were extended to case of
an inclined outer wall by Watson 	����
 and to the mildly
compressible case by Cameron 	����
�

We combine these two strands of research and solve nu�
merically the partial di�erential equations governing com�
pressible �uid �ow� heat transfer and magnetic induction in
an axisymmetric box containing a compressible� electrically
conducting ideal gas� with magnetic �ux coming up through
the box and heat supplied at the lower boundary to drive
convection�

Our choice of parameters is guided by our aim to study
how the behaviour of magnetic �ux tubes in a convecting at�
mosphere is a�ected by their �ux content� Since the vigour
of convection in the unmagnetized parts of the photosphere
is una�ected by the presence or otherwise of an adjacent �ux
tube� we aim to keep the amplitude of convection 	as mea�
sured by the magnetic Reynolds number� or peak velocity

roughly constant as we increase the �ux content� In a box of
�xed size� the only way of increasing the �ux content is to
increase the e�ective �eld strength� which has the inevitable
e�ect of suppressing convection� We therefore increase the
size of the box along with the �ux content to ensure that
there is always enough room in the outer� unmagnetized�
part of the box to allow convection to proceed relatively
unhindered�

The restriction to axisymmetric solutions means that
we cannot investigate the �ne structure of the penumbrae
of sunspots� However� we can examine issues such as the in�
clination of the magnetic �eld at the outer edge of the �ux

r
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Γ

Fixed temperature
Vertical field

No horizontal heat flux
No radial field

Zero current

Temperature obeys Stefan’s law
Magnetic field matches to potential field above

Uniform field at infinity

Potential field

Axis

Figure �� Calculation domain�  � r � � and  � z � �� indicat�
ing the boundary conditions� At r �  �left edge of the �gure��

regularity conditions apply� The magnetic �eld is vertical at the
bottom and outer edge of the box� and matches to a potential
�eld at the top� Temperature is �xed at the bottom� and there is
no lateral heat �ux across the outer edge� the heat �ux at the top
of the box is determined by Stefan�s law� The velocity boundary
conditions are stress�free on all edges�

tube� which Rucklidge� Schmidt � Weiss 	����
 suggested
played a role in the transition from pores to sunspots� an in�
clined outer edge would imply enhanced heating of the outer
part of the �ux tube and a convectively driven penumbra�
To this end� we do not use the vertical magnetic �eld bound�
ary conditions that have generally been used in the past� but
instead match the magnetic �eld in the box to a current�free
	potential
 �eld above the box� This change mainly a�ects
the outer part of the �ux tubes by allowing the magnetic
�eld to spread out near the surface� In addition to this� we
use a radiative cooling boundary condition based on Stefan�s
law instead of the usual constant temperature condition�

The plan of the paper is as follows� In x� we give
the equations and boundary conditions in appropriate non�
dimensional form� In x� we present our results and conclude
in x� with a discussion of the relevance of the results to the
magnetohydrodynamics of �ux tubes� pores and sunspots�
Details of the numerical methods are given in the Appendix�

� EQUATIONS AND NUMERICAL METHODS

We solve the PDEs that describe compressible magneto�
convection in axisymmetric geometry 	see Fig� �
 using a
numerical code developed for this purpose� The PDEs are
the same as those considered by Hurlburt � Toomre 	����
�
though we use the form of the PDEs given by Weiss et al�
	����
� a layer of electrically conducting gas experiences a
uniform gravitational acceleration g directed downwards and
possesses a shear viscosity �� a thermal conductivity K� a
magnetic di�usivity �� and a magnetic permeability ��� all of
which are assumed to be constant� We assume that the �uid
satis�es the equation of state for a perfect monatomic gas
with constant heat capacities cv and cp � cv�R�� where R�

is the gas constant� The velocity �eld u� magnetic �eld B�
temperature T � pressure P and density � depend on time t
and on the cylindrical coordinates 	r� �� z
� There is a triv�
ial hydrostatic equilibrium solution with u � �� with an
imposed temperature gradient across the layer and a con�
stant thermal di�usion coe�cient K� this solution is in the
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form of a polytrope� with uniform magnetic �eld Bs �z� and
temperature and density having the form

Ts � T�	� � �z
� �s � ��	� � �z
m� 	�


where T� and �� are the temperature and density at the top
of the layer 	z � � at the top and increases downwards
�
In addition� m is the polytropic index and � is the imposed
temperature gradient� these two parameters depend on the
temperature di�erence across the layer and are related by
m � � � gd�R��T�� We work with the dimensionless form
of the PDEs� taking the unit of length to be the depth of
the layer d and the unit of time to be d�

p
R�T�� related to

the sound travel time across the layer� This choice of time
scale di�ers by a factor of

p
T���T from that used by Weiss

et al� 	����� ����
� where �T is the temperature di�erence
across the layer� We scale the density by ��� the temperature
by T�� and the magnetic �eld by Bs� Velocities are scaled
by

p
R�T�� the sound speed at the top of the layer� and

pressure is scaled by ��T�R��
The equations can be simpli�ed by restricting to axi�

symmetric solutions� With this assumption� we need only
use A� the � component of the vector potential� to represent
the magnetic �eld�

B �
�
�	A

	z
� ��

	A

	r
�

A

r

�

 	�


The nondimensional current density is then only in the � di�
rection�

j � 	r�B
� � �r�A�
A

r�
� 	�


where

r� �
	�

	r�
�
�

r

	

	r
�

	�

	z�

 	�


In terms of the nondimensionalised variables� with u �
	u� �� w
� the PDEs are then the continuity equation�

	�

	t
� �u	�

	r
� w

	�

	z
� �r � u� 	�


where

r � u � u

r
�

	u

	r
�

	w

	z
� 	�


the two components of the NavierStokes equation�

	u

	t
�� u

	u

	r
� w

	u

	z
� 	T

	r
� T

�

	�

	r

� ��� �K
�Q

�
j Bz �

� �K

�

�
r�u� u

r�
� �

�

	r � u
	r

� 	�


and

	w

	t
�� u

	w

	r
� w

	w

	z
� 	T

	z
� T

�

	�

	z
� �	m� �


�
��� �K

�Q

�
j Br �

� �K

�

�
r�w � �

�

	r � u
	z

�
�

	�


where we have assumed the equation of state for a perfect
gas� P � �T � The dimensionless induction equation is

	A

	t
� �uBz �wBr � �� �K j� 	�


and the energy equation is 	including the viscous and Ohmic
heating terms� cf� Landau � Lifshitz ����


	T

	t
�� u

	T

	r
� w

	T

	z
� 	� � �
Tr � u� � �K

�
r�T

�
� �K	� � �


�

�
�
�
� � � � ���Q �K� j�

�
�

	��


where � is the rate of strain tensor� de�ned 	in Cartesian
coordinates
 by

ij �
	ui
	xj

�
	uj
	xi

� �
�
�ijr � u
 	��


In cylindrical coordinates� we �nd that

�
�
� � � �

�
	u

	z
� 	w

	r

��
� �

�
	r � u
�

� �
�
	u

	z

	w

	r
� u

r

	w

	z
� u

r

	u

	r
� 	u

	r

	w

	z

� 	��


	cf� Chandrasekhar ����
�
The dimensionless quantities that have appeared in the

PDEs are� �� the initial temperature gradient� m� the poly�
tropic index� �� the ratio of speci�c heats� �� the Prandtl
number� �K� the dimensionless thermal conductivity�

� � cp�cv� � � �cp�K� �K �
K

	R�T�
�����d cp
� 	��


��� the magnetic di�usivity ratio at the top of the layer� and
Q� the Chandrasekhar number�

�� � ���cp�K and Q �
B�
s d

�

����

 	��


These seven dimensionless parameters de�ne our problem�
along with one additional geometric parameter� �� the scaled
radius of the computational domain�

In addition to these� there are secondary dimension�
less parameters� de�ned here for convenience� We use the
mid�layer Rayleigh number R to measure the importance of
buoyancy forces compared to viscous forces�

R � ��	m� �

�
�� 	m� �
	� � �
��

� 	� � ���
�m��

� �K�
� 	��


and the total vertical magnetic �ux  is used to compare
experiments done with di�erent values of Q�

 � �
p
Q

Z �

�

rBz dr �
p
Q��� 	��


where an inessential factor of � has been removed� We also
de�ne the local plasma beta� the ratio of pressure to mag�
netic pressure�

� �
��T

��� �K�QjBj� � 	��


and the magnetic Reynolds number�

Rm �
max juj
�� �K

� ���max juj 	��


for the choice of parameters made in x�� Finally� we mention
that the local sound speed is

p
�T and the local Alfv!en speed

is jBj�p���� We note that the magnetic di�usivity 	�� �K

is constant� while the thermal di�usivity � �K�� depends on
density and hence on position�
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��� Boundary conditions

Our computational domain is a cylinder of radius �� so 	r� z

satisfy

� � r � �� � � z � �� 	��


with z � � at the top of the box 	see Fig� �
� We require that
all variables be su�ciently well behaved at the axis 	r � �

that the di�erential operators in the PDEs are non�singular�
This implies that

	�

	r
� u �

	w

	r
� A � Br �

	Bz

	r
� j �

	T

	r
� � 	��


at r � �� Terms like u�r are evaluated using l�H�opital�s rule�
while terms like u�r� are found to cancel with other terms�

At the bottom and sides of the box� we use the bound�
ary conditions that have been widely used in the Cartesian
version of this problem� At z � �� these are constant temper�
ature� vertical magnetic �eld� impenetrable and stress�free�

T � � � ��
	A

	z
� w �

	u

	z
� �
 	��


At r � �� we have no lateral heat �ux across the slippery�
perfectly conducting side wall�

A �
�

�
�

	T

	r
� u �

	w

	r
� j � �
 	��


This value of A is chosen so that the initial vertical uniform
�eld satis�es Bz � ��

However� on the top surface� we diverge from the stan�
dard practice 	constant temperature and vertical magnetic
�eld conditions
� and apply instead a radiative� potential
�eld condition� Speci�cally� we set

	T

	z
� �T ��

	A

	z
�Mpot	A
�

	u

	z
� w � �� 	��


whereMpot	A
 is a linear operator described below� Similar
conditions have been used by Hurlburt� Matthews � Proctor
	����
 and Blanch�ower et al� 	����
 in Cartesian geometry�
though the potential �eld condition is harder to impose in
cylindrical coordinates�

For the potential �eld upper boundary condition� we
require that the magnetic �eld in the domain matches 	that
is� the values of Br and Bz are continuous across the bound�
ary� or equivalently� A and 	A�	z are continuous across the
boundary
 a current�free �eld given by the �ux function
Apot� where

r�Apot � Apot

r�
� �
 	��


This equation can be solved in general by a linear combi�
nation of Bessel functions of r multiplied by exponential
functions of z� It is possible to solve the equation in the
entire semi�in�nite region z � �� but we have found that
this leads to the magnetic �eld having a sharp corner as it
leaves the domain at r � �� Instead� we suppose that there
is an in�nitely tall conducting cylinder of radius � above
the domain� and that the magnetic �eld becomes uniform
as z � ��� Such a potential �eld can be written as�

Apot	r� z
 �
�
�
r �

�X
i��

�AiJ�	�ir��
e
�iz��� 	��


where the �Ai are constants� J� is the �rst�order Bessel func�
tion and the �i are the positive roots of the equation

J�	�
 � �
 	��


The constants �Ai can be computed from the values of
A	r� �
 � Apot	r� �
 at the top of the domain�

�Ai �
�

��J�� 	�i


Z �

�

r	A	r� �
� �
�
r
J�	�ir��
dr� 	��


and from these� the value of the vertical derivative of A can
be computed at z � ��

	A

	z
�

�X
i��

�i
�

�AiJ�	�ir��
 �Mpot	A

 	��


In practice� we truncate the sums at nr � �� where nr is
the number of grid point in the r direction� We compute
the coe�cients �Ai by setting z � � in 	��
 and inverting
the resulting matrix equation� rather than by computing in�
tegrals� as in 	��
� Since the boundary condition is linear�
the value of 	A�	z at each grid point along the top bound�
ary is a linear combination of the values of A at those grid
points� the matrix corresponding to the operatorMpot can
be computed in advance�

The density does not in principle satisfy boundary con�
ditions� but we impose the value of the normal derivative
of � obtained from the momentum equations 	�
 and 	�
 in
order to ensure that these are consistent with the boundary
conditions�

��� Numerics

We use a code speci�cally developed for these calculations�
details of the numerical method are given in the Appendix�
We achieve sixth�order spatial accuracy using compact ��
nite di�erences 	Lele ����
 and fourth�order temporal ac�
curacy using a modi�ed 	explicit
 BulirschStoer technique
for integrating forward in time� At the boundaries� the �rst�
order derivatives are evaluated to �fth order accuracy� and
the second�order derivatives are fourth�order accurate� The
calculations were initiated with a relatively low numerical
resolution 	�� grid intervals in the vertical
� then the res�
olution was increased until the solution had been properly
resolved� The grid intervals were chosen to be equal in the
two directions� The timestep was limited by the Courant
condition� multiplied by a safety factor of ����

� NUMERICAL EXPERIMENTS

With eight dimensionless parameters to control the system�
of necessity we limit ourselves to varying two of these� the
radius of the cylinder � and the Chandrasekhar number Q�
The other parameters are �xed at the well�used values of
� � ���� � � �� �� � �
�� m � �� � � �� and �K � �
��������
which give a mid�later Rayleigh number of R � ��� ����
With this choice� the basic atmosphere is well strati�ed� with
the density and temperature increasing by a factor of eleven
over the layer� and with enough thermal forcing to drive
reasonably vigorous convection in the absence of a magnetic
�eld�

The e�ective ratio of magnetic to thermal di�usivities�
���� also varies by a factor of eleven over the layer� from ���
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�a� �b� �c�

�d� �e�

�f�

�g�

�h�

Figure �� Single and two roll steady �ux tubes� the magnetic �ux increases by a factor of � from frame to frame� The parameters are�
� � 	��� � � �� �� � ��� m � �� � � �� R � � � with aspect ratios and Chandrasekhar numbers �a� � � �� Q � 	�
�	� �b� � � ��
Q � ���	� �c� � � �� Q � �
� �d� � � �� Q � 
�� �e� � � �� Q � ��� �f� � � 
� Q � 
�� �g� � � 
� Q � �	
� �h� � � �� Q � ����
Each frame shows �in the lower portion� magnetic �eld lines in black� velocity pointers in black and temperature deviation from the
initial temperature gradient in grey�scale �light signifying hot� dark signifying cold� and mid�grey signifying the unperturbed temperature
gradient�� The upper portion shows the potential magnetic �eld above the layer� The �eld line contour levels are chosen such that a
uniform magnetic �eld would have uniformly spaced �eld lines� The area of the velocity pointers is proportional to the magnitude of the
velocity� The horizontal coordinate is r� with the axis on the left� the vertical coordinate is z� increasing downwards�
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Table �� Properties of �ux tubes as functions of �ux content � and box radius ��

� � Q nr � nz Rm rmax �max r�� ��� rmid


�� ��	 �� ��� � �
� ��� �� �
�� �	� ��� ���
�� ��	 �
� ��� � �
� ���� ��
 ���� �
� ��� ���


�� �� ��	 �
� � ��� ����� �� ���� �	� ���� ���
�� �� 	�� ��� � ��� �	��� ��� ���
 �
� ��� ���
���� �� ��� ��� � ��� ���
 ��� ��� ��� ���� ���
��� �� ��� ��� � ��� ����� ��� ���� ��� ���� ���
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at the top to ��� at the bottom in the initial static state� Lin�
ear theory predicts that convection will set in as overstable
oscillations if this ratio is smaller than one and if Q is large
enough� otherwise the initial form of convection is steady
	Chandrasekhar ����� Cattaneo ����a�b� Weiss et al� ����
�
With our choice of parameters� convection is suppressed if
Q exceeds about ����� The initial instability as Q is de�
creased from this value appears to be a Hopf bifurcation
leading to weakly oscillating convection� but for lower val�
ues of Q� this solution is quickly replaced by a state in which
the convection sweeps the majority of the magnetic �ux to
the centre of the box 	see Fig� �
� We will concentrate on
this last class of solutions� in which the magnetic �ux is well
separated from the convection�

��� Varying �ux content

We use the total magnetic �ux�  � as the main controlling
parameter� and aim to show how this parameter determines
the properties of �ux tubes� To this end� we start with a
relatively small value of the �ux and increase it by factors
of
p
�� in di�erent sized boxes� In order to ensure that the

properties of the �ux tubes are as far as possible independent
of the size of the box� �� we have computed solutions with
various values of �� from � � �
� to � � � 	see Fig� � and
Table �
� We used two criteria to determine the box size�
�rst� we required that there should be su�cient room in the
unmagnetized part of the box that convection 	as measured
by the magnetic Reynolds number
 should not be inhibited
by the presence of the �ux tube� In particular� we aimed to
keep Rm in the range ������� Second� the box should be
large enough that the amount of magnetic �eld at the outer
boundary should be insigni�cant� so that we could be sure

that the properties of the �ux tube are not in�uenced by
the outer boundary� The properties of these �ux tubes are
summarised in Table ��

In each calculation� we started either from a small per�
turbation of the trivial solution or from a previously calcu�
lated state� and integrated the PDEs until the �nal state was
achieved 	often several hundred dimensionless time units
�
In most cases� the �nal state is steady� though in the larger
boxes� there are oscillations around a basically steady state�
In the smallest �ux tubes 	 � ��
� the �ux tube is par�
tially evacuated� with a minimum density about one tenth
of its initial value� the number of grid points required to re�
solve this density minimum 	which occurs on the axis in the
smallest tubes but at the outer edge on the top in the larger
tubes
 limited our exploration of the smallest �ux tubes�

In a typical calculation� the magnetic �eld collects into
the centre of the region� forming a vertical �ux tube in which
convection is almost entirely suppressed� while convection
carries on in the outer� unmagnetised� regions� With � � �
	Fig� �a�b
� there is only one roll in the box� but there is
room for two rolls in larger boxes� With � � � 	Fig� �c�d
�
the upwards plume between the two rolls occurs at a radius
of about �� indicating that � � � is in fact su�cient for
the lower values of  � For larger  � the �ux tube grows and
the rising plume is pushed outwards� In the largest tubes
	Fig� �h
� there is weak convection in the magnetized region�

Near the axis� the magnetic �eld strength is su�ciently
large that it can suppress or even eliminate convective mo�
tions� so the temperature in these inner regions is unper�
turbed from the static temperature gradient with the tem�
perature close to � at the surface� In the innermost parts
of the �ux tubes� the magnetic �eld strength is almost uni�
form 	the �eld line contours are evenly spaced
� but the �eld
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Figure �� Properties of the family of �ux tubes� as a function of radius� �a�b� The �eld strength
p
QjBj at the top of the layer� �c�d� �eld

strength at the middle of the layer �z � �	�� �e�f� angle of the magnetic �eld at the top of the layer �in degrees� measured from the
vertical�� �g�h� temperature at the top of the layer� The panels on the left are for � � ��	 �short dashes�� � � �� �solid� and � � ��
�long dashes�� while the panels on the right are for � � �� �long dashes�� � � �� �solid� and � � 
� �short dashes�� � � �� �dash�dot��
The plus symbols ��� denote rmax� the triangles ��� denote r��� and the crosses ��� denote rmid� Note that some of the calculations
have the same value of �ux but di�erent values of �� so some of the curves overlap�

strength increases towards the outer edge of the tube before
dropping o� to negligible values outside the tube� The in�
creased �eld strength is also associated with a weak counter�
eddy within the �ux tube and a narrow 	width about ���

units
 current sheet bounding the �ux tube� The potential
�eld boundary conditions mean that the �eld spreads out as
it goes up to the surface� and expands to �ll the region above
the �uid� and so becomes increasingly inclined towards the
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edge of each �ux tube� The size of the �ux tubes increases
with the total �ux content  such that the �eld strength in
the tube is almost independent of its size� as is the width
of the current sheet� The region of greatest �eld strength
also has the strongest 	�eld�aligned
 down�ows� with cor�
respondingly lower temperatures� The temperature at the
surface in the �ux tube is almost uniform� and about ��"
lower than the peak temperature outside the �ux tube� The
angle at which the �eld is inclined to the vertical at the edge
of the tube increases with the size of the tube� ranging from
����� in the smallest tubes to ����� in the largest� The
minimum of the plasma � occurs near the outer edge of the
�ux tube� where the density is lowest and the �eld strength
is highest� and is in the range ������� apart from the small�
est 	�min � �
��
 and largest 	�min � �
��
 �ux tubes� But
the most striking feature that all solutions share is that the
�ow always converges on the �ux tube at the surface�

In Fig� �� we show some of the properties of this family
of �ux tubes� plotted against radius r� These graphs show
the runs described in Table �� From Fig� �	a�b
� we note that
the �eld strength in the inner part of the �ux tube is almost
independent of �ux and of radius 	it varies by less than a
factor of two over two orders of magnitude of  
� and that
the position of the peak �eld strength moves outwards as the
�ux increases� The �eld strength jBj has been multiplied by
a factor of

p
Q in order to make the actual units of �eld

strength the same in all plots� Similarly� at a depth z � �
�
in Fig� �	c�d
� the �ux tube has a relatively uniform interior
with �eld strength roughly independent of �ux and of radius�
surrounded by a region of stronger magnetic �eld� which
drops rapidly to zero outside the �ux tube� The oscillation
in �eld strength in Fig� �	b�d
 in the largest boxes is caused
by convection in the magnetized region� In Fig� �	e�f
� we
plot the angle of the magnetic �eld to the vertical at the
top of the layer� the �eld starts vertical at the axis with
an inclination that increases� slowly at �rst� then rapidly
becomes nearly horizontal outside the �ux tube� Finally� in
Fig� �	g�h
� we see that the temperature at the top of the
layer is near its unperturbed value 	T � �
 in the inner part
of the �ux tube� there is a local temperature maximum near
the edge� but the temperature reaches its real maximum of
about �
� above the rising hot plume�

There are a number of ways that the sizes of these �ux
tubes could be measured� We have chosen three measure�
ments of radius� which are rmax� the radius at which the
�eld strength is at its maximum value at the top of the
layer� r��� the radius at which the �eld strength is ��" of
its maximum value at the top of the layer� and rmid� the
radius at which the �eld strength is ��" of its maximum
value at the level z � �
�� Similarly� we de�ne �max and
��� to be the angle that the �eld makes with the vertical
at r � rmax and r � r��� The locations r � rmax� r�� and
rmid are indicated by plus symbols 	�
� triangles 		
 and
crosses 	�
 respectively in Fig� �� The radii r�� and rmid

contain ����" of the total magnetic �ux in all cases�
The three radii of the �ux tubes are plotted against to�

tal magnetic �ux  in Fig� �	a
� the radii increase roughly
as

p
 � This behaviour would be expected if the �eld

strength
p
QjBj were independent of  � This expectation

is veri�ed at the midpoint of the layer in Fig� �	b
� and at
the top of the layer if the �ux tube radius is taken to be r���
However� the radii rmax measured at the top of the layer di�
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Figure �� Properties of the family of �ux tubes� as a function
of magnetic �ux� �a� The radii of the �ux tube at the top of the
layer� pluses ��� denote rmax triangles ��� denote r�� and crosses
��� denote rmid� The dotted line indicates the relationship that
we would expect if the �eld strength were independent of mag�
netic �ux� the radius would be proportional to

p
�� �b� Mean �eld

strength� ��r��� ��� and ��r�
mid

���� �c� Tangent of the �eld an�
gle at r � r�� ��� and at r � rmax ���� Note that the inclination
of the �eld to the vertical at rmax increases with magnetic �ux�
The dotted line in �c� is log tan�max proportional to log � �cf�
Leka � Skumanich ������

verge from the constant mean �eld expectation for the lower
values of magnetic �ux� One reason for this is that for lower
�uxes� there is not enough room within the �ux tube for
the counter�eddy that concentrates the �eld near the edge�
and so the peak �eld moves on to the axis� In the kinematic
limit� the peak �eld is indeed on the axis� and the size of the
tube is determined by the di�usivity of the magnetic �eld
	the radius goes as R

����
m 
 rather than by the �ux content

	Weiss ����
� However� in our calculations� the strati�ca�
tion of the basic atmosphere is strong enough that the �ux
tube is evacuated before we achieve the weak �eld limit 	cf�
Cattaneo ����a
�
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Finally� in Fig� �	c
� we show the angle of the magnetic
�eld �max and ��� at the top of the layer and at r � rmax and
r � r��� The �eld is almost horizontal 	�����
 at r � r���
independent of �ux� but the angle of the �eld at r � rmax

increases with magnetic �ux from ����� in the smallest
tubes� levelling o� at ����� for the larger tubes� This sys�
tematic increase of �eld angle at r � rmax is not obvious in
Fig� �� where the peak �eld at the outer edge of the tube is
not readily apparent� but is clear in Fig� �	e�f
�

In the very largest �ux tubes� weak convection can es�
tablish itself in the inner part of the tube 	cf� Fig� �h
�
This convection inevitably takes the form of travelling waves
	owing to the asymmetry between the axis and edge of the
tube
� These waves have triangular shape� as also observed
in Cartesian geometry 	Hurlburt et al� ����
� and slowly
travel inwards� Similar inward travelling waves have also
been seen in incompressible axisymmetric convection 	Tuck�
erman � Barkley ����
� The convection rolls travel inwards
in this case� but both directions of travel have been ob�
served in two�dimensional Cartesian calculations with im�
posed oblique magnetic �elds 	Matthews et al� ����� Hurl�
burt et al� ����
�

��� Direction of the �ow

As mentioned above� one striking feature of these solutions
is that the �uid �ow always converges on the �ux tube at the
top of the layer� and the tube is surrounded by a pronounced
down�draft� This strong preference appears to be a conse�
quence of the compressibility of the gas� in an incompressible
�uid modelled using the Boussinesq assumption� the prob�
lem has a re�ection symmetry in the horizontal midplane�
so there can be no preference for �ows of either direction�
This symmetry is also broken by the use of di�erent tem�
perature and magnetic �eld boundary conditions at the top
and bottom of the layer� though in a weakly strati�ed layer�
we have found solutions with both orientations�

We have attempted to �nd solutions that have the �ow
diverging from the tube at the surface� trying di�erent initial
conditions or arti�cially reversing the �ow� In all cases� after
a 	possibly lengthy
 transient the system settles down to a
state in which the �ow converges on the the �ux tube at
the top� though sometimes a two�roll solution is replaced
by a one�roll solution� When this happens� the properties
of the �ux tube 	radius and �eld inclination
 in the two
cases only di�er by a small amount� Only in the cases of
the smallest boxes 	� � �
 did a systematic out�ow occur�
but this was associated but a concentration of magnetic �eld
near the outer edge� and the �ow reverted to its more usual
orientation in somewhat larger boxes�

Fig� � shows part of a transient for � � � and Q � ����
At one stage in the calculation 	Fig� �a
� the �uid is moving
away from the �ux tube at the surface� and the �ow near the
tube is dominated by a strong down�draft� This down��ow is
rapidly carried away from the tube 	Fig� �b�c
� taking some
magnetic �eld with it� The hot� partly magnetized mate�
rial just outside the �ux tube develops a thermal instability
and another cold down�draft develops 	Fig� �d
� This one is
carried towards the �ux tube 	Fig� �e�f
� and an in�ow is es�
tablished around the �ux tube� eventually settling down to
Fig� �	g
� Other parameter values show similar behaviour�
whenever the �ow diverges from the �ux tube at the top� it

drags out the �eld� and the convection roll adjacent to the
tube develops a series of cold down�drafts� These continue
until one of them is pushed into the tube 	as in Fig� �f
�
at which point the �ow settles down to a 	relatively
 steady
in�ow� The thermal instability at the top of the upward mov�
ing plume appears to be enhanced if the plume is partly mag�
netized� This instability arises because of buoyancy braking
	cf� Hurlburt� Toomre � Massaguer ����� Ste�en� Ludwig
� Kr#uss ����� Spruit� Nordlund � Title ����� Rast ����
�
when heat losses exceed heat supply at the centre of the up�
�ow� The instability has also been seen in two�dimensional
Cartesian calculations with the potential and radiative ther�
mal boundary conditions 	Blanch�ower et al� ����
�

��� Varying magnetic boundary conditions

In Fig� �� we compare two calculations done at the same
parameter values 	� � �
� and Q � ��
� but with poten�
tial magnetic and radiative temperature boundary condi�
tions in Fig� �	a
� and vertical magnetic and �xed tempera�
ture boundary conditions in Fig� �	b
� Apart from the �ux
tube being slightly more concentrated at the surface with
vertical �eld boundary conditions� while the magnetic �eld
spreads out at the top with potential magnetic boundary
conditions� there is little qualitative di�erence between the
two� Blanch�ower et al� 	����
 carried out a systematic com�
parison between the two sets of boundary conditions in two�
dimensional convection and came to the same conclusion�

��� Varying magnetic Reynolds number

The mechanism responsible for determining the size and
�eld strength of the �ux tubes in these calculations can be
investigated by considering the e�ect of varying the mag�
netic Reynolds number Rm� In Fig� �� we show the results of
calculations done with � � �
� and Q � ��� with �� varying
from �
�� to �
�� in factors of

p
�� Once the �nal solution

has been achieved� this has the e�ect of varying Rm from
�� to ����� With larger Rm 	smaller ��
� the current sheet
at the outer edge of the �ux tube becomes narrower� and
the tube itself becomes smaller with higher �eld strengths�
Higher numerical resolution is needed for the smaller values
of ��� not only to resolve the narrower current sheets� but
also to cope with reductions in the density in the narrow
regions of peak �eld strength near the edge of the tube� For
the smallest values of ��� the density drops to less than a
tenth of its initial value�

The dotted lines in Fig� � indicate that the �eld strength
goes roughly as R

���
m and the tube radius goes as R

����
m �

These scaling laws are consistent with the laws obtained by
Galloway et al� 	����
� who found for incompressible axi�
symmetric magnetoconvection that the peak �eld strength
went as 	Rm� logRm


���� We have not done su�cient com�
putation to detect the weak logarithmic dependence� In this
compressible con�guration� the �eld strength cannot con�
tinue to grow as Rm is increased once the �ux tube is ap�
preciably evacuated�

� DISCUSSION

In summary� the main features of the computed family of
�ux tubes are� convection is suppressed inside the �ux tube�
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�a�

�b�

�c�

�d�

�e�

�f�

Figure �� Transient solution� with � � 
� Q � �	
� Starting from frame �a�� the dimensionless times are �b� t � ���� �c� t � ����
�d� t � 	��� �e� t � ���� and �f� t � ����� The system �nally settles down to a steady state �Fig� �g� after �� time units�
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�a�

�b�

Figure �� Comparing �a� potential �eld and radiative tempera�
ture with �b� vertical �eld and �xed temperature boundary con�
ditions� with � � �� and Q � 
� �see Fig� �d��
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Figure 	� �a� Field strength and �b� �ux tube radius as functions
of Rm� with � � �� and Q � 
�� and �	 � �� � 	�
� The dotted

lines are �a� R
���
m and �b� R

����
m � Triangles� crosses and plusses

have the same meaning as in Fig� ��

there is a uniform temperature and �eld strength inside the
tube� there is a temperature contrast of about ��" between
the inside and the outside of the tube� the �eld strength
is independent of �ux content and so the size of the tube
increases with �ux content� the �eld angle increases with �ux
content and size� and the �ow always eventually converges
on the �ux tube at the surface� In the largest �ux tubes�
there is weak convection that takes the form of inwardly
travelling waves�

These properties are in remarkably good agreement
with the observed features of pores� S#utterlin� Thim �
Schr#oter 	����
 measured the �eld strength in a single pore
of diameter ���� km and found it to vary only a few per�
cent from its mean value of ����G� dropping sharply to low
values beyond the edge of the pore� Skumanich 	����
 re�
ported observations of �� pores with a nearly universal ver�
tical �eld component of ���
 ��G� independent of the size
of the pore� The angle of inclination during the evolution
	growth
 of a pore also increases systematically with pore
size 	Leka � Skumanich ����
� We �nd that log tan�max

is proportional to log  � Leka � Skumanich 	����
 found a
similar linear relation but with a larger slope 	cf� Fig� �c
�
Keil et al� 	����
 reported annular regions of convergence
and down�ow around pores� Sobotka et al� 	����a
 deter�
mined that within about ���� km of the edge of a pore�
�ows are dominated by inward motions� while at greater
distances� granules move away from pores�

The preference in the calculations for �ows converging
on the �ux tube at the surface was pronounced� and we did
not �nd any persistent states with diverging �ows 	though
such �ows were often seen as transients� as in Fig� �
� Indeed�
pores are usually seen at the centre of converging �ows at
the granular and supergranular scales� but large� long�lived
sunspots are surrounded by their persistent out�owing moat�

In compressible convection calculations� the �ow ap�
pears to be driven primarily by concentrated cold down�
drafts� with more gently rising extended up�drafts 	cf� Hurl�
burt et al� ����� Stein � Nordlund ����� ����� Spruit et al�
����� Spruit ����� Nordlund � Stein ����� Steiner et al�
����
� The cooler conditions at the surface near a �ux tube
provide a natural source of cold material� leading to down�
�ows around the tube and hence in�ows� Parker 	����

envisaged these in�ows would occur at a depth of about
���� km� However� his model does not account for the pres�
ence of the out�owing moat� Meyer et al� 	����
 suggested
that the �ow should converge on a sunspot at a depth of
�� ��� km� rise up the side of the outwardly sloping tube
and diverge at the surface in a manner consistent with the
transport of momentum in cavities with sloping walls 	cf�
Watson ����
� We have seen here that such a �ow would
evolve rapidly as magnetic �eld is ripped from the �ux tube�

Flows around pores can be therefore explained as an
in�ow at the surface associated with cold down�ows at the
edge of the pore 	see Fig� �a
� The situation with sunspots
is more complicated� All our calculations indicate that there
should be in�ows and down�ows around long�lived sunspots�
driven by the cool temperatures associated with suppressed
convection� and indeed helioseismic observations 	Duvall
et al� ����
 suggest that there are systematic down�ows be�
neath active regions� On the other hand� large sunspots lie
at the centre of an out��owing moat cell�

We therefore propose that the domain covered by our
calculations is relevant to �ows at some depth 	the darker
region in Fig� �b
 below optical depth unity� the level at
which the moat �ow is observed� If the lid of the box is
notionally raised 	the lighter region in Fig� �b
 to allow for
this� the inward and downward super�granular �ow could be
hidden beneath the outer inclined edge of a large �ux tube�
Meanwhile� the surrounding counter�cell would provide the
out�owing moat at the surface� While they are suggestive�
our calculations are unable to produce this con�guration
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�a�

�b�

penumbraumbra

collar

moat

Figure 
� Schematic depictions of �a� the calculations and the
�ows around a pore� and �b� the conjectured �ow around a
sunspot�

directly because there is not enough room under the inclined
edge of the �ux tube to accommodate a convection cell 	we
would need a much deeper layer to achieve this
� nor do
we have an optically thick atmosphere above our convecting
layer�

This conjectured arrangement of the �ows around the
�ux tube combines features of the models of Meyer et al�
	����
 and Parker 	����
� It provides the in�owing collar
that would con�ne magnetic �eld at a depth somewhat be�
low the surface� and the up�ow that is needed to provide
the material for the moat� The pattern of �ow is only es�
tablished after a long transient� suggesting that only a few
spots would achieve this arrangement� and the stability of
the �ow could account for the remarkable longevity of spots
with moats� The up�ow below the inclined outer edge could
also provide heat for a convective instability leading to the
formation of a �lamentary penumbra 	Jahn � Schmidt �����
Rucklidge et al� ����
�

The conjecture is supported by two indirect observa�
tions as well as the helioseismic measurements of Duvall
et al� 	����
� First� bright features 	called grains
 in the
penumbra travel inwards if they start in the inner two�thirds
of the penumbra� otherwise they travel outwards 	Sobotka�
Brandt � Simon ����b
� However� these features may all
be associated with outwards material motion 	cf� Schlichen�
maier� Jahn � Schmidt ����
� Second� Rast et al� 	����

have observed systematic bright rings around twelve isolated
sunspots� with a ��K increase in temperature within one
sunspot radius of the penumbra� and suggested this might be
due either to sunspots being relatively shallow phenomena�
or to �ows near a sunspot being more e�ective at transport�
ing heat� The second explanation appears to be the most
likely given the presence of organised moat �ows around
sunspots� and our calculations suggest the form that these
�ows might take beneath the surface�

The next stages of the calculations will address the
linear stability of these axisymmetric �ux tubes� then fol�
low with the fully nonaxisymmetric nonlinear development
of any instabilities� Preliminary non�axisymmetric results
are presented by Hurlburt� Matthews � Rucklidge 	����
�
We will also explore more realistic magnetic boundary con�
ditions� connecting the �ow to force�free �elds above 	cf�

Martens et al� ����� Neukirch � Martens ����
 and to
coronal heating models 	Alexander� Hurlburt � Rucklidge
����
� Even in the axisymmetric geometry� the presence of
of twisted �elds could be included 	Jones � Galloway ����
�
twisted tubes are likely to be seen as untwisted tubes do not
rise through the convection zone unscathed 	Hughes� Falle �
Joarder ����
� Large long�lived sunspots do not have signif�
icant azimuthal magnetic �elds� so it would be interesting
to explore whether the presence of twisted �elds alter the
stability of the �ux tube� In nonaxisymmetric geometry� in�
stabilities are likely to occur both in the outer convecting
regions� where the torus�shaped convection cell will break
up into smaller cells 	Hurlburt et al� ����
� and in the �ux
tube itself� The travelling waves seen in the inner part of the
largest �ux tubes may be related to umbral dots 	cf� Weiss
et al� ����
� which do travel inwards 	Sobotka� Brandt �
Simon ����
� The outer parts of the �ux tube are liable to
both �uting instabilities 	Parker ����
� which are stabilized
by buoyancy 	Meyer� Schmidt � Weiss ����
� and to convec�
tive instabilities 	cf� Rucklidge et al� ����� Schlichenmaier �
Schmidt ����
� linear 	Matthews et al� ����
 and nonlinear
	Julien� Knobloch � Tobias ����
 theories suggest that there
should be an abrupt switch from three�dimensional convec�
tion to two�dimensional radially aligned convective rolls as
the angle of the �eld to the vertical is increased�

A combination of more realistic boundary conditions
and three�dimensional geometry will be needed to explain
the complex �ows and �eld geometries associated with the
penumbra and the Evershed e�ect� Even in simple sunspots�
the inclination of the magnetic �eld varies by ��� between
the light and dark �laments of the penumbra� with the �eld
in the dark �laments being nearly horizontal at the edge
of the spot 	Title et al� ����
� The outward Evershed �ow
appears to take place above the dark penumbral �laments
	Shine et al� ����
� and extends beyond the white light
boundary of the sunspot 	Rimmele ����a�b
� The arched
�ux tubes associated with these �ows originate within the
sunspot and can return to the surface outside or even with
the penumbra 	Stanch�eld et al� ����� Westendorp Plaza
et al� ����� Schlichenmaier � Schmidt ����
�

Despite the importance of sunspots and their magnetic
�elds� we are still far from understanding them in detail�
Recent observations with modern CCD and image restora�
tion techniques are yielding signi�cant improvements in our
empirical understanding� with ever�increasing levels of com�
plexity� Even simple features of pores and sunspots have
proved a challenge to explain theoretically� and complex
�uted magnetic �eld geometries� on scales near the obser�
vation limits� will be even more di�cult�
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APPENDIX A� NUMERICAL METHOD

We obtain solutions by separating the spatial operations
from those required for integrating in time� We achieve sixth�
order spatial accuracy using compact �nite di�erences and
fourth�order temporal accuracy using a modi�ed Bulirsch
Stoer technique for integrating forward in time� Here we
discuss the details of these methods and assess the accuracy
of our implementation of them�

A� Spatial Operators

Our compact di�erence formulation follows that of Lele
	����
� the derivative f �i of the function fi at gridpoint i
is evaluated by solving

�f �i�� � f �i � �f �i	� �

a

�x
	fi	� � fi��
 �

b

�x
	fi	� � fi��
�

	A�


where �x is the mesh interval� x represents r or z� � � ����
a � ��� and b � ����� The second derivative f ��i is evaluated
in an analogous manner with

�f ��i�� � f ��i � �f ��i	� �

a

�x�
	fi	� � �fi � fi��
 �

b

�x�
	fi	� � �fi � fi��
�

	A�


where � � ����� a � ����� and b � ����� Both these forms
are sixth order accurate in �x and require the solution of a
tridiagonal system to determine the value of f �i or f

��

i �
The boundaries for compact di�erence schemes are fre�

quently evaluated using third�order accurate forms� which
are su�cient for situations where the boundaries are rela�
tively passive� However many� if not most problems in con�
vection are controlled by the thermal and viscous boundary
layers on the bounding surfaces� We therefore desire stable�
higher�order boundary formulations� To prevent the integral
properties of the solutions being dominated by boundary er�
rors we have developed �fth order formulations� The conver�
gence rate of the rms error for our complete spatial scheme
are presented in Fig� �	a
� For Neumann boundary condi�
tions the scheme remains �th order accurate throughout the
domain� for Dirichlet conditions the error is dominated by
the �th order boundary error� In both cases the error in
computing the derivatives of the functions sin	��x��x�
 or
cos	��x��x�
 drops to the numerical roundo� error in the
vicinity of � � ��� Our treatment of the second derivative
boundary condition is fourth order on the boundaries for
both choices of boundary conditions as seen in Fig� �	b
�

A� Time Evolution

With the spatial accuracy of at least sixth order in the inte�
rior and at worst fourth order on the boundary� we now con�
sider higher accuracy for integrating forward in time� One
means of providing this is to use extrapolation techniques
such as those of pioneered by Stoer and Bulirsch 	����
 and

developed by Deu�hard 	����
� Alternatively� we could use
a fourth�order RungeKutta method� but while the com�
putational e�ort required is comparable� the extrapolation
method is more �exible and more amenable to time depen�
dent boundary conditions� Extrapolation methods can also
be adapted to form a multirate method 	Engstler and Lu�
bich ����
 which can cope with some sti� systems that might
otherwise require implicit schemes�

Our method advances the system� say y�	t
 � f	t�y

a �xed time step �t by making a series of successively
more accurate preliminary advances �t�n with successively
smaller and more numerous steps n using a modi�ed mid�
point method� Given an initial y	t
� we set

z� � y	t
 �
�t

n
f 	t�y
 	A�


and compute

zm	� � zm �
��t

n
f	t�m�t�n� zm
 	A�


for m � �� �� 
 
 
 � n� �� to obtain

y	t� �t
 � �
�
	zn � zn��
 �

�t

n
f	t�zn

 	A�


A simple polynomial extrapolation then uses these prelimi�
nary values y	t� �t
 for an increasing number of steps n to
extrapolate to an in�nite number of in�nitesimal steps� We
use the standard sequence suggested by Press et al� 	����

with n � �� �� �� �� ��� corresponding to one� two� three� four
and six modi�ed�midpoint steps� For second�order accuracy
two evaluations of the system of equations is required� for
fourth�order� six� for sixth�order� twelve� etc� The penalty
for such accuracy is the need for additional memory to store
the temporary results� Unlike the standard BulirschStoer
methods� our scheme speci�es the formal accuracy desired
prior to each step� which greatly reduces the memory re�
quirements� For accuracies of O	�t�
 and beyond the code
requires the storage penalty of a factor of �ve 	the working
variables and four scratch arrays of equivalent size
� The ac�
curacy for the fourth�� sixth� and eighth�order integrators is
displayed in Fig� ��	a
 for the solution of a harmonic oscilla�
tor as functions of the sampling frequency �� All three con�
verge at the expected rate from the Nyquist frequency and
reach machine roundo� error with ten samples per period�
From Fig� �	a
 and Fig� ��	a
� the accuracies of the spa�
tial and temporal schemes have errors of about ���" for the
same spatial$temporal sampling rate� This suggests that the
relative error for solutions to the hyperbolic systems should
be comparable for Courant numbers of unity� A simple test
using the advection of an arctangent function of width � is
shown in Fig� ��	b
� which supports this conjecture� the er�
ror is limited by the underlying �fth�order spatial resolution
once the Courant number drops below unity�

A� Comparison with previous work

Here we compare our scheme with others when applied to
a particular problem� A good candidate for this is the oscil�
latory solution to the magnetoconvection problem in two�
dimensional Cartesian geometry� originally discovered by
Hurlburt � Toomre 	����
� which was later found to arise
in a nonlinear bifurcation from the steady solution branch
	Weiss et al� ����
 and which has been veri�ed with di�erent
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Figure �� The global rms error 	 for the complete compact di�erence scheme decreases with increasing wavelength 
 as measured in
units of the grid spacing �x� �a� The error of the �rst derivative for Neumann boundary conditions �solid�� decreases as 

 �broken solid�
from the Nyquist wavelength down to machine roundo�� The error for Dirichlet conditions �dotted� decreases as 
� �dot�dashed�� due
to the in�uence of �fth�order boundary conditions� �b� Errors for both boundary conditions decrease as 
� �dashed� in evaluating the
second derivative�
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Figure ��� �a� The error 	 at the end of � steps for the �th�� 
th� and �th�order accurate Bulirsch�Stoer integrator applied to the
harmonic oscillator decreases with increasing sampling frequency �� �b� The rms error 	 at the end of �
 time units versus the width
 of the advected arctangent function at unit velocity for three sizes of timestep� The error is largest for largest step �t � ��	�x �solid�
and decreases down to the underlying accuracy of the spatial operators as the step size is reduced to ��	�x �dashed� and ���	�x
�dot�dashed�� For reference we include the dotted line which indicates a � relationship�

numerical methods and various combinations of boundary
conditions 	Hurlburt et al� ����
� This instability occurs in
systems where the value of the magnetic Prandtl number
� � ��� passes through unity within the domain� If � � �
everywhere then the initial bifurcation from the static state
can be oscillatory� If � � � then it is always steady� The
mixed state is a nonlinear coupling between these solution
branches� All previous solutions have been for periodic con�
ditions in two�dimensional Cartesian geometry� and here we
have impermeable� stress�free walls with axisymmetric ge�
ometry 	we use the usual vertical magnetic �eld and con�
stant temperature upper boundary conditions for this com�
parison
� The geometric di�erences disappear if we take a
cylindrical annulus of inner radius �i and outer radius �o�
with �o��i� �� �� Since the solutions possess two station�
ary� vertical symmetry planes� the di�erence in boundary
conditions should be small� One such solution� with �i � ���

and �o � �i����� compares well with those found by Weiss
et al� 	����
� We have found that the bifurcation point for
the oscillatory instability is R � ��� ���� which is about two
percent less than the value estimated by Weiss et al� 	����
�

Comparison of the computational e�ort of the mag�
netoconvection code against previous schemes are quite
favourable� The codes used by Hurlburt et al� 	����
 typ�
ically required about ��� seconds of CPU time for each step
�t � �
��ta� The code described above required ��� seconds
of CPU time for each step on the same computer� but oper�
ates with a step size �t � �ta for comparable geometry and
parameters� The total computational e�ort to advance the
solution one time unit using our more accurate method is
thus reduced by more than a factor of two�
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