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Abstract

Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells 

responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, 

and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are 

the main actors. Increase oxidative stress in OB, the cells producing and mineralizing bone 

matrix, has been associated with osteoporosis development but the role of autophagy in OB 

has not yet been addressed. This is the goal of the present study.

We first show that the autophagic process is induced in OB during mineralization. Then, using 

knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we 

demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data 

suggest that autophagic vacuoles could be used as vehicles in OB to secrete hydroxyapatite 

crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and receptor 

activator of NF-κB (RANKL) secretion, favoring generation of osteoclasts (OC), the cells 

specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass 

in OB-specific autophagy-deficient mice.

Taken together, our results show for the first time that autophagy in OB is involved both in the 

mineralization process and in bone homeostasis. These findings are of importance for 

mineralized tissues which extends from corals to vertebrates and uncovers new therapeutics 

targets for calcified tissue related metabolic pathologies.



 Introduction

Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells 

responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, 

and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are 

the main actors.1 The remodeling process is highly active throughout the life and perturbation 

of this process can lead to many pathologies including osteoporosis. This pathology, due to an 

imbalance favoring bone resorption over formation, is characterized by increased OB 

apoptosis as well as an enhanced OC number and activity.2 Although age-related estrogen 

deficiency has long been considered to be the major cause of osteoporosis, the oxidative stress 

increase associated with aging is now also proposed to be a key factor leading to this 

pathology. 3

Autophagy is the major catabolic process of eukaryotic cells that degrades and recycles 

damaged macromolecules and organelles.4,5 During this process, the cytoplasmic material 

targeted to degradation is delivered to lysosomes upon sequestration within double-

membraned vesicles that are called autophagosomes. Autophagosomes and their contents are 

cleared upon fusing with late endosomes or lysosomes, and products of these catabolic 

reactions can then re-enter anabolic and/or bioenergetic metabolisms.4,6 Autophagy occurs at 

low level in all cells to ensure the homeostatic turnover of long-lived proteins and organelles7  

and is upregulated under stressfull conditions. 8 

In the present work, we address the role of autophagy in OB based on several considerations. 

First, regulation of bone cell survival/apoptosis is a crucial mechanism in the control of the 



OB to OC cell ratio, and therefore, in bone remodeling. As autophagy is a cell survival 

mechanism, its role in the OB could potentially influence the balance between bone formation 

and bone resorption. Second, several autophagy-inducers in non-osteoblastic cells, such as 

calcium, vitamin D3 and resveratrol are known to be beneficial to bone health.9,10,11 In 

addition, recent studies demonstrated a link between autophagy and some secretion 

process12,13 and one of the main OB functions is extracellular matrix production. 

Furthermore, oxidative stress, which can be alleviated by autophagy, appears to be a key 

factor in the major age-related bone disease, osteoporosis.3 Finally, a link between autophagy 

genes and human height and osteoporosis has been recently highlighted in human genome-

wide association data. 14,15

Here we provide evidence for a direct role of autophagy in the OB intracellular mineralization 

process, as well as an indirect effect on bone remodeling through the stimulation of 

osteoclastogenesis. Indeed, autophagy appears to be highly induced during mineralization in 

OB and its inhibition leads to a drastic drop in the efficiency of this central OB function in 

vitro. Further examination of primary autophagy-deficient OB displayed elevated oxidative 

stress level associated with a ten fold increased receptor activator of NF-κB (RANKL) 

secretion thus driving sustained osteoclastogenesis. Finally, OB specific impairment of 

autophagy in vivo leads to a significant loss in trabecular bone in nine month-old female mice. 



Results

Autophagy is increased during mineralization in vitro

To address the role of autophagy in OB, we first analyzed the autophagic process during the 6 

days course of mineralization in the UMR-106 osteoblastic cell line. Upon autophagy 

induction, the essential autophagy protein microtubule-associated protein 1 light chain 3 

protein (LC3-I) becomes lipidated (LC3-II) and inserts into the autophagosome membrane.

16,17,18 One of the widely used methods to detect autophagy is thus based on the 

quantification of the LC3-II protein by western blot. As shown in Figure 1A, we observed an 

increase in the steady-state levels of the LC3-II protein during the course of mineralization, 

suggesting an increase in the number of autophagosomes. An increase in LC3-II level can be 

due either to an increased autophagosome formation or a block in autophagosome maturation. 

To differentiate between these two possibilities, we clamped the LC3-II autophagosome 

degradation by the use of the lysosomal proton pump inhibitor Bafilomycin-A1.19 In 

Bafilomycin-A1–treated cells, LC3-II levels were further increased at each time point, 

suggesting that mineralization is associated with enhanced autophagosome formation. After 

transfection of a GFP-LC3 construct, autophagosome formation can also be scored by 

immunofluorescence microscopy as a transition of LC3 from its diffuse cytosolic appearance 

to a membrane-associated, punctate intracellular distribution.20 In the UMR-106 cell line 

stably expressing the GFP-LC3 plasmid, the LC3 protein mainly exhibited a diffuse 

localization at day 3, before the emergence of mineralization foci (Fig.1B). However at day 5, 

we observed a global decrease of the GFP signal, associated with the appearance of 

autophagic cells, especially in the vicinity of the mineralization foci, confirming autophagy 



induction during mineralization. We then analyzed by transmission electron microscopy the 

autophagic vesicles present in mineralizing UMR-106 cells. As shown in Figure 1C, we 

observed the presence of double-membraned autophagic vesicles containing needle-like 

structures resembling crystals that seemed to be released in the extracellular medium. We 

confirmed the crystalline nature of these structures by high-resolution transmission electron 

microscopy (Fig.1D). X-ray microanalysis revealed calcium (CaKα), phosphorus (PKα) and 

oxygen (OKα) elements as the main components of these needle-like structures (Fig.1E). 

Selected area electron diffraction patterns were measured to obtain the corresponding 

interplanar distances. The bone mineral hydroxypatite was identified by diffractogram 

analysis, which showed the presence of two diffraction rings matching the characteristic 

spacings for hydroxyapatite (3.45 and 2.81 Å) (Fig.1F). Taken together, these data suggest 

that the autophagic vacuoles could serve as vehicles for mineralization crystals. In agreement 

with this hypothesis, autophagosomes moving to the plasma membrane can be observed by 

confocal time-lapse video of mineralizing UMR GFP-LC3 cells (Movie 1).

We then analyzed the autophagic process during mineralization in mouse primary OB isolated 

from calvariae. Between day 5 and day 12, we observed an 6.6-fold increase in the steady-

state levels of the LC3-II protein (Fig.2A), suggesting an increase in the number of 

autophagosomes during mineralization. Bafilomycin-A1 treatment caused a 13.7 and 2.5-fold 

increase in LC3-II levels at day 5 and 12 respectively, indicating that autophagosome 

formation is enhanced during mineralization, particularly in the early phase. As in the 

UMR-106 cell line, analysis by transmission electron microscopy of these primary mouse OB 

during mineralization showed the presence of autophagic vacuoles containing crystal-like 

structures (Fig. 2B and C) and X-ray microanalysis demonstrated the presence of calcium and 

phosphorus (Fig.1D) present as hydroxyapatite crystals (Fig.1E).



The autophagy proteins Atg7 and Beclin-1 are required for mineralization in an 

osteoblastic cell line

To investigate the potential direct relationship between autophagy and mineralization, we then 

used siRNAs targeting two proteins involved in autophagy during mineralization of the 

UMR-106 cell line. Knockdown of Atg7, which is involved in phagophore elongation and 

LC3 lipidation,21 induced a significant decrease in mineralizing nodules (Fig. 3 A-C). To 

confirm these results, we then inhibited the expression of Beclin 1 (BECN1) which is involved 

in the initiation step of the autophagic process and regulates both the formation and 

maturation of autophagosomes.22,23,24 Similarly, BECN1 knockdown significantly reduced 

mineralization capacity (Fig.3 D-F). These results thus demonstrate involvement of autophagy 

in the OB mineralization process.

Atg5 deficiency in primary osteoblasts reduces mineralization capacity ex vivo and 

increases OC number

To assess the physiological role of autophagy in primary OB, we bred Atg5
flox-flox mice25 to 

those expressing Cre recombinase under the control of the osteoblastic type 1a collagen 

(Col1A) promoter.26 Deletion of the Atg5 gene in osteoblasts was checked by PCR on 

cortical bone genomic DNA (supplementary Fig. S1 A-B). This Atg5 gene deletion led to a 

75% reduction in the amount of LC3-II protein in cortical bone of mutant mice compared to 

their control littermates indicating a decreased autophagic activity (supplementary Fig. S1 C). 



We then cultured bone explants from the calvariae of Atg5
flox-flox Col1A-Cre- and Atg5

flox-

flox Col1A-Cre+ mice and analyzed mineralization capacity in these cultures. As shown in 

Figure 4, we observed a reduced mineralization in bone explant cultures derived from mutant 

mice compared to the one observed in cultures from control mice. In these experiments, 

cultures from mutant mice exhibited a high number of large multinucleated cells which were 

positive for tartrate-resistant alkaline phosphatase (TRAP) staining, suggesting the presence 

of osteoclast-like cells (Fig. 5 A-B). Some osteoclast-like cells were also observed in cultures 

from control mice but were less numerous. As RANKL represents one of the major cytokines 

involved in osteoclastogenesis, we then measured secreted RANKL levels in cultures from 

control and mutant mice. Enzyme-linked immunosorbent assays showed that the 

concentration of RANKL increased 9.7-fold in cultures from mutant mice compared to that 

observed in cultures from control mice (p < 0.05) (Fig. 5C). Increased RANKL production 

was described to be associated with increased oxidative stress in osteoblasts.27,28,29 

Therefore, we next analyzed oxidative stress in cultures from control and mutant mice and 

observed a significant increase in reactive oxygen species (ROS) in cultures from mutant mice 

(Fig.5D). Finally, we analyzed the expression of different osteoblastic markers in calvariae 

from control and mutant mice. As shown in Figure 5E, a significant increase in runt-related 

transcription factor 2  (Runx2) and osteopontin (OPN) expression was observed in mutant 

calvarial bones compared to controls, although the collagen mRNA levels remained 

unchanged.

Atg5 deficiency in osteoblasts results in decreased bone volume in vivo

To determine the in vivo consequences of Atg5 loss in osteoblasts, we characterized the 



skeletal phenotype of Atg5
flox-flox Col1A-Cre+ mice. Histomorphometric analysis of femur 

of nine-month-old female and male mice confirmed the deleterious effect of the Atg5 

inactivation on bone mass by revealing a reduction in trabecular bone volume associated with  

decreased trabecular width and number (Fig. 6 A-D and supplementary Fig. S2). This effect 

was more pronounced in females compared to male mice. We also observed a significant 

reduction in OB perimeter and a trend towards an increase in OC perimeter in the mutant 

mice of both sexes (Fig. 6 E-F), resulting in a significant decrease of the OB to OC ratio in 

mutant female and male mice compared to their control littermates (44 % and 64 % decrease 

in OB to OC ratio respectively in mutant female and male mice compared to controls) (Fig. 

6G). Finally, mineral apposition rate (MAR) was evaluated, showing a 50% decrease in 

mutant compared to control 9-month old mice (0,58 ± 0,05 compared to 1,14 ± 0,19 microns/

day). Microcomputerized tomography confirmed these results with a significantly decreased 

bone volume, intersection surface, trabecular number and increased trabecular spacing in 

females (Table 1 and Fig. 7). Although not statistically significant, a similar trend was 

observed in males.



Discussion

The role of autophagy in bone cells was recently highlighted by several studies.30 Autophagy 

was first shown to be a major survival mechanism of the long-lived osteocytes in stressful 

environments.31,32,33 Recent work by Onal M. et al. reported that autophagy suppression in 

osteocytes results in a reduced bone volume of six-month old mice associated with an overall 

reduction in OB and OC numbers.34 The study of Whitehouse et al.,35 then demonstrated 

that genetic truncation of the selective autophagic receptor Nbr1 in a murine model leads to 

increased osteoblast differentiation and activity in vivo. In OC, proteins essential for 

autophagy were shown to be key factors for ruffled border formation, secretory function, and 

bone resorption in vitro and in vivo.36 Finally, very recent work by Pantovic et al.37 

demonstrated that genetic or pharmacological autophagy inhibition suppressed mesenchymal 

stem cell differentiation to OB. In the present work, we addressed for the first time the role of 

autophagy in OB function.

One of the main roles of OB is to produce and mineralize bone matrix. Mineralization is a 

complex and incompletely understood process involving several concurrently redundant 

mechanisms.38 Mineral formation is proposed to be initiated inside vesicles, either after their 

secretion, as in matrix vesicles39,40 or before their secretion, inside the cell.41,42  This last 

process called intracellular mineralization is initiated by the generation of mineral-containing 

needle-shaped structures that form aggregates. These aggregates are then included in vesicles 

of an unknown nature that were observed to move to the cell membrane where exocytosis 

occurs.41,43 In this report, we show the presence of mineral organized as needle-like 



structures mainly within autophagic vesicles. Based on the Ca/P ratio, this mineral appears to 

be immature. As chemical fixation can cause the artifactual crystallization of calcium 

phosphate44, we cannot completely rule out the possibility that the mineral is in fact present 

under an amorphous state. However, the absence of such needle-like structures within 

mitochondria tend to favor the crystalline nature of these aggregates.

Our results indicate that mineralization is associated with an autophagy induction and that 

autophagy inhibition results in a decreased mineralization capacity in OB cells. In addition, 

transmission electron microscopy and confocal time-lapse live cell imaging suggest that 

autophagic vacuoles could serve  as vehicles to secrete hydroxyapatite crystals into in the 

extracellular space. In addition to its role in physiological conditions, the intracellular 

mineralization process is also involved in pathological calcification of soft tissues which is 

associated with serious clinical consequences.45  In this regard, mineralized structures within 

autophagic vacuoles have been observed in kidney epithelial cells cultured under mineralizing 

conditions.45

Recent publications provide evidence that autophagy is involved in some secretion 

mechanisms.12,13 In particular, although the classical fate of autophagosomes is fusion with 

lyzozomes and degradation of their contents, several studies have demonstrated an exocytosis 

of autophagic vacuole content within the extracellular medium.46-53 This autophagy-based 

exocytic process has been described for the unconventional secretion of proteins devoid of 

signal peptide such as Acb146,47 and IL-1  proteins.48 In addition to the secretion of these 

cytosolic proteins, exocytosis of autophagic vacuole content was also observed in stressed 

cells,50,51 to be involved in cellular remodeling during the final maturation of reticulocytes52 



and in elimination of actin-rich ordered paracrystalline filament arrays called Hirano bodies.

53

In addition to a direct effect on mineralization, autophagy deficiency in OB also alters the 

cross-talk with OC and favor the formation of the latter due to an increase in RANKL 

secretion. While autophagy suppression in osteocytes results in a low rate bone remodeling 

associated with  reduced OB and OC numbers,34 autophagy deficiency in OB leads to an 

osteoporotic-like phenotype, with an enhanced osteoclastogenesis. Several studies 

demonstrate that increased oxidative stress in OB leads to increased RANKL production.

27-29 Moreover, autophagy deficiency is known to be associated with increased oxidative 

stress, partly due to the accumulation of damaged mitochondria.54 We also observed an 

increased oxidative stress in mutant bone explant cultures compared to control. A trend 

towards an increase in OC number in cultures from mutant mice was also observed in vivo by 

histomorphometric analysis and was associated with a reduced OB perimeter, which is 

consistent with previous studies linking increased oxidative stress with decreased OB number.

55-57 We also determined that Runx2 and OPN were significantly increased at the 

transcriptional level in calvariae from mutant mice compared to controls. Runx2 is the master 

transcription factor in OB, the expression of which is absolutely required for bone formation 

and function.58,59 However, Runx2 is also known to modulate prosurvival mechanisms 

associated with transcription of genes such as Bcl-2 or OPN,60-63 the latter being also known 

as a stress-induced factor.64 In addition, endoplasmic reticulum stress, which is often 

associated with autophagy deficiency,65 was shown to induce apoptosis and transcriptional 



upregulation of Runx2.66 

Finally, we observed that autophagy deficiency in OB results in decreased bone volume in 9-

month old mice. In vivo, it is likely that a defect in intracellular mineralization process due to 

autophagy deficiency in OB can be compensated in young animals by other cooperative and 

redundant mechanisms. The significantly decreased bone volume observed in aged animals 

suggest that increased oxidative stress associated with aging could constitute the major 

mechanism leading to bone loss upon OB autophagy deficiency. A significant effect was 

mostly observed in female mice, although males exhibit a similar tendency. Age- and gender-

dependent bone phenotypes in mice with genetic alterations in different pathways have 

previously been described. For example, genetic manipulation of Lef1, GSK3β, sFRP1 or 

Cathepsin K led to a female-preferential bone phenotype.67-69  In addition, a gender 

difference in antioxidant metabolism has previously been described in some pathologies, with 

females being more vulnerable to oxidative damage than males.70-72  It is thus possible that a 

same autophagy defect results in a more pronounced phenotype in females, antioxydant 

metabolism acting as a compensatory mechanism in males.

In conclusion, our results show for the first time that autophagy deficiency in OB decreases 

their mineralizing capacity and triggers an imbalance between OB and OC resulting in a low 

bone mass phenotype. Autophagy decline, which is generally associated with age,73,74 could 

thus be involved in bone aging by favoring generation of reactive oxygen species, OB 

apoptosis and OC formation and by decreasing the mineralizing capacity of OB.



Materials and methods

Cell culture

The rat UMR-106 osteosarcoma cell line75 was maintained in Dulbecco's modified Eagle 

medium (Lonza, BE12-604) supplemented with 10% Hyclone fetal calf serum (Thermo 

Scientific SH30071.03). The UMR-106 GFP-LC3 clone 4 cells correspond to the UMR-106 

cell line stably transfected with the pGFP-LC3 construct. These cells are maintained in the 

same medium in the presence of G418 (800  g/ml, Sigma-Aldrich, G8168). For 

mineralization, the cells were cultured in !-MEM (Lonza, BE02-002) supplemented with 

10% Hyclone fetal calf serum, CaCl2 (1.4 mM; Merck 2382), ascorbic acid (50  g/mL; 

Sigma-Aldrich A4034) and dexamethasone (20 !g/mL; Sigma-Aldrich D8893) for 3 days, 

and then for 3 additional days in the same medium in the presence of ß-glycerophosphate (50 

mg/mL; Sigma-Aldrich G9891). ON-TARGET plus SMARTpool siRNA (D, Abgene Ltd for 

rat Atg7 (L095596-01) and Beclin-1 (L-099237-01) were transfected in the UMR-106 cell line 

using nucleofection and Amaxa solution V (Lonza VCA-1003).

Explant culture from mouse calvariae was performed by cutting calvarial bone in 2 x 2 mm2 

pieces and incubating them for 7 days in  -MEM supplemented with 10% fetal calf serum. 

The cultures were then maintained for 15 additional days in differentiation media containing 

CaCl2 (1.4 mM), ascorbic acid (50  g/mL) and ß-glycerophosphate (50 mg/mL). 

Mineralization analysis

Mineralization was analyzed after culture in mineralizing conditions during 6 and 11 days for 

UMR-106 and primary osteoblasts, respectively. After fixation in 100% ethanol on ice for 1 



hour, the cells were stained with 1% Alizarin red S dye (Alfa Aesar 42746) (pH 4.1). After 

incubation at room temperature for 10 minutes, wells were washed five times with deionized 

water and representative photographs were taken. Mineralized nodules were counted using an 

optical microscope (10 wells/condition). 

TRAP staining and RANKL ELISA

TRAP staining was performed using a leukocyte acid phosphatase kit (Sigma-Aldrich 387A). 

After 7-9 days of culture in mineralization conditions, conditioned medium was collected 

from bone explant cultures and RANKL levels were determined by ELISA according to 

manufacturer’s instructions (R&D Systems MTR00).

Mice

Atg5
 flox/flox

 Col1-Cre+ mice were generated by intercrossing the progeny of crosses 

between Atg5
flox/flox mice25 obtained from the RIKEN BioResource Center, Japan (Ref 

RBRC 02975), and α1(I)collagen-Cre transgenic mice26 obtained from the MMRRC (Mice 

ID number 208-UCD).

Genomic DNA isolation and PCR

Genomic DNA preparation from cortical bone was previously described (34). Briefly, after 

removing the epiphysis of femurs and tibias and flushing the bone marrow with PBS, the bone 

surface was scraped with a scalpel. Bone pieces were then digested with collagenase (1 mg/ml 

type I:II, ratio 1:3, Life Technologies SAS 17100-017 and 17101-015) in Hank’s balanced salt 

solution (Life Technologies SAS 14025-050) containing 0.1 % bovine serum albumin and 1 



mM CaCl2. Six consecutive 15 minute digestions at 37°C were performed to remove the cells 

on the bone surface. After washing in PBS, bone pieces were decalcified in 14% EDTA for 1 

week and digested with proteinase K (0.5 mg/ml in 10mM Tris, pH 8.0, 100mM NaCl, 20mM 

EDTA, and 1% SDS) at 55 °C overnight. Genomic DNA was then isolated by phenol/

chloroform extraction and ethanol precipitation. Bone DNA extracted from Atg5
flox-flox 

Col1A-Cre- or Atg5
flox-flox Col1A-Cre+ were analyzed by PCR, performed by using 

Platinum Taq polymerase (Life technologies 10966-034) and primers previously described to 

amplify Atg5 flox or Atg5 deleted allele25. Amplification conditions were 94°C, 3 min (94°C, 

30 sec ; 60°C, 30 sec ; 72°C, 1 min) cycled 30 times, 72°C 5 min. 

RNA isolation and real-time PCR 

Frozen calvaria were pulverized in a Bessler mortar and pestle cooled with dry ice, and total 

RNAs were extracted from the bone powder using Trizol reagent (Life technologies 

15596-018) according to the manufacturer's instruction. Total RNAs (1 µg) were then reverse-

transcribed using SuperScriptTM II Reverse Transcriptase (Life technologies 18064-014) and 

random hexamer primer (Life technologies N8080127). Triplicates of each 10 fold diluted 

cDNAs were subjected to real-time PCR analysis in an ABI PRISM 7000 system (Applied 

Biosystems, Life Technologies SAS, Villebon sur Yvette, France). Reactions were performed 

in a 20 µl final volume using 5 µl of diluted cDNAs and MESA GREEN qPCR Mastermix 

Plus (Eurogentec RT-SY2X-03+WOULR). Amplification conditions were : 95°C, 2 min 

(95°C, 15 sec ; 60°C, 1 min) cycled 40 times.  Nucleotide sequences of PCR primers were as 

follows : 



Col1a1 (alpha-1 type 1 collagen)   : 5’-GCGAAGGCAACAGTCGCT-3’ (forward) and 5’-

CTTGGTGGTTTTGTATTCGATGAC-3’ (reverse)   ; Runx2 (runt related transcription factor 

2 )   : 5 ’ - T T TA G G G C G C AT T C C T C AT C - 3 ’ ( f o r w a r d )   a n d 5 ’ -

TGTCCTTGTGGATTAAAAGGACTTG-3’ (reverse)   ; OPN (SPP1, osteopontin)   : 5’-

C T G T G T C C T C T G A A G A A A A G G A T G - 3 ’ ( f o r w a r d ) a n d 5 ’ -

GCTTTCATTGGAATTGCTTGG-3’ (reverse)   ; 36B4 (Rplp0, ribosomal protein large P0)   : 

5’-Tccaggctttgggcatca-3’ (forward) and 5’- ctttatcagctgcacatcactcaga-3’ (reverse). 

Cycle threshold (Ct) were obtained graphically (ABI PRISM 7000 Sequence Detection 

System version 1.2.3). Gene expression was normalized to 36B4  and ∆Ct values calculated. 

Comparison of gene expression between two samples (Atg5
flox-flox Col1A-Cre- and Atg5

flox-

flox Col1A-Cre+ bone RNAs) was obtained by substraction of ∆Ct values between the two 

samples to give ∆∆Ct  value. Relative expression was calculated as 2-∆∆Ct  normalized to the 

Atg5
flox-flox Col1A-Cre- sample. 

Protein extraction and Western blot analysis

Cells were washed with phosphate-buffered saline (PBS), scraped in ice-cold PBS and 

centrifuged at 500 g for 5 min. The cell pellets were resuspended directly in reducing sample 

buffer (Laemmli   : 60 mM Tris-HCl, pH 6.8, 2% sodium dodecyl sulphate (SDS), 100 mM 

dithiothreitol and 0.01% Bromophenol Blue) in the presence of a complete EDTA-free 

protease inhibitors cocktail (Roche Diagnostics 04693159001). Genomic DNA was sheared 

by passage through a narrow-gauge syringe in order to reduce viscosity and resulting total 

protein extracts were then heated at 95°C for 4 min. Regarding protein extraction from 

cortical bone, after removing the epiphysis of femurs and tibias and flushing the bone marrow 



with PBS, the bone surface was scraped with a scalpel. Bone pieces were then pulverize in 

liquid nitrogen and demineralized in EDTA. The resulting bone powder was then incubated in 

reducing sample buffer containing 2% SDS, 0.5% Sodium deoxycholate, 1% Igepal CA-630 

(Nonidet P-40) and 0,1 M dithiothreitol for 10 min at 100°C.

Proteins were separated on a SDS-polyacrylamide gel and electrotransferred to 

polyvinylidene difluoride membranes (Immobilon, Millipore, Dutscher 44087). Blots were 

blocked for 1 h with Tris-buffered saline-0.05% Tween 20 (TBS-T) supplemented with 5% 

nonfat milk and incubated overnight at 4°C with primary antibody. Filters were then washed 

in TBS-T, incubated for 45 min at room temperature with appropriate secondary antibodies 

conjugated to horseradish peroxydase and washed again prior to detection of signal with ECL 

plus chemilumiscent detection kit (Thermo Scientific 80196). Primary antibodies used in this 

study were rabbit polyclonal anti-LC3 (L8918), rabbit polyclonal anti-ATG7 (A2856), mouse 

monoclonal anti-"-actin (clone AC-15, A1978) and mouse monoclonal anti-#-tubulin 

(clone TUB 2.1, T4026) antibodies from Sigma-Aldrich and rabbit polyclonal anti-beclin-1 

antibodies from MBL International Corporation (CliniSciences PD017).

Transmission electron microscopy

UMR-106 or calvariae cells were fixed in 1.6% glutaraldehyde (Sigma Aldrich G5882) in 

0.1M phosphate immediately after medium removal or centrifugation, respectively. Samples 

were rinsed with the same buffer and then post-fixed in osmium tetroxide (1%) for 1 h. After 

rinsing with distilled water, they were then dehydrated through an increasing ethanol series 

and embedded in epoxy resin. Ultrathin sections (70 nm) were collected on Formvar coated 

copper grids, stained with uranyl acetate and lead citrate and examined with a Jeol JEM 1400 

transmission electron microscope.



High-resolution transmission electron microscopy / X-ray microanalysis / Electron 

diffraction

For High Resolution Transmission Electron Microscopy (HRTEM), ultrathin sections (70 nm) 

were cut on a Reichert Ultracut E Microtome (Reichert-Jung, Vienna, Austria). Sections were 

deposited on copper grids (200 mesh) coated with Formvar and holy carbon film. Samples 

were analyzed on an HRTEM microscope (JEOL 2100F, Japan) with an acceleration voltage 

of 200 kV, combining Area Electron Diffraction (SAED) and X-ray spectroscopy (EDX). 

HRTEM and SAED images were digitally recorded with a Gatan Ultrascan 1000 camera, with 

acquisition software Gatan Digital Micrograph. The analysis system was EDS-SDD Oxford 

X-Max. For SAED measurements, the diameter of the selected area was about 1 μm and the 

camera length was 40 cm. SAED patterns were processed with Process Diffraction v4.3.8.B 

software.76

Fluorescence Confocal  Microscopy

GFP-LC3 expressing cells were fixed with PBS containing 1% formaldehyde for 20 min at 

room temperature, and coverslips were mounted in Mowiol mounting medium. Slides were 

examined by confocal microscopy using the Zeiss 510 Meta laser scanning microscope and 

2011 Zen software. For oxidative stress analysis, the cells were stained with 3 M CellROX 

orange reagent (Molecular probes, Life technologies C10443) and Hoechst 33342 by adding 

the probe to the complete medium and incubating the cells at 37°C for 30 min. The cells were 

washed in PBS and analyzed by fluorescence microscopy. For confocal live cell imaging, cells 

were grown in glass bottom 24-wells (PAA 21315231X) and stained with 2.5 %g/mL 

CellMask orange reagent (Molecular probes, Life technologies C10045) by adding the probe 

to the complete medium and incubating the cells at 37°C for 5 min. The cells were washed in 



PBS and imaged using a Zeiss high-throughput epi-fluorescent microscope, equipped with an 

EMCCD video camera (Cascade II   : 1024), heated incubation chamber with CO2 and 

Axiovision image acquisition software (release 4.8.2).

Histomorphometric analysis

Femurs were fixed in 10% neutral buffered formaldehyde. The excised distal femurs were cut 

longitudinally to expose the bone marrow with a low-speed metallurgical saw and dehydrated 

in grade ethanol, defatted in toluene, and embedded in methylmethacrylete without 

decalcification. Five-micrometer-thick longitudinal sections were cut with a Reicher-Jung 

Polycut microtome and stained with 1% toluidine blue. Histomorphometric analysis was 

performed on  the region between 0.2 and 1.2 mm  distal to the growth plate  using 

OsteoMeasure (OsteoMetrics, Atlanta, GA, USA) at a magnification of X200. The variables 

of cancellous bone volume (BV/TV), trabecular width (Tb.Wi), trabecular number (Tb.N), 

trabecular separation (Tb.Sp), OB perimeter (OB.Pm) and OC perimeter (OC.Pm) were 

calculated according to standard formulas and nomenclature established by the American 

Society for Bone and Mineral Research.77 

Micro-CT analysis

rchitectural parameters were analyzed by high-resolution X-ray micro-CT, using the 

SkyScan-1076 (SkyScan, Aartselaar, Belgium) system for small-animal imaging. Each femur 

was scanned parallel to its longitudinal axis (60 kV, 148 A). A core of 100 sections, each 11 

&m thick (7 mm long) was used for trabecular bone morphometry evaluations with SkyScan 

CtAn software. The following factors were measured: total volume, bone volume (BV) and 

the BV/tissue volume (TV) ratio. Trabecular BV and cortical BV were evaluated separately 



and the ratio of these two volumes was calculated. Trabecular bone thickness, trabecular 

number and separation were measured with a semi-automating morphing procedure, from 

total BV. Cortical thickness was evaluated on 150 sections at mid shaft of diaphysis.

Statistical analysis

The results are expressed as mean ± SD and comparisons were performed using Student’s t 

test except for percentage comparison for which the Kruskal-Wallis test was used. All 

statistics were computed with MINITABTM Inc. V12.2 (State College, PA, USA). 
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Figure legends 

Figure 1. Mineralization is associated with an autophagy induction in the UMR-106 

osteoblastic cell line. (A) UMR-106 cells were cultured in mineralization medium and 

proteins were extracted at day 3, 4 and 5. Western blot of LC3 and  -actin, representative of 

three experiments. LC3-II to #-actin relative levels are presented. Mean and standard errors 

are shown. Statistical significance was determined by Student's t-test (*p < 0.05). (B) Optical 

and confocal microscopy analysis of GFP-LC3 expressing UMR-106 cell line at day 3 and 5 

during mineralization, representative of three experiments. Black and white arrows indicate 

mineralization foci (F) and autophagic cells, respectively. (C) Electron microscopy of 

mineralizing UMR-106 cells. White arrows indicate autophagic vesicles. Black arrows 

indicate mineralization crystal-like structures. The dashed line delimitates the extracellular 

medium; mtc, mitochondria. (D) High-resolution transmission electron microscopy of the 

crystal-like structures. (E) X-ray microanalysis indicating the components of the crystal-like 

structures. (F) Electron diffraction of the crystal-like structures. Arrows point to the 

reflections of hydroxyapatite. 

Figure 2. Mineralization is associated with an autophagy induction in mouse primary 

osteoblasts. (A) Mouse primary osteoblasts were cultured in mineralization medium and 

proteins were extracted at day 5 and 12. Western blot of LC3 and '-actin at day 5 and 12 

during mineralization in primary mouse OB, representative of three experiments. LC3-II to 

#-actin relative levels are presented. Mean and standard errors are shown. Statistical 

significance was determined by Student's t-test (**p < 0.005). (B) Electron microscopy of 

mineralizing primary OB. The area included in the black squarre is enlarged. White arrows 

indicate autophagic vesicles. Black arrows indicate mineralization crystal-like structures that 



can be light or very dense.  mtc, mitochondria; N, nucleus. (C) High-resolution transmission 

electron microscopy of the crystal-like structures. (D) X-ray microanalysis indicating the 

components of the crystal-like structures. (E) Electron diffraction of the crystal-like 

structures.

Figure 3. Knockdown of autophagy genes reduces mineralization capacity in the 

UMR-106 cell line. (A) Western blot of Atg7 and (-tubulin, 24 h after siRNA transfection in 

UMR-106 cells, representative of three experiments. siC, control siRNA; siATG7, Atg7 

siRNA. (B) Alizarin red staining of mineralization nodules, representative of four 

experiments. UMR-106 cells were transfected with siRNA and cultured in mineralization 

medium for 5 days. Upper panels: representative pictures of the wells; lower panels: 

representative pictures of mineralization foci (dark spots, x 2.5 magnification). (C) Mean 

number of mineralization nodules in each condition, ten wells per condition, representative of 

four experiments. (D) Western blot of Beclin-1 and (-actin, 48 h after siRNA transfection in 

UMR-106 cells, representative of three experiments. siC, control siRNA; siBECN1, Beclin-1 

siRNA. (E) Alizarin red staining of mineralization nodules, representative of three 

experiments. UMR-106 cells were transfected with siRNA and cultured in mineralization 

medium for 5 days. Upper panels: representative pictures of the wells; lower panels: 

representative pictures of mineralization foci (dark spots, x 2.5 magnification). (F) Mean 

number of mineralization nodules in each condition, ten wells per condition, representative of 

three experiments.

Figure 4. Atg5 deficiency in osteoblasts results in decreased mineralization. Alizarine red 

staining of mineralization in calvaria bone explant cultures from control (Atg5
flox-flox Col1A-



Cre-) and mutant (Atg5
flox-flox Col1A-Cre+) mice, representative of three experiments. B, 

bone explant. 

Figure 5. Atg5 deficiency in osteoblasts stimulates OC generation in calvarial explants. 

(A-B) Representative photographs of TRAP staining in calvarial bone explants from control 

(Atg5
flox-flox Col1A-Cre-) and mutant (Atg5

flox-flox Col1A-Cre+) mice, representative of 

four experiments. Cultures from mutant mice exhibit 7-fold OC number compared to cultures 

from control littermates (mean: 77 ± 37 in mutant vs 10 ± 8 in control cultures). Each well 

represents a single calvaria. B, bone explant. (C) Secreted RANKL measured in the 

conditioned medium of calvarial bone explants from control and mutant mice. Each dot 

represents the result obtained for one calvaria (n=5) and the line shows the median. *p < 0.05 

vs respective Atg5
flox-flox Col1A-Cre- by Student’s t test. (D) Oxidative stress in bone 

explant cultures from control and mutant mice, 4 mice per condition. Representative 

photographs of both conditions and mean fluorescence intensity measured in 240 cells per 

condition. (E) Relative expression level of Runx2, OPN and COLL mRNA in calvariae from 

female mutant mice compared with female control mice determined by quantitative RT-PCR. 

Results are presented as mean ± SD (n=4). *p < 0.05 vs control by Student’s t test.

Figure 6. Bone mass is decreased following Atg5 deletion. (A-F) Histomorphometric 

analysis of female and male nine-month-old Atg5
flox-flox Col1A-Cre+ mice and their control 

littermates. Bars indicate mean ± SD. C, Atg5
flox-flox Col1A-Cre- mice, females: n=8, males: 

n=9; M, Atg5
flox-flox Col1A-Cre+ mice, females: n=9, males: n=9. (A) Percentage of bone 

volume per total volume (BV/TV). (B) Trabecular width (Tb.Wi). (C) Trabecular number per 



mm (Tb.N). (D) Trabecular space (Tb.Sp). (E) Percentage of trabecular bone surface covered 

by osteoblast (OB Pm). (F) Percentage of trabecular bone surface covered by OC (OC Pm). 

(G) OB to OC ratio (%) in female and male control and mutant mice. *p < 0.05 vs control by 

Student’s t test.

Figure 7. 3D reconstruction of distal femur trabecular bone using microCT. Wild-type 

and mutant female mice femurs were collected at 9 months of age. These reconstructions 

based on 100 sections analysis, illustrate the decrease of trabecular bone volume in Atg5
flox-

flox Col1A-Cre+ mutant mice.

Online supplemental material

Movie 1. Autophagosomes movement in mineralizing OB cell line stably expressing a 

GFP-LC3 construct. The movie shows autophagosomes (green dots, arrows) moving to the 

cell membrane stained with CellMask orange reagent, in mineralizing GFP-LC3 expressing 

UMR-106 cells. The cells were analyzed by confocal time-lapse video using a Zeiss high-

throughput epi-fluorescent microscope and frames were taken every minute for 15 minutes.

Supplementary Figure S1. Atg5 gene deletion in bones of Atg5
flox-flox 

Col1A-Cre+ mice. 

(A) Position of the PCR primers in the flox allele and the deleted allele (from Hara et al., 

2006 (25)). Primers P1 and P2 are used for amplification of the flox allele and primers P2 and 

P3 for the deleted allele. (B) Genomic DNA extracted from cortical bone of three Atg5
flox-



flox Col1A-Cre- and three Atg5
flox-flox Col1A-Cre+ mice was analyzed by PCR using 

primers P1, P2 and P3. (C) Western blot analysis of LC3 in cortical bone of control and 

mutant mice and quantification. β-actin was used as a loading control.

Supplementary Figure S2. Bone histology of Atg5
flox-flox 

Col1A-Cre- and Atg5
flox-flox 

Col1A-Cre+ mice. (A) Histology of femur from control and mutant 9 month-old mice after 

toluidine blue staining (x 40 magnification). (B) Osteoblasts (white arrows) identified in 

femur sections (x 200 magnification). (C) Osteoclasts (white arrows) identified in femur 

sections (x 200 magnification).
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Genotype BV/TV (%) i.S (µm
2

) Tb.N (1/µm)

Tb.Pf (1/µm)

Control females (n=8) 12.93 ± 7.1 2.18 ± 0.9 1.48 ± 0.7
18.25 ± 8.9

Mutant females (n=9) 5.58 ± 3.3* 0.83 ± 0.4* 0.69 ± 0.4*
27.08 ± 5.7*

Control males (n=9) 22.60 ± 4.8 2.94 ± 0.5 2.72 ±0.5
10.29 ± 3.8

Mutant males (n=9) 20.77 ± 10.8 2.49 ± 1.2 2.47 ± 1.0
12.90 ± 8.2

Table 1. Microcomputerized tomography of femur from female and male nine-

month-old mutant Atg5
flox-flox 

Col1A-Cre+ mice and their control littermates. 

Values indicate mean ± SD. BV/TV: Percentage of bone volume per total volume; i.S: 

Intersection surface; Tb.N: Trabecular number per µm; Tb.Pf: Trabecular pattern 

factor per µm. *p < 0.05 vs control by Student’s t test.
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