
This is a repository copy of X-Machine Based Testing for Cloud Services.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/98321/

Version: Accepted Version

Proceedings Paper:
Lefticaru, R. and Simons, A.J.H. (2015) X-Machine Based Testing for Cloud Services. In:
Ortiz, G. and Tran, C., (eds.) Advances in Service-Oriented and Cloud Computing.
Workshops of ESOCC 2014, September 2-4, 2014, Manchester, UK. Lecture Notes in
Computer Science, 508 . Springer , pp. 175-189. ISBN 978-3-319-14885-4

https://doi.org/10.1007/978-3-319-14886-1_17

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

X-Machine Based Testing for Cloud Services

Raluca Lefticaru1,2 and Anthony J. H. Simons1

1 Department of Computer Science, The University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, UK

r.lefticaru@sheffield.ac.uk, a.j.simons@sheffield.ac.uk
2 Department of Computer Science, University of Bucharest

Str. Academiei nr. 14, 010014, Bucharest, Romania

Abstract. In this article we present a tool designed for cloud service
testing, able to generate test cases from a formal specification of the
service, in form of a deterministic stream X-machine (DSXM) model.
The paper summarizes the theoretical foundations of X-machine based
testing and illustrates the usage of the developed tool on some examples.
It shows in detail how the specification should be written, which are
the design for test conditions it should satisfy, in order to assure the
generation of high quality test suites for the cloud service.
Keywords: cloud service testing; state-based testing; X-machine.

1 Introduction

As cloud computing has emerged as a new paradigm for hosting and delivering
services over the Internet [16], the enterprise IT environment has been trans-
formed into a matrix of interwoven infrastructure, platform and application ser-
vices which are delivered from different service providers. In this context, Cloud
Service Brokers will play an important role by serving as intermediaries between
providers and consumers, ensuring the quality of software-based enterprise cloud
services.

This paper provides a powerful model-based testing approach for cloud ser-
vices, which aims to increase the confidence in the quality of service behaviour,
previously tested using a specification in the form of a stream X-machine (SXM).
The testing methodology based on SXMs is more general and can be applied to
other types of software, not only cloud services, but cloud ecosystems would
substantially benefit from this approach, which would allow testing and trusting
all the services that agreed on implementing the same SXM specification and
passed the generated test sets.

A stream X-machine [12, 11] is a particular type of X-machine [9], a state
model which has been investigated for many years, because of perceived advan-
tages in: (1) its modelling capability, e.g. has been used in high performance agent
based simulators like FLAME [7]; and (2) its associated testing methods [12, 11,
8]. In essence, an SXM is a class of extended finite state machine (EFSM), hav-
ing an internal memory and transitions labelled by processing functions, which
might have input parameters and can update the machine internal memory. An

SXM can model not only the control part of a system, but also the data pro-
cessing. And, if certain design for test conditions are satisfied, from the SXM
specifications one can derive test suites able to establish the correctness of the
implementation under test (IUT). Much recent research has been focused on
obtaining theoretical results, such as relaxing the conditions the SXM should
satisfy (determinism, nondeterminism, controllability), in order to produce high
quality test suites.

In this paper we use a deterministic SXM to model the cloud service that
will be tested and we present a tool, which assists the user in writing the SXM
specification, validating it and generating test data.

The paper is structured as follows: Section 2 introduces the theoretical foun-
dations of stream X-machine testing, Section 3 presents the tool developed, some
examples are summarized in Section 4, related work is presented in Section 5
and finally conclusions are drawn in Section 6.

2 Theoretical Background

In this section we present the foundations of stream X machine testing. We will
use ε to denote the empty sequence. For a finite alphabet Σ, Σ∗ represents the
set of all finite sequences with members in Σ. For a, b ∈ Σ∗, ab denotes the
concatenation of the two sequences a and b. For U, V ∈ Σ∗, UV = {ab|a ∈
U, b ∈ V }; Un is defined by U0 = {ε} and Un = Un1U, n ≥ 1. Furthermore,
U [n] =

⋃
0≤i≤n Ui.

2.1 Stream X-Machines

A Stream X-Machine (SXM) is an extended form of state machine, capable of
modelling both the data and the control of the system [11, 12]. Compared to
Finite State Machines (FSMs), SXMs enrich them with: (1) internal storage or
memory (the internal variables of the machine), (2) processing functions instead
of input/output symbols which traditionally labelled the transitions of FSMs.

Definition 1. An SXM [12] is a tuple Z = (Σ,Γ,Q,M,Φ, F, q0,m0) where:

– Σ is the finite input alphabet

– Γ is the finite output alphabet

– Q is the finite set of states

– M is a (possibly infinite) set called memory

– Φ is a finite set of distinct processing functions; a processing function is a
non-empty (partial) function of type M ×Σ −→ Γ ×M

– F is the (partial) next-state function, F : Q× Φ −→ Q

– q0 ∈ Q is the initial state

– m0 ∈M is the initial memory value

borrowError

reserveError

r
e

s
e

r
v
e

O
k

borrowOk

Available

Reserved

Borrowed

Borrowed&

Reserved

returnOk

borrowOk

returnOk

c
a

n
c
e

lO
k

r
e

s
e

r
v
e

O
k

c
a

n
c
e

lO
k

returnError

reserveError

cancelError

returnError

cancelError

borrowError

Fig. 1. A state transition diagram for an SXM modelling a Book service

When representing a certain system, it is frequently helpful to abstract and
think of an SXM as a finite automaton with the arcs labelled by functions from
the set Φ. The automaton AZ = (Φ,Q, F, q0) over the alphabet Φ is called the
associated finite automaton of Z.

Usually, the processing functions of Φ specify the components or the possible
operations of the system specified by Z. The memory typically represents the
variables used by the modelled system. It is formed from tuples, where each
element of the tuple corresponds to either a global variable or a parameter that
may be passed between the elements of Φ.

When modelling a real system, the input alphabet Σ consists of the names
of the operations which should be triggered and their parameters, if applicable.
For example, a simplified book lending service, shown in Fig. 1, could have oper-
ations like borrow(id), return(id), reserve(id), cancel(id), where id is a number
representing the customer which attempts to do the operation, with values taken
from a finite set. However, providing an actual value for the parameters, and de-
pending on the current state and value of the SXM memory, there might exist
different processing alternatives. For example, the SXM can have two processing
functions, labelled borrowOk and borrowError (in order to differentiate them as
distinct branches of the operation borrow(id) from the implementation). These
two processing functions can be triggered if the value of the id is adequate for
the first case or if the value of id is incorrect in the second case (e.g., the book
is reserved by another customer, represented by the internal memory variable
res id, and res id 6= id).

There are cases in which the number of processing alternatives is more than
two (success/error). For example, a bank account is modelled in [8] as a SXM
having Σ = {open(), deposit(a), withdraw(a), close()}, where a represents a

positive number. The SXM can have different functions, such as WithdrawAll,

Withdraw, WithdrawError (written in upper case, in order to differentiate
them from the input symbol withdraw(a)), which can be triggered if the value
of a is equal to the account balance b in the first case, 0 < a < b in the second
case and b < a for the error case. For example, a bank account is modelled in
[8] as a SXM having Σ = {open(), deposit(a), withdraw(a), close()}, where a

represents a positive number. Even if a > 0 takes values from an infinite set,
thus making Σ also infinite, the theoretical results concerning the X-machine
test generation will still be preserved, the only difference being that the search
process for appropriate input values will be realized in an infinite set.

In this context, when the SXM has more functions able to process the same
input, like borrow(id) or withdraw(a), one desirable quality of the SXM is to
be deterministic (abbreviated DSXM) which means that there exists at most
one possible transition for any triplet (state, memory, input). This implies that
the domains of the processing functions are disjoint. This property is not un-
usual for a cloud service, it is normal to expect a deterministic, repeatable be-
haviour, whenever the system is in the same configuration and receives the same
input values. However, there exist also testing methodologies developed for non-
deterministic X-machines [2] where the non-determinism can be caused either
by overlapping functions domains or by non-determinism of the associated au-
tomaton AZ , i.e. F : Q × Φ −→ 2Q.

Definition 2. An SXM Z is said to be deterministic if for every φ1, φ2 ∈ Φ,
if there exists q ∈ Q such that (q, φ1), (q, φ2) ∈ domF then either φ1 = φ2 or
domφ1 ∩ domφ2 = ∅;

A sequence p ∈ Φ∗ of processing functions induces a function ||p|| that shows
the correspondence between a (memory, input sequence) pair and the (output
sequence, memory) pair produced by the application, in turn, of the processing
functions in the sequence p.

Definition 3. Given p ∈ Φ∗, ||p|| : M ×Σ∗ −→ Γ ∗ ×M is defined by:

– ||ǫ||(m, ǫ) = (ǫ,m),m ∈M
– Given p ∈ Φ∗ and φ ∈ Φ, ||pφ||(m, sσ) = (gγ,m′), for m,m′ ∈ M , s ∈ Σ∗,

g ∈ Γ ∗, σ ∈ Σ, γ ∈ Γ such that there exists m′′ ∈ M with ||p||(m, s) =
(g,m′′) and φ(m′′, σ) = (γ,m′).

A computation of the SXM represents the traversal of all sequences of tran-
sitions in the associated automaton AZ and the successive application of the
corresponding processing functions (using the actual parameters provided to
each of them) to the initial memory value for the first function and to the result-
ing memory value for the following processing functions. The correspondence
between the input sequence applied to the machine and the output produced
gives rise to the relation (function) computed by the Z.

Definition 4. The relation computed by Z, fZ : Σ∗ ←→ Γ ∗ is defined by:
(s, g) ∈ fZ if there exist p ∈ Φ∗ and m ∈ M such that (q0, p) ∈ domF ∗ and
||p||(m0, s) = (g,m).

Definition 5. An SXM Z is said to be completely-defined if domfZ = Σ∗.

In other words, an SXM is completely-defined if every sequence of inputs can
be processed by at least one sequence of functions accepted by the associated
automaton. In the case when the SXM has some “refused” (or ignored) inputs, it
can be transformed into a completely-defined one by adding a designated error
output, which is not in the output alphabet of Z and completing the automaton
with self-looping transitions or transitions to an extra (error) state.

2.2 Reaching and Distinguishing States in a DSXM

When testing from finite state machines (FSMs) or from finite automata, some
important notions are:

– state cover, a set S consisting of sequences that reach every state of the
machine;

– transition cover, a set T consisting of sequences that reach every state of the
machine and exercise every transition from that state; if S is a state cover
and X the input alphabet, then the transition cover can be computed by
T = S ∪ SX

– characterization set, usually labelled W , that distinguishes between every
pair of states in the FSM.

Considering the automaton from Fig. 1, where the input alphabet is X =
{borrowOk, borrowError, returnOk, returnError, reserveOk, reserveError,
cancelOk, cancelError}, a state cover can be S = {ε, borrowOk, reserveOk,
borrowOk reserveOk}, and a characterization set W = {returnOk, cancelOk}.

Using these sets, test suites of the form Y = TX [k]W can be produced, ac-
cording to the W -method [6], where S is a state cover, T = S ∪ SX a transition
cover, X is the input alphabet of the machine, W the characterization set and
k ≥ 0 is the difference between the estimated number of states in the imple-
mentation and the number of states of the specification. The W -method is the
most general testing method (that does not rely on the existence of direct state
inspection). For this method to be applicable, there must be a reliable reset in
the implementation, that correctly puts the system specified by the FSM into
its initial state before each test sequence is executed.

The idea behind the test suite Y = TX [k]W is that T = S ∪ SX ensures
that all the states and transitions in the specification are also present in imple-
mentation, the set X [k]W verifies that the implementation is in the same state
as the specification after triggering each transition. In case the implementation
contains up to k extra states, the set X [k]W = XkW ∪ . . .∪ {ε}W ensures that
each of them would be reached by some input sequence of length up to k and
that they behave the same way as the corresponding specification states (by
applying the sequences from W, which can distinguish between states).

Many adaptations of the W -method exist in the literature, such as the round
trip approach [1], based on a transition tree constructed in a depth-first fash-
ion, which includes all the transition sequences that begin and end with the

same state. Other authors [4] preferred to use a reliable state-reporting oracle
instead of the characterization set W, in order to check the current state of the
implementation under test.

The testing methods for simple FSMs have been adapted to SXM testing [10,
2, 11, 12], and consequently corresponding notions have been proposed to build
the theoretical framework, such as realisable sequences, r-state cover, separat-
ing sets (which are sets of sequences of processing functions that differentiate
between every pair of separable states of the machine [12]).

Because the transitions in the state diagram of an SXM are labelled not by
simple input/output symbols as in FSMs, but by functions, with restrictions on
their input/memory which prevent them from firing unconditionally, there might
exist states that are reachable in the associated automaton, but which cannot
be reached by any input sequence applied to the machine. This is why the state
cover from the FSM should be replaced, when applying testing methods from
SXM, with an r-state cover, which is a minimal set of realisable sequences, that
reaches every r-reachable state in Z [11, 12].

Analogously, there may be pairs of distinguishable states in the associated
automaton for which the sequences of processing functions that distinguish be-
tween them can never be applied.

2.3 Design for Test Conditions

The first approach on testing using X-machines, the so called “DSXM integration
testing” [15, 13, 10, 2], was inspired by the W -method, and it can guarantee the
conformance of the implementation, with respect to the SXM specification. The
method was originally developed for testing the control structure of a system,
modelled by a DSXM and it can be applied under some design for test conditions
and the assumption that the processing functions of the X-machine have been
correctly implemented (and previously tested).

The two design for test conditions necessary in this approach are: output-
distinguishability and input-completeness.

Definition 6. An SXM Z is said to be output-distinguishable if for all φ1, φ2 ∈
Φ, whenever there exist m,m1,m2 ∈ M,σ ∈ Σ, γ ∈ Γ such that φ1(m,σ) =
(γ,m1) and φ2(m,σ) = (γ,m2), then φ1 = φ2.

This property, which states that the output produced in response to any
given input determines which processing function has been applied, is important
for testing purposes and in practice can be easily achieved by adding, if needed,
some extra output symbols.

Definition 7. An SXM Z is called input-complete if ∀φ ∈ Φ,m ∈ M, ∃σ ∈ Σ

such that (m,σ) ∈ dom(φ).

The input-completeness (or controllability) of an SXM assures that any se-
quence of of processing functions in the associated finite automaton (FA) can be

triggered by suitable input sequences, so they can be tested against the imple-
mentation. This property is rather strict; and most specifications corresponding
to real systems are not by default input-complete.

Definition 8. A test function of an SXM Z is a function t : Φ∗ −→ Σ∗ that
satisfies the following conditions:

– t(ε) = ε (1)
– Let p = φ1 . . . φk ∈ Φ∗, k ≥ 1
• Suppose φ1 . . . φk−1 ∈ LAZ

and there exists σ1, . . . , σk ∈ Σ, γ1, . . . , γk ∈
Γ and m1, . . . ,mk ∈ M such that φi(mi−1, σi) = (γi,mi), 1 ≤ i ≤ k.
Then t(p) = σ1 . . . σk for some σ1 . . . σk that satisfy this condition (2)
• Otherwise, t(p) = t(φ1 . . . φk−1). (3)

As the initial design conditions for DSXM integration testing were quite re-
strictive, in further works they have been relaxed, for example the controllability
has been replaced by input-uniformity in [11]. This property of the X-machine
suggests that, having a sequence of processing functions in the FA, one can deter-
mine an input sequence that drives this sequence of functions by simply selecting
appropriate input symbols for each processing function in the sequence, one at
a time, without needing to know the processing functions to be applied next.

2.4 The Test Suite

As mentioned previously, the test suites derived from X-machines are mainly
inspired from FSM testing and many derivation approaches are extensions of
the W -method.

After applying a certain methodology, some “abstract” test sequences in the
associated FA are produced and in order to obtain a corresponding test suite in
the X-machine, the input values that trigger the processing functions should be
generated according to Definition 8.

It might be the case that the sequences produced are not all feasible and
consequently they cannot be mapped into a set of transitions with actual input
values. In this case, as Definition 8 case (3) specifies, only the longest subsequence
will be mapped into actual input values.

However, in the SXM-testing literature there is no suggestion how to auto-
matically obtain these input values. The problem of how to generate feasible
paths and their corresponding input values is in general an NP-complete prob-
lem. This is why a tool that automatically generates these complete test suites is
desirable, first, because one could rely on the theoretical results that assure the
quality of test suite derived according to the SXM testing methodologies and,
second, the human effort would be limited to writing good SXM specifications.

3 Tool Presentation

Based on the SXM testing framework, a tool3 has been developed, in order
to help users specify X-machine models, verify, validate them and automatically

3 http://staffwww.dcs.shef.ac.uk/people/A.Simons/broker/

generate high-level functional test suites from these specifications. The tool aims
to be used for testing cloud services, after specifying them using the DSXM
formalism.

The software developed consists of three main modules:

– The validation component, responsible for checking the X-machine specified
and announce the user if there are non-reachable states or missing transi-
tions.

– The verification component, responsible mainly for checking the operations
of the service protocol, in order to assure determinism.

– The test generation component, which will deliver high quality test suites,
providing also the actual value for each parameter of the processing func-
tions.

3.1 Validation Component

The XML specification of a service consists firstly of a functional part, which
defines the constants and variables used in the service model, the signatures
of the service’s operations and their inputs, outputs, branching conditions and
state update effects on the memory variables [14]. For a complete description of
the service specification language, the BNF of the language may be consulted
[14].

The second part of the XML specification is represented by a state machine,
which captures the high-level control states of the service and shows its allowed
transitions, labelled with the names of distinct request/response (event/action)
pairs taken from the operations [14], which correspond to the processing func-
tions of the SXM.

For example, an excerpt from a web service specification representing the
system for Book reservation and borrowing from Fig. 1 would look like this:

<State name="Available" initial="true">

<Transition name="borrow/ok" source="Available" target="Borrowed"/>

<Transition name="borrow/error" source="Available" target="Available"/>

<Transition name="reserve/ok" source="Available" target="Reserved"/>

<Transition name="reserve/error" source="Available" target="Available"/>

</State>

The validation module allows users to cross-check the design of their state
machine against the service’s operations, and to determine whether all events
are appropriately handled.

The output of this module is an XML file containing the analysed state
machine specification. The root Machine node will contain a Notice node, which
may contain further Analysis or Warning nodes. For example

<Notice id="1" text="Validation report for machine: BookServiceMachine">

<Analysis id="2" text="Events are ignored in state: Available"/>

...

</Notice>

AWarning is issued if there are states that cannot be reached in the machine,
or if known events (service’s operations) are not handled by the machine. These
are faults in the specification that should be rectified. An Analysis is issued if
any state ignores certain events. This is not necessarily a fault, and it is provided
for further information.

A Notice is then also attached to each State node, giving an Analysis of
which events are ignored by that state. A state may legitimately choose to ignore
certain events; but the analysis allows the user to check that events are handled
as it was intended. The Warning is repeated for each unreachable state, as a
reminder.

<State id="6" name="Available" initial="true">

<Notice id="7" text="Completeness check for state: Available">

<Analysis id="8" text="State ignores the events:">

<Event id="9" name="return/ok"/>

<Event id="10" name="return/error"/>

<Event id="11" name="cancel/ok"/>

<Event id="12" name="cancel/error"/>

</Analysis>

</Notice>

3.2 Verification Component

This module is responsible for checking a specification for completeness and con-
sistency. As explained before, some operations of the service can have different
behaviours or branches, depending on the values of the operation’s inputs, or
internal memory variables. For example, the withdraw operation from a bank
account can have different branches, for error (when the amount requested is
higher than the current balance) or for success (when the value is less or equal
to balance). These different behaviours are specified in the XML model of the
X-machine as “scenarios” of the same operation, corresponding to different pro-
cessing functions of the X-machine. The difference between these scenarios is
given by the condition of each one, which is an expression restricting the do-
main of the processing function, for example an excerpt of the account service
contains the following:

<Scenario name="withdraw/ok">

<Condition>

<Proposition name="and">

<Comparison name="moreThan">

<Input name="amount"/>

<Constant name="zero"/>

</Comparison>

<Comparison name="notMoreThan">

<Input name="amount"/>

<Variable name="balance"/>

</Comparison>

</Proposition>

</Condition>

...

</Scenario>

The verification module checks each operation, to ensure that whatever the
current state of variables in memory, and whatever values are supplied as inputs,
there will always be exactly one path that is executable.

The verification process uses symbolic evaluation to determine possible par-
titions in the input space and symbolic subsumption to check which path is
enabled. The verification process can detect whether the specification exhibits
nondeterminism (more than one scenarios enabled, this is equivalent to several
processing functions having overlapping input domains) or blocking (no path is
enabled, or no function can process the input) for particular inputs and states.

The output of the verification is an XML file containing the analysed pro-
tocol specification. The root Protocol node will contain a Notice node, which
may contain further Analysis or Warning nodes. An Analysis node is issued if
the memory is correctly initialised and each operation is found to be determin-
istic. A Warning node is issued if the memory is not fully initialised, operation
inputs are not all bound, or known events are not handled by the protocol spec-
ification. A Warning is also issued if an operation is found to be blocking, or
non-deterministic under certain inputs. These warnings indicate faults in the
specification that should be corrected. For example:

<Notice id="1" text="Verification report for protocol: BookService">

<Analysis id="2" text="Memory is correctly initialised"/>

<Warning id="3" text="Operation is blocking: borrow(id)"/>

<Warning id="4" text="Operation is blocking: reserve(id)"/>

<Analysis id="5" text="Operation is deterministic: return(id)"/>

<Analysis id="6" text="Operation is deterministic: cancel(id)"/>

</Notice>

A Notice node is then attached to each Operation node, describing the anal-
ysed behaviour of that operation. If the operation is sensitive to different inputs,
another Notice node is attached, containing an Analysis node for each input par-
tition. Otherwise an Analysis node reports that the operation accepts universal
input. Then, for each input partition, an Analysis node is created if one scenario
accepts this input; and a Warning node is issued if no scenarios accept the in-
put (blocking); or if multiple scenarios accept the input (non-determinism) - the
multiple scenarios are identified in appended Analysis nodes under the warning.
In blocking and non-deterministic cases, the specification is faulty and should
be corrected.

3.3 Test Generation Module

This module aims to systematically explore the paths through a specification,
according to the methodology presented in Section 2 and to generate complete
test suites from a cloud software service specification.

High-Level Test Suite Generator. The internal mechanism of the module
is described in the following. It will generate first a reachable state cover set
Sr for the X-machine (which can be different from the one of the associated
automaton, which in case of X-machines could be infeasible). Then, a transition
cover T = Sr ∪ SrΦ is generated and, according to the W -method, a test set
Y = TΦ[k]W should be constructed. In practice, if the current state can be
checked using an abstract or a precise oracle, the W characterisation set can
disappear from the previous formula, resulting in a reduction in test set size.
This is at the cost of inserting a call to the oracle function to inspect the reached
state. The tool considers then for generation only sets of the form Y ′ = SrΦ[k].
Test sequences are generated to a finite bounded depth k, given by the user, to
avoid an explosion of cases.

The maximum path depth k can be arbitrarily chosen. When k = 0 the
generated test suite is the state cover; and when k = 1, it is the transition
cover of the associated automaton. Since all complete paths through the FA are
not necessarily realizable in the SXM, the tool warns the user if states are not
reached, or transitions not covered, for any given value of k.

<Warning id="6" text="Specification is not fully covered by the test

suite">

<Analysis id="7" text="Suggest increasing the path length"/>

</Warning>

<Warning id="8" text="These transitions were not tested:">

<Transition id="9" name="borrow/error" source="Available" target=

"Available"/>

<Transition id="10" name="reserve/error" source="Available" target=

"Available"/>

<Transition id="11" name="return/ok" source="Borrowed" target=

"Available"/>

...

The output will be an XML file containing the high-level tests, its root node
TestSuite will contain a Notice node, whose children nodes consist of Advice
nodes describing the stages in generating and filtering the resulting tests, and
Warning nodes describing any transitions and states that were not covered in the
specification, for the chosen depth k of exploration. The remaining TestSequence
nodes are the paths to test, presented as an ordered set, for example:

<TestSequence id="39" state="BorrowedReserved" path="0">

<TestStep id="40" name="create/ok" state="Available">

<Operation id="41" name="create"/>

</TestStep>

<TestStep id="42" name="borrow/ok" state="Borrowed">

<Operation id="43" name="borrow">

<Input id="44" name="id" type="Integer">1</Input>

<Output id="45" name="result" type="Boolean">true</Output>

</Operation>

</TestStep>

<TestStep id="46" name="reserve/ok" state="BorrowedReserved"

verify="true">

<Operation id="47" name="reserve">

<Input id="48" name="id" type="Integer">2</Input>

<Output id="49" name="result" type="Boolean">true</Output>

</Operation>

</TestStep>

</TestSequence>

Each TestSequence describes a unique scenario to test, consisting of a se-
quence of TestSteps. Typically, the early TestSteps in a sequence denote set-up
actions and the final TestStep is the particular step under observation, to be ver-
ified. However, if multi-objective tests were selected, some TestSequences may
also have intermediate verified TestSteps. This is where shorter tests have been
merged into longer tests, where the shorter sequence is a prefix of the longer
sequence.

Low-Level Test Suite Grounding. The returned high-level test suite is in-
tended for service providers to develop their own bespoke grounding to concrete
tests. A grounding is a transformation from high-level abstract tests to low-level
concrete, executable tests. This may be performed by programs that understand
the XML format of the generated high-level tests, and the expected implemen-
tation technology of the cloud service to be tested.

It is fairly simple to build a grounding and the process is described in [14].
Each TestSequence starts with a freshly-created (or reset) instance of the ser-
vice. The TestSequence then describes a particular scenario to test, shown as a
sequence of TestStep interactions. Each TestStep represents a single interaction
with the service, in which a given operation is called with particular concrete
inputs that should trigger the given scenario. Typically, the early TestSteps in a
sequence constitute the set-up actions for the desired scenario and the final Test-
Step is the step to be verified. Whenever a TestStep is flagged for verification,
then the grounding should generate code to verify, through assertions, that:

– a request triggers the expected named scenario in the operation
– the service subsequently enters the state named by the step
– any outputs returned in the response are the expected outputs

Positive tests are indicated by the scenario’s response-name, for example,
ok for a normal response, or error for a planned error handler. Negative test
sequences are always indicated by the response ignore, which is generated auto-
matically. No outputs are simulated for negative tests, but the implementation
should flag that the request was refused. Negative tests always arise from re-
fusals by the state machine, since failing a guard for one scenario always triggers
a different scenario (positively), so long as the guards are mutually exclusive and
exhaustive.

In the above, we presume that software services are designed respecting the
mentioned design-for-test criteria. Each response from a service must indicate, in

addition to the usual returned value, metadata about which branch of an opera-
tion (scenario) executed, and what abstract state the service entered afterwards.
This information could be supplied as extra header information, or as additional
query-operations upon the service, which could be interleaved with the tested
operations above.

4 Example XML Service Specifications

The testing tool is offered as a web service, able to receive XML specifications
of the cloud software services under test. The web standard for specifying the
functional behaviour of the system under test is also provided and it has been
presented in [14]. To assist users understanding how a valid service specification
may be defined according to this schema, several XML service specifications are
also given as examples, as valid implementations of the schema and provided on
the tool web page 4. Due to space constraints we will briefly summarize them,
more details and complete specification can be found online.

– A simple login service, with two states and no memory updates, illustrating
a state machine, guarded scenarios and default ignore transitions, inserted
during test generation.

– A bank account service, with two states and integer balance updates in mem-
ory. This example illustrates how to initialise and update memory variables
and design guards with compound conditions.

– A contact list service with data stored as two lists in memory. This is a more
complex example, illustrating the need to complete functions with enough
scenarios to trigger all memory-dependent branches; more variants are pro-
vided in order to illustrate how a specification can be improved for testability
reasons.

– A simple shopping cart that represents the state of the cart and the level of
stock as two maps in memory. This example illustrates the pure functional
style of updates to data structures in memory.

– A simple book lending service, modelling the constraints on borrowing and
reserving books. This example illustrates the discovery of incomplete opera-
tions, where the given scenarios do not cover all input and memory cases.

– A simple Cloud data storage service, with document versioning and a limit
set on the volume of data to be stored. This example illustrates the use of
an extra local variable in memory to assist with version numbering.

5 Related Work

Different approaches to cloud service testing can be consulted in two excellent
surveys about testing and verification of service oriented architectures [5, 3].
Among these, only a few only a few approaches have used the state-based nature

4 http://staffwww.dcs.shef.ac.uk/people/A.Simons/broker/specify.html

of services for testing purposes; and this research has not led to a mature testing
tool.

The current paper is extending the work from [14] in the following aspects.
It introduces the theoretical X-machine background, needed to understand the
test suite generation mechanism and the properties (or design for test conditions)
the specifications should satisfy. Secondly, compared to previous variant of the
tool, the validation and the verification modules have been added, in order to
help the user design proper specifications. Also, some improvements in the test
generation algorithm, regarding the search for input values that trigger every
transition on the path, have been realized.

Another tool, called JSXM [8], was developed and used for SXM based test-
ing, using the theoretical foundations from [12]. JSXM supports the animation
of SXM models, described in an XML-based language with Java in-line code,
and the automatic generation of test suites from the SXM specifications. How-
ever, the user modelling the system should provide the r-state cover Sr and a
separating set Ws (its construction for more complex machines can be tedious).

6 Conclusions and Further Work

This paper presents a tool for model based testing cloud services, using as for-
mal specification the stream X-machine model. It summarizes the theoretical
background of SXM testing and explains what properties the specification must
satisfy in order to obtain high quality test suites.

Future work will focus on automatic groundings for certain standard service
implementation technologies. Another interesting research direction is to apply
metaheuristic search algorithms to generate the concrete input parameter values
which can trigger the given functions from a generated sequence.

Acknowledgements. The research leading to these results has received
funding from the European Union Seventh Framework Programme (FP7/2007-
2013) under grant agreement no 328392, the Broker@Cloud project (www.broker-
cloud.eu).

References

1. Binder, R.V.: Testing Object-oriented Systems: Models, Patterns, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

2. Bogdanov, K., Holcombe, M., Ipate, F., Seed, L., Vanak, S.K.: Testing methods
for X-machines: a review. Formal Asp. Comput. 18(1), 3–30 (2006)

3. Bozkurt, M., Harman, M., Hassoun, Y.: Testing and verification in service-oriented
architecture: a survey. Softw. Test., Verif. Reliab. 23(4), 261–313 (2013)

4. Briand, L.C., Penta, M.D., Labiche, Y.: Assessing and improving state-based class
testing: A series of experiments. IEEE Trans. Software Eng. 30(11), 770–793 (2004)

5. Canfora, G., Penta, M.D.: Service-oriented architectures testing: A survey. In: Lu-
cia, A.D., Ferrucci, F. (eds.) ISSSE. Lecture Notes in Computer Science, vol. 5413,
pp. 78–105. Springer (2008)

6. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Software Eng. 4(3), 178–187 (1978)

7. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.:
Exploitation of high performance computing in the FLAME agent-based simulation
framework. In: Min, G., Hu, J., Liu, L.C., Yang, L.T., Seelam, S., Lefevre, L. (eds.)
HPCC-ICESS. pp. 538–545. IEEE Computer Society (2012)

8. Dranidis, D., Bratanis, K., Ipate, F.: JSXM: a tool for automated test generation.
In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM. Lecture Notes in
Computer Science, vol. 7504, pp. 352–366. Springer (2012)

9. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Orlando,
FL, USA (1974)

10. Holcombe, M., Ipate, F.: Correct systems - building a business process solution.
Applied computing, Springer (1998)

11. Ipate, F.: Testing against a non-controllable stream X-machine using state count-
ing. Theor. Comput. Sci. 353(1-3), 291–316 (2006)

12. Ipate, F., Holcombe, M.: Testing data processing-oriented systems from stream
X-machine models. Theor. Comput. Sci. 403(2-3), 176–191 (2008)

13. Ipate, F., Holcombe, M.: An integration testing method that is proved to find all
faults. International Journal of Computer Mathematics 63, 159–178 (1997)

14. Kiran, M., Friesen, A., Simons, A.J.H., Schwach, W.K.R.: Model-based testing
in cloud brokerage scenarios. In: Lomuscio, A., Nepal, S., Patrizi, F., Benatallah,
B., Brandic, I. (eds.) ICSOC Workshops. Lecture Notes in Computer Science, vol.
8377, pp. 192–208. Springer (2013)

15. Laycock, G.T.: The Theory and Practice of Specification Based Software Testing.
Ph.D. thesis, University of Sheffield (1983)

16. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. J. Internet Services and Applications 1(1), 7–18 (2010)

