
This is a repository copy of Convergence acceleration operator for multiobjective 
optimization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/9817/

Article:

Adra, S.F., Dodd, T.J., Griffin, I.A. et al. (1 more author) (2009) Convergence acceleration 
operator for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 
13 (4). pp. 825-847. ISSN 1089-778X 

https://doi.org/10.1109/TEVC.2008.2011743

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009 825

Convergence Acceleration Operator
for Multiobjective Optimization

Salem F. Adra, Member, IEEE, Tony J. Dodd, Ian A. Griffin, and Peter J. Fleming

Abstract— A convergence acceleration operator (CAO) is
described which enhances the search capability and the speed of
convergence of the host multiobjective optimization algorithm.
The operator acts directly in the objective space to suggest
improvements to solutions obtained by a multiobjective evolu-
tionary algorithm (MOEA). The suggested improved objective
vectors are then mapped into the decision variable space and
tested. This method improves upon prior work in a number
of important respects, such as mapping technique and solution
improvement. Further, the paper discusses implications for many-
objective problems and studies the impact of the use of the CAO
as the number of objectives increases. The CAO is incorporated
with two leading MOEAs, the non-dominated sorting genetic
algorithm and the strength Pareto evolutionary algorithm and
tested. Results show that the hybridized algorithms consistently
improve the speed of convergence of the original algorithm while
maintaining the desired distribution of solutions. It is shown that
the operator is a transferable component that can be hybridized
with any MOEA.

Index Terms— Evolutionary multiobjective optimization,
neural networks.

I. INTRODUCTION

R
EAL-WORLD problems commonly require the simulta-

neous consideration of multiple competing performance

measures. Without loss of generality, a multiobjective opti-

mization problem (MOP) can be formulated as a minimization

of a function Z(X), where Z(X) = {Z1(X) · · · Zn(X)} is a

vector of objective functions, n is the number of objectives,

and X is a vector of decision variables. The optimization prob-

lem consists of finding the decision vector, or set of vectors,

that results in the best solution or set of solutions in the objec-

tive space. For multiobjective problems in which objectives are

competing, no single optimal solution exists, but rather a set of

candidate solutions known as the approximation set. The ideal

approximation set of decision vectors will be characterized by

the fact that no other solution within another approximation

set offers better objective function values across all objectives.

This set of candidate solutions is said to be non-dominated and

is known as the Pareto-optimal set, from which the decision

maker ultimately selects an acceptable solution. The associated
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Fig. 1. Multiobjective problem domain.
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Fig. 2. Good set of solutions to a multiobjective optimization problem in
terms of proximity, diversity, and relevance (i.e., location in ROI).

objective vectors form the tradeoff surface (or Pareto front)

in the objective space. Fig. 1 shows an optimization problem

where three decision variables (X1, X2 and X3) are optimized

with respect to two competing objectives (Z1 and Z2), illus-

trating the mapping of a decision vector into objective space

and showing the Pareto front for this idealized case.

The approximation set offered to the decision maker is

required to be as close as possible to the true Pareto front. The

approximation set is also required to be well spread across

objective space, presenting the decision maker with a well-

distributed set of solutions within the region(s) of interest

(ROI) [1]. These two characteristics of an approximation set

are termed proximity and diversity, respectively, and are illus-

trated in Fig. 2.

To be of practical use, a multiobjective (MO) optimizer

must produce an approximation set with acceptable proxim-

ity and diversity within acceptable computational resources

(most importantly, a fixed and limited budget of objective

function evaluations). The time taken by an algorithm to

perform a given number of search iterations for a particular

1051-8215/$26.00 © 2009 IEEE
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problem is dependent upon the available computing power.

However, the efficiency of a multiobjective evolutionary al-

gorithm (MOEA) can be determined by the proximity and

diversity of the approximation sets produced from a given

number of iterations over multiple runs of the algorithm [2]

and within a fixed budget of objective function evaluations.

The use of population-based optimization techniques, such

as evolutionary algorithms (EAs), is a suitable approach for

addressing MO problems. The population-based nature of EAs

makes them well suited to addressing non-commensurate MO

problems, as they simultaneously explore a family of points

in the search space. However, EAs are known to present two

main shortcomings that are addressed in this paper.

The first shortcoming is that an EA offers no guarantee

of finding optimal solutions within a specified number of

iterations, i.e., a single run or more. Traditional evolutionary

computation (EC) techniques usually consist of an explorative

set of procedures operating in the decision variable space. The

operators within these algorithms mimic Darwinian biological

principles of stochastic selection followed by recombination

and mutation [3], [4]. Starting either from a random population

of candidate solutions or from a previously known set of

solutions in decision variable space, EAs calculate the corre-

sponding objective function values, assign them fitness scores

reflecting their utility in the application domain, and bias the

search toward high-potential areas of the space by forcing

the “survival-of-the-fittest” solutions. Through the variation

operators operating in the decision variable space, new

solutions are produced with the assumption that “good”

parents are more likely to produce “good” offspring and

hence should contribute more to the next generations.

The second shortcoming of EAs is that, in many

application domains, calculating the true objective function

may be computationally expensive; for example, in some

applications, a single objective function evaluation can

require hours to compute [5]. Given their generational

population-based approach, EAs require a significant number

of objective function calculations to be performed. The

use of approximated models using neural networks (NNs),

or other metamodelling techniques, such as Kriging-based

approximations, or response surface models [6], [7], provides

low computational burden alternatives to full objective

function evaluation [8], [9]. Metamodeling is a well-

established research discipline that focuses on building

approximated models which reduce the computational effort

needed to compute exact and expensive objective functions.

While the most common use of the metamodeling technique

is to substitute the use of expensive objective functions [10],

metamodeling techniques are also used to model noisy [11]

and ill-defined [12] objective functions. The approximated

models, also called metamodels or surrogate models, are

generally models of higher level of abstraction compared with

the exact models they represent. Hence, an essential matter

that should be noted when deploying metamodeling techniques

is that the solutions achieved for a metamodel should be

cautiously analyzed before being considered as solutions to

the exact model, which is usually of higher fidelity [13]. For

a comprehensive survey about fitness approximation in EAs,

the interested reader is directed to [14].

In an attempt to address the two shortcomings discussed

above, a convergence accelerator is proposed that maps from

the objective space to the decision variable space (in the

reverse direction to a metamodeling technique). This operator

is a transferable component that can be hybridized with any

MOEA. The purpose of this convergence acceleration operator

(CAO) is to enhance the performance of the host MOEA in

terms of the proximity of the approximation set for a given

number of objective function calculations without impeding

the active diversification mechanisms of these search strate-

gies. In this paper, the CAO is hybridized with two widely

used MOEAs, the non-dominated sorting genetic algorithm

(NSGA-II) [15] and the strength Pareto evolutionary algorithm

(SPEA2) [16]. EAs operate in decision space and perform

decision space to objective space mapping but tend to fail to

exploit direct use of the objective space—a lost opportunity. In

contrast to this, the CAO features a direct search in objective

space and then uses predictions to map from objective space

to decision space.
The idea of performing local search in the objective space

and seeking to map a certain objective vector back to its cor-

responding decision vector was first introduced in [17], [18],

and applied to a bi-objective real-world problem in [19]. They

proposed a method to accelerate the search of an MOEA by

approximating the function that maps from the objective space

to the decision space using NN techniques. More specifically,

their method, which is hybridized with the reduced Pareto set

genetic algorithm (RPSGA) [20], used a multilayer perceptron

(MLP) approach [21] to map in the reverse direction (i.e.,

objective vectors as inputs and decision vectors as outputs).

The trained MLP is then deployed to predict the approximate

vectors of decision variables which should correspond to the

objective vectors introduced by a local search around the

nondominated solutions arising from the previous generation.

The local search suggested by Gaspar-Cunha et al. attempts

to improve the locally nondominated solutions by minimizing

their objective values (normalized in the range [0, 1]) directly

in the objective space. Each objective value is minimized by

an absolute and fixed step length. Gaspar-Cunha et al. tested

their technique on a set of bi-objective test functions [22]

and a bi-objective optimization problem of screw geometry

and reported an accelerated convergence on these bi-objective

problems compared to the stand-alone RPSGA.
Independently of Gaspar-Cunha et al., Adra et al. [8]

investigated the utility of deploying direct local search in

the objective space and inverse NN predictions on a many-

objective optimization problem. They applied it to an eight-

objective problem of aircraft control system design and used

the multiobjective genetic algorithm (MOGA) [23] which

integrated Fonseca and Fleming’s preferability operator [24]

for incorporating DMs preferences for search space reduction.
The contribution of this paper is to develop further the

approach of Adra et al., while seeking to improve the ef-

ficiency and effectiveness of Gaspar-Cunha et al.’s original

approach. The improvements consist of the following:

1) a variable step length approach for the local improve-

ment step;

2) the use of radial basis function neural networks for the

mapping stage;
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Fig. 3. Convergence acceleration operator steps used in generating a single
candidate solution.

3) the use of a correction step to ensure that the decision

variables remain feasible;

4) the computation of exact objective values for the

improved solution.

The paper includes a rigorous assessment of this new

approach using two widely used MOEAs and accepted perfor-

mance criteria. Recognized test functions from the literature

are used to assess the effect of the CAO, when deployed on

challenging bi-objective problems, problems with 3, 8, and 12

objectives and, finally, on a real-world computationally expen-

sive problem comprising 14 objectives. The study concludes

with an analysis of the computational effort required for dif-

ferent stages of the method. The paper is organized as follows.

In Section II, the proposed CAO operator is introduced and

described. Section III describes the test procedures used in

the comparative testing of the standard and CAO-enhanced

algorithms. Section IV presents results of the tests described in

Section III, and concluding remarks are provided in Section V.

II. PROPOSED CONVERGENCE ACCELERATION OPERATOR

A. Overview

Fig. 3 illustrates the actions of the hybridized MOEA

which includes the CAO. Trajectories 2–5 describe the specific

actions of the CAO.

Trajectory 1: the mapping between a decision variables vector

realized by a MOEA and its corresponding computed objective

values vector.

Trajectory 2: the resulting objective vector—a member of the

approximation set at generation t—is improved in the objective

space using a local search (described in the next section).

Trajectory 3: a prediction of the decision variables vector

corresponding to the improved objective vector using an NN

trained with the exact data resulting from earlier evaluations

of objective functions—at the same generation t—during the

MOEA search.

Trajectory 4: rectification of any invalid decision variable

vector introduced by the NN mapping by reflecting out-of-

bounds values of the produced decision variables to their

nearest values in their domain of definition.

Trajectory 5: finally, calculation of the exact objective values

vector for the proposed decision variables vector in the normal
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Fig. 4. Deterministic improvement of the tradeoff surface in objective space.

way. These candidate solutions will then compete for archive

update and insertion with the best solutions currently stored

in the online archive.
When the CAO is launched, it starts by deterministically

improving the best solutions achieved; these solutions are

the elite solutions stored in the online archive of the host

algorithm. This improvement takes place in the objective space

and produces an enhanced version of the archive. The CAO

then uses a trained NN mapping procedure to predict the

corresponding decision vectors for the enhancements to the

archive. A check of these new decision vectors is made, aimed

at reflecting any out-of-bounds decision variables arising from

the mapping back into their allowed domain. A correction

step is then applied, whereby the true objective values cor-

responding to all of these new decision vectors are calculated,

thereby maintaining the fidelity of the optimization problem.1

Thus the correction step establishes a correct mapping from the

decision space to the objective space; the CAO, therefore, does

not depend on the fidelity of the inverse mapping step. The

correction step of the CAO is an enhancement to the technique

suggested in Gaspar-Cunha and Vieira [17] and Gaspar-Cunha

et al. [18]; their approaches did not rectify any predictions

inaccuracy introduced by the NN. After the correction step,

the enhanced and the original archive of solutions compete

to populate the new archive for the next generation, which

will represent the pool from which solutions are selected and

recombined. The two components of the CAO are described

in detail in the following sections.

B. Local Improvement in Objective Space

The CAO takes place after the recombination and mutation

processes and operates on the elitist solutions that would nor-

mally propagate to the following generation (or get presented

to the DM). The CAO is an auxiliary local improvement oper-

ator that does not replace the variation operators in EAs. The

first CAO step is a deterministic local improvement procedure

in the objective space. This is the component responsible for

1This is quite different from metamodeling techniques, where the optimized
model is of lower fidelity compared to the exact model.
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speeding up convergence and hence reducing computational

effort by producing better results within a fixed budget of

objective function evaluations. It achieves this by steering the

objective values obtained by the MOEA toward an improved

Pareto front. The objective space local improvement process

is implemented in this paper for any number n of objectives,

and is illustrated in Fig. 4 on a bi-objective problem (n = 2)

for simplicity.

In general, nonboundary solutions in terms of any specific

objective (solutions B, C, and D in Fig. 4) will be improved

in terms of all the performance measures by steering their

objective values into a region of improved objective function

values. The new “improved” values for the objectives (of each

nonboundary solution) are determined by linearly interpolating

a new value for each objective, between its current value and

the next best value(s) achieved for that objective within the

population.2 This is described by

Z D′ = Z(xD − (xD − xC )/h, yD − (yD − yE )/h)

where Z(x, y) represents a point in the bi-objective space, Z D′

is the “improved” objective value, and h is the interpolation

step factor. This process is annotated for solution D in Fig. 4.

Compared to solution D, solution C has the next best value

in terms of objective 1 while solution E possesses the next

best value in terms of objective 2. Boundary solutions in

terms of a certain objective (solutions A and E in Fig. 4)

are improved in terms of the remaining objectives. In other

words, solution A will be improved in the “Objective 2” axis

direction, thereby enhancing its overall quality by improving

it in terms of objective 2, and solution E will be improved in

the “Objective 1” axis direction, consequently improving its

overall worth by enhancing it in terms of objective 1.

It should be noted that the suggested local search within the

CAO was aimed at addressing the primary MO requirement of

convergence [25]. The diversity requirement is not addressed

but, instead, is dealt with by the active diversification mecha-

nism of the MOEA hosting the CAO. It should also be noted

that as the dimensionality of the objective space increases, the

diversity requirement becomes easily achievable and needs to

be controlled and limited to avoid hampering the convergence

process (see, for example, [26]).

In their proposed technique, Gaspar-Cunha et al. used a

fixed step length for the local search in the objective space.

In this paper, an adaptive step length, which is controlled by

step factor h, is proposed for the local improvement step in the

objective space. The step factor h is an application-dependent

parameter and should be carefully chosen. A smaller h value

(larger step length) is recommended for early generations of

the optimization, with its value gradually increasing.

Moreover, since the decision vectors of the improved front

of solutions are to be predicted by the NN (a process described

in the following section), it is essential that the new introduced

solutions in the objective space reside within the neural

network’s reliable zone of prediction. NNs are very practical

tools for regression problems and data fitting, but in common

2The nondominated solutions are improved in an objectivewise order, each
time sorting the archive of locally nondominated solutions in terms of a certain
objective.

with other curve fitting and data modeling techniques, they are

known to be unsuitable for extrapolation tasks.
As a result, the step factor h should be chosen in a way

that maximizes the local improvement step in the objective

space while preventing the introduction of solutions which

reside outside the NN’s local region of training. In this paper,

a relatively small value is chosen for the initial value of h at

the start of the optimization process for each of the MOPs

investigated, i.e., a relatively large step. Based on the CAO’s

rate of success RS , the initial value of h is then gradually

increased (i.e., step length decreased) as the optimization

process progresses.
The CAOs rate of success RS is defined as

Rs =
Re

Rt

× 100%

where Re is the number of “effective” solutions which are

introduced by the CAO, corrected at the correction step, and

successfully chosen to propagate to the following generation,

and Rt is the total number of solutions which are introduced

by the CAO.
When the CAO’s rate of success falls below a certain

threshold τ the step factor h is increased by a certain cooling

factor ε for use at the next generation. The step factor h at

generation t = i + 1 is increased using the following rule:

if RS(t = i + 1) < τ → ht=i+1 = ht=i × ε.

The CAOs rate of success decreases in one of two cases if the

step length is too large:

1) the CAO introduces solutions beyond the Pareto front,

or;

2) the CAO introduces solutions outside the NNs reliable

region of prediction, and thus the NN is making extra-

polation predictions.

As the optimization process progresses, the first scenario is

very likely to occur when a fixed value for h is used. From

the experiments carried out during the course of this paper, it

was observed that fewer than 5% of the solutions suggested

by the CAO were effective in some scenarios where the value

of h was fixed. In this paper, different values for the initial

step factor h the threshold τ and the cooling factor ε were

investigated for each of the MOPs used. The different values

tested and a general guideline for choosing h, τ , and ε are

described in the results section for each of the MOPs.

C. Objective Space to Decision Space Mapping

The description of the mapping method in [19] is very brief

and differs from the local mapping approach described in this

section. The second component of the CAO consists of a NN

trained to map the new solutions thus generated in objective

space by the first phase of the convergence accelerator back

to the corresponding decision variable vectors. NNs [21] are

a powerful approach for modeling patterns of data in order

to produce predicted values of unknown systems. The NN

needs to be trained to achieve desirable predictions and to

model complex functions as closely as possible. The process of

training the NN consists of providing it with samples of input–

output data and manipulating weighting variables by adjusting

their values and minimizing prediction errors.

Authorized licensed use limited to: Sheffield University. Downloaded on October 5, 2009 at 06:55 from IEEE Xplore.  Restrictions apply. 
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The second component of the CAO only aims to build a

local model3 of the function which maps from the objective

space to the decision space at a certain iteration of the

optimization process. This is achieved by training an NN,

using exact objective vectors as inputs and their corresponding

decision variable vectors as outputs. The training data is the

exact data resulting from the objective function values derived

within a single iteration of a MOEA. More specifically, at

every iteration of the optimization process (or alternatively,

when the CAO is called, if its use is optional), a new local

model is built based on the locally nondominated solutions

(objective vectors and corresponding decision vectors). The

local model is then solely used within the same iteration

to predict the decision variables of the new objective values

introduced by the first component of the CAO that locally

steers the local Pareto front toward an enhanced Pareto front.

When training an NN, it is vital to ensure well-spread

and problem-defining data. Abundance of data is an essential

point for achieving well-trained NN and high-fidelity models,

but can be a problem in some computationally expensive

applications.

Nevertheless, the CAO is designed for accelerating

population-based optimization strategies such as evolutionary

algorithms, where data abundance is usually an essential re-

quirement for the success of such techniques. If an application

is computationally very expensive, the requirement for data

abundance can be addressed by using a cheaper and acceptable

metamodel that approximates the objective function.

In the context of this paper, the investigation is confined to

the use of NNs within the framework of the CAO, due to their

flexibility and good reputation for universal approximation

capability, given a sufficient number of hidden units and a

suitable choice of parameters [27], [28]. In this paper a specific

type of NN, the radial basis function (RBF) [21], is used

to build the local models of the local Pareto fronts and for

predicting the decision variables of the solutions introduced

by the local search.

In a comparative study of metamodeling techniques, Jin

et al. [29] compared the performance of RBF, polynomial

regression, the Kriging method, and multivariate adaptive

regression splines (MARS) under multiple modeling criteria.

They used 14 test problems with representative features of

engineering design problems. These features consisted of prob-

lem scale (with large and small number of variables), nonlin-

earity of the performance behavior, and noisy versus smooth

behavior. In order to measure the performance of the studied

metamodeling techniques with respect to the three previously

mentioned metamodeling criteria, Jin et al. measured the

following aspects for the RBF, Kriging, polynomial regression,

and MARS:

1) accuracy of prediction;

2) robustness (i.e., accuracy of prediction when different

problem types and sample sizes are used);

3) efficiency (i.e., computational effort required for build-

ing models and predicting new values);

3This is in contrast to standard metamodeling techniques which build global
models of a certain objective function.

4) transparency (“capability of illustrating explicit relation-

ships between input variables and responses”), and;

5) conceptual simplicity (i.e., ease of implementation).

Compared to Kriging, MARS, and polynomial regression, Jin

et al. concluded that, overall, the RBF NN excelled in terms

of robustness and accuracy in most of the studied categories

of test problems.

In [17], [18], the authors trained a multilayer perceptron

(MLP) using the backpropagation algorithm to learn the

function that maps from the objective space to the decision

space. MLPs are feed-forward NNs generally trained with the

standard backpropagation algorithm [21] (using the gradient

descent optimizer) and widely used in the field of pattern

classification and recognition. The use of MLPs within an

acceleration operator such as the CAO is a component that

works against the purpose of an accelerator. This is due to

the fact that an MLP is trained iteratively, which can be time

consuming.

In the NN literature, the backpropagation algorithm is one of

the most studied and used algorithms for training MLPs [21],

[30]. When MLPs are trained with the backpropagation learn-

ing algorithm, the output results of the MLP and the exact

results are compared and an error value (usually the mean

squared error) is calculated and fed back through the network.

The parameters (weights) of the MLP hidden units are then

adjusted and optimized using a nonlinear optimizer, usually the

gradient descent algorithm. MLPs have two major drawbacks

when trained with the standard backpropagation algorithm and

used within a convergence accelerator. These drawbacks are

the slow convergence and the susceptibility of getting stuck

at local minima in terms of the error functions (and hence

suboptimal weights for the MLP units). It should be noted,

however, that nowadays many alternatives and modifications

to the backpropagation algorithm and the gradient descent

optimizer are commonly used [21]. The conjugate gradient

descent, the Levenberg–Marquardt algorithm, quasi-Newton

methods, and Delta-bar-Delta [31] are examples of such al-

ternatives and usually perform significantly better than the

backpropagation algorithm.

RBF NNs, on the other hand, are two-layered NNs and well

known to be practical alternatives to MLPs due to their much

faster two-stage training process [21], [28]. In RBF NNs the

activation functions of the hidden layer consist of RBFs, most

commonly a Gaussian function, which replaces the nonlinear

activation functions (sigmoidal) used in MLPs. A RBF [pre-

sented in (1)] is a real-valued function whose values depend

on the distance of a certain input ‘x’ from a certain center ‘c’

φ(x, c) = φ(‖x − c‖). (1)

A Gaussian function is a common type of RBF and is

described in (2), where c is the center of the Gaussian, and w

is its width

φ(x) = exp

(

−
(x − c)2

w2

)

. (2)

Unlike the MLP training process where the activation of the

hidden units consists of nonlinear computation of the scalar

product of the input vectors and the weight vectors of the
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hidden neurons, the hidden neurons of an RBF network are

activated by calculating a nonlinear function of the distance

between the input and the RBF centers. The RBF network

mapping to the output layer is described in (3), where x is the

input data, k is the number of output units, M is the number

of RBFs �, and wkj are the output layer weights

yk(x) =

M
∑

j=0

wkj�(x). (3)

The input data is passed through the input layer and then

processed by the RBFs of the hidden layer. The outputs of the

hidden layer units are then linearly combined and processed at

the output layer of the NN. The linear mapping of the hidden

layer’s values into the output layer of an RBF network is an

advantageous feature compared to MLPs. This advantage is

due to the fact that training an RBF consists of adjustments to

a linear mapping from the hidden layer to the output layer. As

a result, the manipulation of a linear error function in terms

of the RBF weights makes it straightforward to efficiently

use linear algebra techniques to find the global optima in the

parameter space of the error function and hence the optimal

values for the RBF weights.

RBF NNs, therefore, do not suffer from the problem of

getting stuck at local minima in the parameter space because

of their quadratic error functions whose global minima can

be easily found. The parameter estimates are guaranteed to

correspond to the global minimum for a given RBF struc-

ture. However, it should be noted that similar to the MLP, the

choice of an RBF structure (number of units, the position and

widths of the basis functions) is an optimization problem. In

this paper, an unsupervised training process is used to set the

number of RBF units, widths, and centers. This is described in

the next section. Nonetheless, using a RBF NN simplifies the

training process because the parameter estimates will at least

be optimal. RBFs are a more suitable choice for deployment

within the CAO than MLPs due to the considerably faster

learning process of RBFs. This makes it feasible to initialize

and train a different RBF to model a local model at every

iteration at which the CAO is executed.

Two possible approaches to training the NN component

of the CAO hybridized with a MOEA are proposed: online

and offline training modes. In this paper, the online training

mode is further elaborated and investigated. However, the

interested reader is directed to [32] where the offline training

mode is explored and investigated. The online mode consists

of concurrently training and validating the NN during the

execution of the MOEA. In the online mode, and at every

generation of a MOEA, the training data is collected and

instantly used for training a RBF NN, thereby building a local

model of the mapping function from the objective space to the

decision space.

III. EXPERIMENTAL FRAMEWORK

In this section the different experiments investigated for

testing the CAO are introduced. The experiments are divided

into two different categories, reflecting the dimensionality of

the optimization problem in the objective space: bi-objective

optimization and many-objective optimization problems. With-

out any loss of generality, all the optimization problems

used in this paper consist of minimization problems. The

different MOEAs investigated in this paper are benchmarked

in a way that is similar to the approach used in [25]. The

number of objective function evaluations is fixed beforehand

and the performances over multiple runs of the MOEAs are

determined and compared. As a result, MOEA “A” is deemed

more competent than MOEA “B” if its average performance

over multiple runs is superior to the performance of B. This

approach of benchmarking MOEAs is more efficient than

the approach where resources are determined for achieving

the optimal results, which are known a priori, for a certain

optimization problem. Bosman and Thierens [25] state that this

way of benchmarking “represents a more practical situation,

since we usually do not assume that an unlimited number of

function evaluations is available.”
In this paper a well-established set of optimization problems

is first investigated and used to test the performance of

the introduced convergence accelerator. These optimization

problems represent a subset of test functions that belong to a

test suite of bi-objective problems presented in [22], and which

will be referred to as the ZDT test functions. The ZDT suite

is comprised of six problems, each one presenting a specific

characteristic that generally cause difficulties to major evolu-

tionary optimization strategies. The bi-objective test functions

used to examine the effect of the introduced CAO are the

ZDT1 (convex test function), the ZDT3 (discontinuous test

function), and the ZDT6 (nonuniform test function). The ZDT

test functions (1, 3, and 6) are presented below.

Minimize F(x) = ( f1(x1), f2(x))

subject to f2(x) = g(x2, . . . , xm)

·h( f1(x1), g(x2, . . . , xm))

where x = (x1, . . . , xm)

ZDT1 Convex Pareto front formed with g(x) = 1, m = 30,

and xi ∈ [0, 1]
f1(x1) : x1

g(x2, . . . , xm) : 1 + 9

m
∑

i=2

xi/(m − 1)

h( f1, g) : 1 −
√

f1/g

ZDT3 Discrete Pareto front formed with g(x) = 1, m = 30,

and xi ∈ [0, 1]
f1(x1) : x1

g(x2, . . . , xm) : 1 + 9

m
∑

i=2

xi/(m − 1)

h( f1, g) : 1 −
√

f1/g − ( f1/g)2 sin(10π f1)

ZDT6 Nonuniform distribution across a non convex Pareto

front formed with g(x) = 1, m = 10, and xi ∈ [0, 1]

f1(x1) : 1 − e−4x1 sin6(6πx1)

g(x2, . . . , xm) : 1 + 9

(( m
∑

i=2

xi

)

/9

) 1
4

h( f1, g) : 1 − ( f1/g).
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Studies have shown that conclusions drawn from bi-

objective optimization frameworks cannot be generalized to

the many-objective optimization frameworks with more than

two competing objectives [2], [26]. In order to rigorously

investigate the effect of the CAO, optimization scenarios with

more than two objectives and various objective relationships

were investigated. Hence, 3-, 8-, and 12-objective versions

of DTLZ2, which is a real-parameter scalable test function

introduced in [33] to test the effectiveness of MOEAs in

dealing with increasing numbers of objectives, were used.

DTLZ2 is presented in (4), where M presents the number of

objectives, n = M +K −1 is the number of decision variables,

and K is a “difficulty parameter” (K = 10 in this paper).

DTLZ2(M) denotes an M-objective instance of DTLZ2.

min . z1(x) = [1 + g (xM )] cos
(

x1
π

2

)

cos
(

x2
π

2

)

· · ·

× cos
(

xM−2
π

2

)

cos
(

xM−1
π

2

)

,

min . z2(x) = [1 + g (xM )] cos
(

x1
π

2

)

cos
(

x2
π

2

)

· · ·

× cos
(

xM−2
π

2

)

sin
(

xM−1
π

2

)

,

min . z3(x) = [1 + g (xM )] cos
(

x1
π

2

)

cos
(

x2
π

2

)

· · ·

× sin
(

xM−2
π

2

)

,

...
...

...

min . zM−1(x) = [1 + g (xM )] cos
(

x1
π

2

)

sin
(

x2
π

2

)

,

min . zM (x) = [1 + g (xM )] sin
(

x1
π

2

)

,

w.r.t x = [x1, . . . , xn] ,

where g (xM ) =
∑

xi ∈ xM (xi − 0.5)2 ,

with xM = [xM , . . . , xn] , and 0 ≤ xi ≤ 1

for i = 1, 2, . . . , n, with n = M + κ − 1 (4)

DTLZ2 possesses a continuous and non-convex global

Pareto front and comprises two types of decision variables

responsible for controlling the solution convergence toward the

global Pareto front and the solution distribution in the objective

space, respectively. The scalable DTLZ2 test function belongs

to the DTLZ test suite which covers many problem characteris-

tics such as discontinuity and multimodality. DTLZ2 has been

previously demonstrated in [26] as a challenge for MOEAs

especially as the number of objectives increases. Since the

CAO does not require any assumptions about the nature of

the optimization problem, DTLZ2 was deemed sufficient to

test the performance of the CAO on optimization problems

with increasing number of objectives.

It should be noted that the ZDT and DTLZ2 test functions

present common similarities in the decision space. In partic-

ular, the different versions of the DTLZ2 test function are

characterized by the fact that the last k decision variables of

any Pareto optimal solution presented the same value. This last

feature is rarely present in real-life applications. As a result,

the performance of the CAO is also investigated on two chal-

lenging test functions with nonseparable decision variables.

A nonseparable MOP is a problem with variable depen-

dencies. Nonseparability is a feature that is common in real-

life applications. In [40] and [41], Huband et al. introduced

a tool kit which allows the designer to construct scalable

multiobjective test functions with well-defined Pareto fronts

and desired characteristics. Using this tool kit, Huband et al.

proposed a test suite of nine scalable multiobjective problems

featuring important characteristics such as nonseparability. In

this paper, the CAO will be additionally assessed on three-

objective instances of the test functions WFG6 and WFG9

[WFG6(3) and WFG9(3)], two of the most complex and non-

separable test functions suggested by Huband et al.4 WFG9, in

particular, presents a deceptive decision space and represents

a formidable challenge for most MOEAs.

The elitist non-dominated sorting genetic algorithm

NSGA-II [15] and the strength pareto evolutionary algorithm

SPEA2 [16], which are two well-established MOEAs and

highly cited second-generation optimizers in the EMO

community, were chosen as the comparison benchmark

optimizers for the problems used in this paper. Each was also

hybridized—NSGA-II/CAO, SPEA2/CAO—with the intro-

duction of the CAO into their cycles to test its effect. In Figs. 5

and 6, the hybridization interface of the CAO into SPEA2

and NSGA-II is illustrated within the pseudocode descriptions

of the hybrid versions of the two optimizers SPEA2/CAO

and NSGA-II/CAO.

The artificial neural networks (RBF and MLP) used in

the CAO are implemented, initialized, trained, and validated

using the utility functions provided in NETLAB [28], which

is a free neural network toolbox for MATLAB5 and which

can be downloaded from http:www.ncrg.aston.ac.uk/netlab/

index.php. Optimizer configurations used in the experiments

involving these four optimizers—NSGA-II, SPEA2, NSGA-

II/CAO, and SPEA2/CAO—are given in Table 1. In this paper,

the CAO was operating continuously, from the first to the

last generation. At every generation, a different RBF-neural

network is trained and then used within the CAO for local

improvement and predictions. Training the RBF NN with local

and limited data and solely using it as a local model at a

specific generation helps to overcome the problem of training

the NN with conflicting data resulting from possible one-to-

many mappings from objective space to the decision space.

This is an important aspect that was not addressed in the

work of Gaspar-Cunha et al. The test function WFG9, which

presents one-to-many mappings from the objective space to

the decision space, will test this feature.

Because of the CAO correction step, the number of objective

function evaluations per generation required in NSGA-II/CAO

and SPEA2/CAO is twice the number of objective function

evaluations per generation required in SPEA2 and NSGA-II.

In order to compare the algorithms for the same number of

objective function evaluations, the CAO-augmented MOEAs

were executed for 50 generations per run, while NSGA-II and

SPEA2 were executed for 100 generations. The larger level of

4C++ codes for WFG9, WFG6 and Huband et al.’s toolkit can be down-
loaded from: http://www.wfg.csse.uwa.edu.au/publications.html

5MATLAB is a software package for technical computing, developed by
The MathWorks, Inc.
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-Initialize Population
-Generate initial random population P0 of size Nind and an
initial Archive A0

-Evaluate objective values
-Calculate fitness values of individuals in P0 and make A0 = P0
For i = 1 to Gen
-Copy all nondominated individuals in Pi−1 and Ai−1 to Ai.

If size of Ai > Nind then reduce Ai
Else fill Ai with dominated individuals in Pi−1 and Ai−1

Apply CAO
-Component: NN Training

-Initialize an RBF NN and train it with Ai
-Input: Objective Vectors of Ai
-Output: Decision Vectors of Ai

–Component: Objective Space local improvement–on Ai
–Component: Objective Space to Decision Space
Predictions
–Component: Correction Step
–Update Ai

-Generate new population Pi from Ai–size Nind
-Binary tournament selection
-Recombination
-Mutation
-Evaluate objective values for the offspring
population Pi
-Calculate fitness values of individuals in Pi and
Ai based on the objective vectors of Pi and Ai
combined

End loop

Fig. 5. SPEA2/CAO pseudocode.

exploration and global search thus afforded to NSGA-II and

SPEA2 is an advantage in their favor.

The configuration of the optimizers presented in Table I

is a standard configuration commonly used in the EMO

community when using NSGA-II, SPEA2, or other MOEAs

for optimizing the problems previously presented. The major

difference was the number of generations used in this paper

for the CAO-augmented MOEAs, which was relatively small

compared to the standard number of generations (around 150

generations) normally used in comparative studies, such as the

study by Zitzler et al. [22].

This choice of configuration was intended to study the effect

of the convergence acceleration and any benefits that might be

introduced by the CAO. Concatenation of real number decision

variables was the convenient choice for encoding the problems

under investigation. Due to the stochastic nature of the

evolutionary strategies, a well-based judgment concerning the

performance of a specific algorithm cannot be stated unless

the whole optimization process is repeated a number of times.

Here, each algorithm is subjected to 10 runs, each running for

100 generations (for SPEA2 and NSGA-II) and 50 generations

(for the CAO-hybridized MOEAs). Moreover, the parameters

of the RBF networks for each optimization problem solved

are investigated within a set of initial experiments and are

set to the best parameters achieved. One of the drawbacks of

NNs is the lack of standardization in choosing the number of

hidden layers and hidden neurons per layer, which constitutes

the architecture of an NN. It is common practice to choose

the NN architecture based on previous practice and expertise

or based on trial-and-error experiments.

-Initialize Population
-Generate random population P0–size Nind
-Evaluate objective values
For i = 1 to Gen

-Assign rank to Pi−1
-Determine crowding distance for each solution in Pi−1
-Generate offspring population Q–size Nind

-Binary tournament selection
-Recombination
-Mutation
-Evaluate objective values for the offspring population Q

-Combine Pi−1 and Q
-Assign rank to the combined population
-Determine crowding distance for each solution in the

combined population
-Select Nind solutions to form Pi

Apply CAO-
-Component: NN Training

-Initialize an RBF NN and train it with Pi
-Input: Objective Vectors of Pi
-Output: Decision Vectors of Pi

–Component: Objective Space local improvement–on Pi
–Component: Objective Space to Decision Space
Predictions
–Component: Correction Step
–Update Pi

End loop

Fig. 6. NSGA-II/CAO pseudocode.

The training of the RBF NN is a two-stage process. The first

stage consists of setting the parameters (centers and widths)

of the radial functions (Gaussian functions are used in this

paper). In the context of the CAO, the training data consists

of the elite population of candidate solutions at a certain

generation of the MOEA. As stated by Nabney [28]: “One

of the main advantages of RBF networks, as compared to

MLP, is that it is possible to choose good (though possibly

not optimal) parameters for the hidden units without having

to perform a full non-linear optimization of all the network

parameters.”

In this paper, 80% of the population of candidate solutions

(objective vectors) are chosen at random and set as the centers

of the RBFs. The widths of the RBFs that compose the units of

the RBF network are an application-dependent design choice,

and should be chosen in a way that allows sufficient overlap

between the units. In the context of this paper, fixed width

values were chosen for each problem based on trial-and-error

experiments and set to the values presented in Table II. The

second stage of training an RBF network consists of finding

the weights of the output layer by efficiently using linear

algebra6 to solve a quadratic error function in the weights. The

optimal weight vector is determined using (5), where � is a

design matrix of m × n elements containing the m predicted

outputs for the n inputs, and y is an m-dimensional vector

containing the training data outputs

W = (�t�)−1�T y. (5)

6The weights of the output layer are efficiently optimized by calculating
the pseudo-inverse of the matrix of hidden unit activations.
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TABLE I

OPTIMIZER CONFIGURATIONS

Size of
population

100

Crossover

operator

Simulated binary crossover (SBX) [34]
Probability: 0.8

Mutation
operator

Polynomial mutation
probability: 1/n

n = number of decision variables

Number of
generations

NSGA-II: 100
NSGA-II/CAO: 50

SPEA2: 100
SPEA2/CAO: 50

Number of
runs

10

Starting
population

Same random population
(different at each run)

TABLE II

NEURAL NETWORK AND STEP LENGTH CONFIGURATION

RBF neural network

No of
neurons

RBF
Widths

h τ ε

ZDT1 80 1 5 60% 1.1

ZDT3 80 1 5 60% 1.1

ZDT6 80 1 5 60% 1.1

DTLZ2(3) 80 5 5 50% 1.2

DTLZ2(8) 80 5 8 30% 1.2

DTLZ2(12) 80 5 10 30% 1.2

WFG6(3) 80 5 5 40% 1.1

WFG9(3) 80 5 5 40% 1.1

In Table II, the number of neurons used for the RBF

NNs, the values used for the initial step factor h, the CAO

Rs , threshold τ , and the step length cooling factor ε are

illustrated for each of optimization problem addressed. The

values depicted in Table II are the best values (for CAO

efficiency) for each of the test functions used. These values

were determined based on trial-and-error experiments with

different combinations of values for each of the parameters

in the ranges below:

1) no of neurons: 50, 60, 70, 80, 90, and 100;

2) RBF widths: 0.5, 1, 2, 3, 5, 10;

3) h: 10, 8, 5, 2, 1.5, 0.8, 0.4, 0.1;

4) τ : 10%, 20%, 30%, 40%, 50%, 60%, 80%, 100%;

5) ε: 0.5, 1.1, 1.2, 1.5, 2, 5, 10.

Recall that the step factor h at generation t = i + 1 is

increased using the following rule:

if RS(t = i) < τ → ht=i+1 = ht=i × ε.

From the experience gained by running tests on these

test functions, the following parameters were deemed to be

the most suitable, in general, for application to subsequent

problems:

Parameter Recommendations for the CAO:

Set h = 10, τ = 50%, ε = 1.1

Consult Nabney [28] for rule-of-thumb RBF parameters (no.

of neurons and RBF width).

A. Performance Metrics

In [35], it was shown that there is no finite combination of

unary metrics that can determine whether an approximation

set “A” outperforms another approximation set “B.” Zitzler

et al. [35] also showed that binary indicators that compare

the quality of one approximation set with another in terms

of a certain criterion are suitable metrics for concluding

that an approximation set is better than another in terms of

the inspected criterion. The effectiveness of the CAO when

tackling the bi-objective test functions (ZDT1, ZDT3, and

ZDT6) and the DTLZ2 test functions with 3, 8, and 12

objectives is assessed by using two well-established binary

metrics that simultaneously consider the convergence and the

diversity requirements.

1) The dominated distance metric (DD-metric), which was

originally conceived in [36], computes the dominated

distance between two sets of objective vectors in the

objective space. More closely, the DD-metric calculates

the difference of dominated distances between two ap-

proximation sets “A” and “B” produced by MOEAs “A1”

and “A2” in the objective space. The dominated distance

between an approximation set “A” and an approximation

set “B” (ddAB) is the sum of Euclidean distances

between each solution Ai in “A” and the closest solution

Bi which belongs to the subset of “B” that dominates Ai.

The dominated distances ddAB and ddBA are calculated

respectively, and their difference forms the value of DD-

metric (A, B).

2) The coverage metric (C-metric) of Zitzler [36], which

calculates the percentage of solutions in a certain ap-

proximation set that are dominated by equal to any

solution in another competing approximation set.

The significance of the C-metric and the DD-metric results

is also statistically analyzed by drawing boxplots, which

illustrate the distribution of the metric values achieved (i.e.,

the 75 percentile, 25 percentile, median, and outliers values).

The significance of the metric values is also analyzed using the

Wilcoxon rank-sum test [42] for each of the experiments. The

Wilcoxon rank-sum test is a nonparametric test that takes two

independent samples of data and evaluates the hypothesis that

the two samples come from distributions with equal medians.

The Wilcoxon rank-sum test returns two values P and H .

P is the probability of observing the null hypothesis, i.e., the

two samples having the same median. Small values of P cast

doubt on the validity of the null hypothesis. Moreover, the

Wilcoxon rank-sum test is performed to return the result of

the hypothesis test performed at the 0.05 significance level.

The null hypothesis can only be rejected at the 5% level if the

value of logic variable H is equal to 1.

The hypervolume metric [36] is also used to analyze the

performance of the optimizers and their CAO-hybridized ver-

sions on the bi-objective functions. The hypervolume metric,

also known as the S-metric or the Lebesgue integral, is a

high-quality unary metric which illustrates the relative quality

of an approximation set in terms of both desired criteria–

convergence and diversity–by measuring the amount of ob-

jective space that the approximation set dominates. Unlike
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Fig. 7. Hypervolume metric (minimization problem assumed).

other unary metrics requiring some prior knowledge about the

Pareto front or the targeted tradeoff surface, the computation

of the hypervolume metric requires the proposal of an anti-

ideal solution to act as a reference point. The values of the

hypervolume metric can then be normalized in terms of the

hypervolume measure of the ideal solution.

In Fig. 7, the hypervolume metric is illustrated on a

bi-objective optimization problem for ease of visualization.

In this, the values of the hypervolume metric are plotted

against the total time(s) spent at each of the 10 runs of

the MOEAs to illustrate their convergence extent versus

their efficiency. This approach was previously adopted for

the bi-objective test functions in [17] within a different

benchmarking approach that assumes an infinite number of

objective function evaluations. The hypervolume metric was

not deployed as a performance metric on the many-objective

optimization problems because of the well-known limitation

of the metric’s computational complexity, which is exponential

in the number of objectives [38]. Deploying the hypervolume

metric on the many-objective optimization problems was

found to be impractical. It is very time consuming [especially

for DTLZ2 (8) and (12)] to calculate this metric.

IV. RESULTS

The performance of the CAO is investigated in this section.

The effect of the introduced operator is examined using the

specific performance metrics presented in Section III and

by comparing the results achieved by NSGA-II and SPEA2

with the results achieved by their hybridized versions NSGA-

II/CAO and SPEA2/CAO. A modified version of the CAO

is also implemented for comparison. It is similar to the

approach described by Gaspar-Cunha and Vieira [17] and

uses an MLP NN to replace the RBF NN. The modified

version of the CAO will be identified as CAO-MLP, while the

promoted acceleration technique will be termed CAO-RBF or

simply CAO.

The MLP configurations used when optimizing ZDT1,

ZDT3, and ZDT6 were based on trial-and-error experiments,

which found the same values as those used by Gaspar-Cunha

and Vieira [19]. The number of hidden neurons and the learn-

ing rate of the MLP are (10, 0.2) for ZDT1, (20, 0.3) for ZDT3,

and (10, 0.2) for ZDT6. At every generation of the MOEAs,

50 iterations7 of the standard backpropagation algorithm [21],

with a gradient descent optimization process, are executed for

training the MLP NN and calculating its weights values. The

number of hidden neurons and the learning rate of the MLPs

used with DTLZ2 (3), WFG6 (3), and WFG9 (3) are (20,

0.3). For DTLZ2 (8) and (12) the number of hidden neurons

and the MLP learning rate are, respectively, (30, 0.3) and (40,

0.3). The same values used for the step factor h, τ , and ε in

the CAO-RBF are used with the CAO-MLP.

In order to evaluate the utility of the adaptive local search

component of the CAO, seven versions of NSGA-II/CAO (and

SPEA2/CAO) with different fixed step factors were executed

for each of the test functions. The fixed step factors examined

are h = 10, 5, 2, 1.5, 0.8, 0.4, and 0.1. Boxplots and the

Wilcoxon rank-sum test for the C-metric and the DD-metric

results comparing the performance of NSGA-II and SPEA2

with their CAO-hybridized versions (seven with fixed step

factors, and two with adaptive step factors—CAO-RBF and

CAO-MLP) are produced.

The effect of the CAO correction step is also analyzed on

the simple bi-objective test functions by comparing the results

achieved by NSGA-II and its CAO-hybridized versions with

no correction step.

A. Bi-objective Test Functions: Results

In Fig. 8, the values achieved for the S-metric at each of

the 10 runs of NSGA-II, NSGA-II/CAO-RBF, and NSGA-

II/CAO-MLP are illustrated. The three MOEAs were opti-

mizing the convex test function ZDT1. The S-metric values

achieved at each execution of the algorithms are plotted

against the total time spent by each algorithm at the desig-

nated execution. The reference point used for calculating the

S-metric consisted of the point whose coordinates corre-

sponded to the worst values achieved for each objective by

the algorithms combined and within 10 runs.

From Fig. 8, it can be deduced that in 9 out of 10

runs NSGA-II/CAO-RBF achieved larger values for the S-

metric than NSGA-II, resulting in improved convergence and

diversity. Within just 50 generations per run and a fixed

budget of objective function evaluations, the S-metric values

achieved by NSGA-II/CAO-RBF were closer to the solid

line, which represents the S-metric value for the true Pareto

front. Moreover, it was observed that, despite optimizing a

straightforward and computationally cheap problem (ZDT1),

the time spent by NSGA-II/CAO-RBF at each of the ten

runs was comparable to the time spent by NSGA-II. This

observation indicates that the CAO-RBF was improving the

results achieved by NSGA-II for very little additional cost.

Thus the use of CAO-RBF is practical for addressing a wide

variety of problems and not just restricted to computationally

expensive optimization problems. On the other hand, NSGA-

II/CAO-MLP requires much more time (five times longer)

7This is performed for “early stopping” the MLP training process in order
to avoid overfitting.
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Fig. 8. S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF, and
NSGA-II/CAO-MLP on ZDT1 at each of the 10 runs.
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Fig. 9. S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF, and
NSGA-II/CAO-MLP on ZDT3 at each of the 10 runs.

per run while presenting some improved results and, for a

few runs, some remarkable and near-optimal values for the

S-metric. A more consistent behavior for NSGA-II/CAO-

MLP can be achieved by optimizing the efficiency of the

MLP and training it over more iterations (epochs) or using

more sophisticated training algorithms.8 Such improvement,

however, can only be achieved at the expense of increasing

the computational time of the algorithm. Such a tradeoff is

likely to be unacceptable within the context of straightforward

optimization problems such as the ZDTs, but desirable when

dealing with computationally expensive problems.

Nevertheless, from Fig. 8 it is clear that on a straightforward

and computationally cheap problem such as ZDT1, and within

the same budget of objective function evaluations, NSGA-

II/CAO-RBF is accelerating the convergence of NSGA-II

without requiring any significant increase in computational

effort.

The S-metric values achieved by NSGA-II, NSGA-II/CAO-

RBF, and NSGA-II/CAO-MLP for the discontinuous and the

8As part of the trial-and-error experiments for setting the NN parameters,
the following MLP training algorithms were examined: conjugate gradient
descent, Newton, and Quasi-Newton methods.
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Fig. 10. S-metric values achieved by NSGA-II, NSGA-II/CAO-RBF, and
NSGA-II/CAO-MLP on ZDT6 at each of the 10 runs.
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Fig. 11. Boxplots of the C-metric and DD-metric values achieved on ZDT1-
(fixed and adaptive local search).

nonuniform test functions ZDT3 and ZDT6 are illustrated

in Figs. 9 and 10, and, except for the running times, in

Fig. 10, similar results are observed. The same observations

that highlighted the utility of the CAO (either the MLP version

or the RBF version in particular) on ZDT1 are observed for

ZDT3 and ZDT6.

In Figs. 11 and 13, boxplots of the C-metric and the

DD-metric values achieved for ZDT1, ZDT3, and ZDT6 are

illustrated. In these figures, optimizer “A” denotes NSGA-

II/CAO and “B” is NSGA-II. The first seven columns represent

the boxplots of the C-metric and the DD-metric values compar-

ing NSGA-II and NSGA-II/CAO-RBF with fixed step factors

for the local search. The values of the fixed step factor for each

of the seven instances of NSGA-II/CAO-RBF are depicted

on the x-axis. The last two entries on the x-axis show the

results when NSGA-II/CAO has adaptive step factors for the

local search (A-rbf = adaptive CAO-RBF, A-mlp = adaptive
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Fig. 12. Boxplots of the C-metric and DD-metric values achieved on ZDT3-
(fixed and adaptive local search).
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Fig. 13. Boxplots of the C-metric and DD-metric values achieved on ZDT6-
(fixed and adaptive local search).

CAO-MLP). Recall that Gaspar-Cunha et al. [17, 18] did

not propose an adaptive step factor, but did propose MLP

as the NN approach to be adopted. Inclusion of A-mlp in

experiments is to compare its performance with A-rbf, both

using an adaptive step factor.

The upper sections of Figs. 11–14 illustrate that the approx-

imation sets produced by the nine different versions of NSGA-

II/CAO were overall achieving a near-optimal cover (100%)

of the results produced by NSGA-II. Except for some outlier

values, the boxplots of the C-metric values for all nine versions

of NSGA-II/CAO were mostly collapsed (nearly overlapping

values for the median, 25th, and 50th percentile) around

the value “100” indicating a very consistent performance

for NSGAII/CAO. In Fig. 13, however, NSGA-II/CAO-MLP

achieves a lower median value (around 80%) for the C-metric

on ZDT6 compared with the remaining eight algorithms. The

approximation sets produced by the stand-alone NSGA-II were

on the other hand consistently achieving zero coverage of the

results produced by the nine versions of NSGA-II/CAO for

ZDT1, ZDT3, and ZDT6. This is highlighted by the collapsed

boxplots around the value zero, and presented in the middle

sections of Figs. 11–13.

The DD-metric is computed for ZDT1, ZDT3, and ZDT6

and boxplots of the results are shown for each algorithm in

the lower sections of Figs. 11–13. Similar to the C-metric, the

DD-metric is a binary metric that highlights whether an ap-

proximation set resulting from an algorithm “A” is better than

another approximation set resulting from an algorithm “B.” A

negative DD-metric value denotes that the first input of the

metric [e.g., Algorithm A in DD-Metric (A,B)] is better than

and dominates most or part of its second input (Algorithm B).

Similar to the C-metric results, the boxplots of the DD-metric

values produced for each algorithm consist of negative val-

ues illustrating a better performance for the CAO-hybridized

versions of NSGA-II. Overall, the boxplots of the DD-metric

values achieved at each of the 10 runs of the algorithms were

consistent for the three bi-objective test functions.

The Wilcoxon rank-sum test was performed to assess the

significance of the C-metric and the DD-metric results shown

in Figs. 11–13 for the bi-objective test functions. The results of

the Wilcoxon rank-sum test assessing the significance of the

C-metric and the DD-metric results are shown in Tables III

and IV, respectively. From these tables it can be observed that

the values of P were consistently equal to (or very close to)

the values 0 and 1 for all three bi-objective test functions,

confirming the statistical significance of the C-metric and DD-

metric results.

From the results shown in Figs. 11–13 and Tables III and

IV CAO-RBF and CAO-MLP, both proved to be competent,

introducing improvements to the results achieved by NSGA-

II. Moreover, for the bi-objective test functions investigated,

the CAO proved to be robust in terms of the local search step

factor h, and both the adaptive and the fixed approach for the

local search improved upon the results achieved by NSGA-II

for the same number of objective function evaluations.

The use of a RBF NN within the CAO is shown, however, to

be more practical than a MLP NN, due to its much faster train-

ing process, which makes it efficient for deployment within a

convergence acceleration technique. Similar observations are

made when the CAO is hybridized with SPEA2. The results

achieved for the S-metric, C-metric, and DD-metric when

the CAO is hybridized with SPEA2 are illustrated in the

Appendix, which again demonstrate the impact of the CAO

on one of the best-performing MOEAs.

Additional experiments were produced to assess the sig-

nificance of the correction step used within the CAO. Ac-

cordingly, the nine different versions of NSGA-II/CAO used

in Figs. 11–13 were re-run on ZDT1, ZDT3, and ZDT6.

However, in this new set of experiments, the CAO correction

step was deactivated and the results produced by the different

versions of NSGA-II/CAO (with fixed h, and adaptive h with

RBF and MLP) were compared with the results produced by

the standalone NSGA-II.

Boxplots of the C-metric and the DD-metric results compar-

ing NSGA-II and NSGA-II/CAO with an inactive correction
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TABLE III

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

ZDT1 ZDT2 ZDT3

P H P H P H

10 0 1 0 1 0 1

5 0 1 0 1 0 1

2 0 1 0 1 0 1

1.5 0 1 0 1 0 1

0.8 0 1 0 1 0 1

0.4 0 1 0 1 0 1

0.1 0 1 0 1 0. 1

A-RBF 0 1 0 1 0 1

A-MLP 0 1 4.10−4 1 0.005 1

TABLE IV

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

ZDT1 ZDT2 ZDT3

P H P H P H

10 0 1 0 1 0 1

5 1.10−4 1 1.10−4 1 0 1

2 1.10−4 1 1.10−4 1 0 1

1.5 0 1 0 1 0 1

0.8 0 1 0 1 0 1

0.4 0 1 0 1 0 1

0.1 2.10−4 1 1.10−4 1 2.10−3 1

A-RBF 0 1 0 1 0 1

A-MLP 0 1 1.10−4 1 0 1
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Fig. 14. Boxplots of the C-metric and DD-metric values achieved on ZDT1—
No correction step.
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Fig. 16. Boxplots of the C-metric and DD-metric values achieved on ZDT6—
No correction step.

step are shown in Figs. 14–16. From these figures, it is clear

that the results previously illustrated in Figs. 11–13 are re-

versed (i.e., now zero coverage and positive DD-metric values

are produced by NSGA-II/CAO for ZDT1, ZDT3, and ZDT6),

and NSGA-II now outperforms NSGA-II/CAO. The outcome

of these experiments clearly demonstrates the importance of

the correction step, even on simple nonconstrained MOPs such

as the ZDTs.

B. Scalable Test Function DTLZ2: Results

Figs. 17–19 and Tables VI and VII, illustrate the results

highlighting the effect of the CAO on optimization problems

with a larger number of objectives. The scalable test function

DTLZ2 with 3, 8, and 12 objectives was chosen to investigate
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Fig. 17. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (3).

the performance of the CAO. In a manner similar to the

experiments carried out on the bi-objective problems, the

effect of the CAO was underlined by contrasting NSGA-II

with its CAO-hybridized counterparts (NSGA-II/CAO-RBF

and NSGA-II/CAO-MLP and NSGA-II/CAO with different

fixed step factors h).

In Table V, the computational time (mean and median

values) expended for the 10 runs of the algorithms optimizing

DTLZ2 (3), (8), and (12) is illustrated. The running time

of NSGA-II/CAO-MLP was on average around three times

longer than the running time of NSGA-II/CAO-RBF. The use

of simple and computationally cheap test functions (ZDTs

and DTLZ2) for assessing the CAO has helped emphasize the

efficiency of CAO-RBF over CAO-MLP.

The experiments presented in Figs. 17–19 show that the

fronts achieved by the CAO-hybridized versions of NSGA-II

(running for just 50 generations) frequently achieve a higher

coverage compared to the coverage achieved by NSGA-II in

100 generations.

Moreover, for the many-objective optimization problems, it

became more apparent that the adaptive approach for the step

factor h was, in general, performing better than the fixed step

factor approach, introducing improvements to NSGA-II for

DTLZ2 (3), (8), and (12). Over the 10 runs of the algorithms,

NSGA-II/CAO-RBF produced an average of 6, 18, and 3.1%

coverage of the results achieved by NSGA-II for the 3, 8, and

12 objective versions of DTLZ2, respectively.

On the other hand, NSGA-II only achieved an average of

0.09, 0.01, and 0.02%, coverage of the results achieved by

NSGA-II/CAO-RBF for DTLZ2 (3), (8), and (12) including

several runs with 0% coverage. NSGA-II/CAO-MLP has sim-

ilarly produced a coverage of NSGA-II results that is higher

than the coverage achieved by NSGA-II on all three versions

of DTLZ2.

On average, NSGA-II/CAO-MLP covered 4, 15.5, and

2.8% of the results produced by NSGA-II for DTLZ2 (3),
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Fig. 18. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (8).
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Fig. 19. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (12).

TABLE V

DTLZ2 COMPUTATIONAL TIMES

Computational time per 10 executions (s)

NSGA-II
NSGA-II/ NSGA-II/

CAO-RBF CAO-MLP

DTLZ2 (3) Median 5.1 10.1 32.2

Mean 5.9 10.8 34.8

DTLZ2 (8) Median 10.2 12.4 36.6

Mean 10.8 12.6 37.3

DTLZ2 (12) Median 11.4 16.2 40.2

Mean 12.1 16.8 41.1
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TABLE VI

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

DTLZ2 (3) DTLZ2 (8) DTLZ2 (12)

P H P H P H

10 0.5 0 0 1 0 1

5 0.2 0 0.01 1 0 1

2 0.5 0 0.02 1 0 1

1.5 0.2 0 0.01 1 0.5 0

0.8 0.1 0 0.05 1 1 0

0.4 0.3 0 0.01 1 0.3 0

0.1 0.5 0 0.04 1 0.2 0

A-RBF 0 1 0 1 0 1

A-MLP 0 1 0 1 0 1

TABLE VII

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

DTLZ2 (3) DTLZ2 (8) DTLZ2 (12)

P H P H P H

10 0.02 1 0 1 0 1

5 0.2 0 0 1 0 1

2 0.15 0 0 1 0 1

1.5 0.8 0 0 1 0.2 0

0.8 0.6 0 0.02 1 0.5 0

0.4 0.2 0 0.01 1 0.2 0

0.1 0.2 0 0.1 0 0.2 0

A-RBF 0 1 0 1 0 1

A-MLP 0 1 0 1 0 1

(8), and (12), respectively, while NSGA-II only achieved an

average coverage of 1.8% for DTLZ2 (3) and 0.001% for

DTLZ2 (8) and (12).

Based on the C-metric results (upper and middle sections

of Figs. 17–19), it can be seen that, when hybridized with

NSGA-II, the two adaptive versions of CAO were produc-

ing higher C-metric values compared with the stand-alone

NSGA-II. Similar observations apply to the DD-metric (lower

sections in Figs. 17–19). The DD-metric has consistently

produced results (<0) which favor NSGA-II/CAO (RBF and

MLP) over NSGA-II for all dimensions of the problems

investigated.

The significance of the C-metric and the DD-metric results

achieved for, the DTLZ2 test functions is highlighted in

Tables VI and VII, respectively. The values of the Wilcoxon

rank-sum test outputs P and H were zero and one for

NSGA-II/CAO using an adaptive step factor, both for RBF

and MLP NNs. The benefit of using an adaptive step factor

is clear when these rank-sum results are compared with those

for fixed step sizes.

The biggest improvements introduced by the CAO in terms

of coverage and dominated distance measures were exhib-

ited for the 8-objective version of DTLZ2 (more than 10%

coverage of NSGA-II solutions was achieved alongside a

median value of −200 × 10−3 for the DD metric). Similar

to NSGA-II/CAO, when the CAO is hybridized with SPEA2,

SPEA2/CAO has outperformed SPEA2 on all three versions

of DTLZ2 (see Appendix).

Further experiments were undertaken in an attempt to

quantify the extent of superiority of the CAO-hybridized

TABLE VIII

WFG6 (3) AND WFG9 (3) COMPUTATIONAL TIME

Computational time per 10 executions (s)

NSGA-II NSGA-II/ NSGA-II/

CAO-RBF CAO-MLP

WFG6 (3)
Median 32.4 27.1 78.9

Mean 37.3 27.9 87.4

WFG9 (3)
Median 29.5 26.3 57.2

Mean 34.2 29.1 57.9

optimizers. It was noted that, on average, the population size

of NSGA-II and SPEA2 must be increased to a minimum of

150 individuals (1.5 × the population size of NSGA-II/CAO

and SPEA2/CAO) in order to match the quality of the fronts

achieved by their hybridized counterparts. Thus, SPEA2 and

NSGA-II require more objective function evaluations (around

50% more evaluations) to match the performance of their

CAO-hybridized equivalent optimizer. This conclusion holds

for all the test functions used in this paper. The set of

experiments conducted in this section highlights the benefits

of the CAO in general and the CAO-RBF in particular and

demonstrates the improvement it confers to two of the most

established MOEAs.

Finally, it is observed that the C-metric and DD-metric

results for DTLZ problems were lower than the results ob-

tained for the ZDT functions. This was anticipated since the

proportion of nondominated solutions increases with increas-

ing objectives.

C. Nonseparable Test Functions WFG6 (3) and WFG9 (3):

Results

In this section, the utility of the CAO is investigated on two

nonseparable test functions WFG6 and WFG9. Three objective

instances of these scalable test functions are used [WFG6(3)

and WFG9(3)]. WFG9 in particular is used to assess the

significance of using local models, which approximates the

mapping from the objective space to the decision space at a

certain generation, as opposed to using global models which

try to capture the overall mapping. The use of RBF within the

CAO is practical for building such local models and overcomes

the problem of training the NN with conflicting data due to

possible one-to-many mappings from the objective space to

the decision space.

In Table VIII, the median and mean computational time

spent by NSGA-II, NSGA-II/CAO-RBF, and NSGA-II/CAO-

MLP over ten runs optimizing WFG6(3) and WFG9(3) are

shown. Again, the efficiency of using CAO-RBF was apparent,

and NSGA-II/CAO-RBF required even less computational

time than the stand-alone NSGA-II. NSGA-II/CAO-MLP, on

the other hand, required at least twice the computational time

required by NSGA-II and NSGA-II/CAO-RBF for optimizing

WFG6 and WFG9.

Similar to the results shown in the previous sections, in

Figs. 20 and 21, the boxplots of the C-metric and the DD-

metric results achieved for each of the algorithms optimizing

WFG6 and WFG9 are illustrated.
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Fig. 20. Boxplots of the C-metric and DD-metric values achieved on WFG6
(3) (fixed and adaptive local search).
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Fig. 21. Boxplots of the C-metric and DD-metric values achieved on WFG9
(3) (fixed and adaptive local search).

For the nonseparable test function WFG6, NSGA-II/CAO-

RBF, NSGA-II/CAO-RBF with fixed step factor h = 10, and

NSGA-II/CAO-MLP offered the most improvements to the

results achieved by NSGA-II.

In particular, NSGA-II/CAO-RBF achieved more than 20%

coverage of the results achieved by NSGA-II, with the latter

almost covering none of the solutions produced by NSGA-II/

CAO-RBF. The DD-metric values achieved by NSGA-II/

CAO-RBF provided the best results when compared to

NSGA-II and the remaining hybrid algorithms. The signif-

icance of these results was assessed by calculating the

Wilcoxon rank-sum test whose results are shown in Table IX

TABLE IX

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

WFG6 (3) WFG9 (3)

P H P H

10 0.03 1 0 1

5 0.2 0 0.06 0

2 0.02 1 0.04 1

1.5 0.01 1 0.03 1

0.8 0.4 0 0.65 0

0.4 0.46 0 0.01 1

0.1 0.02 1 0.01 1

A-RBF 0 1 0 1

A-MLP 0 1 0 1

TABLE X

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

WFG6 (3) WFG9 (3)

P H P H

10 0 1 0.02 1

5 0.7 0 0.01 1

2 0.03 1 0.01 1

1.5 0.15 0 0.01 1

0.8 0.3 0 0.19 0

0.4 0.5 0 0.01 1

0.1 0 1 0.01 1

A-RBF 0 1 0 1

A-MLP 0 1 0 1

(note: P = 0 and H = 1 for NSGA-II/CAO-RBF and NSGA-

II/CAO-MLP). Again, the benefit of using an adaptive step

factor is clear when these rank-sum results are compared with

those for fixed step sizes.

In Fig. 21, the results achieved for the nonseparable

test function WFG9(3) are presented. It was notable that

NSGA-II/CAO-MLP was, in this case, performing worse than

the remaining algorithms, including NSGA-II (positive DD-

metric values and a very low coverage of NSGA-II results).

Due to the iterative nature of the MLP training process,

NSGA-II/CAO-MLP needed to continuously train the NN to

achieve good predictions. As a result, NSGA-II/CAO-MLP

was training the MLP to model the global mapping from the

objective space to the decision space which, in the WFG9

case, was a one-to-many mapping. This led to the deterio-

ration of the MLP prediction quality and consequently the

deterioration of the end results produced by NSGA-II/CAO-

MLP. NSGA-II/CAO-RBF, on the other hand, performed well

and achieved the highest coverage and the lowest DD-metric

values. The significance of the results shown in Fig. 21 is

also highlighted in Table X by calculating the Wilcoxon

rank-sum test (P = 0 and H = 1 for NSGA-II/CAO-RBF

and NSGA-II/CAO-MLP).

Similar experiments to the ones shown in Figs. 20 and 21

were conducted by replacing NSGA-II with SPEA2 and sim-

ilar results highlighting the efficiency of the CAO-RBF were

achieved (see Appendix).
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Fig. 22. C-metric values achieved by NSGA-II/CAO-RBF and NSGA-II
on the gasifier problem.
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Fig. 23. DD-metric values achieved by NSGA-II/CAO-RBF and NSGA-II
on the gasifier problem.

D. Running Times

Experiments were undertaken to compare the run-time effi-

ciency of NSGA-II and NSGA-II/CAO, particularly to assess

the additional effort required as a result of the NN mapping

employed by the CAO. These experiments were undertaken

on a real-world problem comprising cost-intensive objective

function evaluations. Computational times were averaged over

ten runs.

The additional computational effort required by the CAO-

RBF is reported. It should be noted that such computational ef-

fort measurements depend on the hardware/software resources

available. In this paper, MATLAB was used for implement-

ing, executing, and testing all the optimization frameworks

presented in this paper. Furthermore, all the experiments were

undertaken on a Pentium 4 machine with 512 megabyte of

RAM. NETLAB [28], which is an open source neural network

toolbox for use with MATLAB, was used for implementing,

training, and validating the ANN used in the CAO context.

The computational effort required for training the neural

network is influenced by the number of inputs, outputs,

Evaluate the 

Objective Functions 

Perform Global Search

operations

(Selection, Recombination, 

Mutation, Archiving) 

Generations

1 to 30

Total

Time Cost

Average

Time Cost

(s)

3560s

2.80s

3562s

(Gasifier application, Pop Size: 20,

Number of generations: 30) 

Fig. 24. NSGA-II computational effort.
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-Improve Objective Vectors

-Predict new Decision

Variable Vectors 

Generations

1 to 15 

3532s

1.10s

9.50s

Total Time Cost 3542s

Fig. 25. NSGA-II/CAO computational effort.

weights, and parameters, rather than the complexity of the

objective function being solved by the hosting MOEA. The

CAO was hybridized with NSGA-II in an optimization frame-

work attempting to solve a benchmark control system design

problem involving a gasifier [39]. This is a relatively expensive

(computationally) problem (for example, 14 objectives) chosen

to set the CAO computational effort in context with the

computational demands of evaluating objectives for a real-

world problem.

In Fig. 22, the coverage achieved by NSGA-II/CAO

and NSGA-II at each of the ten executions is shown.

NSGA-II/CAO covered an average of 34% of the solutions

found by NSGA-II, while NSGA-II only covered an average of

5% of the solutions found by its CAO-hybridized counterpart.

In a similar way, the DD-metric (negative) values presented in

Fig. 23 highlight the outperformance of NSGA-II/CAO over

NSGA-II for all ten runs.

The computational effort measurements (averaged over ten

runs) of the major components of NSGA-II and NSGA-II/CAO
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optimizing the gasifier problem for 30 and 15 generations,

respectively, are presented in Figs. 24 and 25. Except for the

reduced number of generations (15 for NSGA-II/CAO and 30

for NSGA-II), population size (= 20), and the initial value

of the step factor h(= 20), the same configuration used for

NSGA-II and NSGA-II/CAO in the previous sections was

deployed.

Note that in [39], a larger population size and number

of generations were deployed. However, the configuration

used in this section was deemed sufficient since the goal

of the presented experiments was to contrast the efficiency

of NSGA-II and NSGA-II/CAO within a limited budget of

objective evaluations rather than solving the gasifier problem

itself.

The results presented in Figs. 24 and 25 demonstrate

that the total computational time required by NSGA-II and

NSGA-II/CAO is comparable. In fact, NSGA-II/CAO (3542s)

required 20 s less than NSGA-II (3562s).

Moreover, compared with the total computational time used

for calculating the gasifier’s objective functions (3532 s), the

total computational time spent for training and validating the

RBF neural network within the CAO is negligible (9.5 s).

V. CONCLUSION

A portable CAO has been proposed for incorporation into

existing algorithms for evolutionary multiobjective optimiza-

tion. Two leading MOEAs have been hybridized through

introduction of the CAO and tested on a variety of recognized

test problems and a real-world application. These problems

consisted of convex, discontinuous, nonseparable, nonuniform,

and multimodal objective functions, with the number of ob-

jectives ranging from 2 to 14. In all cases, the introduction of

the CAO led to improved results for comparable numbers of

function evaluations. This operator works by suggesting im-

proved solutions in objective space and using neural network

mapping schemes to predict the corresponding solution points

in decision variable space.

This paper builds and improves on previous work by

Gaspar-Cunha et al. [18]–[20] and Adra et al. [8]. The main

improvements include the use of an adaptive step factor for

the local improvement in objective space. In this way, we can

avoid the problem of introducing points that reside outside the

feasible region or the reliable zone of NN prediction, hence

detecting novelty and extrapolation. Another improvement is

the use of a RBF NN within the CAO, instead of the MLP NN

used in earlier work of Gaspar-Cunha et al. and Adra et al.

The use of a RBF NN within the CAO is more efficient and

practical, due to its faster training process and its transparency

with respect to the training data. When using an RBF NN

within the CAO, an unsupervised training process for the NN

parameters (RBF widths and centers) can be applied and is

shown to be efficient and competitive with MLPs, iteratively

trained with nonlinear optimizers such as the gradient descent.

In contrast to the MLP, the use of a RBF NN within an MOEA

convergence accelerator makes it practical to use on a variety

of problems, rather than being restricted to computationally

expensive problems. The CAO proposed in this paper also

includes a correction step, whereby the feasibility of the

predicted solutions is checked and the exact objective values

are evaluated in order to maintain the fidelity of the solutions

to the exact model.

Whereas Gaspar Cunha et al. [18]–[20] limit their evalua-

tion of their approach to 2-objective problems, this paper con-

siders in detail the implications of using the operator in many-

objective problems (ranging from 3 to 14 objectives). When

deploying an active strategy for promoting diversity within a

slowly converging process to the Pareto front, the convergence

process of a MOEA can be hampered and delayed, especially

in optimization problems with many competing objectives.

Due to the convergence acceleration caused by the CAO, the

MOEA selection criteria progressively place more emphasis

on the active diversification mechanisms. However, the in-

creasing emphasis of the active diversification mechanisms is

manifested at converged and near-optimal regions of the search

space rather than at remote and suboptimal regions.

Finally, the paper considers the computational effort in-

volved in incorporating the CAO in the optimization process.

It is important to recognize that the CAO introduces additional

computational effort through the requirement to train the

neural network. When using an RBF NN, this computational

effort is small even when compared with the execution time

associated with computing a function, such as ZDT, which is

inexpensive to compute. Compared with the RBF NN, it has

been shown that using an MLP within the CAO leads to in-

creased computational effort. In a paper on a real-world exam-

ple where objective function computation is nontrivial, it was

shown that the computational effort required by the hybridized

scheme was almost the same as that required by the standard

scheme, while the hybridized scheme obtained superior results.

VI. APPENDIX
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Fig. 26. S-metric values achieved by SPEA2, SPEA2/CAO-RBF, and
SPEA2/CAO-MLP on ZDT1 at each of the 10 runs.
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Fig. 27. S-metric values achieved by SPEA2, SPEA2/CAO-RBF, and
SPEA2/CAO-MLP on ZDT3 at each of the 10 runs.
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Fig. 28. S-metric values achieved by SPEA2, SPEA2/CAO-RBF and
SPEA2/CAO-MLP on ZDT6 at each of the 10 runs.
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Fig. 29. Boxplots of the C-metric and DD-metric values achieved on ZDT1-
(fixed and adaptive local search).
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Fig. 30. Boxplots of the C-metric and DD-metric values achieved on ZDT3-
(fixed and adaptive local search).
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Fig. 31. Boxplots of the C-metric and DD-metric values achieved on ZDT6-
(fixed and adaptive local search).

TABLE XI

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

ZDT1 ZDT2 ZDT3

P H P H P H

10 0 1 0 1 0 1

5 0 1 0 1 0 1

2 0 1 0 1 0 1

1.5 0 1 0 1 0 1

0.8 0 1 0 1 0 1

0.4 0 1 0 1 0 1

0.1 0 1 0 1 5 × 10−4 1

A-RBF 0 1 0 1 0 1

A-MLP 0 1 0 1 0 1

Authorized licensed use limited to: Sheffield University. Downloaded on October 5, 2009 at 06:55 from IEEE Xplore.  Restrictions apply. 



844 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

TABLE XII

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

ZDT1 ZDT2 ZDT3

P H P H P H

10 1 × 10−4 1 2 × 10−4 1 0 1

5 9 × 10−5 1 1 × 10−4 1 0 1

2 1 × 10−4 1 2 × 10−4 1 0 1

1.5 9 × 10−5 1 1 × 10−4 1 0 1

0.8 5 × 10−5 1 1 × 10−4 1 0 1

0.4 5 × 10−5 1 2 × 10−4 1 0 1

0.1 5 × 10−4 1 3 × 10−4 1 1 × 10−3 1

A-RBF 0 1 0 1 0 1

A-MLP 0 1 0 1 0 1

TABLE XIII

DTLZ2 (3-8-12) COMPUTATIONAL TIME

Computational Time per 10 executions (s)

SPEA2 SPEA2/ SPEA2/

CAO-RBF CAO-MLP

DTLZ2 (3) Median 58.3 77.1 111.7

Mean 58.9 77.4 112.6

DTLZ2 (8) Median 102.4 101.6 133.2

Mean 103.5 100.1 133.6

DTLZ2 (12) Median 114.2 115.7 143.2

Mean 115.3 115.1 143.5
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Fig. 32. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (3).
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Fig. 33. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (8).
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Fig. 34. Boxplots of the C-metric and DD-metric values achieved on
DTLZ2 (12).

TABLE XIV

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

DTLZ2 (3) DTLZ2 (??) DTLZ2 (12)

P H P H P H

10 0 1 0 1 0.04 1

5 0 1 0 1 0.03 1

2 0 1 0.02 1 0.01 1

1.5 0 1 0.01 1 0.07 0

0.8 0 1 0.04 1 0.12 0

0.4 0 1 0.02 1 0.03 1

0.1 0 1 0.06 0 0.02 1

A-RBF 0 1 0 1 0.01 1

A-MLP 0 1 0 1 0.01 1
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TABLE XV

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

DTLZ2 (3) DTLZ2 (8) DTLZ2 (12)

P H P H P H

10 0 1 0 1 0.01 1

5 0 1 0 1 0.01 1

2 0 1 0 1 0 1

1.5 1 × 10−3 1 0 1 0.03 1

0.8 0.6 1 0.03 1 0.04 1

0.4 5 × 10−4 1 0.01 1 0.02 1

0.1 0 1 0.1 0 0.01 1

A-RBF 0 1 0 1 0 1

A-MLP 0 1 0 1 0 1

TABLE XVI

WFG6 (3) AND WFG9 (3) COMPUTATIONAL TIME

Computational time per 10 executions (s)

SPEA2 SPEA2/ SPEA2/

CAO-RBF CAO-MLP

WFG6 (3) Median 139.1 138.4 238.7

Mean 140.7 137.2 240.1

WFG9 (3) Median 134.6 135.3 173.1

Mean 135.8 137.7 175.9
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Fig. 35. Boxplots of the C-metric and DD-metric values achieved on
WFG6 (3).

TABLE XVII

WILCOXON RANK-SUM TEST OF THE C-METRIC VALUES

WFG6 (3) WFG9 (3)

P H P H

10 0 1 0.05 1

5 0 1 0 1

2 0 1 0 1

1.5 0 1 0 1

0.8 0 1 0 1

0.4 0.02 1 0.05 1

0.1 1 0 0.1 0

A-RBF 0 1 0 1

A-MLP 0 1 0.05 1
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Fig. 36. Boxplots of the C-metric and DD-metric values achieved on
WFG9 (3).

TABLE XVIII

WILCOXON RANK-SUM TEST OF THE DD-METRIC VALUES

WFG6 (3) WFG9 (3)

P H P H

10 0 1 0 1

5 0 1 0 1

2 0 1 0.06 0

1.5 0 1 0.02 1

0.8 0 1 0.01 1

0.4 0 1 0.06 0

0.1 0.6 0 0.03 1

A-RBF 0 1 0 1

A-MLP 0 1 0.02 1
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