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MULTIPLICITY BOUNDS FOR STEKLOV
EIGENVALUES ON RIEMANNIAN SURFACES

by Mikhail KARPUKHIN,
Gerasim KOKAREV & Iosif POLTEROVICH

Abstract. — We prove two explicit bounds for the multiplicities of Steklov
eigenvalues σk on compact surfaces with boundary. One of the bounds depends
only on the genus of a surface and the index k of an eigenvalue, while the other
depends as well on the number of boundary components. We also show that on
any given Riemannian surface with smooth boundary the multiplicities of Steklov
eigenvalues σk are uniformly bounded in k.
Résumé. — Nous démontrons deux bornes explicites pour les multiplicités

des valeurs propres de Steklov σk sur les surfaces compactes avec bord. Une de
ces bornes ne dépend que du genre de la surface et de l’indice k de la valeur
propre, tandis que l’autre dépend également du nombre de composantes connexes
du bord. Nous montrons aussi que pour toute surface riemannienne lisse donnée,
les multiplicités des valeurs propres de Steklov σk sont uniformément bornées en
k.

1. Introduction and main results

1.1. Multiplicity bounds for Laplace eigenvalues

Let M be a smooth closed surface. For a Riemannian metric g on M we
denote by

0 = λ0(g) < λ1(g) 6 . . . λk(g) 6 . . .

the eigenvalues of the Laplace operator −∆g. A classical result by Cheng
in [7] says that the multiplicities mk(g) of these eigenvalues are bounded
by quantities depending on the genus γ of M only. Cheng’s bound was

Keywords: Steklov problem, eigenvalue multiplicity, Riemannian surface.
Math. classification: 58J50, 35P15, 35J25.
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sharpened by Besson [5] for orientable surfaces, and by Nadirashvili [24] in
the general case, to the following estimate for multiplicities:

(1.1) mk(g) 6 2(2− χ) + 2k + 1, k = 1, 2 . . . ,

where χ is the Euler-Poincaré number of M . If M is homeomorphic to a
sphere or a projective plane, inequality (1.1) is sharp for k = 1.

The purpose of this paper is to prove multiplicity bounds for boundary
value problems on Riemannian surfaces. We are essentially concerned with
the Steklov eigenvalue problem, for which multiplicity bounds are known
only in the case of simply connected domains, see [2]. For the Dirichlet
and Neumann boundary value problems the multiplicity bounds are due
to [24, 20], where the authors also consider simply connected domains only.
At the end of the paper we discuss versions of these results for arbitrary
Riemannian surfaces with boundary, as well as for more general eigenvalue
problems.

1.2. Steklov eigenvalue problem

From now on let (M, g) be a smooth compact Riemannian surface with
a non-empty boundary. For a given bounded non-negative function ρ on
the boundary ∂M the Steklov eigenvalue problem is stated as:

(1.2) ∆gu = 0 in M, and ∂u

∂ν
= σρu on ∂M,

where ν is an outward unit normal. Denote by µ an absolutely continuous
measure on the boundary ∂M with the density ρ, that is dµ = ρdsg. The
real numbers σ for which a nonzero solution above exists are eigenvalues
of the Dirichlet form

∫
|∇u|2 dVolg in the space L2(M,µ). Its spectrum is

non-negative and discrete, see [3], and we denote by

0 = σ0(g, µ) < σ1(g, µ) 6 . . . σk(g, µ) 6 . . .

the corresponding eigenvalues. This eigenvalue problem was considered in
1902 by Steklov and since then has been studied extensively; we refer to [3]
and the recent papers [16, 12] for a comprehensive list of references on the
subject.

1.3. Main results

Our main result is the following theorem.
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Theorem 1.1. — Let (M, g) be a compact Riemannian surface with a
non-empty boundary, and µ be an absolutely continuous Radon measure
on ∂M whose density is bounded. Then the multiplicity mk(g, µ) of the
Steklov eigenvalue σk(g, µ) satisfies the inequalities

(1.3) mk(g, µ) 6 2(2− χ̄) + 2k + 1,

(1.4) mk(g, µ) 6 2(2− χ̄) + 2l + k,

for all k = 1, 2 . . . , where χ̄ = χ+l, and χ and l stand for the Euler-Poincaré
number and the number of boundary components of M respectively. Be-
sides, inequality (1.4) is strict for an even k.

Note that χ̄ depends on the genus γ of M only. More precisely, it equals
2 − 2γ for orientable surfaces and 2 − γ for non-orientable ones. Both in-
equalities above are similar to the Besson-Nadirashvili multiplicity bounds
on closed Riemannian surfaces. The right hand-side of (1.3) is the same
function of the genus of M as in (1.1). This bound does not depend on
any boundary data and, as we show in Section 6, holds for other boundary
value problems. The second inequality can be re-written in the form

mk(g, µ) 6 2(2− χ) + k.

It is specific to the Steklov problem, and for k > 2l is sharper than the first
one. The proofs of both inequalities are built on the ideas due to [24, 20]
and use the properties of nodal graphs. In comparison with other classical
boundary value problems, there is an additional difficulty related to the
fact that there is no known local model for the nodal set of a Steklov
eigenfunction at the boundary points. In particular, one has to show that
the nodal graph is finite, see Lemma 3.1.
The statement that inequality (1.4) is strict for an even k is a consequence

of our method, see Section 3. Under an additional topological hypothesis
on a surface M , it is strict for any k > 1.

Theorem 1.2. — Under the hypotheses of Theorem 1.1, suppose that
M is not homeomorphic to a disk. Then inequality (1.4) is strict for any
k > 1.

The proof of Theorem 1.2 is based on the careful analysis of the equality
case; it appears in Section 4. The key ingredient is an isotopy argument for
nodal graphs, similar to the one in [19, 20].

TOME 64 (2014), FASCICULE 6
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1.4. Discussion

For a disk, Alessandrini and Magnanini proved in [2] the bound mk(g, µ)
6 2k, which is sharp for the first eigenvalue. In comparison, our inequality
(1.4) shows that mk(g, µ) 6 k + 2 for an odd k and mk(g, µ) 6 k + 1 for
an even k.
We emphasise two cases when our results give sharp bounds, as follows

from the results in [12, 11].

Corollary 1.3. — Under the hypotheses of Theorem 1.1,
(i) if M is homeomorphic to an orientable surface of zero genus with

l > 2 boundary components, then the multiplicity of the first non-
zero Steklov eigenvalue is at most three;

(ii) if M is homeomorphic to a Möbius band, then the multiplicity of
the first non-zero Steklov eigenvalue is at most four.

For a Möbius band (χ = 0, l = 1) the inequality m1(g, µ) 6 4 follows
from Theorem 1.2. The equality is attained at a “critical” Möbius band
explicitly described in [11]. For an annulus (χ = 0, l = 2) the inequality
m1(g, µ) 6 3 follows from (1.3). The equality is attained at a “critical”
catenoid constructed in [12]. More generally, as was recently shown in [11],
on any orientable surface of zero genus with l > 2 boundary components,
there exists a metric admitting a minimal embedding to a 3-dimensional
unit ball by first Steklov eigenfunctions. In particular, the first non-zero
Steklov eigenvalue of such a metric has multiplicity three, and inequal-
ity (1.3) is also sharp on these surfaces.
In general, Theorems 1.1 and 1.2 do not give sharp multiplicity bounds.

It is an interesting question to understand whether mk(g, µ) is uniformly
bounded in all parameters; see Section 1.5. More specifically, one may ask
the following question, cf. [17, Question 1.8]:

Question 1.5. — Does there exist a sequence of surfaces (Mn, gn) with
boundary measures µn such that m1(gn, µn)→∞ as n→ +∞ ?

If such a sequence exists, by inequality (1.3) the corresponding genera γn
of Mn tend to infinity. Note also that the answer to an analogous question
for the multiplicity of the first Laplace eigenvalue is positive [6, 8].

Remark 1.4. — While the present paper was at the final stage of prepa-
ration, a different proof of inequality (1.3) for orientable surfaces (and, con-
sequently, of part (i) of Corollary 1.3) appeared in [11, 22]. The approaches
behind all the proofs go back to the ideas of Cheng and Besson. At the
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same time, our proof that the nodal graph is finite is different from the
one in [11]: it is based on a topological argument and uses only Courant’s
nodal domain theorem. Besides, it applies to general boundary measures
µ, see Lemma 3.1 and the discussion in Section 6. Note also that for non-
orientable surfaces, inequality (1.3) is sharper than the bound in [11, 22].

1.5. Asymptotic bounds for Steklov eigenvalues

Suppose that the boundary ∂M is smooth, and the weight function ρ

in (1.2) is smooth and strictly positive. Then the Steklov eigenvalues can
be viewed as the eigenvalues of a self-adjoint elliptic pseudo-differential op-
erator of the first order; it sends a function on ∂M to the normal derivative
of its harmonic extension multiplied by ρ−1. In particular, for ρ ≡ 1 this
pseudo-differential operator is precisely the Dirichlet-to-Neumann operator
on ∂Ω. Using Hörmander’s theorem on spectral asymptotics for pseudo-
differential operators [21], we obtain the following result.

Theorem 1.5. — Let (M, g) be a compact Riemannian surface with a
smooth boundary and µ be a measure on ∂M whose density ρ is smooth
and strictly positive. Then the multiplicitiesmk(g, µ) of Steklov eigenvalues
are uniformly bounded in k, i.e., there exists a constant Cg,µ, depending
on a metric g and a measure µ, such that

mk(g, µ) 6 Cg,µ for all k = 1, 2, . . . .

The version of this result for Laplace eigenvalues is well-known, see
[19]; in that case Weyl’s law with a sharp remainder estimate implies that
mk(g) = O(

√
k) as k → +∞.

When M is a disk, Theorem 1.5 can be strengthened to the following
statement.

Proposition 1.6. — Under the hypotheses of Theorem 1.5, suppose
that M is homeomorphic to a disk. Then there exists an integer Kg,µ > 0,
depending on a metric g and a measure µ, such that mk(g, µ) 6 2 for all
k > Kg,µ.

Note that the inequality above is sharp; it is attained on a Euclidean
disk. The proof of Proposition 1.6 uses the uniformisation theorem and the
sharp asymptotics for the Steklov eigenvalues of a Euclidean disk [25, 10] .

TOME 64 (2014), FASCICULE 6
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2. Preliminaries

2.1. Variational principle and Courant’s nodal domain theorem

We start with recalling a variational setting for the Steklov eigenvalue
problems. Given a Riemannian surface (M, g) and a measure µ on its
boundary, the Steklov eigenvalues can be defined by the min-max prin-
ciple

σk(g, µ) = inf
Λk+1

sup
u∈Λk+1

Rg(u, µ),

where the infimum is taken over all (k + 1)-dimensional subspaces Λk+1 ⊂
L2(M,µ) formed by C∞-smooth functions, the supremum is over all nonzero
u ∈ Λk+1, and Rg(u, µ) stands for the Rayleigh quotient

Rg(u, µ) =
(∫

M

|∇u|2 dVolg
)/(∫

M

u2dµ

)
.

Here we view µ as measure on M supported on the boundary ∂M . The
Steklov eigenfunctions can be then regarded as solutions of the equation∫

M

〈∇u,∇ϕ〉dVolg = σk(g, µ)
∫
M

uϕdµ

understood as an integral identity, where ϕ is a C∞-smooth test-function.
The equation above can be also viewed as a Schrödinger equation whose
potential is a measure supported on the boundary of M .

Let u be a Steklov eigenfunction. It is harmonic insideM , and, in partic-
ular, is C∞-smooth. ByN (u) we denote its nodal set, that is the set u−1(0).
Recall that a connected component of M\N (u) is called its nodal domain.
By maximum principle, it is straightforward to conclude that the closure of
each nodal domain has a non-trivial intersection with the boundary ∂M .
Further, by the strong maximum principle [14], any Steklov eigenfunction
has different signs on adjacent nodal domains. For the sequel we need a
version of Courant’s nodal domain theorem for Steklov eigenfunctions.

Courant’s nodal domain theorem. — Let (M, g) be a compact Rie-
mannian surface with boundary, and µ be an absolutely continuous Radon
measure on ∂M whose density is bounded. Then each Steklov eigenfunc-
tion u corresponding to the eigenvalue σk(g, µ) has at most (k + 1) nodal
domains.

The proof of this theorem uses the min-max principle and is similar to the
one for Laplace eigenfunctions. For the Steklov problem on planar domains
it can be found in [23], and the argument holds for arbitrary Riemannian
surfaces with boundary.

ANNALES DE L’INSTITUT FOURIER
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2.2. Local behaviour of harmonic functions; vanishing order

Let u be a harmonic function onM and x ∈M be an interior point. The
vanishing order of u at x is a non-negative integer, denoted by ordx(u), that
is the order of the first non-vanishing derivative of u at x. The following
statement is classical, see [4] and [18, Theorem 4.1], and holds for solutions
of rather general second order linear elliptic equations.

Proposition 2.1. — Let (M, g) be a compact Riemannian surface with
boundary, and u be a harmonic function on M . Then for any interior point
x0 ∈ M there exist its neighbourhood chart U and a non-trivial homoge-
neous harmonic polynomial Pn of degree n = ordx0(u) on the Euclidean
plane R2 such that

u(x) = Pn(x− x0) +O(|x− x0|n+1),

where x ∈ U .

In the proposition above we assume that the neighbourhood U is such
that the metric g|U is conformally Euclidean. In particular, the property
of being harmonic on U with respect to the metric g is equivalent to being
harmonic with respect to the Euclidean metric. Now for a given positive
integer ` consider the set

N `(u) = {x ∈M | ordx(u) > `}.

Using Proposition 2.1, in [7] Cheng shows that around a point x0 ∈ N (u)
the nodal set is diffeomorphic to the nodal set of the corresponding har-
monic polynomial Pn, which consists of n = ordx0(u) lines meeting at the
origin. In particular, the set N 2(u) consists of isolated points in the inte-
rior ofM , and the complement N 1(u)\N 2(u) is a collection of C∞-smooth
arcs. Thus, the nodal set N (u) can be viewed as a graph in the interior of
M whose vertices are points x ∈ N 2(u) and edges are connected compo-
nents of N 1(u)\N 2(u). In the sequel we refer to N (u) as the nodal graph,
meaning this graph structure.
It is not hard to construct harmonic functions on compact surfaces with

boundary whose nodal graphs are infinite. One way to ensure the finiteness
of the nodal graph of a harmonic function is to impose certain regularity on
its boundary behaviour, see [1]. For Steklov eigenfunctions, we adopt an ap-
proach based on Courant’s nodal domain theorem. The following statement
is a direct consequence of Lemma 3.1 in Section 3.

Proposition 2.2. — Let (M, g) be a compact Riemannian surface with
boundary, and µ be an absolutely continuous Radon measure on ∂M whose

TOME 64 (2014), FASCICULE 6
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density is bounded. Then the nodal graph N (u) of a non-trivial Steklov
eigenfunction u has a finite number of vertices and edges.

2.3. Graphs in surfaces: basic background

The purpose of this subsection is to introduce notation and collect a
number of auxiliary facts used throughout the rest of the paper. Let S be
a surface, possibly non-compact. Recall that a graph Γ ⊂ S is a collection
of points, called vertices, and embedded open intervals, called edges, such
that the boundary of each edge belongs to the set of vertices. In addition,
we assume that edges do not intersect and do not contain vertices. A graph
is called compact if it is compact as a subset; it is called finite, if it has a
finite number of vertices and edges. For example, for a non-trivial Steklov
eigenfunction u the nodal graph N (u), viewed as a subset in the interior
of M , is not compact, since it contains edges approaching the boundary.
Let Γ be a finite compact graph in S. For a vertex x ∈ Γ its degree

degΓ(x) is the number of edges incident to x; if there is an edge that starts
and ends at x, then it counts twice. The number of edges e of a finite
compact graph is given by the formula

(2.1) 2e =
∑

degΓ(x),

where the sum is taken over all vertices x ∈ Γ. Connected components of
S\Γ are called faces of Γ. The following inequality is a consequence of the
standard Euler formula for a cell complex, see [13, p. 207].

The Euler inequality. — Let Γ be a finite graph in a closed sur-
face S, and v, e, and f be the number of its vertices, edges, and faces
respectively. Then the following inequality holds:

(2.2) v − e+ f > χ,

where χ is the Euler-Poincaré number of S. Besides, the equality occurs if
and only if Γ is the 1-skeleton of a cell decomposition of S.

We end with recalling the terminology for paths in graphs, which is used
at the end of Section 3. By a path in a graph Γ we mean a continuous map
φ : [0, 1] → Γ such that φ(0) and φ(1) are vertices, and if the image of φ
intersects non-trivially with an edge, then it contains this edge. A path in
Γ is called simple, if it has no repeated vertices and edges. A closed path
in a finite graph is called the simple cycle, or circuit, if it has no repeated
vertices and edges except for φ(0) = φ(1). A tree is a connected graph that
has no circuits; its every two vertices can be joined by a simple path.

ANNALES DE L’INSTITUT FOURIER
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Finally, mention that a finite graph Γ in a closed surface whose vertices
have degree at least two always contains a circuit.

3. Proof of Theorem 1.1

3.1. Reduced nodal graph

Let M be a smooth Riemannian surface with a non-empty boundary
and M̄ be a closed surface of the same genus, viewed as the image of M
under collapsing its boundary components to points. By N̄ (u) we denote
the corresponding image of a nodal graph N (u); we call it the reduced
nodal graph. More precisely, its edges are the same nodal arcs, and there
are two types of vertices: vertices that correspond to the boundary com-
ponents that contain limit points of nodal lines, referred to as boundary
component vertices, and genuine vertices that correspond to the points in
N 2(u), referred to as interior vertices. It is straightforward to see that the
number of nodal domains of an eigenfunction u is precisely the number of
the connected components of M̄\N̄ (u). Throughout the paper we use the
notation χ̄ for the Euler-Poincaré number of M̄ . It coincides with the quan-
tity χ + l, used in Theorem 1.1, and is called the reduced Euler-Poincaré
number of M .
The following lemma is a basis for the proof of Theorem 1.1. It uses only

Courant’s nodal domain theorem, and holds for eigenfunctions of rather
general boundary value problems.

Lemma 3.1. — Let (M, g) be a compact Riemannian surface with bound-
ary, and µ be an absolutely continuous Radon measure on ∂M whose den-
sity is bounded. Then the reduced nodal graph N̄ (u) of a non-trivial Steklov
eigenfunction u is finite, i.e., it has a finite number of vertices and edges.

Proof. — Consider the reduced nodal graph N̄ (u) corresponding to a
non-trivial Steklov eigenfunction u. For a proof of the lemma it is sufficient
to rule out the occurrence of:

(i) boundary component vertices of infinite degree and
(ii) the infinite number of interior vertices

in N̄ (u). We are going to construct new graphs in M̄ by resolving interior
vertices of N̄ (u) in the following fashion. Let x ∈ N 2(u) be an interior
vertex; its degree equals 2n, where n = ordx(u). Let U be a small disk
centered at x that does not contain other vertices and such that nodal arcs

TOME 64 (2014), FASCICULE 6
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incident to x intersect ∂U at 2n points precisely; the existence of such a
disk follows from Proposition 2.1. We denote these intersection points by
yi, where i = 0, . . . , 2n− 1, and assume that they are ordered consequently
in the clockwise fashion. A new graph is obtained from N̄ (u) by changing
it inside U and removing possibly appeared edges without vertices. More
precisely, we remove the nodal set inside U and round-off the edges on
the boundary ∂U by non-intersecting arcs in U joining the points y2j and
y2j+1. If there was an edge that starts and ends at x, then such a procedure
may make it into a loop. If this occurs, then we remove this loop to obtain
a genuine graph in M̄ . It has one vertex less and at most as many faces as
the original graph.
Ruling out (i). Let us resolve each interior vertex in N̄ (u) in the way

described above. The result is a graph Γ in M̄ whose only vertices are
boundary component vertices in N̄ (u); we denote by v their number. Be-
sides, it has at most as many faces as the reduced nodal graph, that is by
Courant’s nodal domain theorem at most k + 1. Suppose that the reduced
nodal graph has a boundary component vertex of infinite degree; then so
does Γ. Let us remove all edges in Γ except for v + k + 2 − χ̄ of them to
obtain a new finite graph, and denote by f the number of its faces. Since
removing an edge does not increase the number of faces, we have f 6 k+1.
On the other hand, by the Euler inequality (2.2), we have

f > e− v + χ̄ = k + 2.

Thus, we arrive at a contradiction.
Ruling out (ii). Suppose the contrary; the situation described in (ii) oc-

curs. Let v be the number of boundary component vertices in N̄ (u). Let us
resolve all interior vertices except for v+ k+ 2− χ̄ of them. The result is a
finite graph Γ′. Denote by v′, e′, and f ′ the number of its vertices, edges,
and faces respectively; then we have

v′ 6 2v + k + 2− χ̄ and e′ > 2(v + k + 2− χ̄).

Here in the second inequality we used formula (2.1) and the fact that
the degree of each vertex x ∈ N 2(u) is at least 4. Combining these two
inequalities with the Euler inequality (2.2), we obtain

f ′ > e′ − v′ + χ̄ > k + 2.

Thus, we arrive at a contradiction with Courant’s nodal domain theorem.
�
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3.2. Multiplicity bounds: the first inequality

We start with a lemma that gives a lower bound for the number of nodal
domains via the vanishing order of points x ∈ N 2(u). For the Dirichlet
boundary problem on surfaces of zero genus it is proved in [20]. We give a
rather simple proof based on the use of the Euler inequality.

Lemma 3.2. — Let (M, g) be a compact Riemannian surface with bound-
ary, and µ be an absolutely continuous Radon measure on ∂M whose den-
sity is bounded. Then for any non-trivial Steklov eigenfunction u the num-
ber of its nodal domains is at least

∑
(ordx(u)− 1) + χ̄, where the sum is

taken over all points in N 2(u) and χ̄ is the reduced Euler-Poincaré number
of M .

Proof. — Let N̄ (u) be a reduced nodal graph in M̄ , and v, e, and f be
the number of its vertices, edges, and faces respectively; by r we denote
the number of boundary component vertices. Using formula (2.1), we get

e > r +
∑

ordx(u),

where the sum is taken over x ∈ N 2(u). Here we used the fact that the
degree of each boundary component vertex is at least two. Viewing v as
the sum r +

∑
1, where the sum symbol is again over x ∈ N 2(u), by the

Euler inequality we obtain

f > e− v + χ̄ >
∑

(ordx(u)− 1) + χ̄.

Since f is precisely the number of nodal domains, we are done. �

The following lemma is a version of the statement due to [24].

Lemma 3.3. — Let (M, g) be a compact Riemannian surface with bound-
ary, and u1, . . . , u2n be a collection of non-trivial linearly independent har-
monic functions on M . Then for a given interior point x ∈ M there exists
a non-trivial linear combination

∑
αiui whose vanishing order at the point

x is at least n.

Proof. — Let V be the span of u1, . . . , u2n, and Vi be its subspace formed
by harmonic functions u ∈ V whose vanishing order at x is at least i,
ordx(u) > i. Clearly, the subspaces Vi form a nested sequence, Vi+1 ⊂
Vi. The statement of the lemma says that Vn is non-trivial. Suppose the
contrary, that is Vn = {0}. Then the dimension of V satisfies the relation

dimV 6 1 +
n−1∑
i=1

dim(Vi/Vi+1).

TOME 64 (2014), FASCICULE 6
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By Proposition 2.1 the factor-space Vi/Vi+1 can be identified with a sub-
space of homogeneous harmonic polynomials of order i. In polar coordinates
on R2 such polynomials have the form

Pi(r cos θ, r sin θ) = ari cos(iθ) + bri sin(iθ);

in particular, they form a space of dimension two. Thus, we obtain

dimV 6 1 + 2(n− 1) = 2n− 1.

This is a contradiction with the hypotheses of the lemma. �

Now we prove the first inequality in Theorem 1.1:

mk(g, µ) 6 2(2− χ̄) + 2k + 1.

Suppose the contrary to its statement. Then there exists at least 2(2− χ̄)+
2k+ 2 linearly independent eigenfunctions corresponding to the eigenvalue
σk(g, µ). Pick an interior point x ∈ M . By Lemma 3.3 there exists a new
eigenfunction u whose vanishing order at the point x is at least 2−χ̄+k+1.
Combining this with Lemma 3.2, we conclude that the number of the nodal
domains of u is at least k + 2. Thus, we arrive at a contradiction with
Courant’s nodal domain theorem.

3.3. Multiplicity bounds: the second inequality

The proof of the second inequality is based on the following lower bound
for the number of nodal domains.

Lemma 3.4. — Let (M, g) be a compact Riemannian surface with bound-
ary, and µ be an absolutely continuous Radon measure on ∂M whose den-
sity is bounded. Then for any non-trivial Steklov eigenfunction u the num-
ber of its nodal domains is at least

max{2 ordx(u) + 2χ̄− 2l − 2 | x ∈ N 2(u)},

where χ̄ is the reduced Euler-Poincaré number of M and l is the number
of boundary components.

We proceed with the proof of the second inequality in Theorem 1.1:

mk(g, µ) 6 2(2− χ̄) + 2l + k.

Suppose the contrary. Then there exists at least 2(2−χ̄)+2l+k+1 linearly
independent eigenfunctions corresponding to the eigenvalue σk(g, µ). Pick
an interior point x ∈ M . By Lemma 3.3 there exists a new eigenfunction
u whose vanishing order at the point x is at least 2 − χ̄ + l + [(k + 1)/2],
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where [·] denotes the integer part. Using the estimate in Lemma 3.4, we
see that the number of the nodal domains of u is at least k + 2. Thus, we
arrive at a contradiction with Courant’s nodal domain theorem. The same
argument shows that this multiplicity bound is strict for an even k.

The rest of the section is concerned with the proof of Lemma 3.4. It
is based on the study of certain subgraphs in the nodal graph, which we
introduce now.

For a given vertex x ∈ N 2(u) we denote by Γ1 a subgraph of N (u)
that is the union of all circuits in the connected component of x and all
simple paths joining x and the vertices of these circuits. Further, let Γ2 be
a subgraph of N (u) formed by all simple paths in the nodal set starting
from x and approaching the boundary ∂M that do not intersect Γ1 except
for x. Clearly, the subgraph Γ2 does not contain any circuits, and hence, it
is a tree. Besides, any nodal edge incident to x belongs either to Γ1 or Γ2,
that is

(3.1) 2 ordx(u) = degΓ1(x) + degΓ2(x).

Finally, we denote by Γ the union of Γ1 and Γ2.
We proceed with the following lemma, which is specific to the Steklov

eigenvalue problem.

Lemma 3.5. — Let u be a non-trivial Steklov eigenfunction and x ∈
N 2(u) be a vertex in its nodal graph. Then the degree of x in Γ1 is at most
2l + 2− 2χ̄.

Proof. — Let v1, e1, and f1 be the number of vertices, edges, and faces
of Γ1 respectively. Since every vertex in Γ1, different from x, belongs either
to a circuit or the interior of a simple path, its degree in Γ1 is at least 2.
Thus, by formula (2.1) we have

(3.2) 2e1 > degΓ1(x) + 2(v1 − 1).

Recall that every nodal domain of u has a non-trivial arc on the boundary.
Each face of Γ1 contains the union of nodal domains, and therefore it
contains at least one boundary component of M . Since any two faces of Γ1
can not contain the same boundary component, we have f1 6 l. Viewing
Γ1 as a subgraph in the reduced nodal graph N̄ (u), we can apply the Euler
inequality to obtain

e1 6 v1 + f1 − χ̄ 6 v1 + l − χ̄.

Now the statement follows by the combination of this inequality with rela-
tion (3.2). �
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Proof of Lemma 3.4. — Let x ∈ N 2(u) be a vertex in the nodal graph.
Consider a subgraph Γ2 of the nodal graph, and let v2 and e2 be the number
of its vertices and edges respectively. We claim that the number of edges in
Γ2 that are not incident to x is greater or equal than the number of vertices
different from x:

(3.3) e2 − degΓ2(x) > v2 − 1.

Indeed, this follows from the fact that Γ2 is a tree, and that edges ap-
proaching the boundary have only one vertex.
Now consider the subgraph Γ, defined as the union of Γ1 and Γ2. We

use the notation v, e, and f for the number of its vertices, edges, and faces
respectively. Clearly, we have

e = e1 + e2, v = v1 + v2 − 1.

Combining these identities with relations (3.1)—(3.3), we obtain

e− v > 2 ordx(u)− 1
2 degΓ1(x)− 1.

Using the bound for the degree from Lemma 3.5, we arrive at the relation

e− v > 2 ordx(u) + χ̄− l − 2.

Finally, viewing Γ as a subgraph in the reduced nodal graph N̄ (u), we
combine the last relation with the Euler inequality to obtain

f > e− v + χ̄− l > 2 ordx(u) + 2χ̄− 2l − 2.

Since the number of faces f is not greater than the number of nodal do-
mains, we are done. �

4. Proof of Theorem 1.2

4.1. Structure of nodal graphs

The proof of the theorem is based on the analysis of the equality case
in (1.4). Throughout this section we assume that k is odd. Suppose the
contrary to the statement. Then there exists a metric g and a measure µ
on the surface M such that for some k > 1

mk(g, µ) = 2(2− χ̄) + 2l + k = 2n+ 1,

where n = 2−χ̄+l+(k−1)/2. Fix a point x ∈M . Then by Lemma 3.3, one
can find two linearly independent eigenfunctions u0 and u1 for σk(g, µ) such
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that ordx(ui) > n, i = 0, 1. The combination of Lemma 3.4 and Courant’s
nodal domain theorem yields

2n+ 2χ̄− 2l − 2 6 k + 1.

Using the formula for n, we conclude that the inequality above becomes an
equality and, in particular, ordx(ui) = n, where i = 0, 1. Since M is not
homeomorphic to a disk, we also have n > 2.

The following lemma says that the nodal graphs of the eigenfunctions ui
have a rather rigid structure. Below by the nodal loop we mean a nodal
arc in the interior of M that starts and ends at the same vertex.

Lemma 4.1. — Let (M, g) be a compact Riemannian surface with bound-
ary, and µ be an absolutely continuous Radon measure on ∂M whose den-
sity is bounded. Further, let u be a non-trivial Steklov eigenfunction for
the eigenvalue σk(g, µ) such that

2 ordx(u) + 2χ̄− 2l − 2 = k + 1

for some x ∈ N 2(u). Then the nodal graph N (u) does not contain any
vertices apart from x and has precisely l + 1− χ̄ loops. Besides, there are
no nodal arcs with both ends on the boundary.

Proof. — The relation in Lemma 4.1 implies that the inequalities in Lem-
mas 3.4 and 3.5 are equalities. Inspecting the proofs of these lemmas, we
see that the graphs Γ1 and Γ, defined in Section 3.3, have the following
properties:

(i) all vertices in the subgraph Γ1 different from x have degree 2 in Γ1;
(ii) each face of Γ1 contains precisely one boundary component;
(iii) the number of faces of the graph Γ equals the number of nodal

domains;
(iv) the faces of Γ viewed as subdomains in the reduced surface M̄ are

simply connected (this is a consequence of the equality in the Euler
inequality).

We claim that there are no vertices apart from x in Γ1. Suppose the con-
trary, and let y ∈ N 2(u) be such a vertex. Since its degree in the nodal
graph is at least 4, by property (i) there are nodal edges incident to y that
do not lie in Γ1. We may assume that these edges belong to a tree sub-
graph Γ0 in a connected component of x that does not intersect the graph
Γ1 except for the vertex y. It then also does not intersect the graph Γ2.
Now consider the subgraph Γ0 ∪ Γ. It is straightforward to see that the
difference between the number of edges and vertices for this subgraph is
strictly greater than the same quantity for Γ. Now applying the argument
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in the proof of Lemma 3.4 to the graph Γ0 ∪ Γ instead of Γ, we obtain a
strict inequality for the number of nodal domains in Lemma 3.4 and arrive
at a contradiction.
Combining the claim above with the equality in Lemma 3.5, we see that

the graph Γ1 consists precisely of the vertex x and l+ 1− χ̄ loops. In fact,
there are no vertices apart from x in the graph Γ = Γ1 ∪ Γ2. Indeed, the
contrary would give a strict inequality in (3.3) and in Lemma 3.4. Thus, we
conclude that the connected component of x in the nodal graph is precisely
the graph Γ, which consists of one vertex x, a number of nodal arcs joining
it with the boundary, and l + 1− χ̄ loops.

Now we show that there are no vertices in the whole nodal graph N (u).
Suppose the contrary: there is another vertex, which has to belong to a
different connected component of N (u). Then this connected component
viewed as a subset of M̄ has to lie in a face of Γ. Denote by Γ∗ ⊂ N̄ (u) the
image of this connected component in the reduced nodal graph. We claim
that Γ∗ contains a cycle. Then, since by property (iv) the faces of Γ in
the reduced surface are simply connected, we conclude that the number of
nodal domains is strictly greater than the number of faces of Γ, and arrive
at a contradiction with property (iii). The existence of a cycle in Γ∗ follows
from the existence of a subgraph whose every vertex has degree at least
two; such a subgraph then has to contain a cycle, see Section 2. Indeed, if
the connected component does not have edges approaching the boundary,
then it can be taken as such a subgraph. If otherwise, by property (ii) its
edges can approach only one boundary component; that is, the one that
lies in the same face of Γ. If the boundary component vertex has degree at
least two in Γ∗, then every vertex of Γ∗ has degree at least two, and we are
done. If it has degree one, then we remove the corresponding incident edge
and the boundary component vertex from Γ∗. The result is a non-trivial
subgraph of Γ∗ whose every vertex has degree at least two.
Finally, the statement that there are no nodal arcs with both ends on

the boundary is a direct consequence of property (ii). �

4.2. Isotopy of nodal graphs

Since M is not homeomorphic to a disk, we have l + 1 − χ̄ > 1, and by
Lemma 4.1 the nodal graph N (u0) has at least one loop. Besides, it also
has

2 ordx(u0)− 2(l + 1− χ̄) = k + 1 > 2
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nodal arcs incident to x and approaching the boundary. Now we explain
an isotopy argument, showing how the existence of at least one loop and at
least one arc in N (u0) leads to a contradiction. Following the idea in [19,
20], we construct an isotopy of the nodal graph N (u0) to itself that deforms
a nodal loop to a nodal arc. We start with the family of eigenfunctions

(4.1) ut = u0 cosnt+ u1 sinnt, where t ∈ [0, π].

It is straightforward to see that the family N (ut) defines an isotopy of
nodal graphs in the sense of [20]; that is, a family of graphs such that every
nodal arc deforms smoothly among embedded arcs in the interior of M ,
and vertices do not change their multiplicity. More precisely, all graphs
N (ut) have only one vertex at the same point x, and the number of nodal
domains of ut is maximal, that is equal to k + 1. The fact that the arcs
deform smoothly follows from the implicit function theorem. We claim that
under such an isotopy loops deform into loops. Indeed, by Lemma 4.1 the
number of loops in N (ut) is constant and is equal to l + 1− χ̄. The claim
follows from the fact that the property of a nodal arc to be a loop is open
in time t.
By Proposition 2.1 we can assume that the eigenfunctions u0 and u1 in

geodesic polar coordinates centered at x have the form

u0 = rn sinnϕ+O(rn+1);

u1 = rn cosnϕ+O(rn+1).

The deformation ut then takes the form

ut = rn sinn(ϕ+ t) +O(rn+1).

The nodal set of u0 around x is diffeomorphic to the union of 2n straight
rays meeting at the origin; they satisfy the equations ϕ = ϕj := (jπ)/n,
where j = 0, . . . , 2n− 1. Performing a rotation in polar coordinates (r, ϕ),
we may assume that the rays with the angles ϕ0 and ϕj for some j are
contained in a nodal loop and a nodal arc respectively. The nodal sets of
u0 and ut at t = ϕj coincide, and the deformation given by (4.1) with
t ∈ [0, ϕj ] is an isotopy of the nodal graph N (u0) to itself. This isotopy
transforms the ray ϕ0 to the ray ϕj . Thus, we see that a loop transforms
to an arc, and arrive at a contradiction.
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5. Asymptotic multiplicity bounds

5.1. Proof of Theorem 1.5

Consider a “weighted” Dirichlet-to-Neumann operator on ∂M that sends

C∞(∂M) 3 u 7−→ ρ−1 ∂û

∂ν
∈ C∞(∂M),

where û denotes the unique harmonic extension of u into M . When ρ is
smooth and positive, it defines a self-adjoint elliptic pseudo-differential op-
erator of the first order whose eigenvalues are precisely the Steklov eigen-
values, see [27, pp. 37-38] and [25]. Let N(λ) be its eigenvalue counting
function; it equals the number of eigenvalues counted with multiplicity that
is strictly less than a positive λ. By Hörmander’s theorem [21], see also [26],
the function N(λ) satisfies the following asymptotics (Weyl’s law):

(5.1) N(λ) = λ

2π

∫
∂M

ρ(s) dsg +R(λ),

where R(λ) is a bounded quantity in λ > 0. Using this formula, we obtain

mk(g, µ) = lim
ε→0

N(λk + ε)−N(λk)

= lim
ε→0

ε

2π

∫
∂M

ρ(s) dsg +R(λk + ε)−R(λk) 6 2 sup |R(λ)| .

Thus, the multiplicity mk(g, µ) is indeed bounded, and the theorem is
proved.
It is interesting to know up to what extent the bound onmk(g, µ) depends

on a metric and a boundary measure; in particular, whether there exists
a universal constant (possibly depending on the genus of M) for which
Theorem 1.5 holds.

5.2. Proof of Proposition 1.6

By the uniformisation theorem, we may assume that M is a unit disk
and the metric g on M is conformal to the Euclidean metric gEuc. Since
the Dirichlet energy is conformally invariant, by the variational principle we
see that the Steklov eigenvalues of (M, g) with a weight function ρ coincide
with the Steklov eigenvalues of (M, gEuc) with the a new weight function ρ0
that depends on ρ and the values of g on ∂M only. By the results in [25, 10]
the latter satisfy the following refinement of Weyl’s asymptotic formula:

(5.2) σ2k = 2π k∫
∂M

ρ0(s) ds
+ o(k−∞), σ2k+1 = 2π k∫

∂M
ρ0(s) ds

+ o(k−∞),
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as k → ∞. Thus, we conclude that for a large k the multiplicity of the
eigenvalue σk is two at most.
We end with two remarks. First, note that for a Euclidean disk all

non-zero eigenvalues have multiplicity two, and therefore, the statement
of Proposition 1.6 is sharp. Second, the hypotheses of Proposition 1.6 on
the smoothness of ∂M and ρ > 0 are essential for the asymptotic for-
mula (5.2) to hold. Even for domains with piecewise smooth boundaries
the asymptotic properties of the spectrum may be quite different. In par-
ticular, by a direct computation one can show that formulas (5.2) fail for
a square: for a large k the Steklov spectrum of a square is the union of
quadruples of eigenvalues, such that in each quadruple the eigenvalues are
o(k−∞)-close [15]. However, no counterexample to Proposition 1.6 is known
for simply-connected surfaces with non-smooth boundaries, and it would
be interesting to understand whether the result holds in this case as well.

6. Other boundary value problems

6.1. Eigenvalue problems
with homogeneous boundary conditions

The method used to prove the first inequality in Theorem 1.1 relies only
on Courant’s nodal domain theorem and the behaviour of eigenfunctions
in the interior of M ; it largely disregards their behaviour on the boundary.
The purpose of this section is to show that it applies to rather general
boundary value problems.
Let (M, g) be a compact Riemannian surface with boundary and L =

(−∆g) + V be a Schrödinger operator, where V is a smooth potential.
Denote by B a boundary differential operator of the form

(6.1) Bu = au+ b
∂u

∂v
,

where a and b are bounded functions on ∂M that do not vanish simulta-
neously. We consider the following eigenvalue problem

(6.2) Lu = λu in M, and Bu = 0 on ∂M.

It is often referred to as the Robin boundary value problem; the Dirichlet
and Neumann problems are its special cases. By

λ0 < λ1 6 . . . λk 6 . . .

we denote the corresponding eigenvalues, where λ0 is the bottom of the
spectrum.
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The following statement gives a bound for the eigenvalue multiplicities
of problem (6.2) that is independent of a Schrödinger operator L and, more
interestingly, of a boundary operator B.

Proposition 6.1. — Let M be a compact Riemannian surface with a
non-empty boundary. Then for any Schrödinger operator L and any Robin
boundary operator B given by (6.1) the multiplicity mk of an eigenvalue
λk corresponding to problem (6.2) satisfies the inequality

(6.3) mk 6 2(2− χ̄) + 2k + 1,

for all k = 1, 2, . . . , where χ̄ = χ + l, and χ and l stand for the Euler-
Poincaré number and the number of boundary components of M respec-
tively.

For the Dirichlet and Neumann eigenvalues on simply connected do-
mains, the estimate (6.3) is due to [24]. In this case, the bound is sharp for
k = 1. The method used in [24] does not extend to arbitrary Riemannian
surfaces with boundary.

6.2. Details of the proof

We explain how the arguments and results in Sections 2 and 3 could be
extended to prove Proposition 6.1. First, Proposition 2.1 holds for solutions
of second order elliptic differential equations with smooth coefficients. In
particular, it holds for eigenfunctions of problem (6.2). Thus, the nodal set
of an eigenfunction has a similar graph structure. These eigenfunctions also
enjoy Courant’s nodal domain theorem, see [9], and the arguments in Sec-
tion 3 show that their nodal graphs are finite. A version of Proposition 2.1
also implies that the statement of Lemma 3.3 holds for solutions of general
second order elliptic equations, cf. [24, Lemma 4]. The rest of the proof of
the first inequality in Theorem 1.1 carries over without changes.
Finally, let us mention that inequality (6.3) is also valid for eigenvalue

problems with mixed boundary conditions. In addition, one can also allow
non-smooth boundaries as long as the eigenvalue problem remains well-
posed and Courant’s nodal domain theorem holds.
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