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Abstract

A classical result by Cheng in 1976, improved later by Besawh Nadirashvili, says

that the multiplicities of the eigenvalues of the Schrodingperatof—Ag+ v), where

v is C*-smooth, on a compact Riemannian surfAteare bounded in terms of the
eigenvalue index and the genusMf We prove that these multiplicity bounds hold
for an LP-potentialv, wherep > 1. We also discuss similar multiplicity bounds for
Laplace eigenvalues on singular Riemannian surfaces.
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1. Introduction and statements of results

1.1. Multiplicity bounds

Let M be a connected compact surface. For a Riemannian ngetitd aC”-smooth
functionv on M we denote by

)\O(gv V) < /\1(97 V) <.. -/\k(ga V) <.

the eigenvalues of the Schrodinger operdtefA; + v). If M has a non-empty boundary,
we assume that the Dirichlet boundary condition is imposed.

The following theorem is an improved version of the statehogiginally discovered
by Chengl[9] in 1976. For closed orientable surfaces it istdugesson[[5], and for general
closed surfaces due to Nadirashvili [27]; multiplicity bals for general boundary value
problems have been obtainedlinl[21].

Theorem 1.1. Let (M, g) be a smooth compact surface, possibly with boundary. Then fo
any C°-smooth functiorw on M the multiplicity m(g, v) of an eigenvaludy(g, v) satisfies
the inequality

m(g,v) < 22— x —I)+2k+1, k=12,...,

where x stands for the Euler-Poincare number of M and | is the numdelbaundary
components.

Above we assume that= 0 for closed surfaces. Mention that even the fact that eigen-
value multiplicities on Riemannian surfaces are bounddxyyino means trivial, and as is
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known [10/11], fails in higher dimensions, unless some iigdtypotheses on a Rieman-
nian metric or a potential are imposed. The key ingrediettiénproof of Theorermn 111 is
the so-calledCheng’s structure theoreff®]: for any solutionu to the Schrodinger equa-
tion with a smooth potential and any interior pom& M there exists a neighbourhood of
p and its diffeomorphism onto a ball iR? centred at the origin that maps the nodal set
of u onto the nodal set of a homogeneous harmonic polynomiak Jtaiement is based
on a local approximation of solutions by harmonic homogesgmlynomials([3], and in
particular, implies that the nodal set of a solutiois locally homeomorphic to its tangent
cone. The latter property of nodal sets does not hold in ligimeensions, seé¢ [4]. The
structure theorem holds for sufficiently smooth solutianthie Schrodinger equation, see
Appendix4, and consequently, the multiplicity bounds inedhen L1l hold for Holder
continuous potentials. Based on Cheng’s structure theotteenmultiplicity bounds for
various eigenvalues problems have been extensively stinlithe literature. We refer to
the papers [11, 18, 19, 1] and references there for thelsletai

The purpose of this paper is to show that the multiplicity tsicontinue to hold for
rather weak potentials when no similar structure theoranmdalal sets is available. For a
given real numbed < (0,2) we consider the clag6?°(M), introduced in[[1.-32], formed
by absolutely integrable potentialssuch that

sup |x—y|’5 [v(y)|dVol(y) = 0 as r—0, 1.1)
XeM
B(x,r)

where the absolute valyg—y| above denotes the distance betwaemdy in the back-
ground metricg. It is a straightforward consequence of the Holder inequadtiat any
LP-integrable function withp > 1 belongs td<%? for some positived. However, unlike the
traditionalLP-hypothesis the potentials frok?? (M) include certain physically important
cases, seé|L, 32].

The hypothesis that € K22(M) implies that the measureg® = vEdVol, wherev*
andv~ are positive and negative partswfespectively, ar@-uniform:

uE(B(x,r)) <Cr,  forany r>0 andxeM,

and some consta@®. By the results of Maz'ja[25], see also |23], for such measyr*
the Sobolev spacell’z(M,VoIg) embeds compactly intby(M, u*). By standard pertur-
bation theoryl[2P], see alsb [25,132], we then conclude thespectrum of the Schrodinger
operator(—Ag + V) is discrete, bounded from below, and all eigenvalues haite fimulti-
plicities. Our main result says that they satisfy the samé&iptigity bounds.

Theorem 1.2. Let (M, g) be a smooth compact surface, possibly with boundary. Then
for any absolutely integrable potentialfrom K22(M), whered € (0,2), the multiplicity
mx(g, v) of an eigenvalud(g, v) satisfies the inequality

m(g,v) <22—x—1)+2k+1, k=1,2,...,

where x stands for the Euler-Poincare number of M and | is the nhumHtebaundary
components.

For the first eigenvalug; (g, v) the above multiplicity bound is sharp whishis home-
omorphic to a spherg? or a projective plan®P?. When a potentiab is smooth, there
is an extensive literature, see [11] 27] 31] and referenemettdevoted to sharper mul-
tiplicity bounds for the first eigenvalue. In addition, in8119] the authors show that



whenM is a sphere or a disk the multiplicity bounds in Theofen 11 loaimproved to
mk(g,v) < 2k— 1 for k > 2. We have made no effort in improving our results in these
directions. However, it is worth mentioning that the maipdtogical result in[[31] does
yield a sharper multiplicity bound fok1(g,v) for some closed surfaces when a potential
v belongs to the spadé?%(M). More precisely, ifM is a closed surface whose Euler-
Poincare number is negative < 0, then|[31, Theorem 5] implies that (g,v) < 5— x for

any potential € K%2(M). By the results in[11] this bound is sharp fB#T? and #+iRP?,
wheren = 3,4,5.

The multiplicity bounds in Theorem 1.1 also hold for eigdoegproblems on singular
Riemannian surfaces; we discuss them in detail in $éct. B prbof of Theorer 112 is
based on the delicate study of the nodal sets of Schrodiiggfeinctions that we describe
below.

1.2. Nodal sets of eigenfunctions

Letu be a solution to the eigenvalue problem
(=Ag+Vv)u=Au on M, (1.2)

wherev € K29(M), and ifdM # @, the Dirichlet boundary hypothesis is assumed. Recall
that by results in[32] such an eigenfunctieis Holder continuous. By#'(u) we denote
its nodal set, that is the sat'(0).
By the results in[16, 17] combined with the strong uniquettaration property [30,16],
in appropriate local coordinates around an interior prjre M a non-trivial solutioru has
the form
u(x) = Py(x—x0) + O(jx—xo[N*®),  where xeU,

whereRy is a homogeneous harmonic polynomial on the Euclidean pl&e refer to
Sect[2 for a precise statement. The degree of this apprdixigiaomogeneous harmonic
polynomial defines the so-callednishing ordeordy(u) for any interior poinx € M. Each
pointx € .4 (u) has vanishing order at least one, and we defiri&u) as the set of points
x whose vanishing order ogl) is at least two.

The proof of Theorem 112 is based on the following key result.

Theorem 1.3. Let (M,g) be a compact Riemannian surface, possibly with boundary,
and u be a non-trivial eigenfunction for the Schrodingeregigalue problen{l.2) with

v € K29(M), where § € (0,2). Then the set#?(u) is finite, and the complement
N (u)\.#?(u) has finitely many connected components. Moreover, for any&2(u)

the number of connected componentsfofu)\.#2(u) incident to x is an even integer that

is at least2 ord(u).

The theorem says that the nodal sét(u) can be viewed as a graph: the vertices are
points from.4"2(u), and the edges are connected components/dti)\.#?(u). This
graph structure assigns to each .4"%(u) its degree de@), that is, the number of edges
incident tox. If there is an edge that starts and ends at the same point,itticeunts
twice. The last statement of Theoréml1.3 says thabtdeg 2 ord,(u) for anyx € .472(u).
When the potentiab is smooth, Theorein 1.3 is a direct consequence of Chenglstste
theorem, and in this case, the degree(dpts precisely 2 org(u).

The proof of Theoremh 113 uses essentially Courant’s nodalaile theorem, and is
based on topological arguments, which are in turn built @résults in[[16, 17]. More
precisely, one of the key ingredients is the descriptionraghp ends of nodal domains,
which leads to a construction of neighbourhoods ef.#"(u) where a solution has also a



finite number of nodal domains. Our method uses the progetisolutions in the interior
of M only; it largely disregards their behaviour at the bound&@gnsequently, the main
results (Theorens 1.2 afd 11.3) hold for rather general baynehlue problems as long
as Courant’s nodal domain theorem holds,[cf] [21, Sect. b SKatement of Theordm 1.3
continues to hold for general solutions to the Schrodingaa&on(—A+V)u = 0 that have
a finite number of nodal domains. Without the latter hypoithfes arbitraryL P-potentials
it is unknown even whether the Hausdorff dimensionf(u) equals zero or not.

The paper is organised in the following way. In Sédt. 2 weemlthe background
material on the strong unique continuation property, regyl of nodal sets, and recall
the approximation results from_[[16,117]. Here we also deaveumber of consequences
of these results that describe qualitative properties afahsets; they are used often in
our sequel arguments. In the next section we recall the maticCaratheodory’s prime
end and show that prime ends of nodal domains have the singassible structure: their
impression always consists of a single point. In Sect. 4 veegiTheoremB112 and 1.3.
In the last section we discuss multiplicity bounds for eiggue problems on surfaces with
measures. We show that Laplace eigenvalue problems onlairigiemannian surfaces,
such as Alexandrov surfaces of bounded integral curvatae,be viewed as particular
instances of such problems. The paper also has an appendiewle give details on
Cheng’s structure theorem for reader’s convenience.

AcknowledgementSome of our arguments at the end of Sekct. 4 (the proof of LemB)a 4
are similar in the spirit to the ones in_[21], and | am grateéuMikhail Karpukhin and
losif Polterovich for a number of discussions on the relatgzics. | am also grateful to
Yuri Burago for a number of comments on Alexandrov surfaces.

2. Preliminaries

2.1. Background material

We start with collecting background material on solutiofishe Schrodinger equation,
which is used throughout the paper. From now on we assumeatpatentiaV belongs
to the spac&?%(M), whered < (0,1). The superscript 2 in the notation for this function
space refers to the dimension M Mention that the spack®(M) is contained in the
so-calledKato spacdormed by absolutely integrable functiovissuch that

sup In(1/|x—y])|v(y)|dVok(y) = 0 as r—0,
XEMB(x,r)
see([[32]. Consider the Schrodinger equation
(—Og+Vi)u=0 on M, (2.2)

understood in the distributional sense. As was mentioneglglby the results in [32] its
solutions are Holder continuous. They also enjoy the falhavetrong unique continuation
property.

Proposition 2.1. Let (M, g) be a smooth connected compact Riemannian surface, possibly

with boundary, and x€ M be an interior point. Let u be a non-trivial solution of the
Schrodinger equatiof@.1) with V € K29(M), where0 < & < 1, such that

u(x) = O(jx—xo|*) for any? > 0.

Then u vanishes identically on M.



Prop[Z.1 is a consequence of the resultsin [30], where th@aproves that a solution
u of the Schrodinger equation with the potentiairom the Kato spack?(M) satisfies the
unique continuation property: if vanishes on a non-empty open subset, then it vanishes
identically. As was pointed out in [17] 6], the argumenti@][actually yields the strong
unique continuation property.

The following fundamental statement is a combination of riregn result in[[16] to-
gether with Prod. 2]1.

Proposition 2.2. Let (M,g) be a smooth compact Riemannian surface, possibly with
boundary, and u be a non-trivial solution of the Schrodinguation (2.1) with

V € K?9(M), where0 < & < 1. Then for any interior point x€ M there exist its co-
ordinate chart U and a non-trivial homogeneous harmonig/poimial R, of degree N> 0

on the Euclidean plane such that

N+5/)

u(x) = P (X—Xo) + O(]x— X , where xeU,

forany0 < &' < &.

The proposition says that for any poit M there is a well-definegtanishing order
ord,(u) of a solutionu atx, understood as the degree of the harmonic polynoRgiaFor
a positive integef we define the set

A (u) = {x e IntM | ord(u) > ¢}.

Clearly, the nodal sety"(u) = u=1(0) is precisely the set#}(u). Recall that a connected
component oM\.#(u) is called thenodal domairof u. The combination of the Harnack
inequality in [1/32] and the unique continuation propentyplies that a non-trivial solution
u has different signs on adjacent nodal domains. Besidesy peintx € .4"(u) belongs to
the closure of at least two nodal domains.

Now suppose that is an eigenfunction, that is, a solution to eigenvalue pob[1.2).
The following version of a classical statement is used iruséq

Courant’s nodal domain theorem. Let (M, g) be a smooth compact Riemannian surface,
possibly with boundary, and € K°(M), where0 < & < 1. Then each non-trivial eigen-
function u corresponding to the eigenvalugg, v) of eigenvalue problerfl.2) has at most
(k+ 1) nodal domains.

The proof follows standard arguments, seel [12]. It usesatiarial characterisation
of eigenvalues\y(g,Vv), the unique continuation property, Prép.]2.1, and the oaitti
of eigenfunctions up to the boundary. The latter can be dediuor example, from the
interior regularity [32] by straightening the boundaryadlg and reflecting across it in an
appropriate way.

2.2. Qualitative properties of nodal sets

Let u be a solution of the Schrodinger equatibni2.1)u I§ C1-smooth, then the implicit
function theorem implies that the complement

A HW\A?(u) (2.2)

is a collection ofCt-smooth arcs. The following celebrated nodal set regyldnigorem
due to [17] says that the latter holds under rather weak gstoins on a potential, when a
solutionu is not necessaril¢*-smooth.



Proposition 2.3. Let u be a non-trivial solution of the Schrodinger equati@al) with

V € K2%(M), where0 < & < 1. Then any point x in the compleme@2) has a neigh-
bourhood Uc M such that the set¥*(u) NU is the graph of a &%-smooth function with
non-vanishing gradient. Further, if a potential V i€&-smooth, then such a point x has
a neighborhood U such that'1(u) NU is the graph of a €"3%-smooth function with
non-vanishing gradient.

Below by nodal edgesve call the connected components.gft(u)\.#?(u). By
Prop[Z.3 they are diffeomorphic to intervals of the reat)iand their ends belong to the
set.#2(u). We say that a nodal edgeiigidentto x € .4#2(u), if its closure containg. A
nodal edge is called theodal loop if it is incident to one poink € .4?(u) only. In other
words, such a nodal edge starts and ends at the samexpoint

The important consequence of Priop] 2.3 is the statementdlolai edges can not accu-
mulate to another nodal edge. We use this fact to describélal set structure around an
isolated poink € .#2(u).

Corollary 2.4. Let(M,g) be a smooth compact Riemannian surface, possibly with bound
ary, and u be a non-trivial solution of the Schrodinger egomiZ.T) with V € K2%(M),
where0 < § < 1. Let x€ .4"?(u) be an isolated point in4?(u). Then the number of nodal
edges incident to x that are not nodal loops is finite. Moreasgy sequence of nodal loops
incident to x has to contract to x.

Proof. LetB be a neighbourhood afwhose closure does not contain any pointsfiif (u).
We viewB as a unit ball irR? centered at the origin= 0. Suppose that there is an infinite
number of nodal edges incidentxdhat are not nodal loops. Denote bythe connected
components of the intersections of these nodal edges wéttball B whose closure§;
containx. By Prop.[2.8, eaclii; consist of a piece of &!-smooth nodal arc and the
originx. They form a sequence of compact subset, @nd hence, contain a subsequence
that converges to a compact subBgtC B in the Hausdorff distance. Clearly, the subset
o belongs to the nodal set”(u) and contains the origin = 0. Since the subsefs
contain points on the bounda#\B, then so doeBo; in particular, the limit subsdiy does
not coincide withx. Since the origirx is the only higher order nodal point B, then
Fo\{x} is the union of pieces dE!-smooth nodal edges. Without loss of generality, we
may assume that the sequefigeonverges to a subseg such thaf o\ {x} is a piece of a
nodal edge. Now to get a contradiction we may either appdiap[Z.3B directly, or argue
in the following fashion. Lek; € ['; N dB be a sequence of points that converges to a point
Xo € M'gN dB. We consider the two cases.
Case 1: the complemehp\ {x} belongs to a nodal edge that interse@B at x, transver-
sally. By Prop.[2.2, it is straightforward to see that the tangemt lio g at Xg is
precisely the kernel of an approximating linear functi®nat xo. Sincerl g intersects
0B at xp transversally, we conclude that the sequeRdg€x — Xo)/ |% — Xo|) is bounded
away from zero for all sufficiently large On the other hand, by Projp. 2.2 we obtain
Py(X — Xo) = O(|x; — Xo|**®), and arrive at a contradiction.
Case 2: the complemehp\{x} belongs to a nodal edge that is tangent® at . Then
there exists a sufficiently small bay centred atg such that g intersecte)Bg transver-
sally. Choosing a sequence of poirts ' N 9By that converges to a poimf € oM By,
and arguing in the fashion similar to the one in Case 1, wenagyaive at a contradiction.
Now we demonstrate the last statement of the lemma. Suppatthere is a sequence
of nodal loops incident ta that do not contract t&. Choosing a subsequence and a suf-
ficiently small neighbourhooB of x, we may assume that each nodal loop intersects with
JB. Then the argument above shows that this sequence has tdtée fin O



We proceed with another statement on local properties afitidal set near an isolated
pointx € .42(u).

Corollary 2.5. Let(M,g) be a smooth compact Riemannian surface, possibly with bound
ary, and u be a non-trivial solution of the Schrodinger egomiZ.T) with V € K2%(M),
where0 < & < 1. Let x€ .4"%(u) be an isolated point in#?(u). Then there exists a neig-
bourhood B of x, viewed as a ball in the Euclidean plane, shahthe zeroes of u o#B

are precisely the intersections of the connected compermgnt ™ (u)\.4?(u) incident to

X with dB.

Proof. First, sincex is isolated in.#"?(u), one can choose a neighbourhdduch that it
does not contain other points fram2(u). Thus, for a proof of the lemma it is sufficient
to show that the point is not a limit point of the nodal edges that are not incident.to
This can be demonstrated following an argument similar éoahe used in the proof of
Corollary(2.2. O

Let x € .4"?(u) be a point isolated in4?(u) such that the number of nodal edges
incident tox is finite. The number of these nodal edges, where nodal logpsaunted
twice, is a characteristic of a point called thedegreededgx). It is closely related to
the vanishing order ogdu). More precisely, if a solutiom is sufficiently smooth, then
by Cheng’s structure theorem| [9], it equals 2gtd. The following lemma describes its
relationship to org{u) under rather weak regularity assumptionsuon

Lemma2.6. Let(M,g) be a smooth compact Riemannian surface, possibly with lmynd
and u be a non-trivial solution of the Schrodinger equai@dl) with V € K22(M), where
0< 6 < 1. Letxe .#?(u) be an isolated point in4?(u) such that the degregegx) is
finite. Therdedx) is an even integer that is at lea®brd(u).

Proof. Denote byN the vanishing order ogdu), that is the degree of an approximating
homogeneous harmonic polynomRy(y — x), see Profd. 2]2. Choose a sufficiently small
neighbourhood of x such that it does not contain other points froff?(u) and does not
contain nodal loops. We identifg with a unit ball in the Euclidean plane such that the
pointx corresponds to the origin. By, C B we mean a neighbourhood that corresponds
to a ball of radius\, where O< A < 1. Consider the rescaled function

ur(y) =2 "Nu(A -y)

defined on the unit circl&= {y: |y| = 1}. Prop[2.2 implies that, (y) converges uni-
formly to the homogeneous harmonic polynonfaly) asA — 0, wheny ranges over
the unit circleS. As is known,Py(y) changes sign o precisely A times, and hence,
the corresponding zeroes are stable under the perturbattiBg(y). Thus, we conclude
that for all sufficiently smalk > O the zeroes afi, lie in small pair-wise non-intersecting
neighourhoodl); C S, wherei = 1,...,2N, of the zeroes of\(y), and eacltJ; contains at
least one zero afy . Choosing a sufficiently small > 0, by Corollaryi 2.5 we may assume
that the zeroes af, correspond to the intersections of nodal edges incidexwtith 0B, .
Further, the intersections of the nodal edges incidertith B, lie in the cones

C(A)={t-AU;:0<t <1}, where i=1,...,2N.

Since the coneG;(A) are pair-wise non-intersecting and each of them contailesat one
connected piece incident foof a nodal edge, we conclude that ¢eg's at least X.

Now we claim that each con@(A) contains an odd number of nodal edge pieces
incident tox, and hence, the degree degis an even integer. Indeed, the solutiohas



different signs on the connected componenB,dfUC;i (A ) adjacent to the same cone; they
coincide with the signs ofiy, and the approximating homogeneous harmonic polynomial
Py. Sinceu also has different signs on adjacent nodal domains, eachl mode piece
incident tox contributes to the change of sign, and the claim follows itraightforward
fashion. O

2.3. Properties of the vanishing order

The proof of Prop[_2]3 is based on the following improvemdrPmp.[2.2 due to[17],
which is important for our sequel considerations. Below waate byB a coordinate chart
viewed as a ball in the Euclidean plane, and3y the ball of twice smaller radius.

Proposition 2.7. Let (M,g) be a smooth compact Riemannian surface, possibly with
boundary, and u be a non-trivial solution of the Schrodingeuation (2.1) with

V € K29(M), where0 < & < 1. Let B be a coordinate chart in the interior of M viewed as a
ball in the Euclidean plane. Then for a sufficiently small Blamy? > 1 there exists a con-
stant C> 0 such that for any point ¥ .4 (u) N By, there exists a degreehomogeneous
harmonic polynomial Psuch that

“49  forany xe B,

|ux) — B/ (x—y)| < C(supiul) x|
and the polynomials Psatisfy| P (X)| < C.(sups |u|) for any|X] = 1, where the constants
C and G do not depend on a solution u.

Mention that the harmonic ponnomia@' above either vanish identically or coin-
cide with approximating harmonic polynomialsyafrom Prop[2.2. The main estimate
of Prop[2.Y is stated in[17, Theorem 1]. The bound for theesbf the harmonic polyno-
mials on the unit circle follows from the proof, and is expled explicitly on[17, p.1256].

We proceed with studying the vanishing order,guj as a function ok € M. The
following lemma is a straightforward consequence of Argp. @/e include a proof for the
completeness of exposition.

Lemma 2.8. Let (M,g) be a smooth compact Riemannian surface, possibly with bound
ary, and u be a non-trivial solution of the Schrodinger eqoa(Z.1) with V € K?9(M),
where0 < & < 1. Then the functioord(u) is upper semi-continuous in the interior of M,
that is, for any sequence gonverging to an interior point ¥ M one has the inequality
limsupord; (u) < ord(u).

Proof. For a proof of the lemma it is sufficient to show thakifoelong to.#(u), then
so does the limit point. Without loss of generality, we may assume that the poinlie

in a coordinate chai that is identified with a unit ball ifR? centered at the origirn= 0,
andx; — 0 asi — +oo. In addition, to simplify the notation, we assume that [sjijpn B
equals 1. LePli be a degreé homogeneous harmonic polynomial corresponding toom
Prop[2.7. Representingas the sum ofi— P, andP), we obtain

U] < Ju(x) =Py (x=xi)| + [P (x—xi)]

< C|X*Xi|[+5

+Cy [x— (" forany x € B,

where the second inequality for a sufficiently lardellows from Prop[2.J7. Passing to the
limitasi — 4o, we get

lux)| <C'|x"  forany xeB,

and conclude that the vanishing order at the origin is at leas O



Our last lemma says that the vanishing ordekrilis strictly upper semi-continuous
on.#2(u).

Lemma2.9. Let(M,g) be a smooth compact Riemannian surface, possibly with mynd
and u be a non-trivial solution of the Schrodinger equai@d)) with V € K%%(M), where
0 < 6 < 1. Then for any sequence & .4 2(u) converging to an interior point x M we
havelimsupord, (u) < ord(u).

Proof. As in the proof of Lemm&2]8, we assume that the paiptelong to a coordinate
chartB, viewed as a unit ball ifR? centered at the origir = 0, andx; — 0 asi — +co.
We also suppose that sjyp on B equals 1. First, by Lemnmia2.8 we conclude that the
upper limit limsuporg (u) is finite; we denote it bN. After a selection of a subsequence,
we may assume that the vanishing orderdrd equalsN for eachx;. By LemmdZ3B it
remains to show that the vanishing order,guj at the originx can not be equal tNl.
Suppose the contrary; the order wfat the origin equalN > 2. Let By be an ap-
proximating homogeneous harmonic polynomial fioat the origin. By Prog. 217, for a
sufficiently large index we have

[P = By (x =) | < Ju(x) = PN(3)] + [u(x) — By (x =) |
<CXNTO +x—x|N®)  forany xeB, (2.3)

whereP} is an approximating homogeneous harmonic polynomiat.atDenote byA;
the absolute valugx|, and byx; the pointA,~1x on the unit circle. Setting = AiX in
inequality [2.8) and using the homogeneity of the left haittk, we obtain

AN — PY(X—%)| < (1+2Y79)CA®  forany |X] = 1. (2.4)

Without loss of generality, we may assume that the sequencenverges to a pointy,
|%o| = 1. Settingx to be equal tog in inequality [2.4) and passing to the limit Bs> +oo,
we see thakg is a zero ofFy. Recall that the nodal set & consists ofn straight lines
passing through the origin; the vanishing order of the araggjualdN, and any other nodal
point, such asg, has vanishing order 1. On the other hand, by Hrop. 2.7 thepolials
P,i\l are uniformly bounded on the unit circle, and since in potaordinates they have the
form

airN cogNg) + birNsin(Ng),

we conclude that, after a selection of a subsequence, thexege either to zero or to a
harmonic homogeneous polynomR{ of degreeN. If the former case occurs, then after
passing to the limit in inequality (2.4), we see tiR(x) vanishes, and arrive at a contra-
diction. Now assume that the harmonic polynoma{]s:onverge to a non-trivial harmonic
polynomialP. Then the polynomial®) (X — %) converge uniformly tdPJ(X — Xo), and
passing to the limit in inequality{2.4), we conclude tRRtx) coincides identically with
PJ(X—Xo). Now, sinceN > 2, it is straightforward to arrive at a contradiction. Theypo
nomialPy(x) has precisely R zeroes ag ranges over the unit circle, while the polynomial
PJ(X— Xo) has at mosh + 1. O

Corollary 2.10. Let(M, g) be a smooth compact Riemannian surface, possibly with bound
ary, and u be a non-trivial solution of the Schrodinger egoiZ.T) with V € K2%(M),
where0 < & < 1. Then the set#?(u) is totally disconnected, that is its every non-empty
connected subset is a single point. Besides, the complemén}\.+?(u) is open and
dense in the nodal set.



Proof. Suppose the contrary to the first statement. Then theresexigin-empty connected
subseC C .#2(u) that is not a single point. Since any poink C is the limit of a non-
trivial sequence i€, by Lemm&Z.D we conclude th@tc .4 *(u) for any/ > 2. Hence,
the solutionu vanishes to an infinite order &, and by the strong unique continuation,
Prop[2.1, vanishes identically. This contradiction destiates the first statement.

By Lemmd 2.8 the set/%(u) is closed, and for a proof of the second statement of the
corollary it remains to show that the complemetii(u)\.#2(u) is dense. Suppose the con-
trary. Then for some poim € .4 (u) there exists a baB (p) such thaC = B¢(p) N4 (u)
is contained in#2(u). By Harnack inequality[[1,"32] no point in the nodal set can be
isolated, and we conclude that axy C is the limit of a non-trivial sequence i@. Now
we arrive at a contradiction in the fashion similar to the abeve. O

3. Prime ends of nodal domains

Now we study the nodal set”(u) from the point of view of the topology of nodal domains.
More precisely, we describe the structure of prime ends dithdomains. The notion
of prime end goes back to Caratheodary [7], who used it tordesthe behaviour of
conformal maps on the boundaries of simply connected danhater his theory has been
extended to general open subsets in manifglds [13]. Howevain applications seem to
be restricted to 2-dimensional problems, see [26]. We stilt recalling the necessary
definitions, following closely[[13].

Let Q C M be a connected open subset, where we Wewas the interior of a compact
Riemannian surface. For a subdom@irr Q by dD we mean the interior boundary, that is

dD=QNDN(Q\D).

Definition 3.1. A chainin Q is a sequencéD;},i =1,2,..., of open connected subsets of
Q such that:

e 0D; is connected and non-empty for eagchnd
e Di.1NQ C D; for eachi.

Two chains{D;} and{Dj} are callecequivalenif for a giveni there exist§ > i such that
D’J- C Dj andD; C Dj.

Definition 3.2. A chain inQ is called thetopological chainif there exists a poinp € M
such that:

¢ the diameter of pu dD;) tends to zero as— +, and
e the distance digp,dD;i) > O for each.

The pointp above is called therincipal pointof {D;}. A prime pointof Q is the equiva-
lence class of a topological chain.

Clearly, for a given topological chain the principal popk Q is unique. Mention also
that the above definitions do not depend on a metriMofhe set of all prime points @
is denoted b)f). It is made into a topological space by taking the tktformed by prime
points represented by chaifB; } such that eacB; lies in an open subset C Q, as a topo-
logical basis. There is a natural embeddingQ — Q, defined by sending a poirte Q to
the equivalence class of a sequence of concentric ballsreghatx whose diameters tend
to zero. As is shown ir [13, Sect. 2], the magmbed<) homeomorphically onto an open
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subsetinQ. A prime endof Q is a prime point which is not im(Q). A principal pointof
a prime end is any principal point of any representative kogioal chain.

Although a given topological chain has only one principainpoa prime end may
have many. The simplest example is given by considering aaffomhose boundary has
an oscillating behaviour similar to the graph of (diyix). The collection of all principal
points is a subset of thenpressionnD; of a prime end. The latter does not depend on a
representative topological chain, and is a compact cordestibset of the boundadf.
Mention also that a given pointe dQ can be a principal point of many different prime
ends. We refer td [13, 26] for examples and other details.

The following statement, proved in [[13, Sect. 6], shows fitahe ends give a useful
compactification (the so-callgdaratheodory compactificatigf open subdomains.

Proposition 3.1. Let (M,g) be a Riemannian surface, viewed as the interior of a com-
pact surface, and) C M be a connected open subset such that the first homology group
H;(Q, Q) is finite-dimensional. Then there is a homeomorphis@ ofito a compact sur-
face with boundary that maps the set of prime ends onto itadbany.

We proceed with studying properties of nodal sets. Thevatlg lemma says that all
prime ends of nodal domains have the simplest possibletstaicany of them has only
one principal point that coincides with its impression.

Lemma 3.2. Let (M, g) be a smooth compact Riemannian surface, possibly with bound
ary. Let u be a non-trivial solution to the Schrodinger eqoat2.1) with a potential

V € K2%(M), where0 < & < 1, andQ be its nodal domain. Then for any prime gig] of

Q its impressiomD; consists of a single point. In particular, any prime end hay/mne
principal point.

Proof. First, the statement holds for any prime end that has a pahpiointx in the com-
plement.# (u)\.#?(u). Indeed, then the point belongs to a nodal edge, which is the
image ofC!-smooth regular path, see PrgpJ2.3. By the implicit functizeorem we can
view a small nodal arc containingas a line segment iR2. Then it is straightforward
to see that any chain that hass a principal point is equivalent to a chain that consists
of concentric semi-disks centeredxatvhose diameters converge to zero. Its impression
consists of the point only.

Now suppose that a given prime end has a principal point42(u). Then we claim
that its impression does not have any points i’ (u)\.#2(u). Suppose the contrary.
Then, since the impressidnof a prime end is connected, we conclude thabntains
a non-trivial arcC that belongs to some nodal edge; thatGsis a connected subset of
A (u)\.4?(u) that is not a single point, and d{gtC) > 0. Let{D;} be a representative
topological chain whose principal point ¥ andE; be the sevD;\I, wheredD; is the
boundary ofD; viewed as a subset iM. First, it is straightforward to see that for any
y € C C | the distance digy, E;) converges to zero as— +. Indeed, for otherwise there
is a neighbourhoot of y in D; such thatJ C D; for anyi. More precisely, viewingC
aroundy as a straight segment R?, we may choos¥ to be diffeomorphic to a semi-disk
B¢ (y), assuming that di§y, Ej) > 2¢. Then we obtain the inclusion$ C | C 9Q, which
are impossible. Thus, we see that any pgiatC is the limit of a sequencg € E;. Indeed,
asy; one can take a point at which the distance(gli&; ) is attained. This implies that there
is a sequenc€; C E; of subsets that converges to a nodal@iia the Hausdorff distance.
Clearly, the set&;\ (dD; N Q) lie in the nodal set#"(u), and since the interior boundaries
dD;i N Q converge to the point, we conclude that for a sufficiently largehe subse€;
lies in the nodal set. Further, since the sét(u)\.#?(u) is open in the nodal set (see
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Lemma2.8), we see that eaChlies in .4 (u)\.#2(u). Thus, without loss of generality,
we may assume th&@; are arcs of nodal edges. Combining the latter with Prop. &.3,
following the argument in the proof of Corolldry 2.4, we seriat a contradiction.

Thus, the impressiohdoes not have points in the complemefit(u)\.#2(u), and is
contained in#2(u). By Corollary[2.10 the set/"?(u) is totally disconnected, and since
the impression is connected, it has to coincide with the paint O

Corollary 3.3. Under the hypotheses of Lemmal 3.2, the following staterheids

(i) any point xe 0Q is accessible, that is it can be joined with any interior gamQ
by a continuous patly : [0,1] — M such thaty(0) = x and the image/(0, 1] lies in
Q;

(i) for any point xe dQ and any sufficiently small neighbourhood U of x there are only
finitely many connected components U. Uy of QN U such that xc U; and the
unionuU; is a neighbourhood of x iR;

(iii) the boundarydQ is locally connected.

Proof. We derive the statements using the results_in [13], whicHyafgpopen domains
Q c M whose first homology groud; (Q, Q) is finite-dimensional. Mention that all state-
ments are local, and hold trivially for the boundary poirts .4 (u)\.#?(u). To prove
the corollary for the boundary pointsc .#?(u) we may assume, after cuttiry along
smooth simple closed paths, tHathas zero genus. Moreover, after cutting along paths
joining points from.#"(u)\.#"?(u) on different boundary components @f we may as-
sume thaf is simply connected, and the results[ini[13] apply.

In more detail, the first statement is a consequence of LEm#dIZE, Theorem 7.4],
and [13, Theorem 8.2]. The second statement follows fromrhaf8.2 and[[13, Theo-
rem 8.2], and the third from Lemma 8.2 and|[13, Theorem 8.3]. O

4. The proofs

4.1. Proof of Theorem 1.3

Let (M,g) be a compact Riemannian surface, aritk a solution to the Schrodinger equa-
tion (Z1) with a potential/ € K>9(M), where 0< & < 1. First, we intend to generalise
Theoreni_LB to certain subdoma@sc M.

Definition 4.1. A connected open subs@tc M is called theproper subdomainvith re-
spect to a solutiom if its boundary consists of finitely many connected compatsieand
the solutionu has finitely many nodal domains @, that is, the number of connected
component®\ .4 (u) is finite.

If uis an eigenfunction, then by Courant’'s nodal domain thedtensurfaceM itself
is a proper subdomain with respectuo However, for our method it is also important
to consider proper subdomains whose closures are contairntbeé interior ofM. The
hypothesis on the finite number of boundary components gtega that a domaif2 has
finite topology, and by Prof._3.1, is homeomorphic to therioteof a compact surface
with boundary. The second hypothesis in Definifion 4.1 mgwn important property of
eigenfunctions, and is essential for our sequel argumBelsw by. g (u) and. /g (u) we
denote the sets/”(u) N Q and.#*(u) N Q respectively.

Theorenl 1B is a consequence of the following more genesaltre
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Theorem 4.1. Let (M, g) be a compact Riemannian surface, possibly with boundagy, an
u be a non-trivial solution to the Schrodinger equat{@ml) with a potential Ve K2 (M),
where0 < § < 1. Then for any proper subdomaihC M with respect to u the set2(u) is
finite, and the complementg (u)\.#?(u) has finitely many connected components. More-
over, for any xe .42 (u) the number of connected componentsf#f(u)\.#2(u) incident

to x (if one connected component starts and ends at x, thewuitts twice) is an even
integer that is at leas? ord,(u).

The proof of Theorerfi 411 is based on the two lemmas below. Tétddimma shows
that proper neighbourhoods form a topological basis at anytg € Q. Its proof relies on
the topological consequences of our study of prime endsé¢n[Se

Lemma 4.1. Under the hypotheses of Theorem 4.1, for any poitxg(x) and any suf-
ficiently small ball B(x) centered at x there exists a proper subdomai(M)with respect
to u such that e Ug(X) C Bg(X).

Proof. Let x € .4 (u) be an interior nodal point i®, andQg,...,Qm be a collection of

all nodal domains whose closure contaiasBy Corollary[3.3 for any sufficiently small
open ballB¢(x) C Q there are only finitely many connected compon@\’tsj =1,....1,

of the intersectiorB, (x) N Q; whose closure contains Besides, the uniof; = U;Q/ is

a neighbourhood of in Q;. Thus, we conclude that the 3gf(x) = Int(UF) contains

x. Clearly, the connected components of the complerdef)\.4(u) are precisely the
domainsQiJ, and it remains to show thét (x) has finitely many boundary components.
Choosinge > 0 such that the metric baB(x) is homeomorphic to a ball iR?, it is
straightforward to see that any boundary componendgk) that lies inBg(x) bounds

a union of nodal domains. Since the number of nodal domaifisite, then choosing

€ > 0 even smaller we conclude tHag(x) is simply connected, and hence, its boundary is
connected. Thus, the neighbourhafdx) is indeed a proper subdomain with respect to a
solutionu. O

The second lemma says that if the séf2(u) consists of isolated points, then it is
necessarily finite, and the nodal set has the structure ofta §iraph with the vertex set
A (W)

Lemma 4.2. Under the hypotheses of Theorem 4.1, suppose that thﬂ/éen) consists
of isolated points. Then the set2(u) is finite, and the complementq (u)\.#2(u) has
finitely many connected components.

The proof of the last lemma appears at the end of the sectiow.\ie proceed with the
proof of Theoreni 4]1.

Proof of Theoreri 411By Lemmal4.D for a proof of the theorem it is sufficient to show
that the set#2(u) consists of isolated points @. The second statement of the theorem
is a direct consequence of Leminal2.6. First, we considerabe of proper subdomains
Q c M whose closures are contained in the interiokofQ C M. Given such a subdomain
Q, it is straightforward to see that tmeaximal vanishing ordef = max{ordi(u)}, where
x € Q, is finite. Indeed, for otherwise there exists a pgirg Q that is the limit of points
Xi € Q such that org(u) — + asi — +. Then, by LemmB2]8, the solutiorvanishes to
an infinite order ap, and the strong unigue continuation, Piiop] 2.1, impliesuhanishes
identically.

Let Q c M be a proper subdomain whose closure is contained in thedantdrM. We
prove that the setycZ(u) is finite by induction in the maximal vanishing orderClearly,
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the statement holds for all solutiomsand proper subdomair® such that the maximal
vanishing order equals 2. Indeed, in this case by Lefma %.%eh/i/gz(u) consists of
isolated points, and by Lemrha#.2, is finite. Now we perforninaiiction step. Suppose
that the set#2(u) is finite for all solutionsu to the Schrodinger equation (2.1) bhand
all proper subdomain@ , whose closure is contained in the interiolf such that

max{ord(u) : xe Q} < ¢—1.

Now letu be a solution oM andQ be a proper subdomain such that the maximal vanishing
order equalg,
max{ordi(u) : x € Q} = ¢.

By Lemmal 2. the setrg (u) consists of isolated points ®. Pick a pointp € 42 (u).
By Lemmd4.1 there is its neighbourhoddhat is a proper subdomain such that: Q.
Then the neighbourhodd may contain only finitely many pointps, py, ..., pm Whose
vanishing order equals Since the domailblg =U\{pa,..., pm} iS proper with respect to
u, then the induction hypothesis implies that the.gét(u) NUy is finite. Hence, so is the
set.#2(u)yNU. Thus, we conclude that/Z(u) consists of isolated points €, and by
Lemmd4.2, is finite.

The statement that the set(u) consists of isolated points i@ for an arbitrary
proper subdomai® C M follows directly from the case considered above togethén wi
Lemmd4.1. O

4.2. Proof of Theorein 1.2

Now we show how Theorein 1.3 implies the multiplicity boundge give an argument
following the strategy described in[21, Sect. 6]. It reliestwo lemmas that appear below.
The first lemma gives a lower bound for the number of nodal doshaa the vanishing
order of points € .4?(u).

Lemma 4.3. Under the hypotheses of Theorem 1.2, for any non-triviamfignction u of
an eigenvalug\ (g, v) the number of its nodal domains is at leggiordk(u) — 1) + x +1,
where the sum is taken over all points.ifi%(u) and x and | stand for the Euler-Poincare
number and the number of boundary components of M resphctive

Before giving a proof we introduce some notation that is uisef sequel. First, by
Theorenl 41l the nodal set’(u) of any eigenfunctiorn on M can be viewed as a finite
graph, callechodal graph Its vertices are points igi/z(u) and the edges are connected
components of# (u)\.#?(u). Below we denote b a closed surface, viewed as the im-
age ofM under collapsing its boundary components to points, ang by Euler-Poincare
number. Let#"(u) be the corresponding image of a nodal graptiu), called theeduced
nodal graph Its edges are the same nodal arcs, and there are two typegio€s: vertices
that correspond to the boundary components that contaihdmmts of nodal lines, called
boundary component vertigesnd genuine vertices that correspond to the point$#(u),
calledinterior vertices By facesof the graph#'(u) we mean the connected components
of the complement\.# (u). Clearly, they can be identified with the nodal domains of an
eigenfunctioru.

Proof of Lemmé&4l3Let .4 (u) be a reduced nodal graph M. By Theoreni4ll it is a
finite graph, and let, e, and f be the number of its vertices, edges, and faces respectively
We also denote by the number of boundary component vertices/in(u). Recall that

the number of edges satisfies the relatien=2y degx), where the sum is taken over all
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vertices. Since an eigenfunctiamas different signs on adjacent nodal domains, the degree
of each boundary component vertex is at least two, and wébta

e r+%2deg(x) > r+Zorq((u),

where the sum is taken over all interior vertioes .#(u). The second inequality above
follows from the relation de) > 2ordi(u), see Theore 4.1. Viewing the number of
verticesv as the summ + 5 1, where the sum symbol is again taken aver./2(u), by the
Euler inequality[[14, p. 207] we have

f>e-vi > Y (ord(u)~ 1)+ X,

wherex = x +| is the Euler-Poincare number M. Sincef is precisely the number of
nodal domains, we are done. O

We proceed with the second lemma. In the case when the palteht Schrodinger
equation is smooth it is due t0 [27], see also [21]. The prebés essentially on Prap.2.2.

Lemma 4.4. Let (M,g) be a compact Riemannian surface, possibly with bounday, an
up, ..., Uz, be a collection of non-trivial linearly independent sotuts to the Schrodinger
equation(Z.J) with a potential Ve K%%(M), where0 < & < 1. Then for a given interior
point xe M there exists a non-trivial linear combination=uy a;u; whose vanishing order
ordk(u) at the point x is at least n.

Proof. LetV be a linear space spanned by the functions. . ,uzn, andV; be its subspace
formed by solutionsi € V whose vanishing order atis at least, ordi(u) > i. Clearly, the
subspace¥; form a nested sequendg, ; C V;. The statement of the lemma says tais
non-trivial. Suppose the contrary: the subspéces trivial. Then, it is straightforward to
see that the dimension Wfsatisfies the inequality

n-1

dimV <1+ Zldim(vi/\/‘”);
1=

the equality occurs if the spatkdoes not coincide with;. By Prop[2.2 the factor-space
Vi /Vi; 1 can be identified with a subspace of homogeneous harmoryin@oials orR? of
degred. When the degreie> 1, the space of such polynomials has dimension two, and we
obtain

dmV <1+2(n-1)=2n-1.

Thus, we arrive at a contradiction with the hypotheses ofdhrama. O

Now we finish the proof of Theorem 1.2. Suppose the contraitststatement. Then
there exists atleas{2— x —I) + 2k+ 2 linearly independent eigenfunctions corresponding
to the eigenvaludy(u,g). Pick an interior poink € M. By Lemmd 4.} there exists a new
eigenfunctioru whose vanishing order at the poinis at least 2- x —1 +k+ 1. Now the
combination with LemmB413 implies that the number of thealddmains ol is at least
k+ 2. Thus, we arrive at a contradiction with Courant’s nodahdms theorem. O

4.3. Proof of Lemm@a 4.2

Since the set# 2(u) consists of isolated points, we can view the nodal.gétu) as a
graph: the vertices are points irlfgz(u), and the edges are connected components of
Aa(u)\AZ(u). Recall that thedegreedegx) of a vertexx € #Z(u) is defined as the
number of edges incident tq if one edge starts and endsxathen it counts twice. The
following lemma says that the degree of each vertex has talte.fi
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Lemma 4.5. Under the hypotheses of TheorEm 4.1, suppose that the/gét)) consists
of isolated points. Then the degrdegx) of any point xc .4 (u) is finite.

Proof. By Corollary[Z.4 it is sufficient to show that the number of abtbops that start
and end at a given poixte Jl/gzz(g) is finite. Suppose the contrary, that is the number of
such nodal loops is infinite. Le® be a compactification of2, obtained by adding one
point for each boundary component. By Priop] 3.1 it is homepimio to a closed surface,
and we denote by its Euler-Poincare number. L€&tbe a subgraph in the nodal graph
formed by one vertex andm- 2 — x nodal loops that start and endxatwherem is the
number of nodal domains ofin Q. Denote by = 1,e=m+ 2 — x, andf the number of
vertices, edges, and faceslofespectively. Here by the facesofwve mean the connected
components of2\I'. Clearly, they are unions of nodal domains, &g m. On the other
hand, viewind™ as a graph 2, by Euler’s inequality([14, p. 207], we obtain

f>e-v+x=m+1
This contradiction demonstrates the lemma. O

Now we prove the statement of Lemmal4.2: the ggt(u) is finite, and the complement
Ao (u)\.4?(u) has finitely many connected components. The argument belbased on
the results in Sedt] 2, and is close in the spirit to the ongIn $ect. 3].

Let Q be a closed surface obtained by collapsing boundary cormp®0éQ to points.

By .4 we denote theeduced nodal graplin Q, defined in the proof of Theorem 1.2.
Recall that its edges are the same nodal edges, and theveoarges of vertices: vertices
that correspond to the boundary componentQ ahat contain limit points of nodal lines,
called boundary component verticeand genuine vertices that correspond to the points
in 72 (u), calledinterior vertices For a proof of the lemma it is sufficient to show that
Aa(u) is a finite graph. Our strategy is to show that:

(i) each boundary component vertex has a finite degree and
(ii) the number of interior vertices is finite iQ.

We are going to construct new graph<rby resolving interior verticesn the following
fashion. Letx € .4Z(u) be an interior vertex. By Lemnia4.5 its degree is finite, and by
Lemmd2.6 itis an even integen2Let B be a small disk centeredathat does not contain
other vertices. By Corollafy 2.5 we may assume that nordamtitox nodal edges lie in the
complemenf)\B. Besides, since the degree is finite, we may also assumedtianedal
loop incident tox intersectw)B in at least two points. Consider the intersections of nodal
edges withB, and letl;, wherei =0,...,2n— 1, be their connected components incident
tox. Pick pointsy; € 'iNJB; one for each =0,...,2n— 1. By the resolution of a vertex

we mean a new graph obtained by removing sub-arcs betwardy; in each nodal edge
incident tox and rounding-off them by non-intersecting arcsijoining the pointsy,; and
yoj+1. If there was an edge that starts and ends titen such a procedure may make it into
a loop. We remove all such loops, if they occur. A new graphaioled by the resolution

of one vertex, has one vertex less and at most as many fades asginal graph.

Proof of (i). Suppose the contrary. Let us resolve all interior vertioeg/g (u) in the way
described above. The result is a grdphlvhose only vertices are boundary component
vertices in.#q(u); denote byv their number. Besides, it has at most as many faces as
Aa(u), that is not greater than the number of nodal domains. Simeetis a boundary
component vertex intg (u) whose degree is infinite, the same vertex has an infinite degre
in I". Let us remove all edges Inexcept for at least + m+ 1 — x of them, wheremis the
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number of nodal domains andis the Euler-Poincare number of The result is a finite
graph; it has precisely vertices, and we denote l®/and f the number of its edges and
faces respectively. By Euler’s inequality, we obtain

f>e-v+x=m+1

On the other hand, since removing an edge does not increasathber of faces, we have

f < m. Thus, we arrive at a contradiction.

Proof of (ii). Suppose the contrary, and iebe a number of boundary component vertices
in Aq(u). Let us resolve all interior vertices except for m+ 1 — x of them. The result

is a finite graph; we denote by, €, and f’ the number of its vertices, edges, and faces
respectively. Clearly, we have

VL<2v+m+1-) and €>2(v+m+1-Y),

where in the second inequality we used Lenima 2.6, sayinghbategree of each vertex
Xe </1/Qz(u) is at least 4. Combining these inequalities with the Eulegirality, we obtain

f'>d-V4+x>=m+1l

On the other hand, we hafé < m. Thus, we arrive at a contradiction. O

5. Eigenvalue problems on singular Riemannian surfaces

5.1. Eigenvalue problems on surfaces with measures

The purpose of this section is to discuss multiplicity bosind singular Riemannian sur-
faces. We start with recalling a useful general setting géevalue problems on surfaces
with measures, following [23].

Let (M, g) be a compact Riemannian surface, possibly with boundadydve a finite
absolutely continuous (with respectddol;) Radon measure dvl that satisfies thdecay
condition

u(B(x,r)) <Cr®,  forany r>O0andxeM, (5.1)

and some constan®andd > 0. Denote by.3(M, Voly) the space formed by distributions
whose derivatives are iop(M, Volg). Then by the results of Maz'ja [25], see al50][23], the
embedding

L2(M, p) NL3(M, Volg) C La(M, 1)

is compact, the Dirichlet fornf|Du|2dVol‘J is closable inLy(M, i), and its spectrum is
discrete. We denote by

0=20(9, 1) <AL(GH) < ... A(G, M) < ...

the corresponding eigenvalues, andry(g, 1) their multiplicities. As above, we always
suppose that the Dirichlet boundary hypothesis is impoiée¢ke boundary oM is non-
empty. The eigenfunctions corresponding to an eigenval(g 1) are distributional solu-
tions to the Schrodinger equation

— Agu = Ag(g, )uu on M. (5.2)

The latter fact ensures that the analysis in $éict. 2-4 sawvier to yield the following result.
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Theorem 5.1. Let (M, g) be a smooth compact Riemannian surface, possibly with bound
ary, endowed with a finite absolutely continuous Radon nregsuhat satisfies hypoth-
esis(5.d). Then the multiplicity (g, ) of a Laplace eigenvalu@y(g, i) satisfies the
inequality

me(g,u) <2(2—x—-1)+2k+1 forany k=1,2,...,

where x stands for the Euler-Poincare number of M and | is the numtebaundary
components.

Proof. First, we claim that the/decay hypothegis [5.1) on the megsumplies that its
density belongs to the spak&? (M) for some 0< & < &. Indeed, by Fubini's theorem
and the change of variable formula, we obtain

+oo +00
| =y dn= [ u{: kv s 0pdi= [ u@ee )
B(xr) e e
r r
= 6’/3*5/*1u(8(x,s))ds< Cé’/s‘s"s/’lds
0 0

Second, using a variational characterisation of eigee&li(g, 1), it is also straightfor-

ward to check that the standard proof of Courant’s nodal diesrtaeorem carries over for
eigenfunctions, which satisfy[(5.2). Hence, TheorémM.1 applies, and theratgument

in the proof of Theore 112 carries over directly to yield theltiplicity bounds. O

Note that, since the Dirichlet energy is conformally ineati if the measurg is the
volume measure of a metricconformal tog, then the quantitied (g, 1) are precisely the
Laplace eigenvalues of a mettic More generally, the eigenvalue problems on surfaces
with singular metrics can be also often viewed as particiatances of the setting of
eigenvalues on measures. Below we discuss this point of miemore detail.

Let (M,g) be a Riemannian surface, ahde a Riemannian metric of finite volume
defined on the sé¥l\S, whereSis a closed nowhere dense subset of zero measure. Here
the setS plays the role of a singular set bfon M. Denote byu the volume measure of
the metrich. In the literature, see e.d./[8], the Dirichlet spectrum sfregular metrich is
normally defined as the spectrum of the Dirichlet form

U / D2 dVok, (5.3)
M\S

defined on the spac€ C L(M, u) formed by smooth compactly supported functions in
M\S. Suppose that the s8thas zero Dirichlet capacity, the mettiags conformal orM\ S

to the metricg, and its volume measuye satisfies the decay hypothesis {5.1). Then, it is
straightforward to see that the spectrunhads discrete and coincides with the set of eigen-
valuesAk(g, 1) defined above. Moreover, the construction makes sensefevemgitrich is

not smooth orM\Sas long as the Dirichlet forni.(3.3) is well-defined. Theotef dives
multiplicity bounds for such eigenvalue problems. We enthwliscussing two examples:
metrics with conical singularities and, more generallyexdndrov surfaces of bounded
integral curvature.

5.2. Example I: metrics with conical singularities

Let M be a closed smooth surface, dmtle a metric orM with a number of conical sin-
gularities. Recall that a point € M is called theconical singularityof ordera > —1
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(or angle 21(a + 1)) if in an appropriate local complex coordinate the melribas the
form |2 p(z)|dZ?, wherep(z) > 0. In other words, neap the metric is conformal to
the Euclidean cone of total anglet@r + 1). As is known, such a metris is conformal
to a genuine Riemannian metigcon M away from the singularities. If a surfad® has
a non-empty boundary, we do not exclude an infinite humbeoofoal singularities ac-
cumulating to the boundary, and suppose that the volumeure¥sl, satisfies the decay
hypothesis[(5l1). For a surface with a finite number of cdrsiteyularities the hypothesis
on the volume measure is always satisfied. The Dirichlegnatevith respect to the metric
his defined as an improper integral; by the conformal invaréait satisfies the relation

Ou|2dVo :/. Oul2dVo
/. 1ouzavol = [ |ouiavol

for any smooth functiom. Thus, we conclude that the Laplace eigenvalues and théir mu
tiplicities of a metrich coincide with the quantitiedy(g, Vol,) and my(g, Vol,), defined
above, and Theorem 5.1 yields the multiplicity bounds. Neemthat if a metrich has only

a finite number of conical singularities, then the multipyidounds can be also obtained
from arguments in [21].

5.3. Example II: Alexandrov surfaces of bounded integralature

The most significant class of surfaces, illustrating ourapph, is formed by the so-called

Alexandrov surfaces of bounded integral curvature. Belaar@call this notion and give a

brief outline of its relevance to our setting; more detaild aeferences on the subject can
be found in the surveys [29, B3]. Eigenvalue problems on dtelxov surfaces of bounded
integral curvature are treated in detaillinl[24].

Definition. A metric spacgM,d), whereM is a compact smooth surface, is called the
Alexandrov surface of bounded integral curvatiire

(i) the topology induced by coincides with the original surface topology bh

(i) the metric spacéM,d) is ageodesic length spacthat is any two pointg andy € M
can be joined by a path whose lengthl{s, y);

(i) the metricd is aCP-limit of distances of smooth Riemannian metrigson M whose
integral curvatures are bounded, that is

sup/ |Kga| dVOl, < +00,
n Jm

whereKg, stands for the Gauss curvature of a megric

This is a large class of singular surfaces that containggXample, all polyhedral sur-
faces as well as surfaces with conical singularities anid lihets under the integral curva-
ture bound. The hypothesis (iii) implies that after a sétecof a subsequence the signed
measureKgy,dVol,, converge weakly to a measute on M. By the result of Alexan-
drov [2], the measurev is an intrinsic characteristic dM, g); it does not depend on an
approximating sequence of Riemannian metgigsand is called theurvature measuref
an Alexandrov surface. As an example, consider the surfheeunit cube inR3. The
metric on it is defined as the infimum of Euclidean lengths bpaths that lie on the sur-
face of the cube and join two given points. As is known [29, &3]curvature measure is
3 (11/2)dp, wheredy is the Dirac mass and the sum runs over all vertize$the cube.
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Recall that a poink € M is called thecusp if w(x) = 2m. By the results of Reshet-
nyak [28] and Hubei [20], any Alexandrov surface of boundeegral curvature and with-
out cusps can be regarded as being "conformally equivalers’smooth Riemannian met-
ric on a background compact surface. This means that thandistfunction on such a
surface has the form

1
dixy) = inf{ [0V jto)gat}
Yy Jo

for some functioru and a smooth background Riemannian magrithe infimum above is
taken over smooth pathgoining x andy. The conformal factoe" here can be very singu-
lar, and is arL?P-function, wherep > 1. More precisely, the functiomis the difference of
weakly subharmonic functions [28,129], and the set

S={xeM:e'(x) =0}

has zero capacity iN, seel[15, Theorem 5.9].

Thus, an Alexandrov surface without cusps can be viewed adace with a "Rieman-
nian metric’h = e'g on M\ S, whose distance function is precisely the original metric
This "Riemannian metric” yields th&lexandrov volume measuregigl= e2“dV0Ig, which
is an one more intrinsic characteristic(®,d); it can be also defined via approximations
by Riemannian metrics. More precisely, in [2] Alexandrodatalgaller show that ify,
is a sequence of Riemannian metrics that satisfy the hypistfi@) in the definition of an
Alexandrov surface, then its volume measWwel,, converge weakly tqu,.

Since the se§ has zero capacity, by conformal invariance it is straighérd to con-
clude that the relation

~ |0ui3d :/ COuj2dVo
|0l = [ 103 dvol

holds for any smooth function. Thus, the eigenvalue (g, un) of the Dirichlet form

J |Du|2dVob in Lo(M, un) are indeed natural versions of Laplace eigenvalues on aaAle
drov surface without cusps. Sine®' is anLP-function, wherep > 1, we conclude that the
Alexandrov volume measuye, satisfies the decay hypothesis (5.1). In particular, the mul
tiplicities my(g, 1) are finite and satisfy inequalities in Theorem5.1.

A. Appendix: Cheng’s structure theorem

The purpose of this section is to give details on Cheng'saire theorem [9], mentioned
in Sect[1. Itis based on the following lemma.

Lemma A.1. Let u be a &'-smooth function defined in a neighbourhood of the origin in
R" that satisfies the relation

uX) =Py +O(XN°)  as x—0, (A.1)

where R is a homogeneous polynomial of order N such thizy(x)| > C|xN 1. Then
there exists a neighbourhood U of the origin and a Lipschimmbomorphisn® of it that
preserves the origin and such thatx = Py(®(x)) for any xc U. Moreover, if u is G-
smooth, ther is a Ct-diffeomorphism.

Comments on the prooflhe second term on the right-hand side can be viewed as tde pro
ucta (x)[xN*® 1, where 0< &' < & anda(X) is a function that i€!-smooth away from
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the origin and behaves IiI@(|x|”5’5/) asx— 0. Itis then straightforward to see trais

C!-smooth in a neighbourhood of the origin, and differentigiielation [A.1), we obtain
Ou(x) = OPv(X) +O(XN* 1) asx— 0.

Given the last relation, ifiis C2-smooth, the existence of ti-diffeomorphisn follows
from the argument in the proof of[9, Lemma 2.4]. This argutreeo works wheru
is Ctt-smooth, and in this case it yields a local Lipschitz homeghism® such that
u(x) = A(®()). O

In dimension two any homogeneous harmonic polynomial ofelely > 1 satisfies the
hypothesi$CRy(x)| > C|x|N~%, and combining the lemma above with Priop] 2.2, we obtain
the following improved version of Cheng’s result.

Cheng’s structure theorem. Let u be a &1-smooth solution of the Schrodinger equation
(-A+V)u=0 onQCR? (A.2)

where Ve K29(Q). Then for any nodal point g .4 (u) there is a neighbourhood U
and a Lipschitz homeomorphisd of U onto a neighborhood of the origin such that
u(x) = Py(®(x)) for any xe U, where R is an approximating homogeneous harmonic
polynomial at p. Moreover, if u is E&smooth, them is a Cl-diffeomorphism.

In [Q] Cheng also states similar results in arbitrary diniems However, in di-
mensionn > 2 there are homogeneous harmonic polynomials for which yipothesis
|OPN(X)| = C|x|N"? fails, and thus, LemmaAlL1 can not be used. As is showqlin [4, Ap
pendix E], the latter hypothesis is necessary for the camfuof Lemma Al to hold.
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