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Abstract

A multivariable adjunction is the generalisation of the notion of a 2-
variable adjunction, the classical example being the hom/tensor/cotensor
trio of functors, to n+ 1 functors of n variables. In the presence of multi-
variable adjunctions, natural transformations between certain composites
built from multivariable functors have “dual” forms. We refer to corre-
sponding natural transformations as multivariable or parametrised mates,
generalising the mates correspondence for ordinary adjunctions, which en-
ables one to pass between natural transformations involving left adjoints
to those involving right adjoints. A central problem is how to express the
naturality (or functoriality) of the parametrised mates, giving a precise
characterization of the dualities so-encoded.

We present the notion of “cyclic double multicategory” as a structure
in which to organise multivariable adjunctions and mates. While the stan-
dard mates correspondence is described using an isomorphism of double
categories, the multivariable version requires the framework of “double
multicategories”. Moreover, we show that the analogous isomorphisms of
double multicategories give a cyclic action on the multimaps, yielding the
notion of “cyclic double multicategory”. The work is motivated by and
applied to Riehl’s approach to algebraic monoidal model categories.
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Introduction

Frequently in homotopical algebra and algebraic K-theory, one is dealing with
model categories with extra structure. In particular, the model structure is often
required to be compatible with a closed monoidal structure on the underlying
category or an enrichment over another model category. For instance, enriched
model categories play an essential role in equivariant homotopy theory [8, 9,
10]. The formal definitions, introduced in [12], generalize Quillen’s notion of
a simplicial model category and can be expressed in three equivalent (“dual”)
forms. Although these formulations are well-known, the precise nature of these
dualities is not obvious because they involve a two-variable adjunction defined on
arrow categories constructed from a two-variable adjunction on the underlying
categories and an associated bijective correspondence between certain natural
transformations that has never been precisely described.

Indeed, a fully satisfactory account of the dualities for natural transforma-
tions involving a “tensor/cotensor/hom” trio of functors demands a general-
ization from two-variable adjunctions to multivariable adjunctions: the ten-
sor/cotensor/hom combine with the closed monoidal structure on the enrich-
ing category to define functors of n-variables with compatibly defined adjoints.
Again, in the presence of multivariable adjunctions, natural transformations
between certain composites built from multivariable functors (e.g. encoding co-
herence conditions) have “dual” forms. This sort of structure occurs in work
of the third author in the context of monoidal and enriched algebraic model
category structures [23, 24]. In an algebraic model category structure, the weak
factorisation systems involved have certain extra linked algebraic/coalgebraic
structure; all cofibrantly generated model categories can be made algebraic in
this sense. That research was one direct motivation for the work and results in
this paper, which are essential to define the central notion studied in [24].

Our main theorem gives a complete characterisation of the natural transfor-
mations involving multivariable adjoints that admit dual forms. It also solves
the associated “coherence problem”: Certain (but not all) commuting diagrams



involving these sorts of natural transformations will have “dual” forms. Our re-
sult makes this precise. Before giving a more detailed description of the problem
and an outline of our solution, let us introduce a key idea via an analogy.

The pervasive success of homology theories stems from an abstract frame-
work that simultaneously enables computation and generalisation. For example,
homology originated from the study of invariants of topological spaces and was
extended to associative algebras, Lie algebras, and the extraordinary homology
theories appearing in stable homotopy theory, such as K-theory and cobordism.

In these settings, we often start with some basic objects, and then consider
additional algebraic structure. Operads are a powerful tool for encoding such
structure. This is witnessed by the great progress made in the theory of iterated
loop spaces [22] and topological field theories [5], for example.

While operads can be used to generalise notions of algebraic structure, there
is still a further useful generalisation: operads themselves come in different
flavours, allowing us to embrace yet further notions of algebra. One major
example of this is Getzler and Kapranov’s notion of cyclic operad. This was
introduced in order to generalise cyclic homology to these further types of alge-
bras.

The “cycles” at play here are cycles of inputs and outputs. That is, where
operads encode algebraic operations, cycles enable us to exchange inputs and
outputs of these operations. One natural way in which such structure arises is
in the presence of duality. For example, for finite-dimensional vector spaces, a
linear map

F:V—W

corresponds precisely to a map between the duals in the opposite direction, that
is

W — V"
Of course, vector spaces form not merely a category, but a monoidal category,
and the tensor product interacts with the duality as follows. A linear map

Vie®---@V, —W
corresponds precisely to one as shown below
V@@V, Ve — V'

where the “output” vector space has been exchanged with one of the “inputs”,
and those two spaces are dualised. We can repeat this process and “cycle” the
inputs and outputs round as many times as we like. In this sense the basic
version above is the 1-ary version of this cyclic process, which we can do for any
n > 1.

A categorical version of duality is given by adjunctions. An adjunction

A B



is given by the same data as an adjunction

GoP
—_—
BeP 1 "~ A°p,
“For
As for vector spaces, categories form a monoidal category via the cartesian
product, and we seek the correct n-ary version of adjunctions.
A ubiquitous example of a 2-variable adjunction is the tensor/hom/cotensor

trio of functors mentioned earlier. The tensor/hom adjunction
_®bH[b,_]

is particularly familiar, and in many enriched cases there is further adjoint, the
cotensor
a® Hamh __

These three functors ®,[_, ], M are related by adjunctions in a way that looks
somewhat convoluted at first sight. It has the following features:

it involves 3 functors of 2 variables,

each pair of functors is related by a 1-variable adjunction if we fix a vari-
able, and

some care is required over dualities of source and target categories.

In fact, when treated cyclically, the structure becomes transparent; we discuss
it in detail in Section 2.2. While the functors in this example have only two
variables, composing them results in new functors of higher arity. In fact, any
tensored and cotensored category enriched in a closed symmetric monoidal cat-
egory admits an n-variable adjunction for each natural number n, encoding the
interaction between these structures.

Two-variable adjunctions appear in the statement of the pushout-product
axiom, which is the crucial component of the definition of a simplicial, or more
generally enriched, model category. It is well known that there are three equiv-
alent formulations of this axiom that are somehow dual. The key to this duality
is that in the presence of pushouts and pullbacks, the arrow categories admit
adjunctions similar to the tensor/hom/cotensor trio. The three cyclic adjoints
yield the three forms of the pushout-product axiom. Multivariable adjunctions
of this sort are also used in higher category theory, for instance, to define the
lifting properties characterising an n-fold quasi-category, a presheaf model for
an (oo, n)-category [11].

The correct framework for handling multivariable functors is multicategories.
These are just like categories except that morphisms can have many inputs (or
none); they still have a single output. Note that non-symmetric operads are
multicategories with only one object, and so multicategories are often referred
to as “coloured operads”.



In fact we desire a richer structure than just multicategories because the
“duality” involved in adjunctions extends to 2-cells as well—natural transfor-
mations involving left adjoints become natural transformations involving right
adjoints via the “mates correspondence”. This 2-dimensional duality is at the
heart of the three equivalent formulations of an algebraic formulation of the
simplicial model category axioms mentioned above.

The mates correspondence is elegantly described using the framework of
double categories. Recall that a double category is a form of 2-dimensional cat-
egory with two types of morphism—horizontal and vertical—and 2-cells that fit
inside squares. The double category used to describe the mates correspondence
is given as follows:

0-cells are categories,
horizontal 1-cells are functors,

vertical 1-cells are adjunctions (pointing in a fixed chosen direction e.g.
the direction of the left adjoint), and

2-cells are certain natural transformations.

Even after we have fixed the direction of the 1-cells, there is a choice for the
2-cells—we could still take the natural transformations to live in the squares
involving either the left or right adjoints. This produces a prior: two different
double categories for each choice of 1-cell direction, but the mates correspon-
dence says precisely that there is an isomorphism of double categories between
them.

For multivariable adjunctions we thus need to combine the notions of mul-
ticategory, double category, and cyclic action. Our vertical 1-cells will now be
n-variable adjunctions, so they are the maps of a multicategory with a cyclic
action. For example a 2-variable adjunction involves functors

Ax B L cor

BxC-% Ao

Cx AL Ber,
Note the duality that arises as a category “cycles” between the source and target.
The essential fact is that each time a category moves between the source and
target, it is dualised; this is exactly what happens for vector spaces, and in the

tensor/hom/cotensor situation. This is the notion of a “cyclic multicategory”—
a multicategory equipped with additional structure in the form of

an involution (such as ( )°P), and
a cyclic action on homsets, invoking the involution appropriately.

This formulation allows for cyclic structures that do not arise from duals in the
sense of dual vector spaces, such n-variable adjunction. (Note that opposite
categories are not “duals” in the sense that dual vector spaces are duals.)



We must also implement the cyclic structure on 2-cells, that is, the n-variable
version of the mates correspondence. We are interested in a correspondence of
natural transformations such as below (for the 2-variable example):

AxB—> A xB" BxC—B x(C (OCxA—>C" x A

F\l 7 lF' Gl 7 lc’ Hl 7 [H
CoP ——— (/°P ACP ——— A/°P BoP ——— p/opP

and this indicates the required form of 2-cells and their cyclic structure, in our
“cyclic double multicategory”. Recall that a double category can be defined
succinctly as a category object in Cat; similarly a cyclic double multicategory
is a category object in the category of cyclic multicategories.

The motivation for this work is the third author’s work on algebraic monoidal
model categories. In the theory of algebraic model categories [23] the double cat-
egory framework for 1-variable adjunctions and mates plays a crucial role. For
the monoidal version [24], multivariable adjunctions and mates are needed, not
simply to describe the equivalent forms the definition of a monoidal algebraic
model category might take but to state the correct definition at all. Exam-
ples that could now be made algebraic using the results of the present paper
include the model structures arising from 2-category theory [18], in particular
the monoidal model structure on 2-categories with the Gray tensor product
[16, 17]. Similar ideas applied in the context of n-fold quasi-categories would
give an “algebraic” model for (oo, n)-categories.

This paper is organised as follows. In Section 1 we recall the standard theory
of mates. In Section 2 we define multivariable adjunctions and the multivari-
able mates correspondence. In Section 3 we give the definition of cyclic double
multicategory, building up gradually through multicategories, cyclic multicat-
egories and double multicategories. We show that multivariable adjunctions
form a cyclic double multicategory. In Section 4 we describe the application to
algebraic monoidal model categories.

Our notion of cyclic multicategory is non-symmetric and thus generalises the
notion of (non-symmetric) cyclic operad given in [1]; symmetric cyclic operads
are defined in [4] and a multicategory version is mentioned in [13]. Our defi-
nition could also be given in a symmetric form but we felt that the new ideas
introduced here were highlighted most clearly when the obvious symmetries of
the cartesian product on CAT were ignored. Cyclic operads support a wide
variety of applications, as described in the papers [1] and [4], and so we expect
the categorical formalism encoded by our “coloured” version presented here will
also be useful in other contexts.

Our notion of double multicategory is not the same as the notion of fc-
multicategory (introduced by Leinster in [19] and renamed “virtual double cat-
egory” by Cruttwell and Shulman in [2]); fc-multicategories do not involve ver-
tical 1-cells of higher arities.



Notation

Throughout this paper we will write A® for A°P. Also, for n-variable adjunctions
and cyclic multicategories, we will need to use subscripts cyclically. Thus we
will index objects by 0, ..., n with lists taken cyclically, mod n+ 1. For example
we will frequently use the string a;41,...,a;—1 which means

A1, Q425+ -+, An,y Q05 ALy -« -y A1
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1 Mates

In this section we describe the situation we will be generalising. Suppose we
have the following categories, functors and adjunctions

A A
F|H|G F'|H|G’
B B’

with unit and counit (n,¢) and (1/,¢’) respectively. Then given functors S and
T and a natural transformation « as shown

A—S sy

T

its mate & is the natural transformation

A—2 sy

obtained as the following composite



€
4 1% 1
NF F’/
! n/ /
B——F—B o A
Conversely we can start with s
A—— A

G ﬁ\ ‘G’

B—F—>DB

and obtain the mate

as the composite

By triangle identities these processes of “conjugation” are inverse to one an-

other. Furthermore, the correspondence respects both horizontal and vertical
composition in the following sense. Given adjunctions

Aq Ao As
Fy | H|Gy Fa || G2 F3(H|G3s
B By Bs
and natural transformations 5, S5
1 AQ A3
Fl‘/ 1/041 [F2 1/042 ‘/FS
B, T By T2 Bs

we have



where * is to be interpreted with the appropriate whiskering, so in fact the
honest equality is
Thaq 0 a1 = a1 o Syag.

For “vertical” composition, given adjunctions

A1 A2
Fi 4| Gy Fy (4| G2
B1 BQ
Hy (4| K3 Hy || K2
Ch Cy

and natural transformations

Cl T) CQ
we have

Qg O (x] = Qig 0 (1

which actually means
asFy o Hyay = Goag o aq K.

Both of these facts are easily checked using 2-pasting diagrams and triangle
identities.

This situation is conveniently formalised using double categories. In the
following definition we have chosen the direction of the vertical 1-cells to corre-
spond to the direction of the left adjoints.

Definition 1.1. We define two double categories LAdj and RAdj with the
same 0- and 1-cells, but different 2-cells. In both cases the 0-cells are categories,
the horizontal 1-cells are functors, and a vertical 1-cell A — B is an adjunction

F

A B.



A 2-cell S

is given in each case as follows.

In LAdj such a 2-cell is a natural transformation

A14>A2

Fl[ VA [FQ

B1 T BQ.

In RAdj such a 2-cell is a natural transformation

A14>A2

Gl‘ AN ‘Gg

B1 ? BQ.

Theorem 1.2. [15, Proposition 2.2]
There is an isomorphism of double categories

LAdj = RAdj

which is the identity on 0- and 1-cells (horizontal and vertical); on 2-cells it is
given by taking mates.

We now look at this from a slightly different point of view that seems a little
contrived here, but leads to a natural framework for the n-variable generalisa-
tion. The idea is to notice that an adjunction

is equivalently an adjunction

Now, we could deal with this by introducing yet another pair of double categories
LAdj; and RAdjy as above but whose vertical 1-cells point in the direction of
the right adjoints; the 2-cell directions must also be changed accordingly. We
would then get isomorphisms of double categories

()*: LAdj — RAdjp
()*: RAdj — LAdjj.

10



However, we can actually express all this structure using one single version of
the above four isomorphic double categories, as follows.
Given a 2-cell in LAdj, that is, a natural transformation

A1—3>A2

its mate S

Bi—5— B>

is not a priori a 2-cell of LAdj as its source and target involve right adjoints
G1 and G2. However, it can be dualised to give

A 43

G;‘ G ‘G;

B3 T)Bz

where we must reverse the 2-cell direction as the target category has been du-
alised. Thus, turning the diagram round so that the left adjoints point down-
wards, we have

B —— Bs

G;[ ay lG;

A?T/Q

which s a 2-cell of LAdj as G} and G35 are left adjoints. Thus the mates
correspondence actually gives us some extra structure on LAdj in the form of
isomorphisms:

LAdj, (A, B) = LAdj,(B*, A*), and
LAdj,(S,T) = LAdj,(T*, S*).

Here the subscript v indicates the hom-set of vertical 1-cells, and the subscript 2
indicates the hom-set of 2-cells with respect to their horizontal 1-cell boundaries.

We will see that these isomorphisms are the beginning of a cyclic structure:
the 1-ary part. The situation has a slightly different flavour, without technically
being different, if we put it in the language of “mutual left adjoints”.

11



Definition 1.3. Consider functors
AL B o A Ry
B-% 4 B* <A
A mutual left adjunction of F' and G is an adjunction
F*HG
or equivalently
G* 4 F.
Note that this is given by isomorphisms
B(Fa,b) = A(Gb,a)
natural in a and b. If we started with
A* L5 B oand
B* %A

then the adjunctions
F*4G or G*HF

as above would be given by isomorphisms
B(b, Fa) = A(a, Gb),

which is called a mutual right adjoint.
Note that the unit and counit for a mutual left adjoint as above have com-
ponents
Ne: GFa—>a € A and

ey: FGb—>b € B,

whereas for a mutual right adjoint the components are
Ng:a—> GFa € A and
ep: b—> FGb € B.
Remark 1.4. The unit and counit given above are for an adjunction
F*4G
whereas for the (equivalent) adjunction
G*4F
the unit and counit are the other way round, that is,
€o: GFa—>a € A and
m: FGb—=b € B.

In the spirit of symmetry, we will refer to all natural transformations involved
in a mutual adjunction as ¢; it will be clear from the source and target for which
adjunction this is actually a counit.

12



We can now express the mates correspondence for mutual left adjunctions.
Given a mutual left adjunction between

A-LE5 B and
B-% A°

the mates correspondence together with duality as above gives us a correspon-
dence between natural transformations

A _S> A’ B L B'*
Fl /7 ‘/F’ and ¢| J |¢&
Bo ? Bo Ao ? A/..

This is obtained from the ordinary mates correspondence by taking some ap-
propriate duals. This is the n = 1 part of the n-variable case, in which we look
at natural transformations

Ay x-ox A, S1x X5 Al xoox AL
| y
; . "
and
Ay ooox Ag —— 220 X80 L x Al
[ ’
A = A

and every cyclic variant.

2 Multivariable adjunctions

In this section we define multivariable adjunctions. The basic idea is that for
an “n-variable adjunction” we have n + 1 categories Ag, -+, A, and n + 1
multifunctors, each of which has one of the A} as its target, and the product of
the other n categories as its source. These multifunctors can all be restricted
to functors with a single category as their source, by fixing an object in each
of the other categories. For every pair i # j there is a pair of contravariant
functors obtained in this way involving A; and A;. These should be in a specified
adjunction; moreover, of course, all these adjunctions should be coherent in an
appropriate way.

13



We first give the definition of this structure, and then immediately prove
Theorem 2.2 giving a more “economical” characterisation, in which a priori we
specify only one multifunctor, and a family of 1-variable adjoints for it. Using
standard results about parametrised representability, these 1-variable adjoints
then extend uniquely to n-variable multifunctors with the required structure. It
is the characterisation in Theorem 2.2 that we will use in the rest of the work.

2.1 Definition of multivariable adjunctions

Definition 2.1. Let n € N. An n-variable (mutual) left adjunction is
given by the following data and axioms.

Categories Ag, ..., Ap.

Functors "
Ay X Agx - X Ay_1 X A, —> A8

Ag x Ag x -+ x A, X Ag EiN A

F;

Ai+1 X e X Ai—l —> A:

F,
Ap X - x Ay LN

AP

Here the subscripts are all to be taken mod n 4+ 1. Where possible, we
will adopt the convention that the subscript on a multifunctor matches
the subscript of its target category.

For all 0 < i < n, and for all a;41 € A;+1,...,0,—2 € A;_2 a mutual left
adjunction between

A Fi1(_,ait1,ai42,.-.,ai—2) A;—l

A, Fi(ait1,ait2, .-, ai—2,_) A:
thus isomorphisms
Aic1(Fici(as, ... ai—2),ai-1) = A (Fi(aiy1, ..., ai—1), a;)

natural in a;_; and a;. If we use the shorthand a; for the sequence
@;it1,---,0;—1, this isomorphism takes the appealing form

Ai 1 (Ficq(aim1), aim1) = Ay (Fi(a), aq).
The following axioms must be satisfied:

the above isomorphisms must additionally be natural in all variables, and

14



the “cycle” of isomorphisms commutes:

Ao(Fo(ao), ao) = A1 (Fi(a1), a1)

7/ X

An(Fn(dn)yan) AQ(FQ(d2)7a2)

\ N

A3 (F?,(ds)aa:a)

We say that the functor Fy is equipped with n-variable left adjoints
Fy,--- ,F,. This terminology makes more sense in the light of the following
theorem.

Theorem 2.2. The following description precisely corresponds to an n-variable
left adjunction.

categories Ag, ..., Ap

a functor Ay x --- x A, —> AJ

for all 0, j, k distinct, and for all a; € A;, a mutual left adjoint for the
functor
F()(al, N0 ) P P 7 7 P P an): Ak — A(.)

Remark 2.3. Note we say that F' is equipped with n-variable left adjoints
if each of its 1-variable restrictions has a left adjoint. F' is equipped with n-
variable right adjoints if each of its 1-variable restrictions has a right adjoint.

To prove this we use the following result of Mac Lane [20, IV.7, Theorem 3].

Theorem 2.4. Given categories A, B,C, a functor F': A x B—> C*®, and for
all b € B a mutual left adjoint G(b,_) : C — A® for the functor

F(_,b): A—>C"*

i.e. isomorphisms
C(F(a,b),c) = A(G(b,c),a) (1)

natural in a and c, there is a unique way to extend the functors
G, ):C— A°®

to a single functor
G:Bx(C— A*

such that the isomorphism (1) is also natural in b.

15



This is a standard result about parametrised representability; we give a 2-
categorical expression of Mac Lane’s proof, as this will be useful later.

Proof. We write 1 —= B for the functor picking out the object b € B. The
hypothesis of the theorem then says that for each such b we have a right adjoint
for the composite

Ae U go eI
which we call
G(b,_)
C—A°

with unit and counit

G(b,_)

Ef/ 1xb®

L]
C’—>G(b_) A°.

Now, extending the individual functors
G, ): C— A°®

to a functor
G:Bx(C— A*

consists of giving, for each morphism by < by in B, a natural transformation

G(b1,_)

S N
c | A
~_

G(b2,_)

and checking functoriality. The natural transformation is given as the mate of

1xb3

A. \IJ/IXf. A. X B. F

C

1xb3

that is

16



Functoriality then follows from the functoriality of the mates correspondence.
Now we further need that the isomorphism

C(F(a,b),c) —> A(G(b,c),a)

is natural in b. By the Yoneda lemma this is equivalent to the following diagram
commuting for all f: by —> by in B:

G(f.1)
G(bg, F(CL, bl)) —— G(bl,F(a,bl))

G, F(1, 1)) b1 ,a

G(bg, F(CL, bg))

Nba,a
or dually an analogous diagram involving €’s:
F(f,1)
F(bz, G(a, bl)) — F(bl, G(CL, bl)

F(1,G(1, 1)) €bi,a

F(bQ, G(CL, bQ)) T a.

2-categorically this is

17



b1><1

2 el
C Vfxt BxC
v

A.

1xb3

A* x B*®

F*

Now by our definition we have

G(b1,_)

C

by x1

81,1/

G

= ¢ |1 BxcC A*

b2><1

(3)
since the right-hand side is the definition of G on morphisms of B. Then equa-
tion (2) follows from a triangle identity for 7, and &p,; dually the equation for
71 holds by a triangle identity for n, and e, .

For uniqueness we suppose we have a functor G satisfying the naturality
condition as shown in diagram (2) above. Then as above, equation (3) must
hold, showing that our construction of G is unique. O

Proof of Theorem 2.2. First we show that the structure in the theorem
gives rise to an n-variable left adjunction. First we need to define for all ¢ # 0
a functor

Fi: Ajp1 X - x Aj_g —> A3
Now, we have for for all ay,...,a;-1,a;41,...,a, a left adjoint for the functor
Fo(at, . yQic1y_,Qig1y---,0n): A —> A,
equivalently a right adjoint for its opposite
ES(at, ... Gi—1y_,Qig1,...,0,): A —> Ay
called, say

. .
Fi(aH_l,...,an,i,al,...,ai_l). AO _)Ai'

18



By Theorem 2.4 it extends uniquely to a functor

Fi: Ajpg X+ X Ajmqg —> A
making the isomorphism

Ao (Fo(ao), ao) = A;(Fy(a:), a;)

natural in every variable (where a priori it was only natural in ag and a;). This
is by putting

A = A
B = Ai+1x"'><Ai—1
C = A

in the theorem. It remains to show that we have the correct adjunctions. Now
by the above hom-set isomorphism we construct the composite isomorphism

Aic1(Fiz1(ai—1),ai—1) —> Ag(Fo(ao), ao) —> Ai(Fi(as), as)

which we already know to be natural in every variable, and by construction the
cycle of isomorphisms commutes as required.

Conversely given an n-variable adjunction we use the cycle of isomorphisms
to specify an isomorphism

Ao(Fo(ao), ao) —= A1 (Fi(a1),a1) —> -+ —> A;(Fi(as), as).
Then, fixing all variables except a; and ag we get the required adjunction. O

It is instructive to work through this definition for some small values of n.

Example 2.5. n=1
A 1-variable adjunction is just an ordinary adjunction, but in the notation
of the definition it is given by

categories Ag, A1,
Fy
functors A; —> AJ , and
F
Ay —> A3
an adjunction Fy — Fj.

Example 2.6. n =2
A 2-variable adjunction is given by categories, functors and adjunctions as
follows:

AxB-Lce F(_,b)* 4G, )
BxC % A G(_,¢)* 4 H(c,_)
Cxa-pe H(_,a)®* 4 F(a,_)
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given by a “cycle of isomorphisms”

C(F(a,b),c) = A(G(b,c),a)

natural in a, b and c.

Theorem 2.2 says that to specify this it is equivalent to specify the functor
F along with, for each a € A and b € B left adjoints for the functors F(_,b)
and F'(a,_), that is functors

G, ): C— A*
H(_,a): C— B*
and isomorphisms

A(G(b,c),a) =
A(G(b,c),a) =

2
2
I
8
=
uﬁ

natural in ¢ and ¢

2
X
=
o
S
s

natural in b and c.

Note that the original definition has n + 1 adjunctions specified cyclically,
each involving a pair of “numerically adjacent” categories and naturality in all
n + 1 variables; Theorem 2.2 specifies n adjunctions, each involving Ay and one
other category, and natural only in 2 variables.

Remark 2.7. For n = 0 it is useful to say that a “0O-variable adjunction” is a
functor 1 — A as these will be the 0-ary maps in our eventual multicategory
structure. The fact that these compose is the following lemma.

Lemma 2.8. Consider an n-variable adjunction as above. Fiz 0 < k <n and
ar € Ag. Then fixing ay in each functor F;,i # k yields an (n — 1)-variable
adjunction in the evident way.

Obviously we can repeat this process to fix any number of variables to restrict
an multivariable adjunction to one in a smaller number of variables. Note that
apart from being a crucial component of the eventual multicategory structure,
this fact is also used in the proof of the multivariable mates correspondence
(Theorem 2.16).

Proposition 2.9. An n-variable left adjunction of functors Fy, ..., F, is equiv-
alently an n-variable right adjunction of Fy§,... Fx.

2.2 A motivating example

We begin by presenting the standard example of a 2-variable adjunction that
we have generalised, the “tensor/hom/cotensor” adjunction. The only slightly
tricky thing is taking care of the dualities.
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Let V be a monoidal category, so we have a functor
®_VXV—YV.
Then V is biclosed if
Vb € V the functor _ ® b has a right adjoint [b,_] (“hom”), and
Va € V the functor ¢ ® _ has a right adjoint a M _ (“cotensor”).
The first adjunction gives us isomorphisms
V(a®b,c) 2 V(a, b, c])
natural in a and ¢; by parametrised representability the functor
b, ]:V—V

extends to a functor
[, ]: V" xV—7V

uniquely making the isomorphisms natural in b as well.
Similarly for the second adjunction we get a functor

_h_ VP xV—V
making the isomorphism
V(a®b,c) =V(b,arhc)

natural in all three variables.
Note that usually in the non-enriched setting “hom” is called “right hom”
and “cotensor” is called “left hom”.

More generally for categories A, B, C a tensor/hom/cotensor adjunction con-
sists of functors and adjunctions

Ax B —=2=» C VacA a®_ A ah_
Bexc ==L 4 VoeB _®b 4 [b,_]
A*xC —=2=» B YVee C  [_,c]* 4 _Me

and by parametrised representability it follows that the following isomorphisms
are natural in all three variables:

A(a, [b,c]) 2 B(b,athc) =2 C(a®b,c).
For our standard framework with functors

Ay x Ay 2> Ae
Ag x Ag > A3

Ag x Ay 2 A3
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we can put

A = A° Frb=(_C®_)°
Ay = B*® =1,
Ag = C = h_

and Fy, Fy, Fy then form a 2-variable left adjunction (although _ M _ now has
domain C x A® instead of A® x C').

This 2-variable adjunction is is the starting point of the discussion in Sec-
tion 4.

2.3 Composition

Just as ordinary adjunctions can be composed (with care over directions) so can
n-variable adjunctions, with care over directions, dualities and arities. The only
difficulty in the following theorem is the notation. The idea is to compose n-
variable adjunctions in the manner of multimaps in a multicategory; indeed this
is what they will be in Section 3. In this section all multivariable adjunctions
are left adjunctions; of course the right adjunctions follow dually.

Theorem 2.10. Suppose we have the following multivariable left adjunctions.

Fig

A X oo X Ay, — A}y =B with ny-variable adjoints  Fii, ..., Fip,
F.
Aoy X -+ X Agp, = Ay = Bs with na-variable adjoints Foi, ..., Fop,
F
Ag1 X -+ X Agn,, 5 A3y = By with ny-variable adjoints  Fyi,..., Fip,
and
G
By X -+ X B —> B§ = A with k-variable adjoints  G1,...,Gp

Then the composite functor
Go(Flo,Fgo,...,Fko)I A11 X e X A1n1 X e X Akl X - X Aknk —>B5

is canonically equipped with (ny + - - - + ng)-variable adjoints. This composition
makes categories and multivarible adjunctions into a multicategory.

Proof. We write ny 4+ -+ + nx = m and call the above composite Hgy. We
must construct m-variable adjoints for Hg, so first we need m functors which
we call

Hyy,ooo Hip,
H217' . ,H2n2
Hia, ..o Hin,
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where H;; has target category Af; and its source is then determined cyclically.
As the notation is rather complex we will give one example with all variables
written down and then convert to a shorthand for convenience. We define Hy;
by
Hll(a12, e 7a1n1,. .. ,aknl,bo) =

Fii(az, ... a1n,, G1(Fao(as1, - .., a2n,), - - -, Fro(ak, - - -, Gk, )s bo))

where each a;; € A;; and by € By. We think this is clearer if we do not write
the variables explicitly, giving

Hyu=Fu(__ Gi(F,...,Fro,e)).

Here the long line indicates a string of variables and a dot indicates a single
variable. From the sources and targets of all the relevant functors it is unam-
biguous what the variables need to be, though somewhat tedious to write them
out. The remaining functors H;; can then be written like this:

Hiy = Fio(___ Gi(Fa,...,Fgoe),e)
ng = F13(7 ,Gl(Fgo,...,Fk070),070)
H14 = F14( 7G1(F20,...,Fko,.),.7.7.)
Hlnl = Flnl(Gl(FQOMHaFkO;.)a 7)
Hy = Fu(___ Ga(Fs,...,Fro, e, Fio))
Hyy = Fap(___ ,Gy(Fso,...,Fro, e, Fig),e)
Hys = Fos(__ ,Ga(Fso,...,Fro,®, Fig),e,0)
Hon, = Fouy(G2(Fio,..., Fro, 0, Fio), )
Hyn = Fu(__ ,Gi(e,Fi,..., Fi10))
Hine = Fin, (Gi(o, Fro,..., Fr10), )

It remains to exhibit the adjunctions required, which will take the form of the
following isomorphisms.

Aoo (Hoo (o) aoo) Av1(Hii(a11),a11)

A1 (H12 (a12), (112)

1

1%

Ak:nk (Hknk (dk:nk>7 aknk)
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The schematic diagram in Table 1 indicates which adjunctions of Fj;’s and G;’s
are involved with each of the adjunctions for the H;;’s. The vertical arrows
indicate individual adjunctions.

Table 1: Individual adjunctions forming composite multivariable adjunctions

Hoo | Go Fio Fa Fz - Fro
OB

Hy |Gy Fii Fy F -+ Fio

Hyz |Gy Fiz Fyy Fzg -+ Fio
0

Hy |Gy Fuu Fy Fs - Fio

Hin, | Gi Fin, Fao Fzo -+ Fio
Pl

Hyy |Gy Fi1i For Fzg -+ Fio
0

Hyy | Gy Finn Fyy F3 - Fio
0

Hys | Gy Finn  Fey F3 -+ Fio

Hop, | Go Fui Fon, Fzo -+ Fio
0 (R

Hsy |Gs Fii Foy Fii -+ Fio
0

Hsy | G Fin For Fz - Fio

Hkl Gk Fll F21 FSI Fkl
{

Hyp |Gy Fuu Foa Fzi -+ Fio

Hypn, | Gk Fi1 For Fzi -+ Fip,
0 0
Hy | Go Fio Fy Fzo -+ Fio
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This is much easier to construct formally using Theorem 2.2: we just need
to exhibit mutual left 7-variable adjoints for each of the m functors obtained
from Hyg by fixing all but one of the variables. Now fixing every variable except
a;; in the functor

Hiy = Go(Fio, - - Fro)

we construct a mutual left adjoint using
the mutual left adjoint for Fjy with all but the jth variable fixed, and
the mutual left adjoint for Gy with all but the ith variable fixed.

These compose to give the adjoint required. We can depict this schematically
as follows. We depict the latter as

by b, .-

| | |
A
I

so then composing this with the former looks like the diagram below, where
Fyp and Gy are the multifunctors pointing downwards, and the 1-variable left
adjoint is indicated as the dotted arrow pointing upwards.

(¢751 A5 Qin,

That is, starting from the functor

. [ ]
Fio: Ajt X -+ X Ay, —> Af
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we fix all but the jth variable and have a mutual left adjoint, that is right

adjoint for

(]
Fy(ait, ..., Qig—1y 5 Qi 41y -

which is

. °
Fij (ai,j+1, sy Qingy 5 Qils - ai,j—l)- Ao —> Aijw

Also consider

G(.)(bla-"7bi—laf7bi+1a'-~

with its right adjoint

[ ]
. ,aini): Aij —> AiO

,by): B — B

Gi(big1,-- oy br, b1, bi—1): By —> B = Ay.

Now we simply compose the functors

BO — AiO —> A;j

setting each

bq = qu(aql, ..

.,aqnq).

Using the previous shorthand this is the composite

Fij(__ ,Gi(Fit10,---,Fro, e Fio, ..., Fy),

Y

This completes the construction of composition. Identities are given by identity
adjunctions, which obviously satisfy unit conditions. Associativity follows from
associativity of composition of n-variable functors (with one another) and of

1-variable adjunctions (with one another).

Special cases

O

1. If any n; = 0 this amounts to fixing the ith variable of G. If all but 1 of
the n; is 0 then we have fixed every variable except one, and if we do this
for each n; in turn we have effectively characterised the composite multi-
variable adjunction by producing the necessary 1-variable adjunctions as

in Theorem 2.2.

2. If we compose with the identity adjunction (as a 1-ary adjunction) for all
but one of the i’s, we have effectively composed in just one position.

3. If we take every n; = 1 or k = 1 this says we can compose an n-variable
adjunction with 1-variable adjunctions (pre- or post-) to get a new n-
variable adjunction; this example is mentioned for composing 2-ary with

l-ary adjunctions in [24].
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2.4 Multivariable mates
We now give a multivariable version of the calculus of mates. As for the ad-
junctions, we start with the 2-variable case and proceed inductively.
Proposition 2.11. Suppose we have two 2-variable left adjunctions of functors
F:AxB—C* and F':A' xB —(C'*
G: Bx(C— A* G':B xC — A"
H:CxA— B*® H':C'x A —> B'°,
together with functors
S: A— A
T:B— B’
U.C—CC
and a natural transformation

SxT

Ax B

C.

with components
agp: F'(Sa, Tb) —> UF(a,b).

Then for each b € B we have a natural transformation

A—s
F(_, b)[ 7, lF’(, Tb)
c* o c'*
with mate
c—F—¢
G(b,)‘/ /ﬁ |G'(Tb,)
A* o A®.

Then in fact the components (@ ). are the components of a natural transfor-
mation

BxC—2% By

.

A® A'*.

S®
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Dually if we start with 2-variable right adjunctions then the result holds with
all the natural transformations pointing in the opposite direction as below.

AxB2I 4 v B
F| a/ lF’
Cr——— "

Proof. We just need to check that the components &, . = (@ ). are natural
in b; a priori they are natural in ¢. We use the fact that « is natural in b. As
with Theorem 2.2 the proof is possible by a 1-dimensional diagram chase, but
we provide a 2-categorical proof as it is quite aesthetically pleasing.

Now the natural transformation @ is given by the following composite

bx1

taking care over the direction as the target is in A’®. Again we use the fact that

. F . .
a morphism b; — by in B corresponds to a natural transformation

thus to check that the components

/BXC e
\\BXC/TXU)

are natural in b we show that for all by NN by
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b1><1
box1 —\ .
4
m %U) Q} TxU)

b2><1
‘We have
b1><1
c wanc ARyt SRRV

b2><1 1xTbS
S*xT*
A*xB*——— A"*xB'*
b2><1
I/a' F'® nTb2

T><U

b1><1

G A° S A

BxC

1><b;<><¢f>1><b§ 1xTbS
/Ebl A*x B°* S*xT* A/.XB/.
b2><1
lFo /a. F/- I/WITbZ
! / /_>' Ad
c U c Tbax1 B'xC G’ A

0\_/

T x U

b1><1

Bx(C—S% 5 ge 5 A

1xb} 1be;<fo>1be;
=
/ *xT* ° °
€by A*xB* =22 s A B’
b2><1
F- /a. F/al /’7’/1“172
/ 1 1 > A1®
c U C' o B xC'—5—~A

c\_/

T xU
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G . ge 5 A

1xbY 1XTb}

A B® SXT0 qre s pre

Z

’
Tby

b2><1

L] ’e
F Lot F Tbyx1

™
C - Cl UTleBI X C/TA/Q

=

T xU

S®

Remark 2.12. Note that in the definition of the mate of a we could start
by fixing the first variable instead of the second variable and then follow the
analogous process to produce a natural transformation & as below:

C’xAU—XS>C’><A’

|

B* B’*.

T

Note that & = o = & by the usual mates correspondence; the following result
deals with a less trivial combination of these processes. This can be thought of
as the 2-variable version of the mates correspondence.

Proposition 2.13. Given 2-variable adjunctions and a natural transformation
o as above, & = Q.

The proof of this result is analogous to the 1-variable case, which follows
from the triangle identities for the adjunctions in question. Therefore we start
by making explicit the 2-variable version of the triangle identities, which must
now involve three instances of units/counits.
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Lemma 2.14 (Generalised triangle identity). For a 2-variable adjunction,
the following triangles commute, along with all cyclic variants.

(¢, G(b,¢))
G(b, F(a,b)) ) )
Proof. This follows from the “cycle of isomorphisms” as in Example 2.6. 0O

In the following proof we adopt notational shorthand as below, for simplifi-
cation, clarity and to save space.

1. All objects have been omitted. The source categories can always be deter-
mined from the functors shown, and whenever a variable in A is required,
it is understood to be a; likewise for ¢ € C'. For example:

TH means TH(c,a), and
G(H,1) means G(H(c,a),c)).
2. As in Remark 1.4 we write all units and counits for all adjunctions as

€; the source and target functors uniquely determine which adjunction is
being used, and the object at which the component is being taken.

For example, the above two triangles become:

H(1,G) ————1
H(F,G(1,F)) H(F(G,1),QG).
Proof of Proposition 2.13. It suffices to show that these two natural

transformations have the same component at (¢,a) € C'x A. This is shown in the
following (large) commutative diagram in which the top edge is the component
O¢,q and the bottom edge ¢ 4.

Regions (3) and (4) are naturality squares, (5) and (6) are functorality of H’,
(2) and (7) are generalised triangle identities and (1) commutes by extranatu-
rality of € as follows. The counit € in question has components

H'(e,G'(b,c)) —> b

and is natural in b but extranatural in ¢. Region (1) is obtained by writing out
the extranaturality condition for the morphism

F'(S,TH) > UF(1,H) % U.
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(48

H'(U,G(TH,UF(G(H,1),H)))

H'(1,G'(1,a))
/ H'(1,G'(1,U¢))

H'(U,G'(TH,F'(SG(H,1),TH)))

% | @ H'(U,G'(TH,U))
H'(1,G'(1,UF(,1)))

H'(U,SG(H, 1)) ®
H'(1,G'(1,Ug))
H'(1,G'(1, F'(Se, 1)) €
H'(1,52) H'(U,G'(TH,UF(1, H)))
@
H'(1,G'(1,a))
H'(U, 8) —— o H'(U,G'(TH, F'(S,TH))) @ TH
H'(Ue, 1)
H'(UF(1,H),G'(TH, F'(S,TH)))
H'(a,1)
® H'(F'(S,TH),G(TH, F'(S,TH)))
H'(Ue, 1)
H'(1,¢)
©
H'(1,¢)
O

H'(UF(1,H),S)

T H'(F'(S,TH), S)



Now by allowing B to be a finite product of categories, we get a notion of
n-variable mates with respect to an n-variable adjunction.

Theorem 2.15. Suppose we have functors

F()IAlX"'XAnéAB,

Fli Ay x - x Al —> A}®

equipped with n-variable left adjoints, and for all 0 < i <n a functor

Then a natural transformation
Al x - x A, 1 X X Sn Al xox AL
Fol /(71 |F(§
A 5 AL®

has for all 1 <1i <n a mate

Sig1 X - xS

Ajpr X oo X Ay

F,[ /Ll jF;

A? 5 AL®
giwen as in Proposition 2.11 with
A = A
B = A;j x---xAi_1 X A1 X XAy,
C = Ao

We now give the n-variable version of the mates correspondence, which fol-
lows from the 2-variable case (Proposition 2.13). First we need to fix our nota-
tion carefully.

Notation for n-variable mates.
Suppose we have functors
F()Z Al Xoee XAn—>A6,

Fio Ay xo-ox Al — AL®

equipped with n-variable left adjoints, and for all 0 < i < n a functor

S,’I Az —>A;
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Then for any 0 < ¢ < n, given a natural transformation a as below
Siy1 X - X Si—1

/ /
Ai+1><"'><Ai—1 Ai—&-lx"'XAi—l

F; l /a JF{

Al Al

S7
and any j # ¢ we denote by «;; the mate
Sj+1 X oo X Sj71

Aj+1 X X Aj—l

F][ /(17 JFJ/

A3 Aj ¢

!/ /
Aj g X x ALy

5

produced by Theorem 2.15. Note that in this notation, the mate called «; in
the theorem would be called ;.

Theorem 2.16 (The n-variable mates correspondence). Given a pair of
n-variable adjunctions, any distinct i,j,k and a natural transformation o as
above, we have

(cij)jk = Qi

Proof. Restricting to the functors Fj, F};, F, and fixing all variables except
those in A;, A;, Aj, we get a 2-variable adjunction. The result is then simply an
instance of Proposition 2.13 since it suffices to check it componentwise. ]

Corollary 2.17. Given a pair of n-variable adjunctions as above and a natural

transformation S x- xS
e n ! !/
Ay x - x A, Al x o x AL
Fo /Z] lF(;
. ;e
Ad 5o Ay
0
we have

(- (@01)12) -+ Jn—1,n)n0 = .

That s, taking mates n + 1 times is the identity.

Note that the n-variable mates correspondence respects horizontal and ver-
tical composition. For horizontal composition this follows immediately from the
analogous result for 1-variable mates. For vertical composition a little more
effort is required, but mainly just to make precise the meaning of “respects ver-
tical composition”. However this is only a matter of indices. The idea is not
hard: composition of multivariable adjunctions is defined by fixing variables and
composing the resulting 1-variable adjunctions, and the mates correspondence
follows likewise.

To put this result in a more precise framework we will show that we have
the structure of a cyclic double multicategory.
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3 Cyclic double multicategories

In this section we give the definition of “cyclic double multicategory”, the struc-
ture into which multivariable adjunctions and mates organise themselves. The
idea is to combine the notions of double category and cyclic multicategory so
that in our motivating example the cyclic action expresses the multivariable
mates correspondence.

Recall that a double category can be defined as a category object in Cat;
similarly a double multicategory is a category object in the category Mcat of
multicategories, and a cyclic double multicategory is a category object in the
category CMcat of “cyclic multicategories”. (Note that this could be called a
“double cyclic multicategory” but this might sound as if there are two cyclic
actions.)

We build up to the definition step by step, with some examples.

3.1 Plain multicategories

We begin by recalling the definition of plain (non-symmetric) multicategories.

Definition 3.1. Let T be the free monoid monad on Set. Write T-Span for
the bicategory in which

0-cells are sets,
1-cells A—e— B are T-spans b
N
TA B
2-cells are maps of T-spans.

Composition is by pullback using the multiplication for T: the composite

A—)e(—>B—}e/—>C

TX/\./\ Y
T2 A/ \TB/ \ C
P

TA

is given by the span

A multicategory A is a monad in T-Span, thus

a 0-cell A,
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a T-span Ay
RN

TAq Ag

equipped with unit and multiplication 2-cells. Explicitly, this gives

a set Ay of objects,

for all n > 0 and objects ai,...,an,a0 € Ag a set A(ay,...,an;a0) of
n-ary “multimaps” (in the case n = 0 the source is empty)

equipped with

composition: for all sets of k ordered strings a;1, ..., @im,, @i and agp in
Ay a function

A(aio, - - -, aro; a00) X A(ag;ai) X -+ x Aay; aro) —> A(ay, - - -, ax; aoo)
where we have written a; for the string a;1,. .., ain,, and
identities: for all a € Ay a function

12 A(a;a)

satisfying the usual associativity and unit axioms.

Note that we can define composition at the ith input by composing with
identities at every other input; this will be useful when giving the axioms for a
cyclic multicategory and we denote it o;.

Examples 3.2.

1. Multifunctors: take objects to be categories and k-ary multimaps to be
multifunctors, that is functors of the form

Ay X - X A —> Ap.

2. Multicategories from monoidal categories: given any monoidal category C'
there is a multicategory Mo with the same objects, and with

Mc(z1, ... zk;00) = C(21 @ -+ ® Tk, To).

3. Profunctors: we might try to use profunctors instead of functors in the
above example, but this would form some sort of “weak multicategory”
or “multi-bicategory” as profunctor composition is not strictly associative
and unital. However this is a pertinent case to consider. A profunctor

Ay X - X A, —— Ay
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is by definition a functor
Ap X - x A x Ay —> Set.
But this also gives rise to a profunctor
A; x Ay —— A?
for each ¢ # 0 where here A; denotes the product
Ap X c Al X Ay X s X Ag.

Strictness aside, this is the sort of cyclic action we will be considering. (In
fact, the cyclic action in this example is strict although the composition
is not.)

3.2 Cyclic multicategories

We now introduce the notion of a “cyclic action” on a multicategory. Symmetric
multicategories are multicategories with a symmetric group action that can
be thought of as permuting the source elements of a given multimap. Cyclic
multicategories have a cyclic group action that permutes the inputs and outputs
cyclically. There is also a “duality” that is invoked each time an object moves
between the input and output sides of a map under the cyclic action, as in the
example with profunctors sketched above.

Throughout, we work with C,, the cyclic group of order n considered as a
subgroup of the symmetric group S,, with canonical generator the cycle o,, =
(123---n). We will often write this as o with its order being understood from
the context.

Definition 3.3. A cyclic multicategory X is a multicategory equipped with

an involution on objects

XQ I XO

r > ¥
for every n > 1 and ordered string xg, x1, . .., T, an isomorphism
. . ~ *, %
0=0nt1: X(x1, ,xn;20) —> X(22,...,Tn, ;27

such that the following axioms are satisfied.
1. Each isomorphism o, is cyclic so that (o,)" = 1.

2. The identity is preserved by o9, that is, the following diagram commutes
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3. Interaction between ¢ and composition.

Let ¢; denote composition at the ith input only, that is
cit X(y1so - Ymivo) XX (@1, - @3 ys) = X (Y1, Y1, T15 -+ Ty Yik 15+ -+, Y Yo)

Then the following diagrams commute.

For i = 1, that is, for composition at the first input:

C1

X(y17-~-7ym;y0) XX(Q?l,...,l‘n;yl)%X(l'l,...,Z‘n,yg,...,ym;yo)
oXo
X(y27aymay>0kayr) X X($27axn7yf7w>1k) g

IR

X($2,~~~;xmyf§x>1k)XX(y27~~aym»y8;yT) cn X(xQ,~»~,1'n7y2,~»~,ym,y8;1’1<)~

Tfi#1
Cs
X(yla"'aym;yo) XX(xla--wl"n?yi)—>X(y17--~7yi—173317~--7$nayi+17~-~7ym590)
o x1 o

X(y27aym7y87yi‘) XX(-rla'--;xn;yi)TX(wa"ayiflamh-~-axn7yi+l7"'7ym7y>0k;yik)'

In algebra
(0f)on(0g) i=1
(cg)oic1 f  2<i<m.

U(goz‘f):{

We can depict the axioms (3) pictorially as follows. Depicting f € X (x1,...,zn;25)
as

Tr1 X2 e Tn
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we depict o f as

M

Then the first axiom is depicted as shown below.

Yo
X1 Lo ---
Y1 Y2
g
(;1 Y2 - Ym Yo
= T1 Ty - Ty Yi J
f

The second is a little is a little less satisfying to depict pictorially, but is shown
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below.

T1 X2 -+ Tn 1 T2 -+ Tpn Yo

MJ |

Note that these two axioms are equivalent to a single axiom involving the
cyclic action and composition at every variable.

Examples 3.4. First we give some slightly degenerate examples.

1. If X is a cyclic multicategory with only one object (so the involution must
be the identity) then we have a notion of non-symmetric cyclic operad as
given by Batanin and Berger in [1]. This is in contrast to the definition
of (symmetric) cyclic operad in [14].

2. More generally, the involution can be the identity even for a non-trivial
set of objects.

Example 3.5. We define a cyclic multicategory M Adj as follows. Take objects
to be categories, and a multimap

Al,...,An%AO

to be a functor -
Al Xoeee XAnéOAO

equipped with all n-variable left adjoints, F}, ..., F,,. The involution ()* is then
given by ()® and the cyclic action is given by

o: Fi'éFH_l

and the axioms are satisfied by construction. We could also do this with n-
variable right adjoints.

Note that M Adj can be expressed using profunctors. Recall our profunctor
example that was not quite a true example (Example 3.2.3) as profunctor com-
position is not strictly associative or unital; nevertheless it has a strict cyclic
action. In fact n-variable adjunctions can be thought of as n-variable profunc-
tors Fy such that Fyy and all its cyclic versions in Prof are representable, or,
more precisely, equipped with representations as follows.
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Proposition 3.6. Let P: Ay x--- X A, x Ag —> Set be a profunctor equipped

with a representation for each P(ay,...,0;i—1, _,Git1,--.,0n,a0). That is, given
Aig1ye ey Qi1
an object Fi(a;y1,...,ai—1) € A; and an isomorphism
P(ay,...,a0) 2 Aj(Fi(aiz1,-.-,ai-1),a;) (4)

natural in a;.
Then the F; canonically extend to functors
Ajpg X oo X A iA;
forming an n-variable (left) adjunction.
Proof. By standard results about parametrised representability, each F; ex-

tends to a functor ”
Ai+1 X X Ai—l —1>A:

unique making the isomorphism (4) above natural in all variables. For the
n-variable adjunction we then compose the isomorphisms
Aj(Fj(aj+1, ey aj_l),aj) i) P(al, ey ao) ; Ai(Fi(CLi_;,_l, ey ai_l), 0,1').

O

Remark 3.7. Note that composition of these profunctors matches composi-
tion of the corresponding multivariable adjunctions up to isomorphism; this
is as strict as we can expect as profunctor composition is only defined up to
isomorphism (by coends).

Remark 3.8. The idea is that we consider the functor
Cat — Prof

that is the identity on objects and on morphisms sends a functor

A-% B
to the profunctor

A—— B
given by

Ax B* —> Set
(a,b) > B(b,Ga).

With the usual composition in Prof this is only a pseudo-functor, giving us a
“sub-pseudo-multicategory” of Prof that is somehow “equivalent” to MAdj.
In order to get an honest multicategory we must specifiy data as above, giv-

ing us a strict multicategory biequivalent to the more natural arising pseudo-
multicategory.
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3.3 Cyclic double multicategories

We are now ready to introduce the 2-cells we need. Recall that a double category
can be defined very succinctly as a category object in the category of (small)
categories. We proceed analogously for the multi-versions.

Definition 3.9. A double multicategory is a category object in the category
Mcat of multicategories.

A cyclic double multicategory is a category object in the category CMcat
of cyclic multicategories.

Note that pullbacks in the category CMcat are defined in the obvious way,
so this definition makes sense. As with double categories, it is desirable to give
an elementary description. A cyclic double multicategory X has as underlying
data a diagram

==

in CMcat.
Recall that the underlying data for a multicategory A is in turn a diagram
in sets of the following form

d A
RN
T A, Ao

where T is the free monoid monad on Set. Thus for a category object in Mcat
we have a diagram of the following form in Set:

W
N

TAp

By
t

0

where the sets correspond to data as follows:

Ay = 0-cells

Ay = vertical (multi) 1-cells
By = horizontal (plain) 1-cells
By = 2-cells.
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Commuting conditions tell us that 2-cells might be depicted as:

T 51

Y1

A\ Y

Inside the structure of a (cyclic) double multicategory we have two categories
given by

0-cells, horizontal 1-cells and horizontal composition, and
vertical 1-cells, 2-cells and horizontal composition

and two (cyclic) multicategories with objects and multimaps given by
0-cells, vertical 1-cells and vertical multi-composition, and
horizontal 1-cells, 2-cells and vertical multi-composition.

Furthermore these must all be compatible, in the following sense. In addition
to the underlying diagram

S
- A
in CMcat we must have an identity map
I:A— B

and a composition map
v: BxyaB—B

and s, t, I,y must all be maps of cyclic multicategories, that is, they must respect
(co)domains, composition, involution and cyclic actions in passing from B to A.
Note that s/t give “horizontal source and target”, I gives “horizontal identities”
and v “horizontal composition”. Respecting (co)domains and composition is
analogous to the axioms for a double category, just with multimaps instead
of l-ary maps where appropriate; notably this gives us interchange between
horizontal and vertical composition.

Respecting involution and cyclic actions gives us the following information.

1. Horizontal source and target respect involution: we have an involution on
Ap (0-cells) and an involution on By (horizontal 1-cells), both written ( )*
under which .

rT—>y — AN Y.
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2. Horizontal identities respect involution: for any O-cell x € Ay we have a
horizontal 1-cell identity I,: © — = € By. This assignation must satisfy
the following equality of horizontal 1-cells:

3. Horizontal composition respects involution: given composable horizontal
1-cells in By
PRI y L5 2

we must have the following equality of horizontal 1-cells:
(9f) =g"f"

4. Horizontal source and target respect cyclic action: given a 2-cell o € By
we have the following equalities of vertical 1-cells

s(ca) =o(sa), and

5. Horizontal identities respect cyclic action: given a vertical 1-cell f € A;
we have a horizontal 2-cell identity Iy € B;. This assignation must satisfy
the following equality of 2-cells:

o(ly) = Ioy.

6. Horizontal composition respects cyclic action: given horizontally compos-
able 2-cells «, B € By we have the following equality of 2-cells:

o(Bxa)=0f*oa

where as usual we write horizontal composition of 2-cells as S * a.

3.4 Multivariable adjunctions

In this section we show how to organise multivariable adjunctions and mates
into a cyclic double multicategory. In fact, just as for the 1-variable case, there
are many choices of such a structure on this underlying data. The difference is
that now, because of the extra variables, there are also extra choices but many
of them are rather unnatural so there is more danger of confusion. The other
source of confusion is that the standard notation used in the 1-variable case does
not generalise very easily to express all the possible choices in the multivariable
case. We begin by giving the most obvious choices of structure.

Theorem 3.10. There is a cyclic double multicategory MIAdj extending the
cyclic multicategory MAdj of multivariable (left) adjunctions, given as follows.
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0-cells are categories.

Horizontal 1-cells are functors.

A vertical 1-cell Ay, ..., Ay N AQ is a functor F' equipped with n-variable
left adjoints.

2-cells are natural transformations

Sy X oo X Sy

A x - x A, By x---x B,

F[ /L G

AS 5t By*

(note direction). Here, despite the direction of the natural transformation,
the horizontal source of o as a 2-cell of MAdj is F' and the horizontal target
is G; the vertical source is Si,...,Sy, and the vertical target is Sg.

The cyclic action on 2-cells is given by the multivariable mates correspon-
dence.

Proof. It only remains to prove that the cyclic composition axioms hold for
2-cells; these are the axioms given in Definition 3.3, applied to the multicategory
whose objects are horizontal 1-cells and whose multimaps are 2-cells. We will use
the subscript notation for multivariable adjoints of a functor and corresponding
mates of a natural transformation, as in Theorem 2.16.

For the first axiom, it suffices to consider the following 2-cells.

Ax B—21 4w B

Fo l 7 ‘/Fo !

c* cr

U*

C.XDMC/.xC’

G0| 6/’ lco/

B B

we
This gives the general axiom by considering B and D to be products. Using
multicategorical notation, and our previous notation for multivariable mates,
we need to show
(B o1 a)or = ap1 02 Boi-

Now the component of (8 o1 «)g1 at (b,d, e) is obtained as follows:

1. fix b and d in the composite 3 o1 a,
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2. take the 1-variable mate,
3. evaluate at e.

Now step (1) is the same as fixing b in «, d in 5 and then composing the squares
vertically. So the axiom is an instance of 1-variable mates respecting vertical

composition.
For the second axiom it suffices to consider the following 2-cells.
A——
Fl o7 [F’
C. U. C,

D® D/’

This gives the general axiom by letting A and C be products.
We need to show
(B o2 a)o1 = Bo1 o1 .

Note that the a: on the right hand side is not a mate, as in the axiom given in

Definition 3.3.
The component of (505 «)g1 at (a,d) is obtained as follows:

1. fix a in the composite 3 o5
2. take the 1-variable mate, and
3. evaluate at d.

Step (1) is the same as taking the following horizontal composite:

B L B’ - B
ry 7,
Go(_, Fa) G} (_,UFa) Go(_, aa) Go(L, F'Sa)
D® o D/' n D/'

and the axiom then follows from the fact that 1-variable mates respect horizontal
composition, together with the fact that the mate of G{j(_, o) is G} (aq,_). To
show this last fact, we show that, more generally, for any morphism f: co —> ¢
the mate of Go(_, f) is G1(f,_) (omitting the primes as they are not relevant
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to this general result). This is seen from the following diagram, where the top
edge is the mate of Gp(_, f) and the bottom is G1(f,_).

G1(1,Go(1, f))

Gl (627 GU(Gl (Cl, b), Cl) G2 (CQ, Go(Gl(Cl, b), Cg))

Gi(1,e Gl(f71) €
(1,¢e) o ®
Gi(c1,b) G1(c1, Bo(Gi(c1,b),c1)) - Gi(c1,b)
Gi(f, 1) Gi(1,¢) @
G’l(cl,b)

Region (1) is functoriality of Gy, region (2) is extranaturality of &, and region
(3) is a triangle identity. O

Remark 3.11. The direction of the natural tranformation for 2-cells is crucial
so that the multivariable mates correspondence can be applied. There is a
cyclic double multicategory involving multivariable right adjunctions in which
the 2-cells must be given by natural transformations pointing down, as in

Sy X - X Sy
Al x - x A, —=2
F[ VA G

L]

AQ

By x---x B,

B.
S8 0

To be precise we write MI[Adj; for the multivariable left adjunctions and
MAdjp for the multivariable right adjunctions. We will need the latter con-
struction in the next section.

Theorem 3.12. There is an isomorphism of double multicategories
()*: MAdj; — MAdjp.
This isomorphism is analogous to the isomorphism of double categories
LAdj = LAdjg.
We now discuss isomorphisms analogous to the isomorphism of double categories
LAdj = RAdj.
Recall that these double categories have the same 0- and 1-cells, but the 2-

cells are natural transformations living in squares involving the left adjoints, for

47



LAdj, and the right adjoints, for RAdj. For the n-variable version we have
instead of left and right adjoints, a cycle of n+ 1 possible mutual adjoints. This
gives us many possible variants of the cyclic double multicategory M Adj.

For the multivariable case the situation is further complicated by the fact
that we have a choice of 2-cell convention for each arity n, and these can all
be chosen independently. These choices are the w, in the following theorem.
This theorem might seem unnatural and/or contrived to state; we include it
emphasise the fact that the LAdj = RAdj isomorphism is not the natural one
to generalise to multivariables.

Theorem 3.13. Suppose we have fixed for each n € N an integer w, with
0 < w, < n. Write this infinite sequence of natural numbers as w. Then
we have a cyclic double multicategory MAdj,, with the same 0- and I-cells as
MAdj (with multivariable left adjunctions, say) but where for each n an n-ary
2-cell is as shown below

Swp1 X o X Swp -1

AwnJrl X X Awnfl BwnJrl X X Bwnfl

T

A BL.,

Se

(note direction). We emphasise that the horizontal source is still Fy and the
horizontal target is Go; the vertical source is Sy, ..., S, and the vertical target
is Sg. If each wy, = 0 we get the original version of MAd].

Composition proceeds via the mates correspondence.

Then for all w there is an isomorphism of cyclic double multicategories

MAdj = MAdj,,
which is the multivariable generalisation of the double category isomorphism

LAdj = RAd,j.

4 Application to algebraic monoidal model cat-
egories

One aim of this work is to study an algebraic version of Hovey’s notion of
monoidal model category [12]. In such a model category we have hom and
tensor structures that must interact well with the given model structure. One
such interaction requirement is that the 2-variable adjunction for hom and tensor
should be a morphism of the underlying algebraic weak factorisation systems of
the model category. An important consequence of the defining axioms is that
the total derived functors of the 2-variable adjunction given by the tensor and
hom define a closed monoidal structure on the homotopy category of the model
category.
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A model category has, among other things, two weak factoristion systems. In
an algebraic model category [23] these are algebraic weak factorisation systems
[7]. In this case, elements in the left and right classes of the weak factorisation
systems specifying the model structure become coalgebras and algebras for the
comonads and monads of the algebraic weak factorisation systems. An algebraic
model category with a closed monoidal structure is a monoidal algebraic model
category [24] just when the tensor/hom/cotensor 2-variable adjunction is a “2-
variable adjunction of algebraic weak factorisation systems”. This notion makes
use of the definition of parametrised mates and motivates much of the present
work.

As in [23], we abbreviate “algebraic weak factorisation system” to “awfs”.
First we recall the definition of awfs and of a standard (1-variable) adjunction
of awfs. Throughout this section, given a category A we write A for the cate-
gory whose objects are morphisms of A, and whose morphisms are commuting
squares. That is, A is the category Cat( , A) where denotes the category
containing a single non-trivial arrow. We have domain and codomain projec-
tions dom,cod: A — A.

A functorial factorisation on a category A is given by a pair of functors
L,R: A — A with domL = dom, codR = cod, and codL = domR.
We call this last functor E, so we can write the factorisation of a morphism f

as below. ¥
aq———>)
LX‘ %f
Ef

An awfs on a category A is given by a functorial factorisation together with
extra structure making

L a comonad on A , and
R a monad on A | such that

the canonical map LR —> RL given by multiplication and comultiplica-
tion is a distributive law.

The idea is that the L-coalgebras are the left maps (equipped with structure
specifying their liftings) and the R-algebras are the right maps.

Definition 4.1. A adjunction of awfs

(L1, R1) —> (L2, R2)

on A1 on A2
consists of the following.

An adjunction



Natural transformations A and p making

1. (F ,)) into a colax comonad map Ly —> Lo, and

2. (G ,p) into a lax monad map Ry —> R;

where
A=(1,a), and

p=(a, 1)'

Here @ denotes the mate of o, about which some further comments are called
for. A priori the natural transformations A and p are as shown below

A s 4, A s 4,
F[ /) LF G[ A\ [G
A27A2 A2TA2

but it turns out that such A and p are completely determined by respective
natural transformations as below

El El

A1—>A1 A1—>A1
F[ V4 lF G[ AN ‘G
A2T2>A2 A2T2>A2.

It is these that are required to be mates a and & respectively, under the adjunc-
tions F 4G and F 4 G. (Note that () is actually the 2-functor Cat( ,_)
so preserves adjunctions.)

It turns out that the appropriate generalisation for the m-variable case in-
volves generalising the functor () as well, as follows.

Definition 4.2. Let F': Ay x --- x A,, —> A be an n-variable functor, and
assume that each category A; has appropriate colimits. We define a functor

F: A x---x A, —> A
as follows. Consider morphisms
fi
aip —> a1 € A;

for each 1 <4 < n. We need to define a morphism F(fl, .oy fn) in Ag. Consider
the commuting hypercube in A; X --- x A, built from f;’s as follows.

Vertices are given by (a1g,,-..,ank,) where each k; = 0 or 1 (thus, the
1th term is either the source or target of f;).

Edges are given by (1,...,1, f;;1,...,1) for some 1 <i < n.
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Each face of this hypercube clearly commutes.

We apply F' to this diagram and take the “obstruction” map induced by
the colimit over the diagram obtained by removing the terminal vertex (and all
morphisms involving it). We call this map F(fl, ..oy fn) In Agy; its domain is
the above colimit and its codomain is (a1, ..., an1).

The action on morphisms is then induced in the obvious way. In fact () is
a pseudo-functor so preserves adjunctions. Furthermore, a straightforward but

notationally involved proof shows that (A) preserves n-variable adjunctions, as
we first learned from Dominic Verity.

Remark 4.3. Given an awfs (L, R) on a category A, we get a dual awfs
(R*,L*) on A®. Note that

L is a comonad on A , so L*® is a monad on (A )°, and
R is a monad on A , so R® is a comonad on (4 )°.
Also, given awfs (L1, Ry) on Ay and (La, R2) on Az we get an awfs
(L1 x Lo, Ry X Ry)
on A; x As.

Definition 4.4. Suppose we have for each 0 < i < n a category A; equipped
with an awfs (L;, R;). Then an n-variable adjunction of awfs

Ay X x Ay —> A
is given by the following.

A functor Fp : Ay x---x A, —> A§ equipped with n-variable right adjoints
Fy,...,F,, and

For each 7 a natural transformation \; as shown below

Liy1 X ---xL; 1
A XX Ay Ajg XX Ay

| A )

(3 R: K3

making (F}, \;) into a colax comonad map

LZ‘+1X"'XLZ‘_1QR;.

As in the 1-variable case, such a A; is completely determined by a natural
transformation
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Eij1 x--- X E; 1
AH_lX"-XAi_l Ai+1x"'XAi—1

A — At

k3

and we require the o; to be parametrised mates.

Example 4.5. An algebraic, or perhaps constructive, encoding of the classical
result that the simplicial hom-space from a simplicial set A to a Kan complex
X is again a Kan complex is that the tensor-hom 2-variable adjunction is a
2-variable adjunction of awfs. This example is prototypical, so we explain it
further. The sets of maps

I={0A" — A" | n >0}

and
J={A} — A" |n>1,0<k<n}

generate two awfs (C, Fy) and (C;, F') on sSet by Garner’s algebraic small object
argument [3]. A simplicial set X is a Kan complex if the unique map X —> A°
satisfies the right lifting property with respect to J.

The sets I and J determine the cofibrations and fibrations in Quillen’s model
structure on sSet, which is a monoidal algebraic model category. The key
technical step in the proof of this fact is that the 2-variable morphism

sSet x sSet _—X_> sSet
(C,Ft) X (Ct,F) [ — (Ct,F)

induced from the cartesian product is part of a 2-variable adjunction of awfs.

The modern proof of the non-algebraic version of this result makes use of
the closure properties of left classes of weak factorisation systems and is non-
constructive; see [6]. This argument does not suffice to prove the algebraic state-
ment. However, the classical constructive proof does suffice: the proof given in
[21, Theorem 6.9] explicitly constructs the required lifts of Hom(4, X) —> A
against .J, supposing that similar lifts for X — A° are given. By the main result
of [24], this argument shows that the 2-variable right adjoint

(sSet )* x sSet Hom sSet

(F1,C) x (C, F) — (O}, F)

defines a 2-variable adjunction of awfs. By our main theorem (Theorem 3.10)
this is equivalent to the desired statement. See [24] for more details.

An important corollary of our main theorem in this context is the following
result.
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Theorem 4.6. Multivariable adjunctions of awfs compose to yield new multi-
variable adjunctions of awfs.

Proof. Multivariable colax comonad morphisms compose multicategorically.
Using the notation of Definition 4.4, the composite is obtained by composing
the F; and the ); in the obvious way.

Now, by the relationship between the \; and the «;, the composite of the
A; is determined by the multicategorical composite of the ;. So we check that
these composites satisfy the mate condition required by the definition. This
follows from Theorem 3.10. |

While only 2-variable adjunctions of awfs are required to make the definition
of a monoidal algebraic model category, the higher arity versions are useful in
the following way. Enriched categories, functors, adjunctions, and 2-variable
adjunctions over a closed symmetric monoidal category V can be encoded by an
a priori unenriched tensor/hom/cotensor 2-variable adjunction together with
coherence isomorphisms. These are isomorphisms between various composite
2-, 3- and 4-variable functors [25]. There are many equivalent ways to encode
this data having to do with choices of left and right adjoints. Our main result
allows a seamless translation between these equivalent formulations. Related
considerations arise in homotopy theory where these arguments may be used to
prove that the total derived functor of a V-functor between V-model categories
admits a canonical enrichment over the homotopy category of V.
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