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Abstract
We have used single cell transcriptome analysis to re-examine the substates of early pas-

sage, karyotypically Normal, and late passage, karyotypically Abnormal (‘Culture Adapted’)

human embryonic stem cells characterized by differential expression of the cell surface

marker antigen, SSEA3. The results confirmed that culture adaptation is associated with al-

terations to the dynamics of the SSEA3(+) and SSEA3(-) substates of these cells, with

SSEA3(-) Adapted cells remaining within the stem cell compartment whereas the SSEA3(-)

Normal cells appear to have differentiated. However, the single cell data reveal that these

substates are characterized by further heterogeneity that changes on culture adaptation.

Notably the Adapted population includes cells with a transcriptome substate suggestive of a

shift to a more naïve-like phenotype in contrast to the cells of the Normal population. Fur-

ther, a subset of the Normal SSEA3(+) cells expresses genes typical of endoderm differenti-

ation, despite also expressing the undifferentiated stem cell genes, POU5F1 (OCT4) and
NANOG, whereas such apparently lineage-primed cells are absent from the Adapted popu-

lation. These results suggest that the selective growth advantage gained by genetically vari-

ant, culture adapted human embryonic stem cells may derive in part from a changed

substate structure that influences their propensity for differentiation.

Introduction
Populations of stem cells are subject to selection pressure for variants that favor self-renewal
over the alternative fates of differentiation or cell death [1] [2]. Indeed, human embryonic stem
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(ES) cells often undergo culture adaptation after prolonged periods, showing altered growth
characteristics, such as increased population doubling times and plating efficiencies [3, 4]. At the
same time, they may acquire genetic or epigenetic changes [4–7]. The most commonly observed
changes are manifest cytogenetically as non-random gains of chromosome fragments, notably
involving chromosome 1, 12, 17 and 20, changes that also characterize embryonal carcinoma
(EC) cells, the malignant counterparts of ES cells and the stem cells of teratocarcinomas [1, 7].
The non-random nature of the karyotypic changes, their association with pluripotent stem cells,
and the rapid overgrowth of genetically variant cells over several passages [2], all argue for selec-
tion based on growth advantages derived from alterations to the genome. The commonality of
the cytogenetic changes seen in human ES cells in culture and EC cells from teratocarcinomas
suggests that culture adaptation and aneuploidy of ES cells in vitro could provide a paradigm for
some aspects of tumor progression in cancers that involve a stem cell population.

The growth advantage of the culture adapted cells, which is apparent from their enhanced
clonogenic capacity, could arise from a reduced tendency to undergo apoptosis [8], or to differ-
entiate, or from an altered pattern of differentiation [9]. In a previous study comparing early pas-
sage, ‘normal’, and late passage, culture adapted human ES cells, we found that human ES cells
within the stem cell compartment can exist in alternative substates defined by differential expres-
sion of the ES cell surface marker, SSEA3 [4]: in the early passage cultures, clonogenic cells were
present primarily in the SSEA3(+) subset, whereas clonogenic cells were found in both the
SSEA3(+) and SSEA3(-) subsets isolated from a culture adapted subline. These results, supported
by microarray transcriptome data, suggested that during differentiation human ES cells first lose
expression of SSEA3 and subsequently commit to differentiate, while culture adaptation raises a
barrier that decreases the probability that cells go on and differentiate after losing SSEA3 expres-
sion. As a result, culture adaptation appears to ‘trap’ stem cells in the SSEA3(-) substate, allowing
them to revert to an SSEA3(+) substate. Other studies have similarly suggested that pluripotent
stem cells can exist in interconvertible substates, defined by other surface antigens [10] or ex-
pression of transcription factors like NANOG [11], STELLA [12], REX1 [13] and HEX [14].

The existence of substates within the stem cell compartment raises the question of whether a
stem cell in a particular substate might be biased towards certain lineages before commitment to
differentiation [15]. Such biases have been suggested in a promyelocytic leukemic stem cell [16],
in neural differentiation of a human EC cell line NTERA2 [17], and during hematopoietic differ-
entiation of human ES cells [18]. The molecular basis for such biases remains largely unknown,
although recently WNT signaling has been implicated in biasing human ES cell self-renewal and
lineage potential [19]. Nevertheless, the phenomenon of multi-lineage priming whereby tran-
scripts of genes pertinent to specific pathways of differentiation can be detected in individual,
undifferentiated cells, has been long known in hematopoietic stem cells [20] [21] while, in naïve
pluripotent murine stem cells, there is evidence of transcriptional pausing, indicative of many loci
being primed for transcription [22]. Thus, one possibility is that the growth advantages of culture
adapted ES cells can arise from alterations to the dynamics of the various lineage primed substates
in which they may exist, in turn affecting their patterns of differentiation. To address this we have
now re-examined the SSEA3(+) and (-) subsets that we previously identified in the early passage,
normal, and late passage, culture adapted, sublines of H7 human ES cells [4], to determine wheth-
er at a single cell level there is evidence of lineage priming, and whether this is influenced by cul-
ture adaptation in a way that might contribute to a growth advantage for the variant cells.

Results
SSEA3 positive and negative fractions of low passage karyotypically normal (Normal, N3+ or
N3-) and late passage, culture adapted ((47,XX,add(1)(p1)add(1)(q4),der(6)t (6;17)(q27;q1))
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(Adapted, A3+ and A3-) H7 human ES cells (sublines H7.s14 and H7.s6, respectively) were iso-
lated by FACS. As before [4], the clonogenic cells in the Normal subline were predominantly in
the N3+ subset, being 30 fold less frequent in the N3- subset. In contrast, the cloning efficiency
increased for the Adapted cells, and there were substantial numbers of clonogenic cells in both
the A3+ and A3- subsets (S1 Fig). Groups of 10, 100 and 1000 cells and 20–25 individual cells
from each sorted subset—N3+, N3-, A3+ and A3- —were then analyzed by qPCR for their ex-
pression of 96 genes, using the TaqMan Stem Cell Pluripotency Assays, (see Experimental Pro-
cedures). At the population level, the gene expression patterns of each of these four subsets of
cells were comparable to those previously observed for these same subsets of H7 ES cells [4],
whether based upon direct analyses of cell populations, or aggregation of single cell data (S1
Fig). In addition, as described in our previous study [4] XIST was downregulated, overall, in
the H7.s6 adapted cells (S2 Fig) However, among the individual cells there was substantial het-
erogeneity in gene expression patterns, both between and within these SSEA3-defined subsets
(S1 and S2 Data), indicating that the single cell analysis revealed features that are not evident
from population level analyses.

To explore this further, we subjected the single cell data to unsupervised two-way clustering
of cells and gene expression (Fig 1). Two broad cell clusters (CC) were apparent, labeled CC-X
and CC-Y, each of which could be broken into two subclusters, X1 and X2, Y1 and Y2, respec-
tively, while five distinct gene clusters (GC) were identified, GC-I, GC-II, GC-III, GC-IV and
GC-V. GC-V was excluded from the heatmap displayed in Fig 1 and further analysis due to the
very low to effectively zero expression of the genes in this cluster. In the Normal cells, CC-X
and CC-Y approximated to the subsets defined by the presence or absence of SSEA3 expres-
sion, respectively, with 80% of the N3+ cells in CC-X and 100% of the N3- cells in CC-Y (Fig 1).
Inspection of the gene expression patterns associated with these cell clusters shows that CC-X
was mostly linked to relatively high expression of genes in GC-I and GC-II, which include
many of the genes characteristically associated with undifferentiated ES cells (e.g. NANOG,
POU5F1, SOX2), but low expression of many genes in clusters GC-III, and particularly GC-IV,
which include genes associated with various pathways of differentiation. These GC-III and -IV
genes tended to be more highly expressed in CC-Y cells, which therefore most likely represent
differentiated cells or cell committed to differentiation. There were, however, a small group of
N3+ cells who fells into the CC-Y cluster and who appeared to have differential expression of

Fig 1. Unsupervised two-way cluster analysis of single cells analyzed by Taqman stem cell
pluripotency assays . Samples are plotted horizontally and Taqman probe sets used to interrogate the
single cells are displayed vertically. The vertical red line separates the two major clusters identified in the
dataset. Green on the heat map indicates high Delta Ct values i.e. low gene expression.

doi:10.1371/journal.pone.0123467.g001
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GC-II genes such as T, EOMES etc. and may represent N3+ cells closer to commitment than
their counnterparts in CC-X. The distinction between CC-X and CC-Y cells is also supported if
genes well recognized to be associated with undifferentiated stem cells or various differentiated
derivatives are considered (S3 Fig). On the other hand, the Adapted cells behaved differently,
with CC-X being associated with cells either expressing or lacking SSEA3: 95% of the A3+ cells
were in CC-X, while 69% of the A3- subset also comprised CC-X cells (Fig 1). These results are
consistent with our previous observation that, although loss of SSEA3 is associated with differ-
entiation in Normal human ES cells, this relationship may be altered upon culture adaptation,
with a significant proportion of Adapted cells losing SSEA3 expression but remaining in the
undifferentiated stem cell compartment. Further, although the Normal CC-Y subset included
many CC-Y1 and CC-Y2 cells, the Adapted CC-Y cells were almost all from the CC-Y2 sub-
cluster, suggesting that culture adaptation influences not only the propensity of ES cells to dif-
ferentiate, but also their pattern of differentiation.

Considering the two principal CC-X subclusters, CC-X2 was almost exclusively associated
with the Adapted cells, which comprised 20 out of 21 CC-X2 cells analyzed (Fig 1). Among these
Adapted cells, CC-X2 included both A3+ and A3- cells, but was more associated with cells lacking
SSEA3–62% A3- versus 33% A3+. The one remaining CC-X2 cell was from the N3+ fraction. By
contrast, CC-X1 was more associated with the Normal cells and cells expressing SSEA3–56% N3

+, 32% A3+ but only 12% A3- (Fig 1). Thus the single cell gene expression data identified novel
substates that are related to, but not congruent with those identified by expression of SSEA3 and
population level gene expression studies. These novel substates were also altered upon culture ad-
aptation. In particular, CC-X2 tended to be associated with the SSEA3(-) cells that are found
within the stem cell compartment and are much more common in cultures of Adapted cells.

CC-X1 and CC-X2 were mainly defined by differential expression of genes in GC-I and
GC-II. In particular, GC-I genes tended to be expressed across both sub-clusters, whereas
GC-II genes tended to be expressed at higher levels in CC-X1 and lower levels in CC-X2,
though there remained substantial heterogeneity between individual cells (Fig 1). It is notable
that GC-II includes several genes that are commonly associated with late epiblast and gastrula-
tion in mammals, such as BRACHYURY, EOMES, LEFTY1, LEFTY2, NR5A2 and NODAL, sug-
gesting that CC-X2 cells may be less ‘epiblast-like’, or ‘primed’, than CC-X1 cells. A corollary is
that culture adaptation has tended to push the population towards a more naïve (CC-X2) state.

Although this unsupervised analysis of the single cell gene expression data identifies obvious
clusters of cells that relate to those defined by other criteria (e.g. surface antigen expression, clo-
nogenicity and culture adaptation), implying some degree of co-ordination at the population
level, there is marked heterogeneity of gene expression in individual cells suggesting that the
co-ordination is far from complete. For example, among the trio of pluripotency-associated
transcription factors, POU5F1OCT4, NANOG and SOX2, cells expressing high levels of
POU5F1 but low levels of NANOG and/or SOX2, or vice versa can be found. The same observa-
tion holds when other genes are also considered, whether those typically associated with plu-
ripotent stem cells, or those associated with different stages of embryonic development or
different germ layers (Fig 2). Most notably genes typically associated with endoderm, meso-
derm and ectoderm lineages were often expressed in the undifferentiated Normal cells—i.e. the
CC-X N3+—irrespective of their expression of individual genes associated with pluripotency or
gastrulation, suggestive of multi-lineage priming. By contrast, this phenomenon was much less
evident in the Adapted cells, whether A3+ or A3-, again suggesting that adaptation tends to
push the cells back from a more primed to a more naïve state.

The contrast between the Normal and Adapted cells with respect to lineage associated genes
was most striking in the case of genes associated with endoderm differentiation, notably
GATA4, GATA6 and SOX17. When the single cell data is represented in a scatter plot of
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expression of the two characteristic stem cell marker genes, POU5F1 and NANOG, a clear clus-
ter of cells expressing these genes is evident in the N3+ and A3+ populations, and persists in the
A3- populations, but is lost in the N3- population (Fig 3). If it is posited that these POU5F1/
NANOG expressing clusters represent the undifferentiated stem cells, the observations are con-
sistent with the conclusions above and in our earlier study [4] that many A3- cells remain with-
in the stem cell compartment whereas the N3- cells have initiated differentiation. However,
when the expression of other genes are examined, it is clear that many of the POU5F1/NANOG
expressing N3+ cells also express one or more of the endoderm-related genes, GATA4, GATA6
and SOX17. Again there was no evident co-ordinate expression of these genes. On the other
hand they are almost not expressed in the A3+ cells or the A3- cells, although many cells in the

Fig 2. Simultanious gene expression in normal and abnormal SSEA3 + and − fractions. Visualization of simultaneous gene expression in single Normal
H7.s14 cells from the SSEA3 positive and negative fractions (N3+, N3- respectively) and Adapted H7.s6 cells from the SSEA3 positive and negative fractions
(A3+ A3- respectively) for selected genes from the Human Stem Cell Pluripotency assays associated with (i) the undifferentiated pluripotent state (CD9,
DNMT3B, GABRB3,GBX2,GDF3, NANOG, POU5F1, SOX2, TDGF1, ZFP42), (ii) gastrulation (FGF5, LEFTY1, LEFTY2, NODAL, EOMES), (iii)
trophoectoderm (CDX2), (iv) Endoderm (GATA4, GATA6, SOX17) (v) Mesoderm (MYF5,MYOD1, BRACHYURY) and (vi) Neural (NEUROD1, PAX6). The
color of each square represents a single genes’ expression (Delta Ct) in a particular cell. Green indicates high Delta Ct values i.e. low gene expression.

doi:10.1371/journal.pone.0123467.g002
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N3- population express them. As we have previously suggested, one of the selective advantages
that could drive adaptation is the loss of an ability to generate endoderm, which is a potential
source of factors such as BMPs that may drive further differentiation of persisting undifferenti-
ated stem cells [9]. The present results suggest that the loss of a propensity for endoderm re-
flects changes to the dynamics of substates within the stem cell compartment and the
elimination of an endoderm primed substate.

Discussion
The results of our present single cell transcriptome study are consistent with our earlier popu-
lation based study of early passage, Normal, and late passage, Adapted, human ES cells, and
confirm that the surface antigen SSEA3 defines substates, the dynamics of which are altered
during culture adaptation [4]. Unlike the expression of many markers that have been used to
identify substates of pluripotent stem cells, the SSEA3 epitope is not the product of a single
gene, as it comprises a set of carbohydrate moieties of the glycosphinogolipid, sialylα2-3galβ1-
3globoside [23–25]. Further, whether cells are scored as SSEA3(+) or (-) appears to depend
upon how that glycolipid is displayed rather than only its presence or absence [25]. Conse-
quently, although we do not have a clear understanding of the molecular mechanism of SSEA3
positivity, we suggest that it provides a signal that integrates a wide array of transcriptomic and
metabolomic information about cell state. Certainly various studies, including the current

Fig 3. Two-way scatter plots of POU5F1 (OCT4) expression versusNANOG expression in the SSEA3
positive and negative assayed fractions from the Normal and Adapted H7 human ES cells. The genes
plotted are DNMT3B,GATA4,GATA6 and SOX17. Each cell is represented by an individual dot and colored
according to the Delta Ct value of the genes indicated in the legend appended to each graph. Increasing
Delta Ct indicates decreasing expression. Note that, in contrast to the relatively uniform expression of
DNMT3B in all cells in each sorted population, the expression of GATA4, GATA6 and SOX17 is quite distinct
in most cells of the SSEA3(+) Normal population but in almost no cells in the SSEA(3+) Adapted population.

doi:10.1371/journal.pone.0123467.g003
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results, indicate that the scoring of cells as SSEA3(+) and (-) does have functional correlates
[26] [25] [27] [4] [28].

Broadly, the single cell clustering analysis indicated that all of the cells can be grouped into
two clusters corresponding to undifferentiated stem cells, CC-X, which express genes classically
associated with pluripotent stem cells, such as ZFP42, LIN28, CD9, POU5F1, SOX2 and
NANOG, and differentiated cells, CC-Y, which do not express significant levels of these genes
but did express various genes associated with differentiation (S3 Fig). Whether from the cluster
analysis (Fig 1), or by consideration of two key markers of undifferentiated pluripotent stem
cells, POU5F1 and NANOG, (Fig 3), the transcriptomes of the N3- cells, all of which belong to
Cell Cluster CC-Y, are consistent with them having left, or being in the process of leaving the
stem cell compartment, as we argued before based on population level transcriptome data and
on functional, clonogenicity assays [4]. By contrast, all the other subsets of Normal and
Adapted cells contained undifferentiated, CC-X cells, though in a decreasing proportion from
A3+ to N3+ to A3-. However, these data also exposed marked heterogeneity within the cell clus-
ters from which two observations stand out.

First, a subset of the cell cluster CC-X, CC-X2, was almost exclusively associated with the
culture adapted cells. It has been widely proposed that human ES cells correspond to an epi-
blast like state, resembling murine EpiStem cells, which has also been called a primed state
[29, 30] [31, 32], although several papers have reported culture conditions whereby human
ES cells adopt some characteristics of more naïve, murine ES cells [33–37]. However, the het-
erogeneity between individual human ES cells in our current study suggests that populations
of these cells may exist as distributions along a naïve-primed axis. Moreover, since the CC-X2
cells are primarily defined by a tendency to low expression of genes typically associated with
the epiblast embryonic state, such as BRACHYURY, EOMES, LEFTY1, LEFTY2, FOXD3, this
result is consistent with the notion that culture adaptation leads to the cells adopting a more
naive-like state. In addition, the adapted cells as in our previous study [4] had very low ex-
pression of XIST. Lack of X-inactivation has been described as a feature of naïve pluripotent
stem cells (reviewed in [38]) and therefore would be anticipated in any naïve-like cells present
in human PSC cultures. However, gains of an X chromosome are commonly reported in hES
cell lines (see review in [1]; [7]) and may represent an independent change brought about by
the cells being cultured under strongly selective conditions. Recently, the phenomenon of
‘erosion’ of X-inactivation in human pluripotent stem cells has been reported [39], again sug-
gesting that changes in the inactivation of the X-chromosome may be due to selection rather
than a shift to a naive-like state.

Counterintuitively, despite the simple view that associates loss of SSEA3 with priming to dif-
ferentiate [4], the CC-X2 cells tended to be SSEA3(-), although not exclusively so. On the other
hand it is notable that mouse ICM cells, which correspond to the naïve condition of murine ES
cells are also SSEA3(-). The observation that hPSCs exist in a range of states within the stem
cells compartment, with some cells in more ‘naïve-like’ state concurs with recent single-cell
data that utilized a different set of cell surface markers as discriminants and concluded that het-
erogeneity may be an inherent feature of hPSCs in culture[40].

Second, several of the N3+ cells expressed genes such as GATA4, GATA6 and SOX17, sug-
gesting that these cells are primed for endoderm differentiation, whereas cells expressing
these genes were notably absent from the A3+ subset. Mutations in variant stem cells could
provide growth advantages not only by affecting cell division or cell survival but also by alter-
ing their pattern of differentiation since derivative cells may form a niche that can influence
the behavior of persisting stem cells. For example, Bendall et al [41] have reported that fibro-
blasts derived from human ES cells drive the further proliferation of the remaining human ES
cells by producing IGF2 in response to exogenous FGF. We have previously reported that
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culture adapted H7 human ES cells have a much reduced propensity for endoderm differenti-
ation [9]. This may be a source of selective growth advantage since endoderm is known to
produce BMP, a factor that induces human ES cell differentiation so that spontaneous endo-
derm differentiation can lead to a positive feedback loop that rapidly depletes the pool of
undifferentiated cells [42]. Our present results suggest that the reduced tendency for endo-
derm differentiation of the culture adapted human ES cells arises from altered dynamics of
substates of cells within the stem cell compartment prior to commitment to differentiation.
Likewise we previously concluded in another system, neuronal differentiation of NTERA2 EC
cells induced to differentiate with retinoic acid, that the eventual fate of the differentiated
cells depended upon the behavior of lineage biased substates within the stem cell compart-
ment prior to induction of differentiation [17].

This study highlights the increasing importance of analyzing cells at a single cell level rath-
er than relying of average measures from population analyses. The results are consistent with
the view that within the stem cell compartment human ES cells may transiently occupy differ-
ent substates. Further, since cells in these substates express different patterns of gene expres-
sion, it seems likely that, when subjected to differentiation signals, they may exit the
pluripotent state on different differentiation trajectories thus leading to heterogeneous differ-
entiation [15]. Although the heterogeneity in expression of genes such as GATA4, GATA6
and SOX17 could be due in part to differential expression through the cell cycle [43], the lack
of coordinate gene expression between lineage markers in single cells (Fig 2) suggests that the
substates we have inferred reflect other attributes of cellular regulation. Understanding the
mechanisms that control the dynamics of these stem cell substates therefore has implications
for seeking culture conditions to minimize the appearance of genetically variant cells, by re-
ducing the selective advantages associated with some biased differentiation potentials. Like-
wise it has implications for approaches to controlling the differentiation of ES cells to specific
cell types for particular applications.

Materials and Methods

Human ES cell culture
Two sublines of the human ES cell line, H7 [44], were used in the current study [3] [4]. One
subline, designated H7.s14, has a normal female karyotype (46, XX) and was used at a passage
level less than 40. The second subline, designated H7.s6, has an abnormal karyotype (47,XX,
add(1)(p1)add(1)(q4),der(6)t (6;17)(q27;q1)), and was used at a passage level in excess of p130.
The cells were cultured on mitomycin C inactivated mouse embryonic fibroblasts derived from
e12.5 MF-1 mouse embryos, in Knockout DMEM (Invitrogen), supplemented with 20%
Knockout Serum Replacement (Invitrogen) and 4 ng/ml bFGF (Peprotech), as previously de-
scribed[3]. The abnormal line, H7.s6, shows characteristics of culture adaptation, such as in-
creased population growth rate and cloning efficiency, compared to the normal, H7.s14 line.

Cell sorting and single cell isolation
Cell were harvested with trypsin:EDTA, stained by indirect immunofluorescence for the ex-
pression of the ES cell surface antigen, SSEA3, using pre-titered supernatant from hybridoma
MC-631 [26] and FITC-conjugated goat anti-mouse IgG+IgM (Caltag), as previously de-
scribed [4, 27]. Following staining, the cells were analyzed by flow cytofluorimetry, and sorted
using a Dakocytomation Flow Cytometer. Specified numbers of cells from antigen-positive
and antigen-negative subpopulations were deposited into the wells of a 96-well thermal cy-
cling plate, in 0.5μl of sorting buffer. Pre-sort and post-sort buffer samples were collected into
the plates as negative controls.
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Cell Lysis and reverse transcription
Following sorting, the human ES cells were lysed using the TaqMan gene expression Cells-to-
CTTM kit (Ambion Cat No. AM1728). Lysis solution (4.1μl) with DNase was added to single
cells in 96-well plates and incubated for 5 min at room temperature. The reaction was termi-
nated with 0.5μL of stop solution. Cell lysates were frozen at -80°C. Then reverse transcription
reagents (RT) were added to the 96-well plate containing the single cell lysates. The RT reaction
contained 40% lysate for the single cell samples and was performed at 37°C for 60 min followed
by a 95°C heat inactivation step for 5 min. (See S6 Fig for a summary of the lysis, reverse tran-
scription, pre-amplification and qPCR protocol)

Multiplex preamplification
The resulting cDNA in a volume of 12.5μl was used for multiplex preamplification with a Taq-
Man PreAmp Pool for the Human Stem Cell Pluripotency assay panel, with 95 specific cDNA
targets [45], Life Technologies Cat. No. 4414077). The preamplification was performed by in-
cubating at 95°C for 10 min followed by 14 cycles at [95°C for 15 sec, 60°C for 4 min] in a Ap-
plied Biosystems GeneAmp PCR System 9700.

QC of pre-amplified product
A preliminary Real-Time PCR experiment was performed to distinguish wells containing sin-
gle cells from empty wells. The preamplified product was diluted (1:128) and mixed with Taq-
Man Gene Expression Master Mix (Life Technologies PN 4370074) to measure expression of 3
targets (Life Technologies NANOG assay ID Hs02387400_g1, ACTB assay ID
Hs99999903_m1, and GAPDH assay ID Hs99999905_m1). The Ct measurement was used to
confirm that the well contained a cell. Samples with Ct values of ACTB and GAPDH that
showed positive expression and good correlation were further tested.

Quantitative Real-Time PCR
Preamplified product was diluted (1:128), and quantitative real-time PCR of 95 targets in sin-
gle-plex using duplicates was performed. The targets used were described previously [45].
qPCR was performed with Human TaqMan Stem Cell Pluripotency assays (Life Technologies
Cat. No. 4385344) in 384-well plates amplified in Applied Biosystems 7900HT Fast Real-Time
PCR System. Raw cycle threshold values from each sample preparation for GAPDH and beta-
ACTIN (ACTB) were used to identify data points lying greater than one standard deviation
from the fraction population mean expression value. In sample preparations from single cells,
those with higher or lower Ct values than one standard deviation of the population mean gen-
erally had correspondingly higher or lower Ct values for two other control genes CTNNB1 and
RAF1. These samples were excluded from further analysis as likely to contain damaged/ dying
cells or multiple cells respectively. All subsequent gene expression data were expressed as the
difference between Ct values for individual genes and the corresponding Ct value for ACTB ob-
tained on the same cells (DeltaCtACTB).

Hierarchical clustering by genes and cells and heat mapping was created using Genesis [46]
by Pearson correlation distance with complete linkage.

To test the feasibility of examining the gene expression of individual cells, single cells, and mul-
tiples of 10, 100, 1000 and 10,000 cells from the N3(+), N3(-), A3(+) and A3(-) subsets were de-
posited directly following FACS into the wells of a 96-well plate and then examined by TaqMan
qPCR for ACTB, GAPDH and NANOG. The expression of ACTB, GAPDH and NANOG in prep-
arations of 10,000, 1,000, 100, 10 and single cells from each subset showed a stepwise decrease
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(i.e. increase in Ct value), with Ct values that were inversely proportional to the log cell number
in each preparation (S4 Fig), indicating that the assay was sufficiently sensitive to read out
changes in expression from single cells. In the case of the single cell preparations, samples were
excluded from further analysis if their ACTB/GAPDH expression values fell outside one standard
deviation of the mean (S5 Fig). Most of these outlier samples also expressed correspondingly high
or low levels of the additional two control genes, β-catenin (CTNNB1) and RAF1, suggesting that
they either contained multiple cells or cells undergoing apoptosis or necrotic death.

The overall gene expression patterns observed in the samples prepared from the different
subsets of H7 cells were comparable to those found in our earlier transcriptome analysis of
SSEA3-sorted subsets of the same sublines of H7 ES cells, analyzed by Affymetrix microarray
[4]. When compared to our previous study, similar relative levels of gene expression were
noted in the present study, e.g. for the pluripotent signature genes NANOG, POU5F1, TDGF1,
GABRB3, DNMT3B and GDF3 (S1 Fig). Taken together, these observations suggest that the ex-
pression data derived from the TLDA analysis provide a reliable picture of the transcriptome
of the different subsets of H7 cells isolated in these experiments, broadly consistent with the re-
sults of previous population level based studies.

Supporting Information
S1 Data. Delta Ct values, normalized to beta-actin (ACTB).
(XLS)

S2 Data. Raw Ct values.
(XLS)

S1 Fig. Bulk comparison of Normal and Adapted SSEA3 sorted fractions. Panel A: Single
cell re-plating efficiencies of H7.s14 and H7,s6 SSEA3 positive and negative cells. Panel B,
Comparison of selected pluripotency associated genes from Affymetrix gene microarray de-
rived expression values from Enver et. al. [4] and the Delta Ct (normalized to beta-actin
(ACTB)) expression values from the analysis of 1000 sorted cells run on TaqMan assays in this
study. All values are expressed as normalized values to the H7.s14 SSEA3+ sample.
(EPS)

S2 Fig. Two-way scatter plots of POU5F1 (OCT4) expression versus NANOG expression
against XIST in the SSEA3 positive and negative two assayed fractions from the Normal
and Adapted H7 human ES cells. Each cell is represented by an individual dot and colored ac-
cording to the Delta Ct value of XIST. Increasing Delta Ct indicates decreasing expression.
(EPS)

S3 Fig. Average gene expression between clusters X and Y. The average gene expression
(Delta Ct) of genes known to be generally associated with pluripotency of human ES cells (CD9,
DNMT3B, FGF4, GABRB3, GAL, GBX2, GRB7, LEFTY1, LEFTY2, LIFR, LIN28, NANOG,
NODAL, NOGGIN, PODXlL, POU5F1, SOX2, TDGF1, TERT, ZFP42) compared to differentia-
tion associated genes (CDX2, DDX4, EOMES, FGF5, FOXA2, GATA4, GATA6,HLXB9, NEU-
ROD1, PAX4, PAX6, SOX17, T) between the two major clusters (X and Y) identified in Fig 1.
(EPS)

S4 Fig. Evaluation of single cell TaqMan real-time PCR for sensitivity and outliers. Gene
expression values for ACTB (beta-actin), GAPDH on single cells, 100, 1000 and 10000 cells
sorted for H7.s14 SSEA3+, H7.s14 SSEA 3-, H7.s6 SSEA3+, H7.s6 SSEA3 -. ‘NTC’ indicates
RNA extracted from a given fraction but not transcribed to cDNA.
(EPS)
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S5 Fig. Two-way plots of GAPDH expression versus ACTB expression in the four assayed
fractions compared to the control genes CTNNB1 and RAF1 from the human pluripotency
low density array [45]. Each cell is represented by an individual dot and colored according to
the Delta Ct value of the genes indicated in the legend appended to each graph. Increasing
Delta Ct indicates decreasing expression. The shape of each point indicates whether a data
point falls within one standard deviation of the population mean for each fraction.
(EPS)

S6 Fig. Summary of the protocol used to analyze sorted single cells using TaqMan assays.
(EPS)

S1 Table. List of genes contained in each cluster identified in Fig 1A. Genes colored green
indicate an average expression value of< 10 Delta Ct(ACTB) in undifferentiated samples in
the ISCI project dataset [45].
(DOCX)
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