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Abstract: The superlatives of graphene cover a whole range of properties: 
electrical, chemical, mechanical, thermal and others. These special 
properties earn graphene a place in current or future applications. Here we 
demonstrate one such application – adaptive contact lenses based on liquid 
crystals, where simultaneously the high electrical conductivity, 
transparency, flexibility and elasticity of graphene are being utilised. In our 
devices graphene is used as a transparent conductive coating on curved 
PMMA substrates. The adaptive lenses provide a +0.7 D change in optical 
power with an applied voltage of 7.1 Vrms - perfect to correct presbyopia, the 
age-related condition that limits the near focus ability of the eye.  

©2016 Optical Society of America  
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1. Introduction  

The potential of graphene as transparent electrodes in liquid crystal (LC) devices was first 
demonstrated in 2008 by Blake et al. [1]. The device exhibited uniform switching and high 
optical transparency, stringent requirements for display applications, demonstrated for a single 
pixel of dimensions ~10µm in a conventional geometry with parallel glass substrates. The real 
advantages of graphene electrodes are apparent in non-conventional geometries, for 
applications where flexibility and transparency are key requirements and with much larger 
electrode areas. Graphene, being only one atom thick [2], and having a number of unique 
electrical [3], mechanical [4] and thermal [5] properties is fully compatible with flexible, 
curved LC devices. Furthermore, large roll to roll production of graphene [6] makes graphene 
a realistic candidate to be used in mass-produced flexible optoelectronic devices [7, 8], 
organic and solid state solar cells [9, 10], supercapacitors [11], neural imaging and opto-
genetic applications [12, 13]. Recent advances in fabricating simple and low-cost graphene 
coated nanoprobes demonstrate the extensive potential graphene exhibits to be used in various 
applications and progressing its move from lab to market [14].  

This paper reports the first application of graphene electrodes in contact lenses with an 
electrically controllable focus. This adaptive lens exhibits the fastest response time yet 
reported (sub-second, faster than a blink) with a continuously variable focus. Importantly, we 
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with poor adhesion of ITO onto the substrates, uniformity and yield. In addition, ITO thin 
films are brittle [23], and therefore unsuitable for flexible applications. The production of 
graphene on the PMMA substrate and subsequent transfer onto the flexible, curved lens 
components, offers a clear route to mass production of the adaptive contact lenses. 

Here, we used a commercially available nematic LC material (MLC-6648, Merck) exhibiting 
a positive dielectric anisotropy with a birefringence ∆n=0.07 and relatively a low viscosity, 
offering the potential for sub-second response time, ideal for a switchable focus contact lens. 
The LC ordinary refractive index, no, is similar to that of the PMMA substrates (1.49 at 633 
nm), minimising Fresnel losses.  

A key requirement of a LC device is uniform, controlled orientation of the director. In most 
devices an alignment layer is deposited on both electrodes and rubbed to provide a unique 
orientation direction. We found that no alignment layer is needed on the graphene substrate as 
both PMMA and graphene give good planar alignment. The overall preferred orientation in 
the contact lens is defined by the rubbing direction on the concave substrate, an approach 
similar to that used in the graphene-based pixel demonstrated by Blake et al. [1]. The use of 
the rubbed polyimide alignment layer necessitated the ITO electrode. We note that for this 
planar lens geometry, the ‘off’ state focus is polarization dependent. This feature, as well as 
methods of overcoming such a dependence are discussed in detail in [15-18]. 

3. Investigation of lens quality and operation 

Several measurements were made to investigate the quality and operation of the lens. 
Dielectric spectroscopy was used to determine the threshold voltage, Vth for switching the 
lens. On application of a voltage just above Vth, the LC director begins to orient parallel to the 
electric field and the measured device capacitance increases, reaching a maximum at voltage 
far above the threshold. The Vth of the contact lens device was found to be +2.1±0.2 Vrms from 
voltage-dependent capacitance measurements. This agrees well with the value calculated using 
the expression for a parallel device: Vth=π(k11/εoΔε)1/2, where εo is the permittivity of free 
space and k11 and Δε are the splay elastic constant and dielectric anisotropy of the liquid 
crystalline material respectively. The values for k11 and Δε were measured to be 11.0±1.0 pN 
and 2.9±0.2 respectively in a separate experiment using a planar aligned LC contained 
between two parallel glass plates, leading to a calculated value of Vth= 2.1±0.2 Vrms.  

 

     

Fig. 2. Textural micrograph images (maximum transmission, i.e. rubbing direction at 45˚ to the crossed polarizers) of 
the LC contact lens at room temperature as the applied voltage is varied. The change in the birefringence colours can 
clearly be observed as the voltage increases from (a) 0 Vrms to higher voltages (b-e). The images have been taken near 
the centre of the lens; the faint concentric lines are sub-micron inhomogeneities in the PMMA surfaces caused by 
circular lathing during manufacture. The scale for all images is as marked on the lower right hand side of Fig. (a). 

Polarizing microscopy was used to observe the texture and hence evaluate the quality of the 
LC alignment in the lenses. The uniform birefringence colours seen in Fig. 2 indicate both 
excellent planar alignment of the director and uniformity of construction. Fig. 2a shows the 
textural micrograph while no voltage was applied to the contact lens. Figs. 2b-e clearly show 
the change in birefringence colours when voltages higher than the threshold (2.1 Vrms) were 
applied. The changing colours with the increasing voltage are associated with the change in 
the effective birefringence which is in turn due to an effective change in the extraordinary 
refractive index (ne) with increasing voltage. These indices were determined in a conventional 
device from fitting the reflection spectra using the Berreman methodology [24] with further 

(a) 0 Vrms (b)3 Vrms (c) 5 Vrms (d) 6 Vrms (e) 7.1 Vrms 
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states. The calculated MTF50 for the combined substrate system is 1.1 lp/mrad. We can 
conclude that though the system is limited by the substrates, the OFF and ON state of the LC 
lens are comparable making it an excellent first demonstration of a graphene electrode based 
lens that can correct presbyopia. The optical quality of the contact lens at 0 and 7.1 Vrms is 
qualitatively demonstrated in Fig. 4c by using a DSLR camera. A change in magnification of 
the text demonstrates the +0.7±0.1 D increase in optical power of the contact lens. 

An important parameter for the LC contact lens is the electro-optic response time. This was 
measured by placing the contact lens on a polarizing microscope and monitoring the change in 
intensity of monochromatic (632nm) light with a photodiode as the lens was switched ‘on’. At 
5 Vrms the response time, τON, was 0.6±0.2 seconds. The response time of a parallel device is 
given by ߬ைே = ଶ݀ߟ ሺߝ଴∆ܸߝଶ − ݇ଵଵߨଶሻ⁄ , where η is the LC viscosity and d the device 
thickness. τON was measured to be 3.5±0.4ms for a 5µm thick parallel device, so a 60µm thick 
device should have τON=0.5±0.1 seconds, is in good agreement with the contact lens response 
using an average LC layer thickness of 60µm. This measured τON is comparable to the blink of 
an eye (a few hundred milliseconds) which is sufficiently fast for this application; indeed, 
Pixel Optics marketed LC spectacles with the phrase ‘focus as fast as you can blink your eye’ 
[26]. The ‘off’ time for a parallel device is ߬ைிி = ଶ݀ߟ ݇ଵଵߨଶ⁄ 	and we note that our design 
can improve both the on and off times by reducing the LC layer thickness; a factor of 10 
decrease in response time is achieved by reducing the average lens thickness by a factor of ~3.     

4. Conclusions 

An adaptive LC contact lens with a graphene electrode has been successfully developed with 
an active area that covers the whole of the curved lens. The optical transparency, flexibility, 
low resistivity, good adhesion and stability of graphene make it an ideal candidate for use in 
contact lenses to correct presbyopia. The graphene adhered well to the PMMA substrate and 
the transmittance through the graphene electrode on the contact lens substrate is comparable 
to that of ITO. Importantly the flexibility of graphene makes the manufacture of these single 
contact lens units much easier. Using graphene for the electrodes avoids problems associated 
with using ITO, namely the requirement of a hard coat layer, expensive sputtering of ITO and 
low yields.  

The lens developed is capable of providing a continuous change in optical power change of up 
to 0.7±0.1 D, switching the optical compensation continuously between far and near vision. 
The lens exhibited excellent alignment and optical quality with the use of a single alignment 
layer. The response time of the device was much less than a second and simple measures such 
as reducing the LC layer thickness or increasing the driving voltage will achieve response 
times better than 1/20th second, a typical response time for the human eye. 

The potential for graphene electrodes in contact lenses is not just a consequence of the 
excellent optical and electro-optical performance; using graphene electrodes opens up new 
possibilities for the manufacture of flexible contact lenses. The flexibility of graphene would 
be advantageous if applied to soft lenses (hydrogels) which are commonly used contact lens 
materials. Moreover, the layer of PMMA on the top of graphene would help to inhibit entry of 
moisture, ions or gases in the lens containing LC. Patterning with graphene is already possible 
[27] and if applied to the lenses, will make the contact lens assembly much simpler. Our 
current aim is working towards a self-contained wirelessly operated device which will 
revolutionise the contact lens industry. 

All of the source data for this paper can be found in DOI: http://doi.org/10.5518/27 
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