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We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through
conjugated molecular structures in a form that avoids singularities. This enables derivation of new
results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency ma-
trix of the molecular graph. In particular, we define the transmission of electrons through individual
molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current
and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found.
A SSP device has specific insulation or conduction at an eigenvalue of the molecular graph (a root
of the characteristic polynomial) according to the multiplicities of that value in the spectra of four
defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of
nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even
at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried
entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite
molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing the-
orem. Inertness of shells for families such as chains and rings is predicted by selection rules based on
node counting and degeneracy. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935716]

I. INTRODUCTION

The subject of unimolecular electrical conduction and
devices based on it has a venerable history,1–5 and has a vast
research literature; a recent review article has an impressive
607 references,6 and reviews,7,8 journal special issues and
discussion volumes9–11 and books12,13 devoted to the different
aspects of the topic continue to appear.

The present paper deals with an attractive approach for
qualitative modelling of single-molecule conduction, due to
Ernzerhof and his group. The Source-Sink Potential (SSP)
model14–27 is a simple and convenient methodology for the
study of ballistic electronic conduction through molecular
devices. The method uses a model device depicted in Fig. 1(a)
in which a molecule is attached to a source atom, L, that
creates a flux of electrons, and to a sink atom, R, that destroys
it. The electron flux through the model device is designed to
be identical to that in a cognate device (the lower diagram
of Fig. 1) with infinite wires, in which an electron beam
with wavevector qL in the left wire is partly transmitted
through the molecule, emerging as a beam of wavevector qR
in the right. In this work, we consider an n-atom molecular
π-system based on a carbon skeleton and treat it using the
Hückel (tight-binding) formalism. The molecular adjacency
matrix is A, where Apq = 1 if p , q and p is bonded to q,
and Apq = 0 otherwise. The connections LL̄ and R̄R have
resonance parameters βL̄L and βR̄R, respectively. The molecule
has resonance parameter β, and coulomb parameter α. In the
usual system of units, α is set to zero, and |β | is taken as 1.

a)Authors to whom correspondence should be addressed. Electronic
addresses: B.T.Pickup@sheffield.ac.uk and P.W.Fowler@sheffield.ac.uk

We have previously utilised the SSP formalism to derive
analytical expressions for electronic transmission.28–35 In our
approach, the solutions for an incoming beam of electrons with
energy E are written in terms of five molecular structural poly-
nomials, which comprise the real characteristic polynomials,28

s = det (E1 − A) ,
t = det (E1 − A)[L̄,L̄],
u = det (E1 − A)[R̄,R̄],
v = det (E1 − A)[L̄R̄,L̄R̄],
 = (−1)L̄+R̄ det (E1 − A)[L̄,R̄],

(1)

where the superscripts in braces indicate which rows (left) and
columns (right) corresponding to connection atoms L̄ and/or
R̄ are to be struck out from the characteristic matrices. The
polynomial, , with row L̄ and column R̄ removed from the
determinant satisfies the Jacobi-Sylvester relation36

2 = ut − sv. (2)

The expression for the overall transmission28 is

T (E) = B(qL,qR) 2

|D|2 , (3)

where E is the energy of the incoming stream of electrons and

B(qL,qR) = (2βL sin qL)(2βR sin qR)β2
L̄Lβ

2
R̄R (4)

and

D(E) = βLe−iqLβRe−iqRs − βRe−iqRβ2
L̄Lt

− βLe−iqLβ2
R̄Ru + β2

L̄Lβ
2
R̄Rv. (5)

0021-9606/2015/143(19)/194105/20/$30.00 143, 194105-1 © 2015 AIP Publishing LLC
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FIG. 1. (a) A SSP molecular device comprising a molecule attached to source
and sink atoms L and R via contacts L̄ and R̄, respectively. (b) A molecule
attached to infinite left- and right-hand wires, showing the numbering scheme
adopted for the atoms in the wires.

Wavevectors qL and qR are functions of E and satisfy the
dispersion relations

E = αL + 2βL cos qL = αR + 2βR cos qR. (6)

These dispersion relations are appropriate for the infinite
wires in Fig. 1(b), assuming Hückel parameters (αL, βL) and
(αR, βR), for left and right wires, respectively.

The purpose of the current article is to present a
reformulation of the SSP approach in Section III and then
to use it to give simple derivations of a number of new results.

We first set out the SSP secular equations in the standard
atomic-orbital (AO) basis (Subsection III B), and then in
the molecular-orbital (MO) basis (Subsection III C). We
show that ballistic molecular conduction can be described in
complementary ways: as transmission along bonds (graph
edges) or through parallel channels based on molecular
orbitals. In the latter description, molecular orbitals can be
inert, having no conduction at any energy (including the
orbital eigenvalue), or they can be active, and these properties
obey selection rules based on degeneracy and nodal character.
Sections IV–VIII describe the theoretical framework and give
expressions from which orbital transmission can be calculated,
and inert/active status decided.

The main new results obtained from the reformulation
of the SSP equations are as follows. First, the reformulation
itself removes singularities, giving confidence that the results
are mathematically well defined at all energies. Second, SSP
leads to a direct partition of total transmission into a sum
of well-defined orbital contributions, avoiding the need for
a post hoc projection scheme. Third, the analysis naturally
establishes the dichotomy between inert and active orbitals
and leads to selection rules to predict the character of a given
orbital. Finally, as we discuss briefly in Sec. X, this opens
up the way to improved treatment of the role of electron
interaction in what is so far a purely Hückel-based model.

Readers interested only in the main chemical conclusions
could consider skipping directly to Section IX where illustra-
tive examples are given, along with simple analytical formulas
for devices based on paths (linear polyenes) and cycles (an-
nulenes). An extended Sec. X then discusses the qualitative
significance of the results derived in the main body of the paper.

II. TECHNICAL NOTES

The algebraic computations reported in this paper were
all performed by using Maple 18.37 Computations for the
figures were carried out using unbiased (αL = αR = 0), and
symmetric devices (βL = βR), with specific values βL = 1.4β
and βL̄L = βR̄R = β.

The equal β approximation used in this paper is ideally
adapted to small all-carbon frameworks, but the formalism
we develop in terms of structural polynomials exhibited in
Eqs. (1) and (3) applies equally to systems for which weighted
graphs are appropriate. These include systems displaying
π-distortivity,38,39 or doped with hetero-atoms which are, of
course, important in realistic applications.

Likewise, it may be noted that all applications of the SSP
model in the present paper are based on devices with one-
dimensional leads attached to single atoms of the molecule.
More complicated leads and connection patterns can be
accommodated by modification of the contents of the blocks of
the device matrix (see Eqs. (25) and (32), later). Examples of
SSP treatments of multichannel devices are given in Refs. 27
and 40.

The approach used here is grounded in qualitative
molecular-orbital theory; this is a choice based on the belief
that such models allow “for a transparent interpretation of
molecular conductance in terms of discrete eigenstates.”19 The
use, either explicit or implicit, of orbitals and orbital densities
gives an opportunity for using familiar chemical concepts
to give insight.22,26,41,42 Many researchers in the field use
Green’s Function approaches, particularly for calculation, and
of course these too have their specific advantages. However,
it has been shown that the two approaches, when used with
the SSP model approximations, lead to identical expressions
for transmission.33

A remark about notation: we will use labels p,q, . . . for
atoms, k, k′, . . . for molecular orbitals, and K for shells.

III. A REDERIVATION OF THE SSP EQUATIONS

We begin by considering the normalisation of the
wavefunctions for the full device that is replicated by the
SSP device of Fig. 1(a), and consists of the molecule with two
attached infinite wires (cf. Fig. 1(b)). The numbering scheme
for atoms in Fig. 1(b) is designed to simplify the algebra that
follows by elimination of the unnecessary phase factors that
have plagued previous derivations.18,26,28 We first consider the
normalisation of the wavefunctions for the infinite wires.

A. Flux normalization

The wavefunctions ψleft,ψright in left- and right-hand
wires, respectively, are written in the tight-binding (Hückel)
approximation as

ψleft =

0
p=−∞

cleft
p φp,

ψright =

∞
p=1

cright
p φp,

(7)
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where the φp are basis functions on the atoms of left and right
wires, and the Hückel Coulomb and resonance parameters are
αL, βL, and αR, βR, respectively. Coefficients for the left and
right wires are given by

cleft
p =

1
NL

�
eiqLp + re−iqLp� ,

cright
p =

1
NR

τeiqRp
(8)

for the specified boundary conditions, where the left-hand
wavefunction is a combination of a forward-travelling wave
(eiqL) and a backward- travelling component (e−iqL) with a
reflection coefficient, r . The molecule acts as a potential barrier
that produces a reflected wave in the left wire and a forward
transmitted wave (eiqR) in the right wire, with a transmission
coefficient, τ. This corresponds to a flux of electrons with
energy E, satisfying both Eq. (6) and the Hückel Schrödinger
equation for infinite wires.

The total electron transmission probability is then

T(E) = 1 − |r |2 = |τ |2. (9)

The normalisation factors NL and NR have been introduced
to obtain the requisite unit electron flux. Hence, the current
density43 from atom (p − 1) to atom p in the left wire, using
the standard Hückel formulation, is

J left
(p−1)→p =

1
i

(

φp−1|Ĥ |φp

�
cleft∗

p−1 cleft
p − c.c.

)
=

2βL sin qL

N2
L

�
1 − |r |2� , (10)

where we have used ⟨φp−1|Ĥ |φp⟩ = βL. This expression is
independent of the index p, showing that a constant current
flows down the wire. We require this current to be equal to
the transmission probability, T(E). Hence, we deduce that the
correct flux normalisation is achieved by setting

N2
L = 2βL sin qL (11)

and using an analogous derivation for the right-hand wire

N2
R = 2βR sin qR. (12)

B. The SSP equations in the atomic orbital basis

The secular equations of the device shown in Fig. 1(b) for
atom 0 in the left-hand wire and for atom 1 in the right-hand
wire are

βLcleft
−1 + (αL − E) cleft

0 + βL̄LcL̄ = 0,

βR̄RcR̄ + (αR − E) cright
1 + βRcright

2 = 0
(13)

where βL̄L, βR̄R are resonance parameters for the connections
from the wires to the molecule. We wish to replace the left
wire by a single source atom, L, sited at atom 0 and creating
a flux of electrons corresponding to the wavefunction ψleft

in Eqs. (7) and (8). Similarly, we wish to replace the right
wire by a single sink atom, R sited at atom 1 and removing
the transmitted flux. This requires the definition of complex
potentials, ΘL,ΘR, on these source and sink atoms to replace
the effects of atoms to the left of atom 0, and to the right of
atom 1, respectively.

Hence, we define

βLcleft
−1 = ΘLcleft

0 ,

βRcright
2 = ΘRcright

1 .
(14)

The potentials can now be derived by using the expressions
from Eq. (8) for the orbital coefficients

ΘL = βL
cleft
−1

cleft
0

= βL

�
e−iqL + reiqL

�

(1 + r) ,

ΘR = βR
cright

2

cright
1

= βReiqR.

(15)

In the standard SSP formalism,14,26,28 these potentials are
used directly in the SSP secular equations. However, when
the reflection coefficient, r , becomes equal to −1, the potential
ΘL becomes infinite. A more satisfactory approach, avoiding
this singularity, is obtained by substituting the explicit form
of cleft

−1 into Eq. (13) to give

βL

NL

�
e−iqL + reiqL

�
+ (αL − E) cL + βL̄LcL̄ = 0 (16)

and noting from Eq. (8) that

cL ≡ cleft
0 =

1 + r
NL

(17)

we deduce that

r = NLcL − 1. (18)

Substituting for r in Eq. (16), we obtain

�
βLeiqL + αL − E

�
cL + βL̄LcL̄ =

2i βL sin qL

NL
= iNL, (19)

where we have placed the inhomogeneity on the right-hand
side. We can carry out the same procedure using cright

1 from
Eq. (8) in Eq. (13) to give

cR ≡ cright
1 =

τ

NR
eiqR (20)

and hence

cright
2 = e2iqR

τ

NR
= eiqRcR. (21)

Substitution of this expression into Eq. (13) gives

βR̄RcR̄ +
�
αR − E + βReiqR

�
cR = 0 (22)

which does not contain an inhomogeneity.
With these modifications to the boundary conditions, we

can now find the wavefunction for the model device. The
wavefunction

ψSSP =

n
p=1

cAO
p φp + cLφL + cRφR (23)

is the solution to the SSP equations in the AO formalism.
The φp here are basis functions on the atomic centres, and
φL, φR are basis functions on source and sink atoms. The
(n + 2)-dimensional SSP equations for the SSP device
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depicted in Fig. 1(a) can now be written in matrix form
as

PAO

*...
,

cAO

cL

cR

+///
-

=
*...
,

0
−iNL

0

+///
-

, (24)

where the device matrix is

PAO =
*...
,

E1 − A −bL −bR

−bL E − αL − βLeiqL 0
−bR 0 E − αR − βReiqR

+///
-

(25)

and where for our single-atom-contact configurations the
connection matrix elements are

(bL)p = δpL̄βL̄L,

(bR)p = δpR̄βR̄R
(26)

and the source and sink matrix elements are

E − αL − βLeiqL = βLe−iqL,

E − αR − βReiqR = βRe−iqR.
(27)

Here, we have used dispersion relations Eq. (6) to remove E
from source and sink matrix elements.

The form of Eq. (24) conforms more closely than the
previous formulation28 to the widely used Green’s function
approach,3 in that the electron flux arises from a single
inhomogeneity in the source L-element of the vector on the
right-hand side of the equation.

C. The SSP equations in the MO basis

This section describes the form of the SSP matrix
equations in the MO representation. This alternative form
is useful for analysing the behaviour of the solution at the
eigenvalues of the isolated molecule. The Hückel MOs

ψk =

n
p=1

φpUpk (28)

diagonalize the secular matrix of the molecule, i.e.,
n

q=1

ApqUqk = Upkϵk for p = 1,2, . . . ,n. (29)

We shall assume throughout this paper that since the
n × n-dimensional adjacency matrix A is real and symmetric,
the matrix U can be considered to be orthogonal. Hence,
we can define an augmented (n + 2) × (n + 2)-dimensional
orthogonal matrix

*...
,

U 0 0
0 1 0
0 0 1

+///
-

(30)

which can be used to transform AO-based SSP secular
equations (13) to give the MO-based version

PMO

*...
,

cMO

cL

cR

+///
-

=
*...
,

0
−iNL

0

+///
-

, (31)

where the SSP device matrix in the MO basis is

PMO =
*...
,

p −uL −uR

−uL βLe−iqL 0
−uR 0 βRe−iqR

+///
-

(32)

and the diagonal MO-MO block has

pkk′ = δkk′pk = δkk′ = (E − ϵk) . (33)

The connection matrix in the MO basis is more complicated
than in the AO form, i.e.,

(uL)k =
(UbL

)
k
= βL̄LUL̄k,

(uR)k =
(UbR

)
k
= βR̄RUR̄k

(34)

and the MO expansion coefficients are related to those in the
AO basis by

cMO = UcAO. (35)

The SSP wavefunction, the solution to Eq. (31), is

ψSSP =

n
k=1

cMO
k ψk + cLφL + cRφR, (36)

where now the ψk are MOs of the molecule, the coefficients
cL,cR are identical in Eqs. (23) and (36), and the MO and AO
coefficients are related as in Eq. (35).

The two expansions of the wavefunction ψSSP, i.e.,
Eqs. (23) and (36), correspond to different models of the
conduction process, as illustrated in Fig. 2 for the example
of an end-to-end connected allyl chain. In one, the electron
hops from AO to AO along edges of the molecular graph; in
the other, the MOs act as parallel channels for conduction of
electrons.

FIG. 2. Alternative schematic representations of ballistic conduction in a
source-sink model device: (a) in the AO basis, where conduction between
source and sink takes place via bonds between atoms carrying single basis
functions, (b) in the MO basis, where the molecular orbitals act as parallel
conducting channels between source and sink.
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We note that all coefficients cL, cR, cMO, and cAO are in
general complex, but the transformation matrix U refers to
the unperturbed molecule and can always be chosen to be
real. It may sometimes be convenient to use complex U for
degenerate eigenvalues, but it is never necessary.

IV. A MATHEMATICAL TOOLKIT

The derivation of the solutions of the SSP equations and
their analysis requires a mathematical investigation of the
structural polynomials, and quantities related to them. We
gather all this information together in the present section in
order not to interrupt the flow of the rest of the derivation.

A. Structural polynomials in the MO basis

Our first aim is to express the structural polynomials in
terms of the eigenvectors and eigenvalues of the adjacency
matrix defined in Eq. (29). Hence,

s(E) = det (E1 − A) =


k

pk, (37)

where we have used the notation of Eq. (33), and the product
runs over the whole molecular spectrum. We shall consider
the general structural polynomials

rs = (−1)r+s det (E1 − A)[r,s],
vpqrs = (−1)p+q+r+s det (E1 − A)[pq,rs] (38)

which include all the definitions in Eq. (1), viz.,

t = L̄L̄, u = R̄R̄,  = L̄R̄, v = vL̄R̄L̄R̄. (39)

It can be shown that44

svpqrs = { pr qs}, (40)

which has been defined using the notation for the anti-
symmetrised product

{XprXqs} = XprXqs − XpsXqr. (41)

Eq. (40) is a more general form of the Jacobi-Sylvester relation
given in Eq. (2).

It is also convenient to define a notation in which a “hat”
symbol indicates a quantity divided by the polynomial s,

X̂ =
X
s
. (42)

We shall refer to quantities such as ̂rs as “reduced” structural
polynomials. They can be shown to be matrix elements of the
inverse of the characteristic matrix by using the well-known
Cramer’s rule result

̂rs = (−1)r+s det (E1 − A)[r,s]
det (E1 − A) = (E1 − A)−1

rs . (43)

The spectral representation follows directly as

̂rs =


k

UrkUsk

E − ϵk
. (44)

Defining the quantities

sk =
s
pk
,

skk′ =
s

pkpk′
,

(45)

we see that all the (real) characteristic polynomials of the
device, Eq. (1), can be expressed in terms of these factors as

rs(E) =


k

UrkUsksk,

vpqrs(E) =

k>k′

{UpkUqk′}{UrkUsk′}skk′, (46)

where we have used Eqs. (40) and (43) to deduce the formula
for v .

B. Expansion of the reduced structural polynomials

We shall need to expand the solutions of the SSP equations
as a series around molecular eigenvalues. We also need to take
into account the degeneracy, g, of such eigenvalues. We shall
refer to a degenerate space as a “shell,” and use capital roman
indices to label such shells. The individual MOs in the shell
space, K, will then be ψk for k ∈ K. (Strictly, g is gK, but the K
dependence will be suppressed when there is no ambiguity.) To
understand more fully what happens when the electron energy
is at a shell eigenvalue, ϵK, we need to explore the behaviour
of the reduced structural polynomials near that eigenvalue.
For the most general reduced structural polynomial shown in
Eq. (38), we have

̂rs(E) =

k∈K

UrkUsk

E − ϵK
+

a<K

UraUsa

E − ϵa

=


k

UrkUsk

pK
+


a

UraUsa

ϵK − ϵa + pK
. (47)

In this equation, and in what follows, we use a convention
in which the summation indices k,k′, . . ., label MOs inside
the degenerate shell K, and indices a,b, . . ., label MOs that
are “off-shell,” without explicitly indicating the summation
ranges. Within the radius of convergence, each reduced
structural polynomial can be expanded in a Laurent series
around the point E = ϵK. We use pK = E − ϵK as the expansion
parameter. It is easy to deduce that

̂rs(E) = ̂rs,−1

pK
+ ̂rs,0 + ̂rs,1pK + O(p2

K), (48)

where all dependence upon E is through powers of pK, and
the expansion coefficients are

̂rs,−1 =


k

UrkUsk,

̂rs,0 =


a

UraUsa

(ϵK − ϵa) ,

̂rs,1 = −


a

UraUsa

(ϵK − ϵa)2 .
(49)

A similar derivation, using Eq. (40) in the form v̂pqrs = { ̂pr ̂qs},
produces

v̂pqrs(E) = p−2
K v̂pqrs,−2 + p−1

K v̂pqrs,−1

+ v̂pqrs,0 + v̂pqrs,1pK + O(p2
K), (50)
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where

v̂pqrs,−2 =

k>k′

{UpkUqk′}{UrkUsk′},

v̂pqrs,−1 =

k,a

{UpkUqa}{UrkUsa}
(ϵK − ϵa) ,

v̂pqrs,0 =

a>b

{UpaUqb}{UraUsb}
(ϵK − ϵa)(ϵK − ϵb)

−

k,a

{UpkUqa}{UrkUsa}
(ϵK − ϵa)2 .

(51)

The terms ̂rs,−1 (and hence t̂−1, û−1, and ̂−1) and v̂pqrs,−2, v̂pqrs,−1
(and hence v̂−2, v̂−1), are all traces over the degenerate shell.
It is important to recognise that these are therefore invariant
to unitary transformations amongst the MOs within the shell
subspace.

In later parts of this paper, we will need definitions
of structural polynomials dependent only upon “off-shell”
orbitals, i.e.,

sA(E) =


a

pa,

̂A,rs(E) =


a

UraUsa

E − ϵa
,

v̂pqrs,A(E) =

a>b

{UpaUqb}{UraUsb}
(E − ϵa)(E − ϵb) ,

(52)

where “A” denotes all eigenvectors associated with eigen-
values ϵa , ϵK. These definitions are exactly analogous to
those in Section IV A. It can be seen from Eqs. (47) and (48)
and (50) and (51), that the whole energy-dependence of the
structural polynomials can be expressed as

pK ̂rs(E) = ̂rs,−1 + pK ̂A,rs(E),
p2

Kv̂pqrs(E) = v̂pqrs,−2 + pKv̂pqrs,−1 + p2
Kv̂A,pqrs(E). (53)

In our earlier papers,31,35 we have linked conduction and
insulation properties to the interlacing properties of the
eigenvalues of a graph. Since

s(E) = pg
KsA(E), (54)

we deduce that the polynomials can be written exactly in terms
of the degeneracy as

rs(E) = pg−1
K sA(E) � ̂rs,−1 + pK ̂A,rs(E)� ,

v̂pqrs(E) = pg−2
K sA(E) �v̂pqrs,−2 + pKv̂pqrs,−1

+ p2
Kv̂A,pqrs(E)� .

(55)

The Laurent expansion about the shell eigenvalue equivalent
to these expressions is

rs(E) = pg−1
K sA(E) ( ̂rs,−1 + ̂rs,0pK

+ ̂rs,1p2
K + · · ·

�
,

v̂pqrs(E) = pg−2
K sA(E) �v̂pqrs,−2 + v̂pqrs,−1pK

+ v̂pqrs,0p2
K + v̂pqrs,1p3

K + · · ·
�
.

(56)

The structural polynomial t = L̄L̄ is the characteristic
polynomial for the (n − 1)-vertex graph derived by removing
vertex L̄ from the original molecular graph. We can read

the degeneracy, gt, for eigenvalue ϵK in the spectrum of this
vertex-deleted graph directly from the lowest non-vanishing
coefficient of the expansion of t in Eq. (56). Hence, if t̂−1 , 0,
then gt = g − 1, etc. Similar deductions can be made for the
graphs corresponding to polynomials u and v .

This machinery can be applied to the case of electron
transmission at E = ϵK, to give a simple link to our previous
results deduced using interlacing31 (see Section VII D).

C. The expansion of D(E )
We can use the expansion of the structural polynomials in

Eq. (53) together with an expansion of the denominator from
Eq. (5) to give

D̂ =
D
s
= p−2

K D̂−2 + p−1
K D̂−1 + D̂0 + O(pK), (57)

where the expansion terms

D̂−2 = β2
L̄Lβ

2
R̄Rv̂−2,

D̂−1 = β2
L̄Lβ

2
R̄Rv̂−1

− βLe−iqL β2
R̄Rû−1 − βRe−iqR β2

L̄Lt̂−1,

D̂0 = βLe−iqL βRe−iqR + β2
L̄Lβ

2
R̄Rv̂0

− βLe−iqL β2
R̄Rû0 − βRe−iqR β2

L̄Lt̂0

(58)

are deduced directly from Eq. (5). Strictly speaking, the values
of the wire momenta, qL and qR in Eq. (58), are to be evaluated
at the eigenvalue ϵK. These momenta should also be expanded
in powers of pK. The leading term in this expansion is O(1),
and is just the momentum evaluated at the eigenvalue. The
higher terms in pK do not contribute to any expressions we
derive. Of course, the D̂0 term in Eq. (58) will contain a
contribution arising from the expansion of the momenta in
D̂−1. These extra terms are unimportant for our purposes,
since they vanish in all the cases where D̂0 is the leading term
in the expansion of D̂.

We can also use Eqs. (54) and (57) to write D(E) in the
form of Eq. (53) as

D(E) = pg−2
K sA(E) �D̂−2 + pKD̂−1 + p2

KD̂A(E)	 . (59)

This expression can be used to deduce the values of E at
which D(E) vanishes. In particular, it is clear that D(E) may
have a root at E = ϵK, with a multiplicity that depends on
which (if any) of the terms D̂−2, or D̂−1 is non-zero, and on
the degeneracy g. The “off-shell” quantity D̂A is defined as

D̂A = βLβRe−i(qL+qR) − βRβ
2
L̄Le−iqRt̂A(E)

− βLβ
2
R̄Re−iqLûA(E) + β2

L̄Lβ
2
R̄Rv̂A(E). (60)

V. SOLUTIONS OF THE SSP EQUATIONS
IN THE AO BASIS

Equation (24) has a unique solution provided the
(n + 2)-dimensional SSP characteristic matrix, PAO, on the
left-hand side of Eq. (24) has an inverse, i.e., iff

det PAO = det PMO = D(E) , 0, (61)

where D(E) is given by Eq. (5). The matrix may be singular in
cases where E matches an eigenvalue of the isolated molecule,
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depending on fulfilment of some conditions on the rank of a
related matrix (see Section VII C and Eq. (59)).

It is useful, however, first to assume that the inverse exists,
and only later to examine separately the cases where it does
not. The first line of the AO SSP matrix equation, Eq. (24),
can be rearranged to give

cAO = (E1 − A)−1 (bLcL + bRcR) (62)

provided E is not an eigenvalue of A. In components, this is
the two-term formula

cAO
p = (E1 − A)−1

pL̄ βL̄LcL + (E1 − A)−1
pR̄ βR̄RcR

= ̂pL̄βL̄LcL + ̂pR̄βR̄RcR. (63)

The source-and-sink equations from Eq. (24) are

−bLcAO + βLe−iqLcL = −iNL,

−bRcAO + βRe−iqRcR = 0.
(64)

The secular equations, Eq. (64), can be simplified by
substituting for cAO from Eq. (62), and noting that the products
b(E1 − A)−1 reduce to single entries in the inverse, which can
in turn be expressed as ratios of determinants by Cramer’s
rule, giving

F̂LcL − βL̄LβR̄R ̂cR = −iNL,

−βL̄LβR̄R ̂cL + F̂RcR = 0
(65)

as a 2 × 2 matrix equation for cL and cR. The new quantities
used in Eq. (65) are F̂L and F̂R,

F̂L = βLe−iqL − β2
L̄Lt̂,

F̂R = βRe−iqR − β2
R̄Rû

(66)

given in terms of the reduced structural polynomials defined
previously. The solution to Eq. (65) gives the source and sink
coefficients in the wavefunction as

cL = −iNL
F̂R

D̂
= −iNL

FR

D
,

cR = −iNLβL̄LβR̄R
̂

D̂
= −iNLβL̄LβR̄R



D
,

(67)

where D = D(E) = sD̂(E) is given by Eq. (5).

A. Transmission

We are now in a position to derive the expression Eq. (3)
for the total transmission, using Eqs. (20) and (67), as

T = |τ |2 = (βL̄LβR̄RNLNR)2 2

|D|2 = B(qL,qR) 2

|D|2 (68)

which is, of course, identical to that derived previously.28

The current from the source to the left contact in the
molecule is

JAO
L→ L̄ =

1
i

(⟨φL|Ĥ |φL̄⟩c∗LcAO
L̄ − c.c.

)
= −i βL̄L

(
c∗LcAO

L̄ − c.c.
)

(69)

and since from Eq. (63)

cAO
L̄ = βL̄Lt̂cL + βR̄R ̂cR, (70)

it follows that(
c∗LcAO

L̄ − c.c.
)
=
�
βL̄Lt̂ |cL|2 + βR̄R ̂c

∗
LcR − c.c.

�

= ̂ βR̄R
�
c∗LcR − cLc∗R

�
. (71)

Substitution of Eq. (71) into Eq. (69) gives

JAO
L→ L̄ = −i β2

L̄Lβ
2
R̄R

N2
L

|D|2
2

s
�
F∗R − FR

�

= −i βRβ
2
L̄Lβ

2
R̄RN2

L
2

|D|2
�
eiqR − e−iqR

�

= B(qL,qR) 2

|D|2 (72)

which is the same expression as that given for the gross
transmission T(E) in Eqs. (3) and previously,28 as it must
be, since there is a single edge connection between L̄ and L
through which all current must pass. It is easy to derive the
analogous expression for the current in the right-hand link,
and to show that likewise

JAO
R̄→R(E) = JAO

L→ L̄(E) = T(E). (73)

We now wish to partition these expressions for total current.

B. Bond currents

We shall refer to the currents between atoms within the
molecule as bond or edge currents. They are

JAO
p→q =

1
i

(⟨φp|Ĥ |φq⟩cAO∗
p cAO

q − c.c.
)

= −i βpq

(
cAO∗

p cAO
q − c.c.

)
. (74)

Using Eqs. (63) and (67), we can deduce that

JAO
p→q = B(qL,qR)βpq



|D|2
{ pL̄ qR̄}

s

= B(qL,qR)βpq


|D|2 vpqL̄R̄, (75)

where the final equality uses definition Eq. (40).
The bond current, JAO

p→q, vanishes when cL = cR = 0. This
is implied by Eqs. (63) and (74). We shall use this fact
in our discussion of behaviour of transmission quantities at
molecular eigenvalues.

The bond currents satisfy a sum rule. Hence, using the first
line of Eq. (74) and the p-th secular equation from Eq. (24),

q

JAO
p→q(E) = δpL̄

βL̄L

i

(
cAO

p c∗L − cAO∗
p cL

)
+ δpR̄

βR̄R

i

(
cAO

p c∗R − cAO∗
p cR

)
(76)

and substitution of Eq. (63) in Eq. (76) gives
q

JAO
p→q(E) =

βL̄LβR̄R

i
�
c∗LcR − c∗RcL

� (
δpL̄ ̂pR̄ − δpR̄ ̂pL̄

)
.

(77)

After substitution of Eq. (67), we obtain the final result
q

JAO
p→q(E) = T(E) (δpL̄ − δpR̄

)
. (78)
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Eq. (78) says that the sum of currents out of any vertex is
zero. The term δpL̄ on the right-hand side of Eq. (78) arises
because the vertex L̄ has a current in from the source L to
balance its outward currents. A similar remark can be made
for the vertex R̄.

C. A physical corollary for ipso devices

An important result follows from Eq. (75). It is clear from
the structure of the equation that

JAO
p→q = 0 when L̄ = R̄, (79)

i.e., in the case of an ipso connection there are no internal
molecular currents. Conduction can only take place for ipso
devices, if at all, through the directly connected links LL̄ and
L̄R.

The physical interpretation of this mathematical fact is
also clear. In an ipso device, the net flow into the rest
of the molecule from the single contact atom L̄ = R̄ is
JAO

L→ L̄
(E) = JAO

L̄→R
(E) = T(E), so any putative flow of current

within the molecule would consist of a set of self-cancelling
closed circulations of arbitrary direction. It makes physical
sense that these should have zero amplitude.

VI. GENERAL SOLUTIONS OF THE SSP EQUATIONS
IN THE MO BASIS

For solution of the SSP equations in the MO basis, we
first study the equations for energies away from molecular
eigenvalues.

A. Solutions away from eigenvalues

The solution of the SSP equations, assuming that E is not
an eigenvalue, proceeds in the same way as for the AO case.
For the SSP coefficients, cMO

k , we find, from Eq. (31) with
E , ϵK and hence pK , 0,

cMO
k = p−1

K (cLβL̄LUL̄k + cRβR̄RUR̄k) . (80)

The equations for cL and cR are of course identical in MO
and AO representations. However, the interpretations of the
solutions in both cases are different.

A new possibility arises from Eq. (80), of obtaining an
expression for the current from φL into a given MO ψk, via

JMO
L→k =

1
i
�⟨φL|Ĥ |ψk⟩c∗LcMO

k − c.c.
�

(81)

and, since

⟨φL|Ĥ |ψk⟩ = βL̄LUL̄k, (82)

it follows that

JMO
L→k = −i βL̄LβR̄R

UL̄kUR̄k

pk

�
c∗LcR − cLc∗R

�

= B(qL,qR)UL̄kUR̄ksk


|D|2 . (83)

Using Eq. (46) we can see that there is a simple sum rule
k

JMO
L→ k(E) = T(E) (84)

as we would expect, and of course the sum over all orbitals
ψk of contributions JMO

L→k recovers the total current. The n
molecular orbitals in the molecule provide n channels over
which the total current is distributed (cf. Fig. 2).

If the spectrum of the molecular graph has degeneracies,
the choice of orthonormal MOs within each eigenspace (shell)
is arbitrary, and it is sensible to sum currents over degenerate
sets to give

JMO
L→K = B(qL,qR) ̂−1

̂

|D̂|2 , (85)

where we have divided numerator and denominator by s2, and
used the shell invariant ̂−1 = ̂L̄R̄,−1 defined in Eq. (49). The
shell current is a fraction of the total current, given formally
by

JMO
L→K =

̂−1

̂
T. (86)

This “fraction” may be positive or negative, and indeed may
be greater than 1.

We can follow a similar derivation for the current from
ψk to the sink atom, R. This gives a simple conservation law,

JMO
k→R(E) = JMO

L→k(E) (87)

as there can be no current between MOs, since

⟨φk|Ĥ |ψk′⟩ = 0

when k , k′.

B. Active and inert orbitals and shells

A final feature revealed by Eq. (83) is that some MOs may
be insulating at all electron energies, i.e., they can be inert.
This property occurs when either or both of UL̄k or UR̄k are
zero for the particular choice of device connections and MO.
Hence, it is a joint property of the molecule (construction of
the eigenspaces) and the device (placement of the connections
relative to possible nodes in the eigenvectors). Orbitals that
are not inert are active.

Inert orbitals or shells are merely bystanders in the
conduction of the molecular device. Rules for prediction of the
occurrence of inert shells can be deduced from case-by-case
analysis, as we will see in Secs. VII D and VII E.

VII. SOLUTIONS OF THE SSP EQUATIONS IN THE MO
BASIS AT MOLECULAR EIGENVALUES

We now study the nature of solutions of the SSP equations
at a particular eigenvalue ϵK which we shall assume to have
degeneracy, g = gK ≥ 1.

A. Shell partitioning of the SSP equations

We can partition the SSP equations into three parts:
“on-shell” (g equations with block label K), “off-shell”
(n − g equations with block label A), and “source-sink” (two
equations). The SSP matrix in Eq. (32) is then given more

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.167.43.68 On: Sun, 22 Nov 2015 15:52:56



194105-9 Pickup et al. J. Chem. Phys. 143, 194105 (2015)

explicitly by

PMO =

*.....
,

pK1 0 −uKL −uKR

0 pA −uAL −uAR

−uKL −uAL βLe−iqL 0
−uKR −uAR 0 βRe−iqR

+/////
-

(88)

so that the SSP equations become

PMO

*.....
,

cMO
K

cMO
A

cL

cR

+/////
-

=

*.....
,

0
0
−iNL

0

+/////
-

. (89)

We note that as E → ϵK, then (pA)ab → δab(ϵK − ϵa) , 0. As
we know that pa , 0, we may safely write for the off-shell
block

cMO
a = p−1

a (cLβL̄LUL̄a + cRβR̄RUR̄a) . (90)

This step cannot be used to solve the equations for the shell
orbitals because pK vanishes at the shell eigenvalue.

However, the SSP equations derived from the matrix in
Eq. (88) can now be used in exactly the same way as in
the previous derivation (cf. Eqs. (62)-(65)), by substituting
Eq. (90) into L and R equations in Eq. (88) to produce a
set of (g + 2) SSP equations with the “off-shell” components
folded into the L,R block, and the degenerate shell handled
explicitly. The result is

P′MO =
*...
,

pK1 −uKL −uKR

−uKL F̂AL −βL̄LβR̄R ̂A

−uKR −βL̄LβR̄R ̂A F̂AR

+///
-

(91)

for the device matrix and

P′MO

*...
,

cMO
K

cL

cR

+///
-

=
*...
,

0
−iNL

0

+///
-

(92)

for the SSP equation. The 2 × 2 source-sink terms are defined
by analogy with Eq. (66), viz.,

F̂AL(E) = βLeiqL − β2
L̄Lt̂A,

F̂AR(E) = βReiqR − β2
R̄RûA.

(93)

The “off-shell” polynomials appearing in Eq. (93) were
defined in Eq. (52).

B. The shell connection matrix, rank,
and the echelon representation

A key to understanding Eq. (93) is the
(g × 2)-dimensional shell connection matrix between the
source-sink and degenerate shell, K, blocks

Bcon
K =

(
uKL uKR

)
=

*......
,

βL̄LUL̄1 βR̄RUR̄1

βL̄LUL̄2 βR̄RUR̄2
...

...

βL̄LUL̄g βR̄RUR̄g

+//////
-

. (94)

As the first diagonal block of Eq. (91) is proportional to
the unit matrix, we are free to make any suitable orthogonal
transformation amongst the orbitals within the shell, K. In
particular, we can use a sequence of 2 × 2 rotations to bring
the matrix Bcon

K to row echelon form

Bcon
K =

*......
,

a b
0 d
0 0
...

...

+//////
-

, (95)

where a = βL̄LU ′
L̄1

, b = βR̄RU ′
R̄1

, and d = βL̄LU ′
R̄2

are ex-
pressed in terms of the only non-zero L̄ and R̄ components of
the orbitals after the operation of the sequence of orthogonal
transformations leading to this echelon representation of the
degenerate shell. The echelon representation is different, in
principle, for each possible device, i.e., for each possible
choice of L̄, R̄.

We can use the fact that the coefficients t̂−1, û−1, ̂−1, and
v̂−2 defined in Eqs. (49) and (51) are invariant to orthogonal
transformations amongst the shell orbitals to obtain simple
expressions for the coefficients a, b, and d. These are

a2 = β2
L̄Lt̂−1,

b2 + d2 = β2
R̄Rû−1,

ab = βL̄LβR̄R ̂−1,

a2d2 = β2
L̄Lβ

2
R̄Rv̂−2.

(96)

Necessary and sufficient conditions for the shell connection
matrix to have rank 1 are now obvious, i.e., that either d = 0
or a = 0. In each case, it follows that

v̂−2 = 0 ⇐⇒ {UL̄kUR̄k′} = 0∀k,k′ ∈ K. (97)

The necessary and sufficient conditions for the connection
matrix to be of rank 0 are that a = b = d = 0, which imply
that t̂−1 = û−1 = v̂−2 = 0, and hence that

UL̄k = UR̄k = 0, for k = 1, . . . , g (98)

in which case the quantities ̂−1, v̂−1 also vanish.
The rank, rK, of the transformed Bcon

K matrix must be
rK ≤ min(g,2), and hence

pKck = 0 for k = rK + 1, . . . , g. (99)

These g − rK equations have solution cMO
k = 0 when E , ϵK.

When the energy is equal to the eigenvalue, ϵK, we have
a case where the SSP matrix in Eq. (88) has no inverse,
and the solution in the (g − rK)-dimensional manifold is
undetermined. We can use continuity, however, to argue that it
makes no physical sense for an insulating orbital suddenly to
become conducting at its own eigenvalue. We can, therefore,
take cMO

k = 0 for all values of E. Hence, as shown in Subsection
VII D, we need consider only solutions of the SSP equations
in the (rK + 2)-dimensional manifold determined by the first
r molecular orbitals and the source and sink atoms.
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C. Shell and bond currents in the echelon
representation

The shell current, JMO
L→K, from the source L to shell K

in the echelon representation goes entirely through the first
orbital. From Eq. (83), we have

JMO
L→1(E) = B(qL,qR)U ′L̄1U

′
R̄1

̂

|D̂|2
= B(qL,qR) ̂−1

̂

|D̂|2 = JL→K(E). (100)

We shall also examine the behaviour of currents along bonds
(graph edges) by looking at the quantity JAO

p→q(ϵK) (cf. Eq. (75))
in the “hatted” form,

JAO
p→q = B(qL,qR)βpq

̂

|D̂|2 v̂pqL̄R̄. (101)

To explore the behaviour of the bond currents at the shell
eigenvalue, we have to expand the antisymmetric quantity in
Eq. (101) using Eq. (53). The expansion of v̂ contains the
coefficients defined in Eq. (51). Note that the quantity v̂pqL̄R̄,−2
contains factors {UL̄kUR̄k′}. The leading term in the expansion
of JAO

p→q, therefore, is determined by the rank of the connection
matrix, Bcon

K . Ranks 2, 1, and 0 give, in principle, leading
terms v̂pqL̄R̄,−2, v̂pqL̄R̄,−1, and v̂pqL̄R̄,−0, respectively.

D. The eleven canonical molecular conduction cases
for a shell with eigenvalue ϵK

We now make a connection with our previous work31,35

which uses graph theoretical concepts. The molecule can be
represented by an n-vertex graph, G, and the eigenvalues of the
adjacency matrix (or equivalently the roots of the characteristic
polynomial) for G can be written in non-increasing order as
{ϵ1 ≥ ϵ2 ≥ · · · ϵn}.

We consider three vertex-deleted graphs, G − L̄, G − R̄,
G − L̄ − R̄, which are related to the molecular device.
We label the eigenvalues of these graphs, respectively, as
{ϵ (t)1 ≥ ϵ

(t)
2 ≥ · · · ϵ

(t)
n−1}, {ϵ (u)1 ≥ ϵ

(u)
2 ≥ · · · ϵ

(u)
n−1}, and

{ϵ (v)1 ≥ ϵ
(v)
2 ≥ · · · ϵ

(v)
n−2}.

The Cauchy interlacing theorem45 implies that

ϵk ≥ ϵ (t)k ≥ ϵk+1, k = 1, . . . ,n − 1,
ϵk ≥ ϵ (u)k ≥ ϵk+1, k = 1, . . . ,n − 1,
ϵ
(t)
k ≥ ϵ

(v)
k ≥ ϵ

(t)
k+1, k = 1, . . . ,n − 2,

ϵ
(u)
k ≥ ϵ

(v)
k ≥ ϵ

(u)
k+1, k = 1, . . . ,n − 2.

(102)

Hence, for a root of the characteristic polynomial of G, of
multiplicity, g ≥ 1, the multiplicities of the roots of the other
characteristic polynomials must obey

max(0, g − 1) ≤ gt ≤ g + 1,
max(0, g − 1) ≤ gu ≤ g + 1,
max(0, g − 2) ≤ gv ≤ g + 2.

(103)

We have previously used the interlacing theorem to show
that transmission at the Fermi level in molecular devices can
be classified under a set of eleven cases characterised by the
nullities (numbers of zero eigenvalues) g,gt, gu, and gv of the
four graphs we have described.31,35 The interlacing theorem

TABLE I. Patterns of conduction for non-ipso molecular devices, showing
the total transmission, T (ϵK), the bond currents JAO

p→q(ϵK) calculated at the
shell eigenvalue ϵK, and the shell current JMO

L→K(E) at any energy. The non-
zero quantities Ta = B(qL,qR) ̂2

0/|D̂0|2, Tb = B(qL,qR)βpq ̂0v̂pqL̄R̄,0/|D̂0|2,
Tc = B(qL,qR) ̂2

−1/|D̂−1|2, and Td = B(qL,qR)βpq ̂−1v̂pqL̄R̄,−1/|D̂−1|2 are
evaluated using Eq. (58), subject to conditions implied by g t , gu, and g v

in the particular case.

rK Case g t gu g v g j T (ϵK) JAO
p→q(ϵK) JMO

L→K(E)
0 1 g +1 g +1 g +2 ≥g +1 0 0 0

2 g +1 g +1 g g Ta Tb 0
3 g +1 g g +1 ≥g +1 0 0 0
4 g +1 g g g Ta Tb 0
6 g g g +1 g Ta Tb 0
7.1 g g g g Ta Tb 0
7.2 g g g ≥g +1 0 0 0

1 5 g +1 g −1 g ≥g 0 0 0
8 g g −1 g −1 ≥g 0 0 0
9 g −1 g −1 g g −1 Tc Td ,0

10 g −1 g −1 g −1 g −1 Tc Td ,0

2 11.1 g −1 g −1 g −2 g −1 0 0 ,0
11.2 g −1 g −1 g −2 ≥g 0 0 0

alone does not give access to full information about gj but the
table included here does so, enabling some new sub-cases to
be distinguished. The cases were previously stated in terms
of the Fermi energy, but the analysis can be extended to the
whole eigenvalue spectrum of G.46

We re-examine these eleven canonical cases in detail in
the Appendix according to the rank of the connection matrix,
Bcon

K , where it is shown that the eight possibilities for the
construction of Bcon

K in the echelon representation map onto
the eleven cases for conduction determined by interlacing.
The results of this process are given in Table I, showing total
transmission, T , and bond currents JAO

p→q, both evaluated at
the shell eigenvalue, ϵK, and the shell current, JL→K, for any
energy. The property of inertness or activity of the shell can
be read off from the final column of the table. An entry “,0”
means that the shell is active, and “0” means that it is inert.
Overall conduction or insulation of the device is given by the
entry in column 7 of the table.

The rank-0 cases in Table I possess the very important
property that for all these cases the shell is insulating at all
energies, i.e., is inert. As far as conduction is concerned, it
is as if the shell were not present. Any conduction at the
eigenvalue predicted in that rank-0 case must, therefore, be
carried through “off-shell” orbitals. This is very different from
the normal behaviour, where an “active” shell carries all the
transmission at its own shell eigenvalue.

The property of inertness is not particularly unusual nor
is it restricted to degenerate shells. Indeed, Table I shows that
all cases bar three (9, 10, and 11.1) of the possible eigenvalue
combinations imply an inert shell.

The classification of case by rank rK matches exactly the
classification by Varieties in the mathematical treatment of
Fermi-level conduction published elsewhere.47 We note that
rank zero corresponds to Variety 3, rank one to Variety 2, and
rank two to Variety 1. Devices that fall under cases 11.1 and
11.2 are based on uniform-core graphs described in Ref. 47.
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Two further remarks can be made about the applicability
of this extended table, compared to that of Table I in Refs. 31
and 35 which were limited to describing behaviour at the
Fermi level for devices based on general and bipartite
graphs, respectively. The first is about the interpretation
of the present table for the case when all quantities are
evaluated at a value, E, that is not an eigenvalue of G,
i.e., when g = 0. The formally allowed cases in Table I are
then those with min{gt − g,gu − g,gv − g} ≥ 0, i.e., the cases
of rank rK = 0. In such cases, the generic statements about
overall transmission (column 7) and bond currents (column
8) hold, provided all the quantities are evaluated by taking
the structural polynomials at E. The shell current, JMO

L→K(E)
(column 9), has no meaning in this case.

The second remark is about the use of the extended table
for devices based on bipartite graphs. When the table referred
only to ϵK = 0, it was possible to use the special property that
the nullity and order of a bipartite graph have the same parity
to reduce the number of cases from 11 to 5 (or from 13 to 6
in the finer classification used in the present paper). When ϵK
is a general eigenvalue, the link between nullity and order is
broken; deletion of a vertex of a bipartite graph may leave the
degeneracy of a given eigenvalue unchanged, (or increased or
decreased by one), and hence, any of the cases in Table I may
apply.

E. Conduction in ipso devices

Devices where the external links are connected to the
same internal atom are termed ipso devices. In this case it is
easy to see that we can take t = u = j, and v ≡ 0, and it is
clear that the connection matrix can have rank 0 or 1 only.
In our treatment we consider that the parameters βL, βL̄L, and
βR, βR̄R have the same values as for non-ipso devices. The
expansion of D̂ becomes

D̂−2 = 0,
D̂−1 = −

(
βLe−iqLβ2

R̄R + βRe−iqRβ2
L̄L

)
t̂−1,

D̂0 = βLe−iqLβRe−iqR −
(
βLe−iqLβ2

R̄R

+ βRe−iqRβ2
L̄L

)
t̂0

(104)

D̂−2 vanishes because v ≡ 0.
There are only three possible cases (cf. Table II)

depending on the allowed gt values for the graph with
vertex L̄ removed. There is no restriction on the value of g.

TABLE II. Patterns of conduction for ipso molecular devices, showing the
total transmission T (ϵK), the bond currents JAO

p→q(ϵK) calculated at the shell
eigenvalue ϵK, and the shell current JMO

L→K(E) at any energy. The non-zero
quantities Ta = B(qL,qR)t̂2

0/|D̂0|2 and Tb = B(qL,qR)t̂2
−1/|D̂−1|2 are evalu-

ated using Eq. (104) for the particular case.

rK Case g t T (ϵK) JAO
p→q(ϵK) JMO

L→K(E)
0 I1 g +1 0 0 0

I2 g Ta 0 0

1 I3 g −1 Tb 0 ,0

The cases exhibit all possible combinations of device
conduction/insulation and shell character.

Case I1 (gt = g + 1)
This case has a rank-0 connection matrix because

t̂−1 = t̂0 = 0. The numerator in cR is O(pK), whereas D̂0 is
the leading term in the denominator. Hence cR = 0 at the
eigenvalue; there is device insulation and the shell is inert.

Case I2 (gt = g)
This case also has rank 0 because t̂−1 = 0. As t̂0 , 0,

and D̂0 is the leading term in the denominator, there is
device conduction at the eigenvalue. However, the shell is
inert, so conduction at this eigenvalue is carried entirely
by orbitals from other shells.

Case I3 (gt = g − 1)
This case has a rank-1 connection matrix, and is the

equivalent of the non-ipso case 11. We have t̂−1 , 0, and
so D̂−1 , 0. The numerator and denominator have the
same order in pK, and device conduction occurs at the
eigenvalue. The shell is active and carries all the current
at the shell eigenvalue.

F. A difference between conduction of ipso-
and non-ipso devices

The remaining feature of ipso devices is that the
expressions for currents and total transmission depend upon
the behaviour of a single structural polynomial. For this
reason, the transmission T(E) has zeros every time that t̂(E)
vanishes. It is easy to see from the definition, Eq. (43),
that t̂(E) is a piecewise continuous curve with asymptotes
at the molecular eigenvalues, and that the gradient is always
negative. It follows that there will be a zero of t̂(E) between
each molecular eigenvalue (cf. Fig. 9). Consequently, ipso
transmission curves typically look very different from the
curves for non-ipso devices based on the same molecule, cf.
Section IX.

VIII. CONDUCTION IN MOLECULES
WITH BIPARTITE GRAPHS

An alternant molecule has a bipartite molecular graph
containing two disjoint sets of nodes (atoms) and in which
edges (bonds) connect only members of the two sets. We shall
call these two sets S◦ and S∗. If we number the members of
the sets contiguously, then we can write the adjacency matrix
in the form

A = *
,

0 B
B 0

+
-
, (105)

where we have placed the n◦ un-starred vertices in the first,
and the n∗ starred vertices in the second block, and we assume
that n◦ ≤ n∗. The dimension of the matrix B is, therefore,
n◦ × n∗.

A simple two-component SSP approach to conductivity
in bipartite molecules has been developed26,48 for the case
E = 0. In this section, we derive rules that apply to such
molecules at general values of E.
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A. The Coulson-Rushbrooke theorem

For convenience, we present a compact derivation of this
well-known49 theorem in a formalism that is useful for our
study of conduction.

We can solve the eigenvector problem for the positive
semi-definite matrix BB of dimension n◦ × n◦ and of rank
r ≤ n◦, in the form

BBVk = Vkσ
2
k for k = 1, . . . ,r,

BBVk = 0 for k = r + 1, . . . ,n◦,
(106)

where the n◦ × n◦ matrix, V, formed from the n◦ columns
Vk is an orthogonal transformation with n◦ − r null-space
eigenvectors. We can also consider the n∗-dimensional
eigenvalue problem

BBWk =Wkσ
2
k for k = 1, . . . ,r,

BBWk = 0 for k = r + 1, . . . ,n∗,
(107)

which has r identical positive eigenvalues, a null-space of
dimension n∗ − r , and the matrix W is orthogonal. We can
write the singular value decomposition of B as

BW = VΣ

or

BV =WΣ, (108)

where the n◦ × n∗ matrix, Σ is in principle rectan-
gular, with a diagonal containing the positive numbers
σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

We can now construct an (n◦ + n∗)-dimensional orthog-
onal transformation

*
,

V 0
0 W

+
-

(109)

that when applied to adjacency matrix Eq. (105) gives rise,
for each of the r terms having σk > 0, to a series of 2 × 2
interacting blocks of the form

*
,

0 σk

σk 0
+
-
. (110)

These blocks are each diagonalised by the same 2-dimensional
orthogonal transformation

*
,

1/
√

2 1/
√

2
1/
√

2 −1/
√

2
+
-
. (111)

The appropriate combination of Eqs. (109) and (111) solves
the original eigenvalue problem by providing r paired
solutionsψk,ψk̄ having eigenvalues+σk and−σk, respectively,
and constructed from columns of the orthogonal matrices V
and W. They are

ψk =
1
√

2
*.
,


p∈S◦

Vpkφp +

p∈S∗

Wpkφp
+/
-
,

ψk̄ =
1
√

2
*.
,


p∈S◦

Vpkφp −

p∈S∗

Wpkφp
+/
-

(112)

for k = 1, . . . r , and the nullspace is

ψk =

p∈S◦

Vpkφp for k = r + 1, . . . ,n◦,

ψk̄∗ =

p∈S∗

Wpkφp for k∗ = r + 1, . . . ,n∗.
(113)

Hence, there are 2r eigenvalues in pairs related to each other
by a change of sign, and a nullspace of dimension n◦ + n∗ − 2r .
This is the content of the Coulson-Rushbrooke pairing
theorem.50–52 We now derive an extension for conduction
properties.

B. Structural polynomials for bipartite graphs

For bipartite graphs (alternant molecules), we can obtain
structural polynomials from the above formulae for the
eigenvectors and eigenvalues, together with the spectral
expansions given earlier. Hence, after some algebra,

t̂ = E
r

k=1

V 2
L̄k

E2 − σ2
k

+
1
E

n◦
k=r+1

V 2
L̄k for L̄ ∈ S◦,

t̂ = E
r

k=1

W 2
L̄k

E2 − σ2
k

+
1
E

n∗
k=r+1

W 2
L̄k for L̄ ∈ S∗.

(114)

The formulae for û are easily obtained by analogy. It is seen
that

t̂(−E) = −t̂(E),
û(−E) = −û(E), (115)

so that both functions are odd, as expected from parity
arguments. The equations for ̂ are more complicated, as
there are two cases, depending on whether indices L̄, R̄ belong
to the same or different sets. When L̄ ∈ S◦ and R̄ ∈ S◦,

̂ = E
r

k=1

VL̄kVR̄k

E2 − σ2
k

+
1
E

n◦
k=r+1

VL̄kVR̄k (116)

which is an odd function of E. When L̄ ∈ S◦ and R̄ ∈ S∗,

̂ =

r
k=1

σk
VL̄kWR̄k

E2 − σ2
k

(117)

which is even. From the formula v̂ = ût̂ − ̂2, it is clear that
v̂(E) = v̂(−E), regardless of the nature of L̄ and R̄.

C. Conduction properties of alternant molecules

We now consider the transmission properties of molecules
with bipartite graphs for unbiased devices, i.e., those for
which αL = αR = 0, under the transformation E → −E. This
transformation affects the momenta (cf. Eq. (6)) through
qL → π − qL and qR → π − qR. It follows that exp(−iqL)
→ − exp(iqL), and sin qL → − sin qL. The terms in qR behave in
an identical manner. From the discussion of the transformation
properties of these quantities, it is obvious from Eq. (5) that

D(−E) = D(E)∗ (118)

and hence

T(−E) = T(E) (119)
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so that the total transmission is symmetric about E = 0 for
unbiased devices.

We can also look at the symmetry properties of the MO
currents by writing Eq. (83) in terms of the hatted polynomials,

JMO
L→k(E) = B(qL,qR)UL̄kUR̄k

E − ϵk

̂(E)
|D̂(E)|2 . (120)

Putting this equation into the context of the current section: for
the paired orbitals, ψk,ψk̄, we recognise that the eigenvectors
for the paired MOs satisfy

Upk = Upk̄ for p ∈ S◦,
Upk = −Upk̄ for p ∈ S∗,

(121)

and

JMO
L→k(E) = JMO

L→ k̄(−E). (122)

The paired orbitals have currents that are reflections of each
other about the line E = 0. It is also obvious that Eq. (122)
for g ≥ 2 extends also to shells, so that

JMO
L→K(E) = JMO

L→ K̄(−E). (123)

It can be shown that bond currents in bi-partite molecules
also display the same symmetry,

JAO
p→q(E) = JMO

p→ q̄(−E). (124)

D. Conduction at the Fermi level

We now turn to the conduction properties of the shell at
ϵk = 0. The conduction properties can be discussed in a very
simple manner using the eigenspaces listed in Eqs. (112) and
(113), and the connection matrix in Eqs. (31) and (34).

For molecular graphs that possess a nullspace, we have
a single shell with ϵK = 0 and degeneracy g = n◦ + n∗ − 2r .
There are two possibilities.

1. Contact atoms in different sets, e.g., L̄ ∈ S◦ and R̄ ∈ S∗.
In this case, the structure of the null-space connection

vector is

uL = βL̄L

*.............
,

VL̄r+1
...

VL̄n◦

0
...

0

+/////////////
-

,uR = βR̄R

*.............
,

0
...

0
WR̄r+1
...

WR̄n∗

+/////////////
-

. (125)

The formula for MO currents, Eq. (83), shows that current
is proportional to a product of L̄ and R̄ MO coefficients
from the connection vectors. The structure of the vectors
in Eq. (125) implies that this product is identically zero.
The shell carries no current and is inert regardless of the
rank of the connection matrix.

2. Contact atoms in the same set, e.g., L̄ ∈ S◦ and R̄ ∈ S◦.

In this case, the structure of the null-space connection
vector is

uL = βL̄L

*.............
,

VL̄r+1
...

VL̄n◦

0
...

0

+/////////////
-

,uR = βR̄R

*.............
,

VR̄r+1
...

VR̄n◦

0
...

0

+/////////////
-

. (126)

The n∗ − r molecular orbitals from the starred space are
all inert, but the MOs from the un-starred space are not
necessarily inert. The shell may therefore still be active,
depending on the case to which the shell belongs (cf.
Table I).

For cases where E = 0 is not an eigenvalue, the present
reasoning makes a connection with a “symmetry rule”
(actually a graph-theoretical rule) for non-ipso conduction
at the Fermi level for closed-shell alternant molecules.42,53

It was observed that the predicted Fermi-level conduction of
a molecule with bipartite molecular graph and a non-zero
HOMO-LUMO gap (specifically a Kekulean benzenoid) is
large when both HOMO and LUMO have entries of large
magnitude on both connection vertices (our L̄ and R̄) and the
product of entries is of opposite sign for HOMO and LUMO.
By the pairing theorem, this latter requirement implies that
the connection vertices are in different partite sets.

This rule has a straightforward interpretation in terms of
shell contributions. HOMO and LUMO shells of a bipartite
graph have mirror conduction curves, so are either both active
or both inert. For active shells, both shell conduction curves
will be close to local maxima in the vicinity of the Fermi level.
If the connection vertices are in opposite sets, the curves will
contribute equal amounts to the total conduction at the Fermi
level. (Other active shells will typically also contribute. Such
contributions may be positive or negative.) If the connection
vertices belong to the same partite set, however, we have
nullity signature g = 0, gt = gu = 1, gv = 2 and insulation at
the Fermi level.31

IX. SOME ILLUSTRATIVE EXAMPLES

We illustrate our description of molecular conduction
with a proof that every molecular graph has at least one active
shell, then some analytical examples for chains and rings, and
finally some more general molecular examples.

A. Molecular conduction of LOMO and HUMO shells

Every π system with a connected molecular graph G has
a non-degenerate lowest-lying π level. Mathematically, the
eigenvector corresponding to the largest positive eigenvalue of
G, ϵmax, i.e., the lowest occupied π molecular orbital (LOMO),
has specific implications for the conduction properties. This
maximum eigenvalue is known as the Perron eigenvalue; it
has multiplicity one for a connected graph, and the associated
eigenvector has a non-zero entry of the same sign on every
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vertex.54 Deletion of any vertex in a connected graph leads
to a decrease in the maximum eigenvalue; deletion of a
second vertex will lead to a further decrease or may leave the
maximum eigenvalue unchanged (only if removal of the first
vertex had disconnected the graph).

Hence, the LOMO always constitutes an active shell,
belonging to case 10. A proof based on interlacing is
straightforward. Whilst the Perron eigenvalue of graph G
has degeneracy g = 1, degeneracies gt and gu are both 0, as
the maximum eigenvalue falls on vertex deletion. Whether
the graph G − L̄ − R̄ is disconnected or not, the maximum
eigenvalue of this graph is strictly less than ϵmax, and so
gv = 0, and we have case 10, which is active (cf. Table I).

The LOMO typically contributes some conduction at all
energies that are not eigenvalues, and so will have a (small)
contribution at the Fermi level if G is non-singular. If G
is connected and bipartite, then it has a unique eigenvalue
ϵmin, and the conduction properties of the corresponding
“anti-Perron” eigenvector (the HUMO) also follow case 10,
and in particular will have a conduction peak near the
eigenvalue. For a nonsingular molecular graph, this will
reinforce the contribution of the LOMO at the Fermi level.

B. Conduction in chains

We gave explicit analytical formulae for the total
transmission in chains and rings, based on full electron
delocalisation, in our earlier work.28 Here, we concentrate
on the conditions for inert orbitals and shells.

The molecular graph of the general linear polyene
CnH2n+2 is the path on n vertices, Pn. All eigenvalues of
Pn are non-degenerate, and so the set of cases for exploration
is 1 to 10 (connection matrix of rank 1 or 0), and shells are
active if they belong to cases 9 or 10. Both of these cases
occur.

An orbital is inert whenever L̄ or R̄, or both, is at a node.
The kth vector (k = 1, . . . ,n) has entry

Upk =


2/(n + 1) sin(pkπ/(n + 1)) (127)

on vertex p, such that p = 1, . . . ,n. Hence, there are nodes
at kp = P(n + 1), where P is a non-zero integer and shell
k is inert, therefore, if kL̄ = P(n + 1) and/or kR̄ = P(n + 1).
For example, all odd chains connected via their central vertex
(p = (n + 1)/2) have inert orbitals at all even k (implying
P = k).

Given that both k and p are less than n + 1, a small
general observation follows for even chains: if n + 1 is prime,
the chain has no inert shells, since kp cannot contain n + 1 as
a factor. Hence, chains with n = 2,4,6,10,12,16, . . . have no
inert shells.

C. Conduction in rings

A device based on a CnHn ring has connections L̄ = 1,
R̄ − L̄ = p (0 ≤ p ≤ n − 1). The spectrum of the cycle is

ϵk = 2 cos(2πk/n)

with k = 0,1, . . . ⌊n/2⌋ and degeneracies g = 1 for k = 0
(Perron) and k = n/2 (anti-Perron, for even n only), but
g = 2 for all other values of k. The shells with ϵk = +2 (and
−2 for even n) are active, by the arguments given above for
the Perron eigenvalue.

Deletion of any vertex of the cycle Cn yields the path
Pn−1, and so gt = gu = 1 for all shells with g = 2. Therefore,
all ipso devices based on the cycle are of type I3 (Table I)
and all shells are active. For non-ipso devices, the possible
cases for inertness/activity are limited to 9, 10, 11.1, and 11.2
of Table I, and hence all shells are active except those that
fall under case 11.2 (gv = 0, gj ≥ 2). Detection of inert shells
can be done in several ways. One route is via the connection
matrix. For a degenerate shell of the cycle, the matrix Bcon

K is

Bcon
K =

*
,

βL̄LUL̄1 βR̄RUR̄1

βL̄LUL̄2 βR̄RUR̄2

+
-

=

*....
,


2
n
βL̄L cos(2πkL̄

n
)


2
n
βR̄R cos(2πkR̄

n
)

2
n
βL̄L sin(2πkL̄

n
)


2
n
βR̄R sin(2πkR̄

n
)

+////
-

(128)

in the sine/cosine representation of the eigenspace and with
k = 1, . . . , ⌊n/2⌋).

For case 11.2, we must have v̂−2 , 0 and ̂−1 = 0 (to
give gv = g − 2 and gj = g − 1). Now, with our definition of
R̄ − L̄ = p, by Eq. (46),

v̂−2 =
4β2

L̄L
β2

R̄R

n2 sin2(2πkp/n),
̂−1 =

2βL̄LβR̄R

n
cos(2πkp/n).

(129)

The expression for ̂−1 vanishes for 4kp = (2q + 1)n, with
integer q. This condition is sufficient to ensure that v̂−2 , 0,
and hence that we are in case 11.2.

Clearly, if n is odd, 4kp cannot be the product of two odd
integers, and so no shells of an odd cycle are inert.

Equally, if n is of the form 4N + 2, 2kp cannot be the
product of two odd integers, and so no shells of a (4N + 2)
cycle are inert.

The remaining case is where n is of the form 4N . Devices
based on C4N cycles have inert shells whenever the shell
index k and the pathlength p between connection vertices
obey kp = (2q + 1)N . For example, C8 has inert shells with
k = 1, 3 for p = 2, but k = 2 for p = 1 and p = 3. Likewise,
C20 has inert shells at k = 5 for p = 1, 3, 5, 7, 9 and at k = 1,
3, 5, 7, 9 for p = 5.

There is a particular implication for conduction at the
Fermi level through devices based on 4N cycles. Note that
even/odd values of p correspond to devices with L̄ and R̄ in
the same/opposite partite sets. Therefore, the shell at ϵ = 0
(k = 2N) is active (case 9) when L̄ and R̄ are in the same
partite set, and inert (case 11.2) when they are in opposite
sets. The cycles C4N+2 are also bipartite, but do not have ϵ = 0
as an eigenvalue.
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FIG. 3. Total electron transmission and currents through individual MOs in
butadiene. The terminal atoms are the two connections in the device.

D. Butadiene in a device connected via
terminal atoms

The shell currents are shown in Fig. 3 for a device
comprising a chain of four conjugated atoms (butadiene) with
the source and sink connected to the terminal atoms. This is a
simple example in which each orbital is non-degenerate and
exhibits case 10 behaviour. All the orbitals are active. It is
evident from Eq. (45) that JMO

L→k(ϵk′) = 0, ∀ ϵk′ , ϵk, because
sk(ϵk′) = 0. All intensities go through a single active shell
when E is equal to the shell eigenvalue. The off-shell MO
currents vanish at each eigenvalue other than their own. The
molecular graph is bipartite, so the global transmission curve
is symmetric about E = 0. Pairs of eigenvalues related by a
change of sign have MO currents that are related by reflection
about the line E = 0. Individual MO currents have regions
where they can be negative or greater than 1, but the total
transmission always satisfies 0 ≤ T ≤ 1, as it must, in the SSP
analytical model.

Bond currents are uninteresting in this case because there
is only one path through the molecule, and each bond carries
a bond current equal to T(E).

E. Anthracene with a symmetrical non-ipso device

The shell currents for a device comprising anthracene with
connections to atoms 4 and 11 (cf. Fig. 4) are shown in Fig. 5.
Anthracene has D2h point group symmetry, and this device
was chosen because L̄ and R̄ connection atoms lie in a mirror
plane, σ, perpendicular to the plane of the molecule. The
orbital energies and the conduction cases at those eigenvalues

FIG. 4. The graphs of the molecules described in Sections IX E–IX G (left)
and IX H (right), showing the labelling schemes for the atoms.

FIG. 5. Anthracene shell currents and transmission for a symmetrical non-
ipso device connected to atoms 4 and 11, as shown in Fig. 4.

are shown in Table III. Each of the doubly degenerate shells
contains a pair of orbitals belonging to different irreducible
representations of D2h, so that these degeneracies do not arise
from point group symmetry, and are in that sense “accidental.”
The irreducible representations that are antisymmetric with
respect to the σ mirror plane are B1g and B3u, whilst Ag and
B2u are symmetric.

Anthracene has a bipartite molecular graph, so the
transmission curves and the eigenvalues again exhibit
symmetry about E = 0. Shells that are antisymmetric to the
mirror plane (shells 2 and 4 and their respective paired
partners, 9 and 7) are of rank 0 and inert, as the nodal plane
passes through the connection atoms. Conduction occurs at
each singly degenerate eigenvalue, and insulation is found at
all others. The shells with eigenvalues at ±

√
2 are case 11.1, so

there is no molecular conduction at this eigenvalue, but these
shells carry current at other energies. Shells at eigenvalues ±1,
are, however, case 1, so the shells are inert and the molecule
is insulating at this eigenvalue.

Bond currents for this device are displayed in Fig. 6. The
current from atom 1 to atom 8 is the current in the leftmost
vertical bond (cf. Fig. 4), whilst the current from atom 3 to
atom 10 is the current in the inner left-hand vertical bond.
Corresponding currents in the right hand rings are obtained
by symmetry. The four currents add together to give the
total transmission, T(E), carried by the four unique routes
from source to sink. Component bond currents are not always

TABLE III. Conduction cases and shell symmetries at the molecular
eigenvalues (in units of β) of anthracene for the devices described in
Secs. IX E–IX G. Shells 2 and 4, and their paired partners are inert for all
three devices.

Cases

Shells Shell symmetries Eigenvalues IX E IX F IX G

1 and 10 Ag ±
(
1+
√

2
)

10 10 I3
2 and 9 B3u ±2 6 8 I2
3 and 8 Ag +B2u ±

√
2 11.1 10 I3

4 and 7 B1g +B3u ±1 1 5 I1
5 and 6 B2u ±

(
−1+
√

2
)

10 10 I3
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FIG. 6. Anthracene bond currents and transmission for a symmetrical non-
ipso device connected to atoms 4 and 11, and with atoms numbered as shown
in Fig. 4.

of the same sign. This is noticeable at energies near the
eigenvalues for shells 3 and 4 (and their paired partners), i.e.,
near eigenvalues where T(ϵK) vanishes.

F. Anthracene with an unsymmetrical non-ipso device

This device is connected such that R̄ is in the apical
position at the bottom of the left-hand ring (atom 2), and
L̄ is in the upper apical position in the middle ring (atom
4). The device is not symmetrical, yet it benefits from the
underlying symmetry of the molecule, as it has L̄ situated
in the nodal plane of those orbitals that are anti-symmetrical
with regard to the mirror plane through atoms 4 and 11
(cf. Fig. 4). The coefficient UL̄k is identically zero for such
anti-symmetric orbitals. This accounts for the fact that shells
2 and 9 are case 8, and shells 4 and 7 are case 5. Shell
currents are shown in Fig. 7. The bond currents display
the effects of asymmetry of the device, and currents across
the mid-section of the molecule are all different, as shown
in Fig. 8.

A satisfying feature of the calculated transmission curves
is that conduction at the Fermi level is dominated by
the nearby frontier orbitals. This is a justification of the

FIG. 7. Anthracene shell currents and transmission for an unsymmetrical
non-ipso device connected to atoms 2 and 11, as shown in Fig. 4.

FIG. 8. Anthracene bond currents and transmission for an unsymmetrical
non-ipso device connected to atoms 2 and 11, and with atoms numbered as
shown in Fig. 4.

perturbation treatment of T(0) (for all non-ipso devices based
on bipartite molecular graphs), as used in other theories of
orbital contributions.16,42,53

G. Anthracene with a symmetrical ipso device

In the anthracene ipso device with source and sink both
connected to atom 4 (cf. Fig. 4), the MOs antisymmetric with
respect to the central mirror plane once again form a set of inert
shells because the connection matrix elements vanish. Most
shells have the same conducting properties as for the non-ipso
devices previously discussed; the exceptions are the singly
degenerate shells at E = ±

√
2, which here are conducting.

The molecule has no internal bond currents (cf. Section V C),
but the MOs conduct through the external links LL̄ and R̄R.
The transmission curve shows additional zero conduction at
energies other than eigenvalues where it happens that the
single structural polynomial j = t = u vanishes. This is shown
in Fig. 9, which gives the reduced structural polynomial
t̂(E) as well as the shell currents and the total transmission.
The analysis of the conduction cases at the molecular
eigenvalues for the anthracene ipso device is shown in
Table III.

FIG. 9. Anthracene shell currents and transmission for a symmetrical ipso
device connected to atom 4, as shown in Fig. 4. The structural polynomial
t̂ = t/s is also shown.
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FIG. 10. The shell currents for a device connected to atoms 1 and 8 of the
molecule depicted on the right in Fig. 4.

H. An alternant molecule with a space
of non-bonding orbitals

The right-hand molecule shown in Fig. 4 has 9 atoms
with n∗ = 3, and n◦ = 6. The device treated in this example
has connections via atoms 1 and 8. The (3 × 6)-dimensional
matrix B in Eq. (105) has rank 3, and there are three nullspace
vectors, concentrated on the unstarred set of atoms. Shells 1
and 5 are case 10, whilst shells 2 and 4 are case 11.2. It can be
seen from Fig. 10 that the triply degenerate nullspace (shell 3)
is inert. This shell is an example of case 5, which is also
insulating. The inert character of the null shell arises from
the special eigenvector structure for a bipartite molecule, as
outlined in Section VIII.

X. CONCLUSIONS

We have presented a new analysis of the SSP model,
which is the simplest approach to ballistic molecular
conduction. The strengths (and the limitations) of the model
stem from its graph-theoretical form. We exploited the
connection with spectral graph theory to find a new and
chemically informative way to think about ballistic conduction
in terms of orbital contributions. To do this, we first presented
a re-derivation of the SSP equations in a manner that gives
easier access to quantities of interest and elucidates behaviour
in special circumstances.

Current through molecules can be discussed in terms of
transmission through a series of bonds, i.e., bond currents.
These bond currents can go with or against the main direction
of current flow, and strong cancellation occurs frequently near
energies at which there is overall insulation. There is not
always an obvious interpretation of these currents.17 In the
bond current picture, intramolecular interference effects are
inevitable.2

Current through molecules can also be discussed in terms
of parallel channels corresponding to molecular orbitals and
shells of molecular orbitals. These currents can be negative, but
typically behave in a more stable fashion than do bond currents,
and at every energy they add up to the total transmission, T(E).

Transmission has been partitioned into orbital contri-
butions in other computational schemes, using projection

techniques.55–58 The scheme followed here gives shell
contributions naturally and uniquely within the tight-binding
approach.

Shell currents turn out to have some interesting general
properties governing their contributions to transmission across
the range of accessible energies. It has been shown previously
that total transmission at eigenvalues can be classified in terms
of 11 cases derived by use of the interlacing theorem. The new
SSP equations give a finer classification, splitting two cases
to give a total of 13 possibilities for behaviour in terms of
insulation and conduction both at and between eigenvalues.

Shell currents are classified in terms of the same set of
cases, which reveal specific behaviour at eigenvalues and a
global property of activity/inertness. It turns out that some
shells are inert. That is to say, they are insulating at all values
of E. Shells that conduct at some energy E are active.

This inertness/activity property has a simple interpretation
in terms of nodal character. This is nicely expressed in terms
of the notation of core and core forbidden vertex sets,59 which
is usually used for the nullspace of a graph, but has a natural
extension for any shell.46 In this extended sense, the vertices in
the core set for a given shell are those with a non-zero sum of
amplitudes of entries when summed over the shell. In chemical
terms, they have non-zero partial π charges for occupation of
the shell. Vertices outside the core are core-forbidden vertices
(CFV): they are nodal points in all possible representations of
the degenerate set of orbitals. A shell is inert in a given device
if one (or both) of the connection atoms L̄ and R̄ corresponds
to vertices in the core forbidden set for that shell.

CFV can in some cases be identified by symmetry
arguments. If vertex r is a CFV for the eigenspace K,
the eigenvector entry Urk vanishes and the local adjacency
condition


s∼r Usk = 0 applies for all k ∈ K. If r is at a

special point of the point group, the vanishing of Urk may
be enforced by the symmetry spanned by the eigenspace (the
set of degenerate orbitals). For example, if r lies in a mirror
plane and all vectors in the eigenspace are antisymmetric with
respect to reflection in that plane, r must be a CFV for shell
K. Thus, for example, the central vertex of an odd path is
always CFV for even k (cf. Section IX B). More typical is
the situation for a doubly degenerate shell where it will often
be possible to choose one symmetric and one anti-symmetric
vector with respect to a given plane, and r is therefore not a
CFV. This is the case for all degenerate shells of the cycle.

The language of CFVs also gives an alternative view
of the effects of side-chains on conduction, more usually
expressed in terms of quantum interference.15,60–63 In this
analysis, quantisation conditions for side-chains force a node
at the junction with the backbone, i.e., a CFV that kills
conduction.30 Nodal positions are robust to improvements in
the level of theory if they are determined by symmetry; if they
result from a cancellation within the Hückel model, they may
shift, but the qualitative prediction of zero shell conduction
may still be an indicator of a low contribution to conduction.

Only three cases (9, 10, and 11.1) out of the 13 represent
active shells. A practical application of this classification
scheme is that transmission near the Fermi energy is dominated
by frontier-shell contributions. If any of these shells are inert,
the conductivity of the molecule will be greatly decreased.
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Finally, as the reader may have guessed, the viewpoint
based on orbital rather than bond current contributions will
be especially useful when further refinements of the SSP
model are considered. Molecular-orbital contributions to
transmission could be derived by similar methods for more
complex, multi-channel devices such as those treated in the
extended SSP model by Dumont.40 They will be at their
most useful when considering the proper inclusion of electron
repulsion.

In its basic form, SSP is an “empty-molecule” picture;
the ballistic electron passes through the molecule or stack of
molecular orbitals without interacting with any electrons that
may already be present in the molecule. Adaptation to a more
physically realistic theory25 in which electron repulsion and
Pauli effects are explicitly included is clearly much easier if
current is partitioned into shell contributions. Conductivity
of a molecule will then be dominated by contributions from
low-lying unoccupied shells, and their inertness or activity
will be crucial.

APPENDIX: DETAILED ANALYSIS OF THE 11
CANONICAL CASES

We shall assume that the rank of the SSP equations, (cf.
Eqs. (91) and (92)), in the echelon representation is 2. The
general solution in the linearly independent space to the SSP
equations for any energy, E , ϵK, in this case is given by

*.....
,

cMO
1

cMO
2

cL

cR

+/////
-

= − iNL

∆̂

*.....
,

−ad2 + pK
�
aF̂AR + bβL̄LβR̄R ̂A

�

d (ab + pKβL̄LβR̄R ̂A)
pK

�
−b2 − d2 + pKF̂AR

�

pK (ab + pKβL̄LβR̄R ̂A)

+/////
-

, (A1)

where

∆̂(E) = a2d2 − pK
�
a2F̂AR + (b2 + d2)F̂AL

+ 2abβL̄LβR̄R ̂A
�

+ p2
K

(
F̂ARF̂AL − β2

L̄Lβ
2
R̄R ̂

2
A

)
. (A2)

When pK , 0, the solutions given for cL and cR in Eq. (A1)
reduce to those already shown in Section VI, as they must,
and it can be shown that cL,cR are identical to those in
Eq. (67). The expressions for cMO

1 and cMO
2 are not those

derived previously, since they refer particularly to orbitals in
the echelon representation.

We shall consider the eight possibilities arising from
Eq. (95), depending upon whether the constants, a,b, and d
are zero or non-zero. Equations (A1) and (A2) are in a form
which is robust enough to cover each of the eight cases, so
long as pK , 0.

We have shown that it is possible to use Eq. (67) for a
derivation of SSP solutions at an eigenvalue. We now need to
take these solutions for quantities such as cR and T , and then
take the limit E −→ ϵK.

The leading term in the expansion (cf. Eqs. (57) and (58))
of D̂ is determined entirely by the rank of the connection
matrix, Bcon

K . Hence, rank 2 gives D̂−2 as the leading term.
Ranks 1 and 0 have D̂−1 and D̂−0 as leading terms, respectively.

We now consider the different ranks in turn.

1. Devices with rank-2 connection matrices

We note that this is only possible when g ≥ 2. In such a
case, a rank-2 connection matrix can be achieved in just two
different ways out of the eight possibilities for the choice of
a, b, and d.

(i) a , 0, b , 0, d , 0
In this case, it is evident from Eq. (96) that t̂−1 , 0,

û−1 , 0, v̂−2 , 0, and ̂−1 , 0, so that gt = gu = gj = g − 1,
and gv = g − 2. This corresponds to case 11 of our
previous work.31,35 Solution of the linear equations at
pK = 0 gives a unique SSP vector

*.....
,

cMO
1

cMO
2

cL

cR

+/////
-

=
iNL

a

*.....
,

1
−b/d

0
0

+/////
-

. (A3)

The vanishing of cL and cR implies that r = −1, and
τ = 0, and hence T(ϵK) = 0. This particular value of the
reflection factor (cf. Eq. (18)) is an explicit example of
the singularity sometimes present in the original version
of the SSP formalism.18,28 This case is labelled 11.1 in
Table I.

We can also see, from Eq. (100), that the shell is
active, i.e., the current through shell K at general values of
E is non-zero for case 11.1, because of the non-vanishing
L̄- and R̄-components of the first echelon orbital.

The bond currents, JAO
p→q, vanish at ϵK because

cL = cR = 0, as noted in Section V B.
(ii) a , 0, b = 0, d , 0

We also have t̂−1 , 0, û−1 , 0, and v̂−2 , 0, so that
gt = gu = g − 1, and gv = g − 2. This also conforms with
the specification of case 11.31,35 The unique solution to
the SSP equations at pK = 0 is

*.....
,

cMO
1

cMO
2

cL

cR

+/////
-

=
iNL

a

*.....
,

1
0
0
0

+/////
-

(A4)

and implies that T(ϵK) = 0, as before.
The sole change between this and the previous type

occurs because ̂−1 = ab = 0, which means that gj ≥ g,
and hence the shell is inert. We distinguish this as case
11.2.

The bond currents also all vanish, as cL = cR = 0.

2. Devices with rank-1 connection matrices

There is no restriction on degeneracy for a rank-1
connection matrix, the necessary and sufficient condition for
which is that v̂−2 = 0. This can occur in five ways out of the
eight possibilities for the choices of a, b, and c. These are

(iii) a = 0, b , 0, d , 0
This does not lead to a real example, since an

additional 2 × 2 rotation of the first two orbitals would
lead to possibility (v).
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(iv) a = 0, b = 0, d , 0
Thus, t̂−1 = ̂−1 = v̂−2 = 0, and û−1 , 0. This implies

that gt ≥ g, gu = g − 1, gj ≥ g, and gv ≥ g − 1, so that
this corresponds to cases 5 and 8.

The solution to the SSP equations is

*...
,

cMO
2

cL

cR

+///
-

= − iNL

F̂AL

*...
,

βL̄LβR̄R ̂A/d
−1
0

+///
-

, (A5)

where we have left out the undetermined coefficient, cMO
1 ,

which can be considered to be zero by continuity with the
solution at pK , 0. We note also that cR = 0 implies that
T(ϵK) = 0. The condition v̂−2 = 0 implies, from Eq. (97),
that the bond currents also vanish. The condition ̂−1 = 0
implies that the shell must be inert.

(v) a = 0, b , 0, d = 0
Again gt ≥ g, gu = g − 1, gj ≥ g, and gv

≥ g − 1, which is another example of cases 5 and 8.
The (non-unique) solution for the SSP vector

*...
,

cMO
1

cL

cR

+///
-

= − iNL

F̂AL

*...
,

−βL̄LβR̄R ̂A/b
1
0

+///
-

, (A6)

where the arbitrary cMO
2 component has been left out of

the equations. Analysis of the conduction properties is
identical to (iv).

(vi) a , 0, b = 0, d = 0
This requires gt = g − 1, gu ≥ g, gj ≥ g, and gv

≥ g − 1, which is another example of cases 5 and 8 in
which the rôles of gt and gu have been swapped. The
solution is

*...
,

cMO
1

cL

cR

+///
-

=
iNL

a

*...
,

1
0
0

+///
-

(A7)

with cMO
2 again arbitrary, and conduction properties as

described in (iv).
(vii) a , 0,b , 0,d = 0

The values of the constants imply that t̂−1 , 0, û−1
, 0, and v̂−2 = 0, but ̂−1 , 0, so that gt = gu = gj
= g − 1, and gv ≥ g − 1. Hence, this corresponds to cases
9 and 10. The SSP solution is

*...
,

cMO
1

cL

cR

+///
-

=
iNL

D̂−1

*...
,

aF̂AR + bβL̄LβR̄R ̂A

−b2

ab

+///
-

, (A8)

where

D̂−1 = a2F̂AR + 2abβL̄LβR̄R ̂A + b2F̂AL.

The coefficient cMO
2 is not determined by the equations,

but no current can be carried by this MO as d = 0. The
values of cL and cR are, however, uniquely determined,
and the total transmission is

T(ϵK) = B(qL,qR)
̂2−1

|D̂−1|2
. (A9)

At least some bond currents will be non-zero, and the
shell is active.

It is clear from their entries in Table I that cases 5 and
8 share the feature that ̂−1 = 0, which implies that both lead
to inert shells. This same feature ensures that the -factor in
the numerator of the expression for cR is O(1) in the series
expansion in powers of pK. The denominator is clearly O(p−1

K )
for both cases because of the presence of non-zero terms in
D̂−1 in Eq. (58). It follows that cR = 0, and hence T(ϵK) = 0.

Cases 9 and 10 have a non-zero value of ̂−1. This leads
to an active shell, and T(ϵK) , 0.

It is not possible to distinguish between cases 5 and 8,
or between 9 and 10, on the basis of the quantities a, b, and
c, and indeed because of the similarity of behaviour of these
pairs, it does not seem necessary to do so.

3. Devices with rank-0 connection matrices

This is the last of the eight choices of the quantities a, b,
and c.

(viii) a = 0, b = 0, d = 0
The quantities t̂−1 = û−1 = ̂−1 = 0. This implies

that gt ≥ g, gu ≥ g, gj ≥ g, and gv ≥ g. The vanishing
of t̂−1 and û−1 means that all L̄ and R̄ components of
the shell wavefunctions vanish, and hence v̂−1 = 0. The
SSP solution is

*
,

cL

cR

+
-
=

iNL

F̂ALF̂AR − β2
L̄L
β2

R̄R
̂2A

*
,

F̂AR

βL̄LβR̄R ̂AL

+
-

(A10)

with cL and cR uniquely determined, and both MO
coefficients, cMO

1 and cMO
2 arbitrary, but set to zero using

continuity.

The various cases in Table I cannot be distinguished on
the basis of the behaviour of the orbitals of the echelon
representation. We can conclude immediately, however, that
the shell is inert in all of these cases because ̂−1 = 0.

Table I indicates that four of the cases conduct at the
eigenvalue. It is obvious that such conduction can only occur
through other shells. All of these cases have values of gt, gu,
and gv that are greater than or equal to g, so that each of
the “hatted” structural polynomials has an expansion with a
leading term in pK of O(1) or greater. It follows directly that
the leading term in the expansion of D̂ is D̂0. (cf. Eq. (58).)
The decision as to whether or not the various cases conduct at
the eigenvalue hinges on the expansion of ̂. We will make a
few remarks about each case.

Case 1 (gt = g + 1, gu = g + 1, gv = g + 2)
The leading terms in the û, t̂ and v̂ expansions are

t̂1, û1 and v̂2, respectively. Since the 0’th term in the
-expansion, when ̂−1 = 0, can be expressed as

̂20 = û0t̂0 − v̂0 + t̂−1û1 + t̂1û−1 (A11)

the leading term in ̂ is ̂1. The numerator in the expression
for cR is O(pK) whilst D̂ is O(1). We conclude that
T(ϵK) = 0.
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Case 2 (gt = g + 1, gu = g + 1, gv = g)
The fact that v̂0 , 0 implies that the leading term in

̂ is ̂0. This implies conduction at the eigenvalue.
Case 3 (gt = g + 1, gu = g, gv = g + 1)

It is possible to deduce that ̂0 = 0, so that

̂21 = û1t̂1 − v̂2 (A12)

and hence ̂1 would be the lowest possible leading term
in the ̂ expansion. We conclude that T(ϵK) = 0. It is
possible, however, for

û1t̂1 = v̂2 (A13)

in which case ̂2 is the leading term. This makes no
difference to the insulation properties.
Case 4 (gt = g + 1, gu = g, gv = g)

The leading terms in t̂, û, and v̂ series are O(pK),
O(1), and O(1), respectively, and hence

̂20 = −v̂0. (A14)

So the order in pK in numerator and denominator of the
expression for cR is the same. This leads to conduction at
the eigenvalue.
Case 6 (gt = g, gu = g, gv = g + 1)

The leading terms in the t̂, û, and v̂ series are O(1),
O(1), and O(pK), respectively. Hence,

̂20 = û0t̂0 (A15)

and there is conduction at the eigenvalue.
Case 7 (gt = g, gu = g, gv = g)

The leading terms in the û and t̂ series are û0 and
t̂0, respectively, whilst the v̂ expansion also leads with v̂0.
We conclude that

̂20 = û0t̂0 − v̂0, (A16)

with implication that, in general, conduction occurs.
However, as in case 3, there can be a cancellation inside
Eq. (A16) that would lead to the leading term in ̂ being
̂1. This would be non-conducting. For case 7, there are
conducting (7.1) and non-conducting (7.2) variants, as
noted previously,31 depending on the value of gj. Case
(7.2) was described as an accident in the sense that is not
predicted from gt, gu, and gv alone.

1A. Aviram and M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974).
2M. A. Ratner, Nat. Nanotechnol. 8, 378 (2013).
3V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6849 (1994).
4V. Mujica, M. Kemp, and M. A. Ratner, J. Chem. Phys. 101, 6856 (1994).
5R. M. Metzger, Acc. Chem. Res. 32, 950 (1999).
6R. M. Metzger, Chem. Rev. 115, 5056 (2015).
7L. Sun, Y. A. Diaz-Fernandez, T. A. Gschneidtner, F. Westerlund, S. Lara-
Avila, and K. Moth-Poulsen, Chem. Soc. Rev. 43, 7378 (2014).

8R. M. Metzger and D. L. Mattern, Top. Curr. Chem. 313, 39 (2012).
9Nat. Nanotechnol., Molecular Electronics Focus Issue 8, 377–467 (2013).

10Faraday Discuss.: Organic Photonics and Electronics 174, 1–448 (2014),
Special Issue.

11Chemical Society Reviews, Themed Collection: Molecular Wires, edited
by D. M. Guldi, H. Nishihara, and L. Venkataraman (Royal Society of
Chemistry, Cambridge, UK, 2015), Vol. 44.

12J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to
Theory and Experiment (World Scientific, Singapore, 2010).

13K. Moth-Poulsen, Handbook of Single-Molecule Electronics (CRC, Boca
Raton, FL, 2015).

14M. Zhuang and M. Ernzerhof, J. Chem. Phys. 120, 4921 (2004).
15M. Ernzerhof, M. Zhuang, and P. Rocheleau, J. Chem. Phys. 123, 134704

(2005).
16M. Ernzerhof, J. Chem. Phys. 125, 124104 (2006).
17M. Ernzerhof, H. Bahmann, F. Goyer, M. Zhuang, and P. Rochelau, J. Chem.

Theory Comput. 2, 1291 (2006).
18F. Goyer, M. Ernzerhof, and M. Zhuang, J. Chem. Phys. 126, 144104

(2007).
19M. Ernzerhof, J. Chem. Phys. 127, 204709 (2007).
20A. Goker, F. Goyer, and M. Ernzerhof, J. Chem. Phys. 129, 194901 (2008).
21M. Zhuang and M. Ernzerhof, J. Chem. Phys. 130, 114704 (2009).
22P. Rocheleau and M. Ernzerhof, J. Chem. Phys. 130, 184704 (2009).
23Y. X. Zhou and M. Ernzerhof, J. Chem. Phys. 132, 104706 (2010).
24M. Ernzerhof and F. Goyer, J. Chem. Theory Comput. 6, 1818 (2010).
25F. Goyer and M. Ernzerhof, J. Chem. Phys. 134, 174101 (2011).
26M. Ernzerhof, J. Chem. Phys. 135, 014104 (2011).
27P. Rocheleau and M. Ernzerhof, J. Chem. Phys. 137, 174112 (2012).
28B. T. Pickup and P. W. Fowler, Chem. Phys. Lett. 459, 198 (2008).
29P. W. Fowler, B. T. Pickup, and T. Z. Todorova, Chem. Phys. Lett. 465, 142

(2008).
30P. W. Fowler, B. T. Pickup, T. Z. Todorova, and T. Pisanski, J. Chem. Phys.

130, 174708 (2009).
31P. W. Fowler, B. T. Pickup, T. Z. Todorova, and W. Myrvold, J. Chem. Phys.

131, 044104 (2009).
32P. W. Fowler, B. T. Pickup, T. Z. Todorova, and W. Myrvold, J. Chem. Phys.

131, 244110 (2009).
33P. W. Fowler, B. T. Pickup, and T. Z. Todorova, Pure Appl. Chem. 83, 1515

(2011).
34P. W. Fowler, B. T. Pickup, T. Z. Todorova, R. De Los Reyes, and I. Sciriha,

Chem. Phys. Lett. 568–569, 33 (2013).
35P. W. Fowler, B. T. Pickup, T. Z. Todorova, M. Borg, and I. Sciriha, J. Chem.

Phys. 140, 054115 (2014).
36J. J. Sylvester, Philos. Mag. 1, 295 (1851).
37M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,

J. McCarron, and P. DeMarco, Maple 18 Programming Guide (Maplesoft,
Waterloo, ON, Canada, 2014).

38S. Shaik, A. Shurki, D. Danovich, and P. C. Hiberty, Chem. Rev. 101, 1501
(2001).

39G. Binsch, E. Heilbronner, and J. N. Murrell, Mol. Phys. 11, 305 (1966).
40R. S. Dumont, J. Chem. Phys. 134, 044119 (2011).
41W. Y. Kim and K. S. Kim, Acc. Chem. Res. 43, 111 (2010).
42K. Yoshizawa, T. Tada, and A. Staykov, J. Am. Chem. Soc. 130, 9406

(2008).
43L. D. Landau and E. M. Lifschitz, Quantum Mechanics, Non-Relativistic

Theory, Course in Theoretical Physics, 3rd ed. (Pergamon Press, Oxford,
UK, 1977), Vol. 3, pp. 55–57.

44R. Brualdi and H. Schneider, Linear Algebra Appl. 52–53, 769 (1983), we
use a theorem by Sylvester, cf. p. 772, Eqs. (7) and (8) with k = n − 2, and
with notational changes to suit the present work.

45A. Cauchy, Oeuvres Complètes, Second Ser. 9, 174 (1833).
46I. Sciriha, Linear Algebra Appl. 430, 78 (2009).
47I. Sciriha, M. Debono, M. Borg, P. W. Fowler, and B. T. Pickup, Ars Math.

Contemp. 6, 261 (2013).
48D. Mayou, Y. Zhou, and M. Ernzerhof, J. Phys. Chem. C 117, 7870 (2013).
49R. Mallion and D. H. Rouvray, J. Math. Chem. 5, 1 (1990).
50C. A. Coulson and G. S. Rushbrooke, Math. Proc. Cambridge Philos. Soc.

36, 193 (1940).
51C. A. Coulson and H. C. Longuet-Higgins, Proc. R. Soc. A 191, 39 (1947).
52C. A. Coulson and H. C. Longuet-Higgins, Proc. R. Soc. A 192, 16 (1947).
53Y. Tsuji, A. Staykov, and K. Yoshizawa, J. Am. Chem. Soc. 133, 5955 (2011).
54H. Brouwer and W. E. Haemers, Spectra of Graphs (Springer, New York,

2012).
55M. Brandbyge, M. R. Sorensen, and K. W. Jacobsen, Phys. Rev. B 56, 14956

(1997).
56D. Jacob and J. J. Palacios, Phys. Rev. B 73, 075429 (2006).
57R. Li, S. Hou, J. Zhang, Z. Qian, Z. Shen, and X. Zhao, J. Chem. Phys. 125,

194113 (2006).
58M. Paulsson and M. Brandbyge, Phys. Rev. B 76, 115117 (2007).
59I. Sciriha, Electron. J. Linear Algebra 16, 451 (2007).
60R. Baer and D. Neuhauser, J. Am. Chem. Soc. 124, 4200 (2002).
61R. Collepardo-Guevara, D. Walter, D. Neuhauser, and R. Baer, Chem. Phys.

Lett. 393, 367 (2004).
62D. Walter, D. Neuhauser, and R. Baer, Chem. Phys. 299, 139 (2004).
63G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica, and M. A. Ratner, Nat.

Chem. 2, 223 (2010).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.167.43.68 On: Sun, 22 Nov 2015 15:52:56

http://dx.doi.org/10.1016/0009-2614(74)85031-1
http://dx.doi.org/10.1038/nnano.2013.110
http://dx.doi.org/10.1063/1.468314
http://dx.doi.org/10.1063/1.468315
http://dx.doi.org/10.1021/ar9900663
http://dx.doi.org/10.1021/cr500459d
http://dx.doi.org/10.1039/C4CS00143E
http://dx.doi.org/10.1007/128_2011_178
http://dx.doi.org/10.1063/1.1644106
http://dx.doi.org/10.1063/1.2049249
http://dx.doi.org/10.1063/1.2348880
http://dx.doi.org/10.1021/ct600087c
http://dx.doi.org/10.1021/ct600087c
http://dx.doi.org/10.1063/1.2715932
http://dx.doi.org/10.1063/1.2804867
http://dx.doi.org/10.1063/1.3013815
http://dx.doi.org/10.1063/1.3086078
http://dx.doi.org/10.1063/1.3119299
http://dx.doi.org/10.1063/1.3330900
http://dx.doi.org/10.1021/ct1000044
http://dx.doi.org/10.1063/1.3581096
http://dx.doi.org/10.1063/1.3603444
http://dx.doi.org/10.1063/1.4764291
http://dx.doi.org/10.1016/j.cplett.2008.05.062
http://dx.doi.org/10.1016/j.cplett.2008.09.048
http://dx.doi.org/10.1063/1.3124828
http://dx.doi.org/10.1063/1.3182849
http://dx.doi.org/10.1063/1.3272669
http://dx.doi.org/10.1351/pac-con-10-10-16
http://dx.doi.org/10.1016/j.cplett.2013.03.022
http://dx.doi.org/10.1063/1.4863559
http://dx.doi.org/10.1063/1.4863559
http://dx.doi.org/10.1021/cr990363l
http://dx.doi.org/10.1080/00268976600101141
http://dx.doi.org/10.1063/1.3535117
http://dx.doi.org/10.1021/ar900156u
http://dx.doi.org/10.1021/ja800638t
http://dx.doi.org/10.1016/0024-3795(83)90050-2
http://dx.doi.org/10.1016/j.laa.2008.06.033
http://dx.doi.org/10.1021/jp3125389
http://dx.doi.org/10.1007/BF01166272
http://dx.doi.org/10.1017/S0305004100017163
http://dx.doi.org/10.1098/rspa.1947.0102
http://dx.doi.org/10.1098/rspa.1947.0136
http://dx.doi.org/10.1021/ja111021e
http://dx.doi.org/10.1103/PhysRevB.56.14956
http://dx.doi.org/10.1103/PhysRevB.73.075429
http://dx.doi.org/10.1063/1.2388272
http://dx.doi.org/10.1103/PhysRevB.76.115117
http://dx.doi.org/10.13001/1081-3810.1215
http://dx.doi.org/10.1021/ja016605s
http://dx.doi.org/10.1016/j.cplett.2004.06.042
http://dx.doi.org/10.1016/j.cplett.2004.06.042
http://dx.doi.org/10.1016/j.chemphys.2003.12.015
http://dx.doi.org/10.1038/nchem.546
http://dx.doi.org/10.1038/nchem.546

